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Abstract. The formation of frazil ice in supercooled waters has been extensively studied, both experimentally and numerically,

in recent years. Numerical models, with varying degrees of complexity, have been proposed; these are often based on many

parameters, the values of which are uncertain and difficult to estimate. In this paper, an uncertainty analysis of two mathematical

models that simulate supercooling and frazil ice formation is carried out within a probabilistic framework. The two main

goals are (i) to provide quantitative insight into the relative importance of contributing uncertain parameters, to help identify5

parameters for optimal calibration, and (ii) to compare the output scatter of frazil ice models with single and multiple crystal

size classes. The derivation of single- and multi-class models is presented in light of recent work, their numerical resolution

is discussed, and a list of the main uncertain parameters is proposed. An uncertainty analysis is then carried out in three

steps. Parameter uncertainty is first quantified, based on recent field, laboratory and numerical studies. Uncertainties are then

propagated through the models using Monte Carlo simulations. Finally, the relative influence of uncertain parameters on the10

output time series - i.e. the total frazil volume fraction and water temperature - is assessed by means of Sobol indices. The

influence of input parameters on the long-term asymptotic as well as short-term transient evolution of the systems is discussed,

depending on whether gravitational removal is included or not in the models.

1 Introduction

Formation of frazil ice in water bodies has been widely investigated because of its impact on submerged structures (Daly,15

1991, 2006; Richard and Morse, 2008) and because it often precedes formation of ice cover in rivers and oceans (Daly, 1994;

Smedsrud and Jenkins, 2004). Frazil ice also plays an important role in geophysical flows such as plumes of ice shelf water

under floating ice sheets (Bombosch and Jenkins, 1995; Rees Jones and Wells, 2018; Frazer et al., 2020). For these reasons,

the study of frazil formation processes is an active area of research, with a large variety of applications in river and coastal

engineering.20

The main drivers for the formation of frazil are the water cooling rate resulting from heat exchanges with the atmosphere,

the initial seeding of frazil nuclei and the turbulent mixing. Then, the thermal growth process deriving from the heat exchange

between water and primitive crystals, allows a fine description of the balance between growth frazil ice and water supercooling.
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Previous mathematical models describing the evolution of frazil ice and water temperature, were based on ideas pioneered by

Daly (1984, 1994). Omstedt (1985) developed a model based on a turbulent channel-flow boundary-layer theory, in which a25

mean particle is considered of constant geometric properties and constant Nusselt number is considered. Mean particle-size

models have been incorporated in numerical hydraulic tools such as CRISSP2D (Shen and Wasantha Lal, 1993; Shen et al.,

1995; Shen, 2010). More complex models are based on the ice-number continuity equation introduced by Daly (1984), taking

into account the complexity of crystal distribution. In contrast with single-size-class models, the crystal number continuity

equations allow introduction of secondary nucleation and flocculation processes. When combined with thermal growth, these30

complement the modeling of frazil crystal size evolution. Svensson and Omstedt (1994) proposed a numerical model for

solving the equations introduced by Daly (1984) by considering discrete radius intervals. Conceptual models for secondary

nucleation and flocculation were introduced and calibrated to fit the experimental data of Michel (1963) and Carstens (1966).

Hammar and Shen (1991) derived a variable particle-size model in two dimensions, and later improved it with secondary

nucleation and flocculation (Hammar and Shen, 1995). Variable particle-size models has also been integrated in TELEMAC-35

MASCARET (Souillé et al., 2020). Numerous simplified implementations have been made that consider a well-mixed water

body. For example, Wang and Doering (2005) worked with the same model as Svensson and Omstedt (1994) and further

discussed calibration of influential parameters in initial seeding, secondary nucleation, and flocculation by comparing them

with the experimental data of Clark and Doering (2004). Implementation of multiple size class frazil dynamics in the context

of sea ice and ice shelf water plumes has also been proposed by Smedsrud (2002), Smedsrud and Jenkins (2004) and Holland40

and Feltham (2005). In the same context, Rees Jones and Wells (2018) have recently shed new light on multiple-size-class

models and discussed crystal growth rate, and the occurrence of frazil explosion. They also identified and characterized steady

state crystal size distribution. Henceforth, single- and multiple-size-class models will be referred to as (SSC)1 and (MSC)2

models respectively.

Common to all numerical model of frazil dynamics is their use of a large number of parameters, making calibration difficult.45

The modeling studies mentioned above show that frazil ice models can be fitted to reproduce evolution of temperature and frazil

volume fraction. However, given the uncertainty of fitting parameters, it is questionable whether these models are predictive.

As Rees Jones and Wells (2018) point out, the consistency between experiments and models does not necessarily means

parameterization is correct. This is particularly true when different processes compete and have similar impact on the crystal

size distribution. Besides, introducing new processes in the models increases the number of parameters that need calibration.50

This comes at the cost of introducing new uncertain parameters and raises the question of models trustworthiness.

This trade-off between uncertainties and model complexity, is often discussed in geophysical and environmental modeling

(MacGillivray, 2021; Van Zelm and Huijbregts, 2013). On this matter Saltelli (2019) advises use of statistics to aid mathemat-

ical modeling via “a systemic appraisal of model uncertainties and parametric sensitivities”. There is, moreover, a growing

appreciation of how sensitivity analysis enhance understanding of the intricate physical processes involved in ice formation55

(Sheikholeslami et al., 2017). The sensitivity of multiple-size-class frazil models to initial seeding, secondary nucleation and

1SSC: Single Size Class
2MSC: Multiple Size Class
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flocculation parameters has been investigated by Wang and Doering (2005) and Smedsrud and Jenkins (2004), by simple mod-

ifications of specific parameters. Although probabilistic methods are sometimes used in processing observational data (Frazer

et al., 2020), to the author’s knowledge, probabilistic sensitivity analysis of frazil ice models has never been performed. In

addition, comparison of (SSC) and (MSC) models in terms of uncertainty of output has never been tackled, despite that the60

prohibitive computational cost of the (MSC) model, making the (SSC) approach still relevant to many applications.

In this paper, we intend to bridge that gap by proposing an uncertainty and sensitivity analysis of single and multiple-

class frazil ice models, using a of full description of parameters uncertainty (by probability density functions) and variance

decomposition of model outputs. First, we introduce the models, and main hypotheses and discuss their implementation in

section 2. The uncertainty assessment methodology is presented in section 3. We then rely on numerous field and experimental65

measurements to quantify the uncertainties of input parameters of the two frazil numerical models in section 4. Using Monte

Carlo experiments, we next study propagation of these uncertainties on model outputs in section 5: in other words, the evolution

of the frazil ice volume fraction and the water temperature. The evolution of output scatter is discussed and compared to the

asymptotes of the dynamic systems. Finally, sensitivity analysis based on Sobol indices (Sobol, 2001) and aggregated Sobol

indices enables us to propose a selection of the most influential parameters in both models. We conclude about this study’s70

perspectives in section 6.

2 Frazil ice dynamics

This section introduces the continuum equations used to describe evolution of water temperature and frazil volume fraction,

as well as their discrete counterparts and their numerical resolution under the assumption of well-mixed water bodies. The

parameters of the models, that can be considered uncertain, are also introduced.75

2.1 Mathematical description

Frazil crystals are assumed to be discs of radius r and thickness λ. The ratio between diameter and thickness, denotedR= 2r/λ

is supposed to be constant as crystals grow. Let us define n as the crystal number density, which corresponds to the number

of crystals per unit volume per unit length in radial space. The total number of particles per unit volume is then defined as

N =
∫∞
0
n(r)dr. We also introduce the frazil volume fraction density as c= nV in which V = πr2λ is the crystal volume.80

The volume proportion of the water-ice mixture occupied by frazil ice, i.e., the total volume fraction of frazil, is then defined

as C =
∫∞
0
c(r)dr. An incompressible water-ice mixture of velocity u and depth h is considered. Following Daly (1984) the

number density balance equation can be defined as

∂n

∂t
+u.∇n−∇.(νc∇n) =− ∂

∂r
(Gn)︸ ︷︷ ︸
(1)

+
(
ṄT + ṄI

)
δ(r− rc)︸ ︷︷ ︸

(2)

− 1

V

∂

∂r
(FV n)︸ ︷︷ ︸
(3)

−wr
∂n

∂z︸ ︷︷ ︸
(4)

, (1)

where νc is the frazil particles diffusivity, wr is the buoyancy velocity, and remaining right hand side terms are source terms85

described hereafter:
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– The source term (1) represents the crystal size evolution due to thermal growth, resulting from the heat exchange between

the supercooled water and ice particles. The crystals can be considered to grow mainly on their peripheral area, defined

by a= 2πrλ (Daly, 1994). Frazil evolution is then driven by the radial growth rate G, equal to

ρiLiG=
Nukw
δT

∆T, (2)90

in which ρi is the frazil ice density, Li is the latent heat of ice fusion and the right hand side is the heat exchange between

the crystal of temperature Ti and the surrounding water of temperature T . The latter is modeled as a function of the

temperature delta ∆T = Ti−T , the thermal conductivity of water kw, the Nusselt number Nu, which represents the

ratio between turbulent heat transfer and conduction heat transfer, and a thermal boundary layer length scale, denoted

δT (which is either chosen as the radius or thickness in literature). The crystal temperature Ti is assumed to be equal to95

the freezing temperature denoted Tf . The Nusselt number can be described as a function of ratio m∗ = r/η, where η is

the Kolmogorov length scale, which can be defined as a function of the turbulent dissipation rate ε as η = (ν3/ε)1/4, in

which ν is the molecular viscosity of water (Daly, 1984). The Nusselt number formulation described by Holland et al.

(2007) is used. For small particles, i.e. m∗ ≤ 1, heat transfer is governed by diffusion and convection, and the Nusselt

number can therefore be written as :100

Nu =

 1 + 0.17m∗P
1/2
r if m∗ ≤ P−1/2r

1 + 0.55m∗2/3P
1/3
r if P

−1/2
r <m∗ ≤ 1,

(3)

where Pr is the Prandlt number, defined as the ratio between molecular and thermal diffusivity. For larger particles

(m∗ > 1), heat transfer is governed by turbulent mixing of the boundary layer around the crystal, and the Nusselt number

is defined by

Nu =

 1.1 + 0.77α0.035
T m∗2/3P

1/3
r if αTm

∗4/3 ≤ 1000

1.1 + 0.77α0.25
T m∗P

1/3
r otherwise,

(4)105

where αT is the turbulent intensity.

– Heterogeneous nucleation (growth from foreign nuclei) and secondary nucleation (birth of new nuclei due to breakage

of parent crystals) are invoked to explain the continuous feed of frazil nuclei during the rapid initial frazil growth (Daly,

1984, 1994). Heterogeneous nucleation is mainly caused by impurities that come either from the water body itself

(biological elements, suspended sediments, etc.) or by penetration of new nuclei from the atmosphere (meteorological110

conditions or artificial seeding during experiments). The source term (2) of Equation (1) models the introduction of new

nuclei, as well as the secondary nucleation, where ṄI is a seeding rate, and ṄT the secondary nucleation rate function of

collisions between crystals. The function δ(r− rc) is the Dirac delta function and rc is the critical radius (radius of new

nuclei). Note that seeding and secondary nucleation are assumed to introduce particles of the same size. Collisions are

supposed to cause small nuclei to break off from parent crystals with a frequency of collision proportional to the crystal115

velocity relative to the fluid Ur and the total number of particles N that are contained in the volume swept by the crystal
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(Svensson and Omstedt, 1994). The secondary nucleation rate ṄT is then defined as

ṄT = ñ

∞∫
0

πr2Ur(r)n(r)dr, (5)

where Ur =
√

4εr2

15ν +w2
r is the geometric mean between turbulent velocity and buoyant rise velocity. The number ñ=

max(N, nmax) is the average number of particles per unit volume that take part in the collisions, and nmax is a fitting120

parameter controlling the efficiency of the collision breeding. This parametrization was also followed by Smedsrud

(2002), Smedsrud and Jenkins (2004), Wang and Doering (2005) and Holland and Feltham (2005).

– The source term (3) of Equation (1) is a flocculation source term supposed to represent the net effect of both flocculation

and breakup, as introduced by Svensson and Omstedt (1994), who chose F = F0r
2, where F0 is a constant. Their choice

was motivated by the intuition that larger crystals are more prone to flocculate. However, as explained by Rees Jones125

and Wells (2018), this yields a linear flocculation in the number of crystals. However one could argue that flocculation

should be quadratic in the number of crystals like secondary nucleation since it is physically based on the same collision

mechanisms. Moreover, it also depends on hydrodynamic conditions, of which the effects on flocculation are still poorly

characterized in literature. To be consistent with models in the literature, the formulation proposed by Svensson and

Omstedt (1994) is chosen for this paper.130

– The source term (4) of Equation (1) represents the buoyancy of frazil ice crystals, where wr is the rise velocity. In the

present paper, it is set to wr = 32.8(2r)1.2, following Svensson and Omstedt (1994), who simplified the model proposed

by Daly (1984). For consistency with previous modeling studies, we retain this simple formulation, even if many other

formulations have been proposed as summarized by Morse and Richard (2009) and McFarlane et al. (2014).

Finally, the thermal balance of the water-ice mixture complements Equation (1). Assuming C� 0, the water fraction tem-135

perature equation is obtained :

∂T

∂t
+u.∇T −∇.(νt∇T ) =

φ

ρcp
+
ρiLi
ρcp

∞∫
0

G(r)a(r)n(r)dr, (6)

where T is the temperature of the water fraction of the water-ice mixture, νt is the thermal diffusivity, ρ the density of water,

cp the specific heat of water and φ the net heat source resulting from heat exchanges with the atmosphere in W.m−3.

In the following sections, a well-mixed water body is considered. Equations (1) and (6) are written in terms of space-140

averaged quantities. This assumption allows us to neglect the convection and diffusion operators and to focus on solving the

average temperature and average frazil volume fraction. Therefore, the partial differential equations of frazil and temperature

are simplified to a coupled set of Ordinary Differential Equations (ODEs) including only the source terms.

2.2 Radial space discretization

In this section we introduce a multiple-size-class (MSC) frazil ice model, which is a discrete version of Equations (1) and (6)145

in radial space. It consists of considering m classes of constant radius chosen between a minimum and a maximum radius
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(Svensson and Omstedt, 1994). For each class i, the radius and the thickness are supposed to be equal to ri and λi = 2ri/R

(1≤ i≤m). The peripheral area as well as the surface and volume of frazil crystals are defined as ai = a(ri) = 2πriλi,

si = s(ri) = 2π(riλi + r2i ) and Vi = V (ri) = πr2i λi, respectively. A log-Uniform discretization of the radial space is chosen

as in previous studies (Svensson and Omstedt, 1994; Wang and Doering, 2005; Rees Jones and Wells, 2018). The number of150

crystals of class i is noted ni, and similarly, the volume fraction of crystals of class i is noted ci. The total volume fraction

of frazil, and total number of particles, are then defined as C =
∑m
i=1 ci and N =

∑m
i=1ni with ci = niVi, respectively. The

discrete version of Equation (1) written in terms of volume fraction balance reads:

dci
dt

= Vi (Γi−1ci−1 + (Λi−Γi)ci−Λi+1ci+1)︸ ︷︷ ︸
(1)

+ τi︸︷︷︸
(2)

+βi−1ci−1−βici︸ ︷︷ ︸
(3)

− γici︸︷︷︸
(4)

(1≤ i≤m), (7)

with the boundary conditions V0 = Vm+1 = Γ0 = Γm = Λm+1 = β0 = βm = 0. The discrete versions of the source terms in-155

troduced in Equation 1 are defined following previous work (Svensson and Omstedt, 1994; Wang and Doering, 2005; Holland

and Feltham, 2005):

– The thermal growth source term (1) is composed of thermal growth and melt functions Γi and Λi, which are defined as

Γi =H
Giai
Vi∆Vi

, (8)

Λi = (1−H)
Gisi

Vi∆Vi−1
, (9)160

whereGi =G(ri), ∆Vi = Vi+1−Vi andH =He(Tf−T ), withHe the Heaviside function allowing to a switch between

melting or freezing. We assume that frazil crystals grow from their peripheral area ai but melt from their surface si

(Holland and Feltham, 2005).

– The crystal birth source term (2), composed of the secondary nucleation and seeding, reads

τi 6=1 =−ζαici, (10)165

τi=1 = τsV1/h+

m∑
j=2

αjcj , (11)

where ζ = V1/Vi is a coefficient to conserve crystal volume, αi = πñUr(ri)r
2
i , ñ= max(N,nmax), with nmax a fitting

parameter for collision breeding and τs is a constant seeding rate in m−2.s−1.

– The flocculation source term (3) is defined as βi = afri/r1, where af is a flocculation coefficient in s−1.

– The buoyancy of crystals is simplified into a gravitational removal sink term (4) defined as γi =−wr(ri)ad/h, in which170

h is the water depth. We introduce a coefficient ad, to account for the uncertainty of the rise velocity and gravitational

removal process.

Finally, writing the thermal growth source term as Si = Vi (Γi−1ci−1 + (Λi−Γi)ci−Λi+1ci+1), one can write the discrete

version of Equation (6) as

dT

dt
=

φ

ρcp
+
ρiLi
ρcp

m∑
i=1

Si. (12)175

6



A general discrete frazil ice model is implemented in the present work (Equations 7 and 12) so that one can easily retrieve

the formulations developed in previous papers. For example, supposingH = 1, ad = 1, τs = 0 and writing ci = niVi, Equation

(7) is equivalent to Equation (4) in Wang and Doering (2005) and Equation (1) in Svensson and Omstedt (1994) with ζ = 1.

By also neglecting flocculation (af = 0), it is equivalent to Equation (10) in Rees Jones and Wells (2018).

2.3 Single-size-class simplification180

A simplified approach is to take a single-size-class (SSC) composed only of particles of radius r representative of the whole

crystal distribution. A simplified set of equations for the frazil volume fraction and water temperature can then be written as

dC

dt
=GaN +

1

h
(V τs−wradC) , (13)

dT

dt
=

φ

ρcp
+
ρiLi
ρcp

GaN, (14)

where a= a(r), V = V (r), wr = wr(r) and G=G(r), with G(r) being defined by Equation (2) and the Nusselt number by185

Equations (3) and (4). In the previous equations, τs is the seeding rate, ad is the buoyancy coefficient, h is the water depth and

wr is the buoyancy velocity. The (SSC) system can either be expressed in terms of total number of frazil crystals N or total

frazil volume fraction C using the expression N = C/V .

2.4 Numerical methods to solve governing equations

A semi-implicit theta scheme is implemented for the MSC model, with a constant time step ∆t and a fully implicit method190

is used for the SSC model. Details on the numerical resolution are provided in Appendix A. Note that the semi-implicit time

scheme is subject to a stability condition function of the smallest radius. In the present study, we found that, for the range of

radius tested in the sensitivity analysis, decreasing the time step below ∆t= 0.25 s did not impact the results, so a value of

0.25 s was retained for all simulations.

An important aspect of the numerical frazil ice models presented in this paper is the need to provide a non-zero initial195

condition for the frazil volume fraction (in absence of seeding: i.e. τs = 0). In the case of MSC models, Svensson and Omstedt

(1994) assumed a uniform initial number of particles n0 in each radius class i.e. ni(t0) = n0 (1≤ i≤m). We followed the

same principle to initialize the system, but fixed the number of initial particles at zero for classes with a radius exceeding a

threshold r0: i.e. nri≤r0(t0) = n0 like proposed in other works (Holland and Feltham, 2005; Rees Jones and Wells, 2018). To

be able to compare SSC and MSC models, we worked in terms of initial volume fraction of frazil C(t0) = C0. The system was200

then initialized with n0 = C0/
∑
ri≤r0 Vi and ci(t0) = ni(t0)Vi (1≤ i≤m). As the initial setup has a significant influence on

the results (Holland and Feltham, 2005), C0 and r0 are considered in the following sections as uncertain parameters.

To test convergence in terms of the number of radius classes, we make it vary fromm= 10 tom= 200. The results, presented

in Figure 1, are consistent with observations by Rees Jones and Wells (2018) that the system requires m& 100 to converge.

Note that Svensson and Omstedt (1994) and Wang and Doering (2005) tookm= 20 andm= 40, respectively. It should also be205

noted that convergence in the number of classes depends on the initialization method of the system, as highlighted by Holland
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Figure 1. MSC model convergence in the number of classes withC0 = 4.5×10−8, r0 = 0.2mm, rmin = 10−5m, rmax = 10−2m, dt= 0.1s,

φ=−1400 W.m−3, ε= 1.2×10−3 m2.s−3, αT = 0.0876, nmax = 8×106 m−1, af = 10−4 s−1 τs = 0 m−2.s−1 and ad = 0. Number of

crystals per class (a) at initial time (black) and at time t= 300s (color). Water temperature and frazil volume fraction vs time (b).

and Feltham (2005). To perform all the numerical simulations required for a complete sensitivity analysis,m= 100 was chosen

as a trade-off between numerical convergence and computational cost.

2.5 Study cases and model parameters

In the present study, we focus on the evolution of water temperature and total frazil volume fraction in a supercooled, well210

mixed water body of depth h= 1 m. To focus on the frazil modeling rather than heat budget, uncertainties deriving from

exchanges with the atmosphere are neglected and the cooling rate φ is considered deterministic and constant over time in

all experiments. Nonetheless, different values of φ were tested, ranging from −50 to −1000 W.m−3, to test the variability

of the results in different cooling rate situations. As described in previous sections, frazil ice models are driven by many

parameters, some of which are subject to a significant degree of uncertainty. The list of parameters considered in the present215

study for conducting the uncertainty analysis is shown in Table (1). Some physical properties are considered constant and

are taken at T = 0◦C such that ν = 1.792× 10−6 m2.s−1, ρ= 999.82 kg.m−3, ρi = 916.8 kg.m−3, Li = 3.35× 105 J.kg−1,

cp = 4.1855× 103 J.kg−1.K−1, and kw = 0.561 W.m−1.K−1.

Taking the SSC model as a reference, one can simply visualize the main feature of frazil dynamic systems. When time is

close to zero, the initial temperature decrease rate is defined by limt→0 Ṫ = φ/ρcp. In the absence of seeding and gravitational220

removal (i.e. τs = 0 and ad = 0), the temperature decreases to the maximum supercooling point, characterized by a maximal

temperature depression, denoted θ = max(Tf −T ), and a critical time, denoted tc. After the maximum supercooling, the frazil

production rate releases more heat compared to that released in the atmosphere, leading to an increase in water temperature

which tends toward freezing point. Finally, when time tends to infinity, there is a balance between the frazil growth source term

and the cooling rate. This leads to a linear increase in frazil volume fraction at a constant rate i.e. limt→+∞ Ċ =−φ/ρiLi.225

This typical evolution of water temperature and frazil volume fraction is described in Figure (2) in which frazil volume fraction
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Table 1. Description of uncertain parameters of the frazil ice models.

Parameter Unit Description Category Model

C0 - Initial frazil volume fraction Initial condition Both

r0 m Initial maximum radius Initial condition MSC

rmin m Minimum radius Discretization MSC

rmax m Maximum radius Discretization MSC

r m Mean radius Discretization SSC

R - Diameter to thickness ratio Source term ¬ Both

δT m Thermal growth length scale Source term ¬ Both

ε m2.s−3 Turbulent dissipation rate Source terms ¬, ­ Both

αT - Turbulent intensity Source term ¬ Both

nmax m−3 Secondary nucleation efficiency cap Source term ­ MSC

τs m−2.s−1 Seeding rate Source term ­ Both

af s−1 Flocculation coefficient Source term ® MSC

ad - Buoyancy coefficient Source term ¯ Both

(a)
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Figure 2. Typical evolution of water temperature and frazil volume fraction vs time (a) and reproduction of Carstens (1966) case I experiments

(b) with dt= 0.1s, φ=−1400 W.m−3, ε= 1.2× 10−3 m2.s−3, αT = 0.0876, nmax = 8× 106 m−1, af = 10−4 s−1 τs = 0 m−2.s−1,

ad = 0, r = 3.8× 10−4m, R= 10, C0 = 5.1× 10−6 (SSC) and C0 = 4.5× 10−8 (MSC), r0 = 0.2mm, rmin = 10−5m, rmax = 10−3m,

m= 100, and δT = λ.

asymptote, denoted C∞, is defined as

C∞ = C0−φt/ρiLi. (15)

By introducing seeding and gravitational removal, i.e. τs 6= 0 and ad 6= 0, the frazil ice long term asymptotic is modified, and

we have limt→+∞ Ċ =−φ/ρiLi + (V τs−wradC)/h. Considering φ and τs as constant over time, this yields a convergence230
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of the frazil volume fraction towards a finite limit, defined by the ratio between the buoyancy removal and the production rate

due to thermal growth and seeding, which reads

C∞ =
h

adwr

(
− φ

ρiLi
+
V τs
h

)
. (16)

It should be observed that the steady states are not affected by the crystal growth rate. Similar observations were discussed by

Rees Jones and Wells (2018) for the MSC model.235

In the following the recovery time is defined as the time when temperature has recovered 90% of its supercooling depression.

We refer to the recovery phase to describe the long-term evolution of the system i.e. all times past recovery time. Similarly, we

will refer to the transient phase as times between initial time and recovery time.

In the present study, we analysed the uncertainty of input parameters in the main transient and steady-state features of the

frazil ice models with and without gravitational removal. We started the simulation with a water temperature equal to the240

freezing temperature (which is supposed to be equal to zero in the absence of salinity : i.e. Tf = 0◦C). We checked that all the

simulations ran beyond the critical time. For the range of parameters considered there, it was found that choosing a final time

of tf ' 1h was enough to capture the transient features of the ODE systems.

Note that both the SSC and MSC models are able to reproduce the experiments of Michel (1963), Carstens (1966) and

(Clark and Doering, 2004) as shown by Svensson and Omstedt (1994) and Wang and Doering (2005). In Figure (2) we give an245

example of the results of both SSC and MSC models compared to Carstens (1966) experimental results (Case I).

3 Probabilistic framework for uncertainty analysis

The objective of this section is to describe the mathematical tools necessary to study the uncertainties of SSC and MSC frazil

ice models. An uncertainty study of a numerical model can be performed in three steps (Sudret, 2007). The first step consists

in identifying the uncertain parameters, and characterizing the probabilities of occurrence for their values through Probability250

Density Functions (PDFs), which is referred to as quantification of uncertainty sources. The second step concerns the propa-

gation of uncertainties through the interest models, generally using sampling techniques (e.g., Monte Carlo) to obtain possible

values of the target outputs (here frazil ice concentration, water temperature) and compute their statistical estimates (mean,

standard deviation, percentiles, etc.). The third step, called sensitivity analysis, focuses on ranking the uncertain parameters

in terms of influence on the target output. In the following, formulations for the statistical estimates and sensitivity analysis255

indices are given, with a summary of elements essential to understand this paper. Theoretical details can be found in Soize

(2017) and Sudret (2007). All uncertainty analysis computations were performed with the OpenTURNS library (version 1.18)

developed by a partnership between Airbus Group, EDF R&D, IMACS, ONERA and Phimeca Engineering (Baudin et al.,

2016b).
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3.1 Uncertainty quantification260

Let X =
(
X1, . . . ,XnX

)
be the vector of uncertain parameters of the frazil ice model, where nX is the number of uncertain

parameters. Let g be the interest frazil model, either SSC or MSC models presented in Equations (14) and (12) for temperature

and (13) and (7) for frazil volume fraction. The output of the interest models are the frazil volume fraction and water tem-

perature discrete time series i.e. T (tk) and C(tk) (1≤ k ≤ nt), which we will generally denote Y =
(
Y 1, . . . ,Y nt

)
below for

the sake of simplicity. The random vectors X and Y are linked through frazil models g such that Y = g(X,d), where d is a265

deterministic vector, i.e. fixed parameters in contrast with the uncertain set of inputs X.

To undertake the uncertainty studies, both the inputs X and the interest outputs Y are considered to be random vectors. We

assume that X has a density pX, so that P(X ∈ E ⊆DX) =
∫
E
pX(x)dx, where E is a subset from the space of all possible

values DX. Each element Xi and Y k of the input and output vectors is hence characterized by a PDF.

The results of the uncertainty analysis are directly linked to the UQ (Uncertainty Quantification) study specification and270

consequently to the description of the uncertain input parameters X. Thus, special attention is paid to propose a relevant

quantification of uncertainty sources. This particular point is addressed in section (4), in which frazil literature is explored to

provide adequate bounds and PDFs for each parameter identified in Table (1).

3.2 Uncertainty propagation of random variables

In the following, we suppose that PDFs of inputs X are known, in contrast to those of Y. The objective is therefore to275

characterize the latter by estimating statistical indicators as the PDF’s mean and standard deviation. To achieve this, a Monte

Carlo sampling method can be used.

In the Monte-Carlo method, we generate a sample of independent observations of the random vector X using the joint

PDF of the input random vector. For each observation of the input X, we evaluate the corresponding output Y. The resulting

experimental design of the input random vector X is an array of size N ×nX where each row, denoted xi =
{
x1, . . . ,xnX

}
,280

represents a possible configuration of the frazil model. The output realizations i.e. yi =
{
y1i , . . . ,y

nt
i

}
, are generated by N

deterministic simulations with corresponding inputs. For a sample of size N , the output of the model is a N ×nt array:

Y =
[
yki
]
i,k

=
[
gk(xi,d)

]
i,k
∈ RN×nt . Each row of the matrix represents one output time series for a given set of input

parameters, while each column represents the output realizations at a given time tk.

Statistical estimators of the response can then be computed. The Monte-Carlo estimation of the mean, denoted µ̂Y k and285

standard deviation, denoted σ̂Y k at time tk reads:

µ̂Y k =
1

N

N∑
j=1

ykj and σ̂Y k =

√√√√ 1

N

N∑
j=1

(
ykj − m̂Y k

)2
. (17)

These estimations converge to the true values following the law of large numbers (conditioned by the existence of corresponding

PDF’s first and second moment, i.e. expectation and variance (Soize, 2017)). The convergence order of the Monte-Carlo method

is given by the central limit theorem leading to decrease of the confidence intervals’ sizes proportional to 1/
√
N . In the results290

of this paper, confidence intervals of the estimated mean and standard deviation are computed using a bootstrap method.
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3.3 Sensitivity analysis using Sobol indices

Sensitivity analysis is essential in understanding numerical models (Razavi et al., 2021). It aims at quantifying the impact of

inputs variables imprecision on the accuracy of the model output variables. Conventional approaches to Global Sensitivity

Analysis (GSA) imply the stochastic estimation of statistical moments and indices classically achieved with the Monte-Carlo295

technique. In the present work, the relative influence of uncertain parameters on the output time series is assessed by means

of Sobol indices resulting from the ANOVA (ANalysis Of VAriance) variance decomposition (Sobol, 2001). Sobol indices are

computed via a modified version of the method proposed by Saltelli (2002) which is described in Appendix B. For each time

step tk (1≤ k ≤ nt) and i ∈ {1, . . . ,nX}, first order and total Sobol indices, denoted Ski and ST ki respectively, are computed.

By definition, at any time tk, the total Sobol sensitivity index (ST ki ) measures the contribution to the output variance of the300

uncertain variable Xi, including all variance caused by its interaction, of any order, with any other input variables. Thus,

the variance part explained by variable interactions of the input factor Xi with the other uncertain parameters is determined

by subtracting the total Sobol sensitivity index (ST ki ) and the first order Sobol index (Ski ) characterizing the influence of

the variable Xi alone. Finally, the discrete time first order and total Sobol indices are aggregated, denoted ASi and ASTi

respectively, as proposed by Gamboa et al. (2014).305

4 Uncertainty source quantification

Many laboratory experiments have been carried out to better understand frazil ice dynamics as summed up by Barrette

(2020, 2021). These experiments, as well as field measurements, help us define parameter variability. In this section, we

consider the uncertain parameters listed in Table (1), and deduce adequate variability and PDFs for uncertainty propagation

and sensitivity analysis using the aforementioned data. The main geometrical properties of crystals and radial space discretiza-310

tion are first discussed, as well as initial concentration. We then review all the parameters involved in frazil source terms in the

same chronology as presented in section (2).

4.1 Crystals’ geometrical properties

Description of the frazil crystals’ shape has been the subject of several field and laboratory measurements (Arakawa, 1954;

Daly, 1984, 1994). The crystals have been described as thin discs that grow mainly from their peripheral area. More recently,315

photos have brought valuable confirmation of the disc shape of frazil crystals, but also highlighted the complexity in larger

flocs’ geometry (Clark and Doering, 2006; Ghobrial et al., 2012; McFarlane et al., 2014, 2015; Schneck et al., 2019). Let us

recall that, in both SSC and MSC models, discretization is done in radial space. Therefore, either the ratio R or the thickness

λ must be considered constant to fully describe disc-shaped particles. In the present study, frazil crystals are assumed to have

the same aspect ratios, which is consistent with previous studies hypothesis (Svensson and Omstedt, 1994; Holland et al.,320

2007). Note that Rees Jones and Wells (2018) considered constant thickness instead, but highlighted a weak dependency of the
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thermal growth to aspect ratio. Let us discuss the uncertainties associated with the choice of the radius discretization as well as

the diameter to thickness ratio.

10−2 10−1 100 101 102

Radius (mm)
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Arakawa (1954)
Carstens (1966)
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Gosink and Osterkamp (1983)
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Ettema et al. (1984)
Wuebben (1984)
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Kempema et al. (1986)
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Clark and Doering (2004)

Ye et al. (2004)
Clark and Doering (2006)
Clark and Doering (2009)
Morse and Richard (2009)

Marko and Jasek (2010)
Richard et al. (2011)

McFarlane et al. (2012)
Gobrial et al. (2012)
Gobrial et al. (2013)

Yoshikawa et al. (2014)
Marko et al. (2015)

McFarlane et al. (2015)
McFarlane et al. (2017)

Schneck et al. (2019)

Figure 3. Particle size ranges (thick grey line), mean range (thin dark line) and log-normal distributions’ mean radius (red vertical ticks)

reported in field or laboratory experiments (Schaefer, 1950; Arakawa, 1954; Carstens, 1966; Gosink and Osterkamp, 1983; Osterkamp and

Gosink, 1983b; Ettema et al., 1984; Wuebben, 1984; Kempema et al., 1986; Daly and Colbeck, 1986; Doering and Morris, 2003; Ye et al.,

2004; Ye and Doering, 2004; Clark and Doering, 2004, 2006, 2009; Marko and Jasek, 2010; Ghobrial et al., 2012; McFarlane et al., 2012;

Ghobrial et al., 2013; McFarlane et al., 2015; Kempema and Ettema, 2016; McFarlane et al., 2016, 2017; Schneck et al., 2019)

Either a mean radius or a radius space discretization must be specified for SSC and MSC models, respectively. In both

cases, observed radius distribution and particle size, reported in a many studies, are taken into consideration. For the sake of325

synthesis, we analyzed the corresponding publications from 1950 to 2019, and report the available observations in Figure 3.

This figure is complementary to Table 7 of McFarlane et al. (2017), who summarize particle sizes from both laboratory and

field measurements. Daly and Colbeck (1986) and Clark and Doering (2006) reported log-normal distributions of particles in

laboratory experiments, with a mean radius ranging from 0.12 to 0.25 mm and 0.49 to 1.4 mm, respectively. This was later

confirmed by Ghobrial et al. (2012) and McFarlane et al. (2015) in the University of Alberta Cold Room Facility, with mean330

size ranging from 0.66 to 0.94 mm. Schneck et al. (2019) recently published similar results under different salinities, with mean

radius ranging from 0.45 to 0.52 mm. Log-normal distributions were also observed in field studies, with the mean ranging from

0.59 to 0.94 mm in a report by McFarlane et al. (2017). Gathering together all reported mean radius ranges, an uncertainty

interval of 1.2× 10−4 to 2.1× 10−3 m was chosen for the mean radius in the SSC model. When their full variation range is

considered, frazil crystal sizes are known to follow a log-normal distribution as previously argued, but there is no evidence or335

reason for the mean radius being log-normal as well. The number of field and laboratory observations is still too small to fit
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an empirical PDF on the mean radius with reasonable confidence. Hence, a log-uniform PDF is chosen with the previously

described bounds. Using Log-uniform approximate distributions allows us to explore by means of evenly distributed values,

parameters that vary over several orders of magnitude.

For the MSC model, both a minimum and a maximum radius are to be determined for the bounds of the radial discretization.340

The minimum radius can be determined from Lal et al. (1969) survival theory and is about 4 µm (Mercier, 1984). The maximum

size of frazil particles is about 1 mm to 5 mm according to Clark and Doering (2004), but frazil flocs can be significantly larger

as shown by Schneck et al. (2019), and can range up to several cm (McFarlane et al., 2017). Svensson and Omstedt (1994)

worked with [4×10−6,3×10−3] m while Wang and Doering (2005) and Rees Jones and Wells (2018) chose [7×10−5,5×10−3]

m and [5×10−5,5×10−2] m, respectively. In literature, rmin is taken to be between 10−6 and 10−4, so we chose an intermediate345

order of magnitude of rmin = 10−5 m. The same choice was made for the maximum radius, leading to a value of rmax =

10−3 m. Both parameters were then considered as uncertain parameters with log-uniform PDFs and were taken to be within

[10−6,10−4] for rmin and within [10−3,10−1] for rmax.

The aspect ratio ranged from 6 to 13 in the study by Daly and Colbeck (1986), while there were greater values, from 12.2

to 16.33, in Clark and Doering (2004, 2006). Arakawa (1954) reported an even wider aspect ratio range, from 5 to 100. More350

recently, McFarlane et al. (2014) reported aspect ratios ranging from 11 to 71 with a mean of 37 and a standard deviation of

11. Considering all these observations, an uncertainty range of 5 to 100 was chosen for the diameter-to-thickness ratio. As

not enough data to properly fit a PDF on aspect ratios was provided, a uniform PDF is chosen for the sensibility analysis

(Maximum Entropy Principle Soize (2017)).

Weak dependency of the thickness to the radius was reported by McFarlane et al. (2014), who suggest assuming a increasing355

aspect ratio as discs grow instead of a constant aspect ratio. Note also that, as frazil ice forms larger flocs, the disc shape

hypothesis commonly accepted in models does not hold anymore. This could lead to erroneous estimations of the thermal

growth rate of larger flocs. However, neither the variability of the aspect ratio in the crystals’ distribution, nor that of the shape,

are considered in the present study and we make the assumption that r and R and independent.

4.2 Initial concentration360

As previously mentioned, either a non-zero initial volume fraction or a non-zero seeding rate is required to trigger thermal

growth in the model. In experimental facilities, frazil ice nuclei are sometimes artificially introduced in water to initiate frazil

ice growth (Muller, 1978; Tsang and Hanley, 1985) but the initial concentration is rarely addressed and depends on the method

of initial seeding. As such, a large uncertainty domain is considered in this study for the initial volume fraction of frazil, ranging

from 10−8 to 10−4, to account for the lack of data on this parameter. Additionally, a log-uniform PDF is retained since the365

parameter range variation vary over several orders of magnitude.

For the MSC model, it is necessary to choose how the initial volume fraction is distributed over size classes. One possibility

is to initialize the system with log-uniform distributions, similar to the one observed in laboratory experiments. However,

observations of nuclei close to rc in size are limited. Consequently, authors have preferred simpler initialization methods,

whereby a constant number of crystals is distributed equally over all classes (Svensson and Omstedt, 1994; Wang and Doering,370
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2005; Rees Jones and Wells, 2018). Holland et al. (2007) argued that distributing the initial volume fraction over a range of

radii, thus changing the initial number of particles per class, significantly impacts results. They found that filling only the

first size class, as in Hammar and Shen (1995) has less impact on results and should therefore be the preferred initialization

method. Given poor evidence of initial predominance of each class in nature, we decided to test both initialization methods i.e.

distributing the initial volume fraction over a range of small radii as presented in section (2.4) then feeding only the first class375

as suggested by Holland et al. (2007). For the first method, ice nuclei are supposed to be initially spread between the minimum

radius rmin and a threshold radius r0, which we suppose can only be smaller than the mean radius (cf. Figure 3). Therefore,

the threshold r0 is considered uncertain within the bounds [1.2×10−4, 2.1×10−3]. For the second method, we set r0 = rmin,

so that only the first receives the initial concentration.

4.3 Thermal growth and turbulent parameters380

As shown in Equation (2), thermal growth (1) is mainly affected by two uncertain parameters, which are the Nusselt number and

the thermal boundary layer thickness. In this section, we discuss the uncertainty of both parameters. Since the Nusselt number

is being modeled via turbulent parameters, namely the turbulent dissipation rate and the turbulent intensity, their uncertainty is

also addressed.

As discussed by Rees Jones and Wells (2018), the thermal boundary layer thickness δT is not constant around a crystal385

and in recent studies there has been an inconsistent scaling of thermal growth. Svensson and Omstedt (1994) chose the length

scale as δT = λ while others have chose δT = r (Smedsrud and Jenkins, 2004; Holland et al., 2007), leading to a serious

underestimation of the growth rate, since λ < r for frazil discs. Rees Jones and Wells (2015) have shown that there is a

logarithmic dependency of the thermal growth on the aspect ratio that favors the δT = λ scaling. To account for the variability

of the thermal boundary layer thickness, δT should be taken as an uncertain parameter. However, it should be mentioned that,390

with the variation range being δT ∈ [λ,r], the ANOVA methodology (section 3.3) cannot be applied, since the set of uncertain

inputs, which contains δT and λ/r, cannot be considered independent anymore. To overcome this difficulty, the sensitivity

analysis is conducted with the most appropriate scaling: i.e., δT = λ, for both the SSC and MSC models. Nevertheless, we

propose to investigate the impact of scaling by considering δT ∈ [min(λ),max(r)] to avoid modeling dependency. A log-

uniform PDF is used and min(λ) and max(r) are estimated from their full variation ranges. A third experiment was also395

carried out with the δT = r scaling. The three results are then compared for the SSC model.

Two main turbulence parameters are considered: turbulent dissipation rate ε and turbulent intensity αT , both impacting the

Nusselt number (cf. Equations 3 and 4). For rivers, the dissipation rate can be estimated using friction velocity u∗ =
√
gRhS

such that

ε=
u3∗
κRh

[
ln
(
u∗Rh
ν

)
− 1

]
(18)400

where g is gravity, Rh the hydraulic radius, S the slope of the river, κ the von Karman constant (generally taken as equal to

0.4), and ν the viscosity of water. Daly (1994) summarized the dissipation rate for several experiments (Michel, 1963; Carstens,

1966; Tsang and Hanley, 1985; Muller, 1978) using Equation (18) and found values ranging from 7×10−5 to 0.4667 m2.s−3.
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A similar method was described by McFarlane et al. (2015) to estimate the dissipation rate in rivers leading to values ranging

from 4.2×10−4 to 1.4968 m2.s−3. Schneck et al. (2019) summarized dissipation rates observed in oceans, ranging from 10−9405

to 10−2 m2.s−3 and from 10−10 to 10−3 m2.s−3 in polar regions. In the present study, we consider dissipation rates varying

between 10−9 and 1.5 m2.s−3, which cover most flows encountered in rivers and oceans. Similarly, we consider a wide range

of flows from low turbulence to high turbulence intensity which include most of the work presented in Figure (3), leading to a

turbulent intensity ranging from 1% to 20%. Log-uniform PDFs are considered for both the dissipation rate and the turbulent

intensity. Note that turbulence influences not only the rate of growth of frazil crystals but also the rate of secondary nucleation,410

thus impacting the frazil size distribution.

4.4 Other source terms

Following the same order as in Equation (1), let us discuss uncertain parameters involved in frazil source terms other than

thermal growth: secondary nucleation (2), flocculation (3) and gravitational removal (4). It should be mentioned that almost no

direct observations of these processes have been reported in the literature. Therefore, the definition of the uncertainty intervals415

is mainly based on expert knowledge and past numerical experiments in which parameters were determined by comparison to

observed radius distributions.

– The uncertainty interval of the seeding rate is set after Daly (1994) to [3× 10−1,10−4] m−2.s−1, and to simplify the

uncertainty analysis, is considered constant over time. For the secondary nucleation, Svensson and Omstedt (1994)

proposed setting a common value for nmax that would allow focus on calibration of the initial seeding. They found that420

a value of nmax = 4× 106, along with initial seeding of the order of magnitude of n0 = 104, gave satisfactory results

compared to the experimental results of Michel (1963) and Carstens (1966). Wang and Doering (2005) found that fitting

a single nmax value for all experiments was unsatisfactory. Instead, they proposed fitting both the initial seeding and

nmax, leading to values ranging from 2× 104 to 2× 105 for Clark and Doering (2004) experiments, and from 2× 104

to 2×105 for Carstens (1966) experiments. Smedsrud (2002) proposed a different value of nmax = 103, which was also425

used by Smedsrud and Jenkins (2004) and Holland and Feltham (2005).

– Similarly, the flocculation parameter af was calibrated to a value of 10−4 s−1 by Svensson and Omstedt (1994), who

compared the results of their simulation to the expected size distribution spectra (other parameters in their model, like the

number of class, the heat sink, the turbulent dissipation rate and initial condition were set tom= 20, φ=−1000 W.m−3,

ε= 10−3 m2.s−3 and ni(t0) = 104 (1≤ i≤m)). From all previous calibration studies, one could choose nmax from430

103 to 107 and af = 10−4. But given the fact that secondary nucleation and flocculation are still very poorly understood

and modeled, we choose large uncertainty intervals for these parameters. We added an order of magnitude for the bounds

leading to nmax ranging from 102 to 108 and we suppose that flocculation can, depending on the conditions, be negligible,

so that af was varied from 10−8 to 10−3. The parameters nmax and af are considered independent from hydrodynamic

parameters, and Log-uniform PDFs were chosen for both.435
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– The gravitational removal is affected by both buoyant rise velocity of frazil particles, and deposition process once par-

ticles reach the surface of the water column. Several attempts to measure the frazil rise velocity were done (Osterkamp

and Gosink, 1983a; Wueben, 1984; McFarlane et al., 2014) and many formulations were proposed as summarized by

McFarlane et al. (2014). Significant scatter can be observed in the data as shown on Figure (10) of McFarlane et al.

(2014), with velocities ranging from approximately 0.7 to 16 mm/s for a radius of 1 mm. Models exhibit significant440

differences as well (cf. figure 4). To take into account uncertainties inherent to the choice of the rise velocity model, a

buoyancy parameter ad is introduced. A rise velocity envelope, combining the results of all models, can be defined by

upper and lower bounds denoted wmax(r,R) and wmin(r,R) (cf. figure 4). The interval of ad is defined from the mean

of the gap between the simplified formulation used the present study for wr (Svensson and Omstedt, 1994) and upper

and lower bounds of the rise velocity envelope. To avoid the modeling of dependencies, a constant value is taken for445

ad, even if the envelope depends on the radius and on the diameter to thickness ratio. Finally, we propose ad ∈ [a−,a+]

in which a+ = mean(wmax(r,R)/wr(r)) and a− = mean(wmin(r,R)/wr(r)). By considering r ∈ [10−5,10−2]m and

R ∈ [5,100], the following interval is obtained: ad ∈ [0.086,1.51]. Finally, it should be noted that this uncertainty quan-

tification is rather imprecise since the rise velocity dispersion depends on the shape of the particles and flow conditions.

Therefore, our analysis could be refined by taking into account dependencies. Also note that low values of ad could also450

be justified from the uncertainty of the deposition process, which is not modelled in the present study.
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Figure 4. Comparison of frazil rise velocity models with R= 10 (a) and rise velocity envelope chosen for the uncertainty analysis (b)

(Zacharov et al., 1972; Gosink and Osterkamp, 1983; Ashton, 1983; Wueben, 1984; Daly, 1984; Svensson and Omstedt, 1994; Matoušek,

1992; Shen and Wang, 1995; Morse and Richard, 2009)

4.5 Summary of uncertain parameters

To conclude the uncertainty quantification, all the uncertain parameters, their bounds, and PDFs are summarized in Table (2).
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Table 2. Uncertain parameters of the frazil ice models and their PDFs

Parameter Unit Description Uncertainty interval PDF

C0 - Initial frazil volume fraction [10−8, 10−4] Log-Uniform

r0 m Initial maximum radius [1.2× 10−4, 2.1× 10−3] Log-Uniform

rmin m Minimum radius [10−6, 10−4] Log-Uniform

rmax m Maximum radius [10−3, 10−1] Log-Uniform

r m Mean radius [1.2× 10−4, 2.1× 10−3] Log-Uniform

R - Diameter to thickness ratio [5, 100] Uniform

δT m Thermal growth length scale [7.34× 10−6, 2.1× 10−3] Log-Uniform

ε m2.s−3 Turbulent dissipation rate [10−9, 1.5] Log-Uniform

αT - Turbulent intensity [0.01, 0.2] Log-Uniform

nmax m−3 Secondary nucleation efficiency cap [102, 108] Log-Uniform

τs m−2.s−1 Seeding rate [3× 10−1, 104] Log-Uniform

af s−1 Flocculation coefficient [10−8, 10−3] Log-Uniform

ad - Buoyancy coefficient [0.086, 1.51] Uniform

5 Uncertainty propagation and sensitivity analysis

In this section, we present the different Monte Carlo simulation cases considered for the uncertainty analysis, as synthesized455

in Table (3). Then we discuss the results of the uncertainty propagation and the sensitivity analysis obtained for both SSC and

MSC models.

5.1 Propagation cases

Monte Carlo simulations are first carried out without seeding and gravitational removal (τs = 0 and ad = 0) for both (SSC)

and (MSC) models, which correspond to cases (1) and (2), respectively. Seeding and gravitational removal processes are460

subsequently considered in cases (3) and (4). For each case, the set of uncertain parameters is described in Table (2). When not

in X , parameters are considered deterministic with the following default values: ad = 0, τs = 0 m2.s−1, δT = e, rmin = 10−5

m and rmax = 10−3 m.

Additional Monte Carlo simulations were carried out to examine the influence of specific parameters. For example, although

δT = e is the preferred scaling and is chosen by default in all experiments, we also tested δT = r and δT ∈ [e,r] in experiments465

(1b) and (1c) to investigate the impact on results. In experiments (2b) and (2c), modifications of the MSC model uncertain

parameters are also taken into account, in order to investigate the impact of the radius bounds rmin and rmax, as well as the

alternate methods of initialization discussed in (4.2).

Statistical estimators are evaluated every 10s of physical time, leading to nt = 400. To cope with the computational cost

of multi-class experiments we used clusters to run all simulations in parallel. The computation time of 4.5× 105 multi-class470
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Table 3. List of Monte Carlo simulations and their associated input random vectors X , sampling size, and number of function calls. Seeding

rate and buoyancy velocity are set to τs = 0, ad = 0 in cases 1 and 2 .

Case Model Uncertain parameters Case specificity Sample size No. of calls

1 SSC X = (C0, r,R,ε,αT ) - 5× 104 3.5× 105

1b SSC X = (C0, r,R,ε,αT ) δT = r 5× 104 3.5× 105

1c SSC X = (C0, r,R,δT ,ε,αT ) δT ∈X 5× 104 4.8× 105

2 MSC X = (C0, r0,R,ε,αT ,nmax,af ) - 5× 104 4.5× 105

2b MSC X = (C0, r0, rmin, rmax,R,ε,αT ,nmax,af ) rmin, rmax ∈X 6× 104 6.6× 105

2c MSC X = (C0,R,ε,αT ,nmax,af ) r0 = rmin 5× 104 4× 105

3 SSC X = (C0, r,R,ε,αT , τs,ad) τs, ad ∈X 7× 104 6.3× 105

4 MSC X = (C0, r0,R,ε,αT ,nmax, τs,af ,ad) τs, ad ∈X 6× 104 6.6× 105

simulations with m= 100 is ∼ 24 hours with 960 processes. A total of 4 million simulations were carried out for uncertainty

propagation.

5.2 Results without gravitational removal

By neglecting the seeding rate and gravitational removal source terms, the steady state corresponds to the constant frazil

production rate that only depends on the heat sink φ, as shown in section (2.5). As expected, the statistical estimator time475

series for temperature and frazil volume fraction, presented in Figure (5) for cases (1) and (2), show a very narrow scatter of

the output PDF at the start of simulation and at steady state. The results converge towards the two asymptotes (T 0 and C∞

respectively) of the mono-class ODE system: i.e., the constant cooling rate when t→ 0 (initial supercooling phase) and the

constant frazil production rate when t→∞ (recovery phase). However, for both SSC and MSC models, the transition between

the two asymptotes of the ODE system is spread out, and there is a significant difference in maximum supercooling between the480

5th, 25th, 75th and 95th percentiles. For the median, a maximum supercooling of T (tc)'−0.018◦C is reached at tc = 180s

for the SSC model. The gap between the 5th and 95th percentiles maximum supercooling is ∆tc = 890 s and ∆θ = 0.097◦C.

Note that the envelope obtained with the standard deviation gives a poor description of the output since its PDF is not normal,

as it can be seen from the µ̂± σ̂ lines in the figure 5.

Similar results were obtained with the MSC model, which recovers the same asymptote at steady state, however, there is a485

slight residual scatter at recovery. For case (2), we observed slightly less scatter at the maximum supercooling than with the

SSC model, and the gap between the 5th and 95th percentiles maximum supercooling was ∆tc = 820 s and ∆θ = 0.08◦C.

Time series of the first-order Sobol indices are presented in Figure (6) (see Appendix E and F for details). In Appendix C,

we also presente the first- and total-order Sobol indices at times tc, 2× tc and tf with 95% confidence intervals, as well as

the aggregated Sobol indices, computed via Equation (B7). The time evolution of Sobol indices of temperature and frazil were490

similar for both the SSC and MSC with the exception of the initial concentration, which, as expected had more impact on frazil

volume fraction at the start of simulation.
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Figure 5. Uncertainty propagation results for SSC (case 1) for temperature (a) and frazil (c) and MSC (case 2) for temperature (b) and frazil

(d): mean, standard deviation, median, 5th, 25th, 75th and 95th percentiles are computed for tk(0≤ k ≤ nt).

For the SSC model, the initial concentration plays an important role at the start of the simulation. However, its influence

quickly decreases, and the most influential parameter becomes the radius, with a peak influence reached at the median value

of the time of maximum supercooling. Thus, using the average radius as the calibration parameter of the SSC model seems495

to be the most relevant choice. The most influential parameters after radius are diameter-to-thickness ratio and dissipation rate

of turbulent kinetic energy. In experiments, turbulent dissipation rate is often better known than the initial concentration or

crystals shape. In natural water bodies, turbulent dissipation rate measurements are rare but turbulence models can be use to

estimate these parameters. Therefore, one could then choose initial frazil volume fraction or diameter-to-thickness ratio as a

secondary calibration parameters.500

For the MSC model, the most influential parameters prior to maximum supercooling are initial concentration (C0) and

maximum initial radius (r0), that both control the initial distribution (and consequently the initial condition of the system).

Using these initial distribution parameters to calibrate the transient phase until maximum supercooling seems to be the right

approach. However, specifying more accurate initial distribution (not necessarily uniform) by comparison with what can be

observed in nature would be a welcome improvement, although this requires further research.505

At the recovery, the parameters of secondary nucleation and flocculation processes (nmax and af ), both impacting steady-

state crystal distribution, become more influential. However, the hierarchy of parameter is less obvious than for the (SSC)

model. In addition, we observed strong interactions between parameters when the model reaches steady state (cf. blank space

on Figure 6 and Total Sobol indices in Appendix F), which might lead to difficulties in the calibration process. Aggregated
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Figure 6. Time series of first-order Sobol indices (Si) for SSC (case 1) for temperature (a) and frazil (b) and MSC (case 2) for temperature

(b) and frazil (d).

Sobol indices summarized in Figure (7), confirm the relative influence of each parameter over the whole duration of the510

simulation, taking into account both the transient phase and steady state.

While the approach adopted by Svensson and Omstedt (1994): i.e., tweaking the values of nmax and af , was adequate to

calibrate the frazil distribution in (MSC) models, the present sensitivity analysis shows that it might not be the best option to

calibrate water temperature and frazil total volume fraction. Results suggests that more focus should be on the initial condition

to calibrate supercooling, by modifying initial seeding like it was done by Wang and Doering (2005) or by modifying the initial515

distribution itself. We therefore suggest calibrating the supercooling curve with the help of the initial distribution, along with

secondary nucleation and flocculation parameters to calibrate the evolution of size distribution over time. Hopefully, recent

observations of the transient evolution of frazil size distribution (McFarlane et al., 2015; Schneck et al., 2019), will provide the

necessary data to carry out an optimal calibration of the identified parameters.

5.3 Influence of gravitational removal and seeding520

Long-term evolution that does not take account of gravitational removal leads to infinite increase in frazil concentration as

long as the cooling rate remains constant (cf. Equation 15). This asymptotic behavior of the models has never been observed

in experiment nor in nature. Clark and Doering (2006) observed a peak in the number of particles per image they recorded,

located shortly after maximum supercooling, after which there was a small decrease in the number of particles and a stagnation

at residual supercooling. Similar observations were also reported by McFarlane et al. (2015) and Schneck et al. (2019). The525
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Figure 7. Aggregated first order Sobol indices (dots) and aggregated total Sobol indices (bars) for temperature (a) and total frazil volume

fraction (b) for cases (1), (2), (3) and (4).

models in which only thermal growth is considered do not incorporate the required physics to properly reproduce what is

observed. However by introducing gravitational removal, as shown in section (2.5), the models converge towards a constant

frazil volume fraction (cf. Equation 16). In this section we analyze the results of the uncertainty propagation and sensitivity

analysis for cases (3) and (4) which include the seeding rate and gravitational removal source terms.
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Figure 8. Uncertainty propagation results for SSC (case 3) for temperature (a) and frazil (c) and MSC (case 4) for temperature (b) and frazil

(d): mean, standard deviation, median, 5th, 25th, 75th and 95th percentiles computed for tk(0≤ k ≤ nt).

At steady state, the introduction of gravitational removal leads to wide scatter of both temperature and frazil as shown by530

the comparison of Figure (8) and (5) (see Appendix G and H for details). This is caused by the variation of the steady-state

22



(a)
0 500 1000 1500 2000 2500 3000

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

S
i

-T

C0

r

R

ε

αT

τs

ad

(b)
0 500 1000 1500 2000 2500 3000

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

S
i

-T

C0

r0

R

ε

αT

nmax

τs

af

ad

(c)
0 500 1000 1500 2000 2500 3000

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

S
i

-C

C0

r

R

ε

αT

τs

ad

(d)
0 500 1000 1500 2000 2500 3000

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

S
i

-C

C0

r0

R

ε

αT

nmax

τs

af

ad

Figure 9. Time series of first-order Sobol indices (Si) for SSC (case 3) for temperature (a) and frazil (c) and MSC (case 4) for temperature

(b) and frazil (d).

frazil volume fraction, which depends on the heat flux φ and model parameters inherent in secondary nucleation, flocculation

and rise velocity (nmax, af and ad). Significant supercooling values are observed as the water temperature (5th percentile)

drops below −0.2◦C which is really low compared to what can be observed in rivers. This is due to the highest values of the

buoyancy velocity combined with low thermal growth rate. High gravitational removal withdraw a large amount of the frazil535

volume fraction from the water and thus limits the amount of latent heat release to water that would increase its temperature. No

significant difference is observed in the output scatter between SSC and MSC models similarly to cases (1) and (2). However,

minimum supercooling is not reached on the 5th percentile with the MSC as opposed to the SSC model. This is due to the

dependency of the buoyancy velocity to the radius, which is not constant in the MSC model as opposed to the SSC model. This

also cause the median frazil volume fraction at steady state to be slightly different in the two models.540

With the SSC model at recovery, the first-order Sobol indices on frazil volume fraction (Si-C) in Figure (9), show a major

influence of the radius and the buoyancy coefficient (Sr = 0.381 and Sad = 0.382, respectively at t= tf ), the main parame-

ters influencing the gravitational removal (cf. Equation 15). For the MSC model, the most influential parameters at recovery

are nmax and ad (Snmax = 0.37 and Sad = 0.26, respectively at t= tf ), which is consistent with Equation (27) and (29) of

Rees Jones and Wells (2018). The hierarchy of the most influential parameters is similar to cases (1) and (2) prior to maximum545

suprcooling. However accurate modeling of the buoyancy velocity of frazil crystals is essential, as it has a very important

influence on the long-term evolution of the system, and therefore merits particular attention.

23



5.4 Maximum supercooling scatter

The results discussed above were obtained with a cooling rate of −500 W.m−3. Several cooling rates, ranging from −50 to

−1000 W.m−3, were tested with case (1) to assess variations in maximum supercooling predictions. We found that the higher550

the cooling rate, the greater the scatter of the predicted maximum supercooling temperature, as presented in Figures (10) and

(11). This is the opposite for the time until maximum supercooling peak, where the higher the cooling rate, the lower the

scatter in supercooling time. These results are conform to observations of Carstens (1966) and Ye et al. (2004) that the degree

of supercooling increases with the heat sink rate while the time to supercooling decreases. Note that the gap between 5th and

95th percentile maximum supercooling predictions is as much as ∆tc = 2540 s with φ=−50 W.m−3, and ∆θ = 0.142◦C555

with φ=−1000 W.m−3 as shown in Figure (11). The dispersion both in time to supercooling and degree of supercooling

is significant. This shows the importance of having a good good quantification of input parameters to be able to predict the

maximum supercooling point.
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Figure 10. Maximum supercooling point scatter computed from median, 5th, 25th, 75th and 95th percentile time series at different cooling

rates (φ=−50, −100, −250, −500, and −1000 W.m−3) for case (1) and with φ=−500 W.m−3 for case (2). Global view (a) and focus

on initial time (b).

Results obtained from different scalings of the thermal boundary layer are also shown in Figure (11). A significant increase

in scatter is observed for the δT = r compared to δT = λ scaling, consistent with the fact that thermal growth is clearly under-560

estimated (Rees Jones and Wells, 2018). With δT taken as an uncertain parameter with a log-unifrom PDF within the bounds

[min(λ),min(r)], the result is also more widely scattered by the same order of magnitude as with δT = r. The results highlight

the significant influence of the choice of scaling for the boundary layer. Choice of scaling also explains inconsistencies in

calibrated parameters in literature.

Finally, let us discuss the results obtained with the MSC model, which need to be viewed from the standpoint of the the565

way it is initialized. By taking the minimum and maximum radius as uncertain parameters (case 2b), we observe an increased

gap between 5th and 95th percentiles and we have ∆tc = 930 s and ∆θ = 0.09◦C (cf. Figure 11). The constant feed of first-

24



(a)

(1) ... ... ... (1) (1b) (1c) (2) (2b) (2c)
Cases

10−3

10−2

10−1

100

θ
(◦
C

)

−
50

W
.m
−

3

−
10

0
W
.m
−

3

−
25

0
W
.m
−

3

−
50

0
W
.m
−

3

−
10

00
W
.m
−

3

(b)

(1) ... ... ... (1) (1b) (1c) (2) (2b) (2c)
Cases

10−1

100

101

102

t c
(m

in
)

−
50

W
.m
−

3

−
10

0
W
.m
−

3

−
25

0
W
.m
−

3

−
50

0
W
.m
−

3

−
10

00
W
.m
−

3

Figure 11. Maximum supercooling point scatter computed from median, 5th, 25th, 75th and 95th percentile time series at different cooling

rates (−50, −100, −250, −500, and −1000 W.m−3) for case (1), comparison between the choice of the length scale δT (cases 1b and 1c)

and comparison between different initial conditions (cases 2b and 2c) with φ=−500 W.m−3. Maximum degree of supercooling (a) and

maximum supercooling time (b). White line is the median, wide box is delimited by 25th and 75th percentiles, thin line is delimited by 5th

and 95th percentiles and round dots corresponds to minimum and maximum values.

class nuclei due to secondary nucleation accentuate the influence of the minimum radius parameter. This explains why the

minimum radius has more influence on the results than the maximum radius as shown in Appendix D. Additionally the volume

growth rate being higher for small classes, makes the initial distribution of concentration a determining choice. The more initial570

concentration is attributed to the smallest classes, the quicker the model reaches steady state, and the less scatter is observed

in maximum supercooling time. The extreme case is when the initial concentration is only applied to the first class (case 2c),

when an astonishingly narrow scatter of results is observed. In fact, the transient evolution is so quick that the model almost

instantaneously converges towards its steady state. The median maximum supercooling is only −0.001◦C and is reached in

only 20 seconds. This confirms the sensitivity test carried out by Holland and Feltham (2005), who suggested distributing575

initial concentration on one class. However, the results show that this type of initialization might not be the best option, as it

almost totally does away with transient evolution of the model.

5.5 Limits and perspectives

The importance of the availability of quantitative field and laboratory data, to support the uncertainty quantification of model

parameters, cannot be stressed enough. As we have shown, many model parameter uncertainties could not be characterized by580

means of direct data. We had to use expert knowledge as well as past numerical implementation (Daly, 1984, 1994; Svensson

and Omstedt, 1994; Smedsrud, 2002; Smedsrud and Jenkins, 2004; Wang and Doering, 2005; Holland and Feltham, 2005;

Rees Jones and Wells, 2018). In part, this is because most physical processes, such as secondary nucleation or flocculation, are

not directly measured, but instead are inferred from frazil distribution observations. Moreover, some parameters, such as the
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initial condition, are dependent on the discretization method. Consequently, several parameter uncertainty bounds and PDFs585

should be refined. The modeling of dependency should also be taken into account in futur work as many parameters, such as

δT and ad, depend on other parameters (e.g., r and R). This would add a degree of complexity to the sensitivity analysis but

innovative methods to tackle parameter dependency could bring valuable new insight on the models.

In this paper, we considered a well-mixed water body and a simplified gravitational removal sink term. Spatial variations for

temperature and frazil may result in different conclusions. A poorly mixed water body, where the cooling rate at higher layers is590

more severe than at the bottom, would cause an heterogeneity in the initial formation of frazil. Additionally, the meteorological

seeding of frazil nuclei occurs mainly at the free surface, increasing the heterogeneity. Furthermore, as the rise velocity is

higher for larger particles, the rise of frazil crystals and flocs yet again increases the heterogeneity of frazil on the vertical axis,

altering the steady state distributions, as it was shown in the study by Hammar and Shen (1991). All these complex processes

make the conclusions for a well-mixed body difficult to extrapolate to multidimensional cases. Further research therefore may595

be warranted into uncertainty quantification and sensitivity analyses of frazil ice models in non-well mixed conditions with

multidimensional models. The emergence of efficient APIs (Application Programming Interface) in numerical tools such as

TELEMAC-MASCARET (Goeury et al., 2022), together with meta-modeling techniques that synthesize the essence of the

multi-dimensional fields (Mouradi et al., 2021), could greatly assist such an undertaking.

Viewed from a different perspective, one may use the same probabilistic framework to compare modeling approaches for600

each process. This could be done by focusing on the volume fraction of each class, to obtain a good picture of how frazil is

distributed over radius. In the same way that we considered time series of total frazil volume fraction as output, one could

easily transpose the analysis to multi-dimensional class volume fraction as output. Uncertainty propagation could then allow

for the characterization of PDFs associated with each class, and sensitivity analysis would shed light on the properties of each

model and how they affect frazil distributions. This could be a valuable tool for inferring new laws of secondary nucleation or605

flocculation by comparison to the observed evolution of frazil distributions.

6 Summary and conclusions

In this paper, two mathematical models for predicting of the evolution of frazil ice volume fraction and temperature have been

studied. We developed a multiple-size-class MSC model, relying on the radial space discretization (Svensson and Omstedt,

1994) of frazil ice dynamic equations introduced by Daly (1984), which includes processes such as thermal growth, secondary610

nucleation, flocculation, seeding and gravitational removal. A simplified single-size-class SSC model, including only thermal

growth, seeding and gravitational removal, was also developed for comparison. Properties of the two models, such as their

steady states, were highlighted, and details provided for their numerical resolution. We found that, for proper resolution of the

transient phase with the MSC model, a class number of about 100 is necessary for convergence of the results, which corrobo-

rates the observations by Rees Jones and Wells (2018). Uncertainties in both models were then studied within a probabilistic615

framework. Aided by recent experimental and field studies of frazil ice, and also by numerical studies carried out in the recent

years, the uncertainty of the main parameters of the frazil ice models were quantified. Various Monte Carlo experiments were
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considered to propagate the uncertainties. Time dependent statistical estimates of the models’ outputs (temperature and frazil

volume fraction) were then analysed and a sensitivity analysis was carried out by means of a variance decomposition method.

Given the uncertainty bounds defined in the present study, SSC and MSC models yield very similar results for the predic-620

tion of water temperature and total frazil volume fraction. In the absence of gravitational removal, we have shown that the

uncertainties have a great impact on the maximum supercooling and recovery time, but scarcely any impact on the steady state,

which is governed only by cooling rate. The more detailed physics of the multi-class model, although providing valuable new

information on size distribution of the crystals, does not make it possible to obtain a more reliable estimate of water temperature

and total frazil volume fraction in the transient phase. The development of MSC models raises the possibility that uncertainty625

may be removed from choosing a mean radius. We have shown, however, that scatter is similar somehow in both models, and

derives from new uncertain parameters inherent in radial space discretization. Note that, in many numerical tools, modeling

frazil distribution requires the resolution of multiple advection-diffusion equations. Given the number of classes required for a

model convergence, one can easily grasp the high numerical cost of using the MSC model for large scale, multi-dimensional

applications. This makes the SSC model a suitable candidate for multi-dimensional frazil ice modeling, and the present study630

shows that it is still a very good compromise between uncertainty and model complexity. However, it should be noted that such

uncertainty in the MSC model could be overcome in future laboratory experiments by a better estimation of the initial crystal

size distribution.

The sensitivity analysis, allowed us to address with confidence the choice of calibration parameters. Relying on first- and

total-order Sobol indices, we quantified the relative influence of each uncertain parameter on the output distribution, for both635

SSC and MSC models, and proposed a selection of parameters to be used for calibration. For the SSC model, the most influ-

ential factor for both temperature and frazil is the mean radius. Initial concentration played a secondary role although it was

initially identified as a predominant factor. We therefore suggest using the average radius as the main calibration parameter.

The turbulent dissipation rate also plays a major role and as such should be specified with care. As it can be estimated via

turbulence models, we suggest using initial concentration and diameter-to-thickness ratio as secondary calibration parameters.640

With the MSC model, we showed that the dispersion is somehow similar to what we observed for the SSC model but originates

from new uncertain parameters. Thus, the most influential parameters on the transient phase are the parameters specific to the

initial condition. However, once the steady state was reached, we observed an increasing influence of the secondary nucleation

and flocculation parameters. The long-term evolution of the system also showed increasing interactions between parameters.

This could be explained by the balance in the physical processes involved in class interactions, and further investigation using645

class volume fraction as model outputs would help. When gravitational removal was introduced in the models, the stationary

state was modified and the concentration converged towards a finite limit instead of diverging. In the case of the SSC model,

the asymptotic limit is a function of the ratio between the gravitational removal term and the heat flux while in the case of

the MSC model, the stationary state is also a function of the steady state radius distribution (which depends on the balance

between secondary nucleation, flocculation and gravitational removal). Our study, confirming previous asymptotic analyses,650

showed that both secondary nucleation and gravitational removal parameters are the most influential on total frazil volume

fraction. The buoyant rise velocity, the uncertainty of which was rarely taken into account in previous modeling studies, should
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therefore be one of the main foci of future efforts to calibrate frazil ice models. Contrary to frazil, water temperature was

mostly influenced by the initial condition, even at steady state. This should impel us to use both water temperature and frazil

volume fraction measurements to calibrate the models. Fortunately, recent laboratory and field studies (Schneck et al., 2019;655

McFarlane et al., 2015, 2017), particularly on the evolution of frazil distributions over time, offer precious data that can assist in

developing appropriate calibration of the models. In this regard, using optimal calibration techniques, that allow consideration

of both modeling and data uncertainties, would be a natural and complementary extension of the present study.
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Appendix A: Semi-implicit theta scheme matrices

In this section, the semi-implicit time discretization of Equations 7 and 12 is described. Let us denote tk = t0+k∆t the time at660

iteration k, t0 the initial time and ck = c(tk). The semi-implicit time scheme consists in posing ci = θck+1
i + (1− θ)cki in the

right-hand side of Equation 7. Choosing θ = 0 leads to a fully explicit time scheme while choosing θ = 1 is equivalent to an

implicit scheme on c. The non linear terms are treated semi-implicitly i.e. Gi =Gi(tk) in order to retrieve a linear system of

the form A[ck+1
1 , ..., ck+1

m ]T =B in which A and B are two matrices defined below. The temperature balance equation is then

solved with a forward Euler time scheme.665

The matrix system reads: A[ck+1
1 , ..., ck+1

m ]T =B⇔

a11 a12 a13 . . . a1m
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am−1m

0 . . . 0 amm−1 amm





ck+1
1

...

ck+1
i

...

ck+1
m


=



b1
...

bi
...

bN


, (A1)

in which the diagonal terms are defined as:

a11 = 1− θ∆t(V1(Λ1−Γ1)−β1− γ1) ,

aii = 1− θ∆t(Vi(Λi−Γi)−βi− γi− ζαi) for 2≤ i≤m− 1,670

amm = 1− θ∆t(VmΛm− γm− ζαm) ,

the lower off-diagonal terms are defined as:

aii−1 =−θ∆t(ViΓi−1 +βi−1) for 2≤ i≤m,

the upper off-diagonal terms are defined as:

a1i =−θ∆tαi for 2≤ i≤m,675

aii+1 = θ∆tViΛi+1 for 2≤ i≤m− 1,

and the matrix B is defined as:

b1 = ck1 + ∆tτsV1/h+ (1− θ)∆t
[
V1
(
(Λ1−Γ1)ck1 −Λ2c

k
2

)
−β1ck1 − γ1ck1

]
+ (1− θ)∆t

m∑
j=2

αjc
k
j ,

bi = cki + (1− θ)∆t
[
Vi
(
Γi−1c

k
i−1 + (Λi−Γi)c

k
i −Λi+1c

k
i+1

)
+βi−1c

k
i−1−βicki − γicki − ζαicki

]
for 2≤ i≤m− 1,680

bm = ckm + (1− θ)∆t
[
Vm
(
Γm−1c

k
m−1 + Λmc

k
m

)
+βm−1c

k
m−1− γmckm− ζαmckm

]
,
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Appendix B: Sensitivity analysis using Sobol indices

For a given set of independent input parameters, the ANOVA (ANalyses Of VAriance) decomposition allows us to compute

the variance of output Y = g(X,d), for each time step tk (1≤ k ≤ nt) as:

V ar[Y k] =

nX∑
i=1

Vi(Y
k) +

∑
i<j

Vij(Y
k) + · · ·+V1...nX

(Y k), (B1)685

where :

Vi(Y
k) = Var[E[Y k|Xi]]

Vij(Y
k) = Var[E[Y k|Xi,Xj ]−E[Y k|Xi]−E[Y k|Xj ]]

= Var[E[Y k|Xi,Xj ]]−Vi(Y k)−Vj(Y k)

in which E[Y k|Xi] represents the conditional expectation of Y k with the condition that Xi remains constant.690

To evaluate the influence of each input parameter, the so-called Sobol indices are used (Sobol, 2001). The first and second

order Sobol indices are defined as follows, for k ∈ {1, . . . ,nt} and i ∈ {1, . . . ,nX}:

Ski =
Vi(Y

k)

Var[Y k]

Skij =
Vij(Y

k)

Var[Y k]
(B2)

The first-order Sobol index Ski indicates the part of output variance explained by a single parameter Xi without interactions,

whereas second-order indices Skij quantify the part of variance of the output explained by the interaction between two inputs695

Xi and Xj . The number of second order indices is given by
(
nX

2

)
= nX (nX − 1)/2. When the number of input parameters is

too large, it may be difficult to estimate second-order indices. In that case, we only estimate first-order and total indices. Total

indices quantify the part of variance of the output explained by an input and its interactions with all the other inputs parameters.

Total Sobol indices are defined as follows, for k ∈ {1, . . . ,nt} and i ∈ {1, . . . ,nX}:

ST ki = Ski +
∑
i 6=j

Skij +
∑

i 6=j,l 6=i,j≤l

Skijl + · · ·=
V Ti(Y

k)

Var[Y k]
= 1− V−i(Y

k)

Var[Y k]
(B3)700

where V−i(Y k) = Var[E[Y k|X1, . . . ,Xi−1,Xi+1, . . . ,Xnx ]].

To compute Sobol indices, a modified version of the method proposed by Saltelli (2002) is used (Baudin et al., 2016a), in

which two independent samples of size N , denoted A and B are generated. Both can be written as matrices (cf. Equation B4)

in which each line is a realization of the random vector X. A third matrix, denoted Ci is then created by replacing only the

column i of the matrix A by the column i of the matrix B (cf. Equation B4).705

A =


xA,11 xA,12 . . . xA,1nX

xA,21 xA,22 . . . xA,2nX

...
...

. . .
...

xA,N1 xA,N2 . . . xA,NnX

 ,Ci =


xA,11 . . . xB,1i . . . xA,1nX

xA,21 . . . xB,2i . . . xA,2nX

...
...

. . .
...

xA,N1 . . . xB,Ni . . . xA,NnX

 . (B4)
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First order and total Sobol indices are computed using estimations of Vi(Y k) and V−i(Y k) computed using samples A, B and

Ci and noted V̂i(Y k) and V̂−i(Y k) respectively. These estimations are defined as follows:

V̂i(Y
k) =

1

N − 1

N∑
j=1

g̃(Bj)g̃(Ci
j)−

 1

N

N∑
j=1

g̃(Aj)

 1

N

N∑
j=1

g̃(Bj)

 ,
V̂−i(Y

k) =
1

N − 1

N∑
j=1

g̃(Aj)g̃(Ci
j)−

 1

N

N∑
j=1

g̃(Aj)

 1

N

N∑
j=1

g̃(Bj)

 ,
(B5)

where g̃ is the centered model defined by g̃ = g− g in which g is the sample mean of the combined output samples g(A)710

and g(B). To compute the second-order Sobol indices, an additional matrix is used, noted C′j which is created by replacing

only the column i of the matrix B by the column i of the matrix A. Then the estimation V̂ij(Y k) is computed as:

V̂ij(Y
k) =

1

N − 1

N∑
m=1

g̃(Ci
m)g̃(C′jm)− 1

N

N∑
m=1

g̃(Am)g̃(Bm)− V̂i(Y k)− V̂j(Y k). (B6)

For a sample size N , estimation of the first-order and total Sobol indices requires (nX + 2)×N simulations.

For multivariate outputs, the indices can be aggregated as proposed by Gamboa et al. (2014). The aggregated first order and715

total Sobol indices are defined as:

ASi =

∑nt

k=1Vi(Y
k)∑nt

k=1 Var[Y k]

ASTi =

∑nt

k=1V Ti(Y
k)∑nt

k=1 Var[Y k]
(B7)

This means that Sobol indices Ski and ST ki quantify the influence ofXi on the variance of Y at time tk, while the aggregated

indices ASi and ASTi quantify the influence of Xi over the whole time series of Y .
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Appendix C: Sturdiness of statistical estimators720

Convergence of statistical estimators is addressed by running several Monte Carlo simulations with increasing sampling size.

An example of the convergence of mean and standard deviation at different times is given in Figure C.1 for case (1). Similarly,

testing of Sobol indices convergence is shown in Figure C.2 for case (1). Note that the 5th and 95th confidence intervals are

systematically computed by a bootstrap method, and plotted in all Sobol index Figures.
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Figure C.1. Mean and standard deviation convergence for case (1) for temperature (a) and frazil (b).
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Figure C.2. First order Sobol indices convergence for case (1) for temperature (a) and frazil (b).
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Appendix D: Sobol indices and aggregated Sobol indices725
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Figure D.1. First order and total order Sobol indices at times tmin, 2tmin and tf and aggregated Sobol indices for temperature (left) and

frazil (right) the case 1 (a), 2 (b), 3 (c) and 4 (d) from top to bottom.
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Appendix E: Aggregated Sobol indices
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Figure E.1. Aggregated first order Sobol indices (dots) and aggregated total Sobol indices (bars) for temperature (a) and total frazil volume

fraction (b) for the case 1, 1b, 1c, 2, 2b, 2c, 3 and 4.
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Appendix F: Results of case (1)
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Figure F.1. Results of case (1). From top to bottom: uncertainty propagation result (a), first-order Sobol indices (b), first order Sobol indices

with 95% confidence intervals (c), total order Sobol indices with 95% confidence intervals (d), for temperature (left) and frazil (right).
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Appendix G: Results of case (2)
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Figure G.1. Results of case (2). From top to bottom: uncertainty propagation result (a), first-order Sobol indices (b), first order Sobol indices

with 95% confidence intervals (c), total order Sobol indices with 95% confidence intervals (d), for temperature (left) and frazil (right).
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Appendix H: Results of case (3)
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Figure H.1. Results of case (3). From top to bottom: uncertainty propagation result (a), first-order Sobol indices (b), first order Sobol indices

with 95% confidence intervals (c), total order Sobol indices with 95% confidence intervals (d), for temperature (left) and frazil (right).
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Appendix I: Results of case (4)730
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Figure I.1. Results of case (4). From top to bottom: uncertainty propagation result (a), first-order Sobol indices (b), first order Sobol indices

with 95% confidence intervals (c), total order Sobol indices with 95% confidence intervals (d), for temperature (left) and frazil (right).
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