GC Insights: Diversifying the Geosciences in Higher Education: a Manifesto for Change

Caitlyn A. Hall¹, Sam Illingworth², Solmaz Mohadjer³, Mathew Koll Roxy⁴, Craig Poku⁵, Frederick Otu-Larbi⁶, Darryl Reano⁷, Mara Freilich⁸, Maria-Luisa Veisaga⁹, Miguel Valencia¹⁰, and Joey Morales¹¹

¹The Honors College and Biosystems Engineering Department, University of Arizona, Tucson, Arizona, United States
²Department of Learning and Teaching Enhancement, Edinburgh Napier University, Edinburgh, Scotland
³Department of Earth and Environmental Sciences, University of Central Asia, Khorugh, Tajikistan
⁴Climate Research Lab, Indian Institute of Tropical Meteorology, Pune, India
⁵Department of Chemistry, University of York, York, United Kingdom
⁶Lancaster Environment Centre, Lancaster University, United Kingdom
⁷School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, United States
⁸Scripps Institution of Oceanography, University of California San Diego, San Diego, California, United States
⁹Kimberly Green Latin American and Caribbean Center, Florida International University, Miami, Florida, United States
¹⁰Department of Earth and Environment, Florida International University, Miami, Florida, United States
¹¹Florida International University and Miami Northwestern Senior High School, Miami, Florida, United States

Correspondence to: Caitlyn A. Hall (cahall@arizona.edu) and Sam Illingworth (s.illingworth@napier.ac.uk)

Abstract

There is still a significant lack of diversity and equity in geoscience education, even decades after widespread calls for improvement and action. We join fellow community voices in calls for improved diversity, equity, inclusion, and justice in the geosciences. Herein this manifesto, we present a list of opportunities for educators to bring about this cultural shift within higher education: We propose an approach and specific opportunities for educators to improve diversity in geoscience education within higher education: 1) advocating for institutional change, 2) incorporating diverse perspectives and authors in curricula, 3) teaching historical and sociopolitical contexts of geoscience information, 4) connecting geoscience principles to more geographically diverse locations, 5) implementing different communication styles that consider different ways of knowing and learning, and 6) empowering learner transformation and agency.

1 Introduction

Geosciences play an essential role in addressing key societal issues, but it is an inequitable and exclusive field because of its complex entanglement with past and ongoing prejudices (Dowey et al., 2021; Berhe et al., 2022) with past and ongoing prejudiced practices, making it an inequitable and exclusive field. While some advances have been made, geoscience education that does not interrupt racism and colonialism contributes to the hostile climates and structural problems that hinder diversity in the geosciences (Marín-Spiotta et al., 2020).
In this manifesto, we offer six points of reflection that higher education geoscience educators can act upon to recognize and unlearn their biases and to diversify geoscience education (Figure 1). These reflections complement existing Many resources and calls to arms have come from leading and communities and leaders leading these movements for decades, but change is slow in and beyond geoscience education (e.g., Huntoon and Lane, 2007; Bernard and Cooperdocket al., 2018; Gates et al., 2019; Liboiron, 2021; Science Educators for Equity, Diversity, & Social Justice ADVANCEGeo). In this manifesto, we call for six specific points of reflection and action that individual higher education geoscience educators can undertake to recognize and unlearn their biases to support geoscience education diversity (Figure 1). Furthermore, we hope it serves as a starting conversation point to gather continue interest and momentum to establish a community-built framework for implementing and strengthening diversity, equity, inclusion, and justice holistically in geoscience education.

2 Champion Meaningful Transformation

Foundational geoscience Extracting knowledge and resources extracted from excluded and exploited communities without clear reciprocity has historically benefited dominant groups (Keane, 2017; Stefanoudis et al., 2021; Wight, 2021), while excluding and exploiting oppressed communities. To combat extractive mindsets, geoscientists educators, learners, and researchers outside of a community must not presume that said community must provide access to access nor community obligation to provide knowledge, opportunities, or resources. Educators can Geoscience educators and students should not presume access to knowledge, opportunities, or communities. Communities are not obligated to offer visiting scientists opportunity to engage, advocate for investing resources in communities and experts that contribute to understanding and diversity in geoscience to help build trust and repair the legacy of injustices (e.g., colonial transfer of land and resources) that have led to the institution’s success. And scientists must enter these spaces with respect and humility (la paperson, 2014). Engagement requires building relationships, reciprocity, trust, and accountability (Lewis and Sadler, 2021; Liboiron, 2021). As such, educators must challenge the status quo, commit to action for equity, and develop accountable relationships built on respect, reciprocity, and trust with communities for knowledge exchange for systemic change (Indigenous Action Media, 2014; la paperson, 2014; Powell and Kelly, 2017; Squire, 2019; Jones, 2021; Ali et al., 2021; Lewis and Sadler, 2021; Liboiron, 2021).

Educators must question examine institutional factors leading to the lack of diversity in the geosciences and their role in perpetuating them, while calling for the prioritisation of recruiting and retaining educators and learners from marginalised communities, as detailed by (Land Grab Universities; Carbajal and Atchinson, 2020; Ormand et al., 2021; Cooperdock et al., 2021; Ranganathan et al., 2021). For sustainable change, educators must call for educational institutions must to prioritise the recruitment and retention of educators and learners from marginalised and excluded communities (Carbajal and Atchinson, 2020; Ormand et al., 2021). Cultural. This also means that physical and systemic structural, and individual infrastructure interventions and accountability systems are required to lower access barriers and power imbalances, while and supporting diverse individuality and groups across all measures (e.g., closed captioning during lectures; equity accountability
measures (Núñez et al., 2019; Kingsbury et al., 2020; Olcott and Downen, 2020). Those who benefit from established institutions should champion investing resources in communities and experts that contribute to diversity in geoscience. Advancing diversified geoscience education requires telling the truth about and repairing the legacy of injustices that transferred land and resources to universities, including colonialism and slavery, to build trust and self-determination.

3 Diversify Sources

Teaching is research-based as it requires educators to incorporate research output into lessons. Without diversifying one’s sources when developing curriculum, can perpetuate structural and unconscious bias on the value of specific research sources and types may be perpetuated, leading to low inclusion, a lack of diverse sources, and to a system of structural exclusion that proliferates unconscious bias.

By directing users to often-referenced work published in high-impact journals, most search engines decrease the visibility of research published in smaller (e.g., regional) and regional journals by directing users to often-referenced work in high-impact journals, often due to search algorithm bias based on a user’s history (e.g., current location, language). This results in an erasure of non-Western authors that non-Western authors may rely on local or regional journals due to prohibitive publication costs because of the inaccessibility and exclusivity of high-profile journals and lack of accessibility and inclusion in high-profile journals (even after considering publication discounts) (Jeater, 2018). Therefore, publications by Western scientists carrying out research in non-Western regions like the work of local scientists are valued and cited more widely than their local, non-Western counterparts (Wight, 2021).

While some journals offer discounted publication rates and fee waivers, finding and citing work by marginalised researchers and those without ample resources remains a resource-intensive task for educators. Repositories offer a diverse selection of resources to reduce strain on educators looking for work by marginalised researchers, though these databases are often biased. For example, SCImago lists journals from over 200 countries but still has heavy United States influence.

As a result, publications by Western scientists carrying out research in non-Western regions (with or without local researchers) that are similar to the work of local scientists are cited more widely than their local, non-Western counterparts. While some journals offer discounted publication rates and fee waiver requests, finding and citing work by marginalised researchers and those without ample resources remains a resource-intensive task. Repositories like SCImago offer a diverse selection of journals, though these are often regionally biased and are a great place to start.

Use of different languages constitutes an additional barrier in incorporation in teaching and learning in English-dominated academic settings, but this may result in limited consideration of diverse expertise (Helsinki Initiative, 2019). Providing primary resources, including phrases in the original language that have no direct translation, is an opportunity to discuss diverse geoscience perspectives while considering context and complexities. However, translations often miss important context and complexity, as well as limits consideration of expertise in diverse languages (Helsinki Initiative, 2019). This issue is further exacerbated when different languages in regional journals constitute
a barrier for incorporation in teaching and learning. While some journals offer discounted publication rates and fee waiver requests, finding and citing work by marginalised researchers and those without ample resources remains a resource-intensive task. SCImago offers a diverse selection of journals and is a great place to start.

Co-creation of reading lists by Educators and students to can collaborate to Working with students to create an audit and update of the current geoscience reading listsreadings to centre diversity can empower students and improve curriculum inclusivity on a geoscience programme is another way to address the lack of diversity in sources (Schucan Bird and Pitman, 2019). When enacting changes, source diversification must centre around author acknowledgement and reciprocity (Keane et al., 2017). Diversifying sources alone, however, must also include author acknowledgement and reciprocity to reduce further othering and exploitation (Keane et al., 2017). For example, many sustainability efforts extract information from Indigenous practises without considering the complex, holistic origin, and implications of Indigenous science (Tsosie, 2019). For guidance on Incorporating incorporating of Indigenous knowledge into curriculum should align with refer to the CARE (Collective Benefit, Authority to Control, Responsibility, Ethics) principles (The Global Indigenous Data Alliance).

4 Integrate Historical Context

Today Historically to now Many scientists have and continue to downplay marginalised researchers’ and participants’ contributions to their research (e.g., exclusion from the author list), which leads to exclusionary curricula (Dowey et al., 2021). Research is shaped by collaborators and their exclusion trickles to exclusive education, which is educators’ support diversity and equity by including discussion of socio-political contexts in curriculum, further cemented when most educators do not include these historical contexts in curriculum (GeoContext). Learners can develop and practice more inclusive, diverse, and culturally sensitive approaches to science when included. (Stefanoudis et al., 2021). We can make geoscience education more inclusive by highlighting historical, cultural, and sociopolitical dimensions of geological discoveries. We can bring value to those historically Scientists and marginalized groups by emphasising there are devalued when these aspects are excluded, and the meaningfulness of their contributions is lost. Cartier (2021) and GeoContext raised that by highlighting historical, cultural, and sociopolitical dimensions of geological discoveries, we can bring value to those historically Scientists and marginalized groups by emphasising there are devalued when these aspects are excluded, and the meaningfulness of their contributions is lost. Cartier (2021) and GeoContext raised that. For example, local Indian Pandits helped the British during their colonial land survey project, the Great Trigonometrical Survey, by bringing their critical knowledge of their homeland and access to places that the British did not. While this project helped establish instructors’ attempt to explain geoscience in historical contexts, like the concept of isostasy, the Pandits receive no little acknowledgement in Western education and its connection to the British colonial project, the Great Trigonometrical Survey, that aimed to survey the land (Sarkar, 2012; Cartier, 2021). Pandits (Indigenous explorers) brought their intimate knowledge of the land and access to places that the British did not. Pandits contributed significantly to this project yet receive no acknowledgement in Western education. Even today, many scientists downplay local researchers’ contributions by excluding them from the author list or only mentioning them in the acknowledgments (Stefanoudis et al., 2021). However, geoscience research is a collaborative endeavour and its culture is shaped by narratives of all collaborators.
By excluding them in our education, we are robbing future scientists of the chance to develop and practice more inclusive, diverse, and culturally sensitive approaches to science.

Educators can mitigate the erasure of marginalised populations by integrating historical context during lessons that illustrate the concept and research process while meeting learning objectives into our taught curriculum. We must construct narratives that give a more complete representation of how scientific findings take place. While this can be incorporated in fundamental or advanced geoscience classes, one way to do this is by offering socio-scientific courses (e.g., geoscience history, culture, and geethics) to learners, or by incorporating related topics into introductory courses. This will also benefit can lead to deeper understanding and interdisciplinary collaborations with humanities and social sciences.

5 Connect Across Geographies

Place-based learning introduces different ways of exploring the world through geoscience concepts, through geographically and culturally relevant practices (Johnson et al., 2014; Semken et al., 2017), and can be achieved by diversifying geographic case studies and by including local expertise surrounding the institution (Johnson et al., 2014; Semken et al., 2017) to understand geoscience concepts. It allows educators to bridge the disconnect between foundational principles, global-theoretical frameworks, and local-practical applications, such that phenomena can be related to observations with greater awareness of how different locations and communities are impacted. This practice amplifies local experts and supports diverse student learning by diversifying examples that consider non-Western regions.

Geoscience curriculum often focuses on global scales, overlooking local scale context. Most teaching materials emphasize providing examples from Western regions. For example, many textbooks use Western examples, like the Gulf Stream as an example, to illustrate ocean-atmosphere dynamics, but omit details about the Somali Current and its impact on monsoon behaviour (Schott, 1983).

Additionally, the selection of maps can further perpetuate unconscious bias because scales, symbology, and colour can emphasize Western regions and ideology (Perkins, 2018). By including Western examples, the Gulf Stream as an example, one can illustrate ocean-atmosphere dynamics, like the Gulf Stream, but omit details about the Somali Current and its impact on monsoon behaviour (Schott, 1983).

Place-based learning introduces different ways of exploring the world, through culturally relevant practices (Johnson et al., 2014; Semken et al., 2017), and can be achieved by diversifying geographic case studies and by using local expertise to understand geoscience concepts. It allows educators to bridge the disconnect between foundational principles, global-theoretical frameworks, and local practical applications, such that phenomena can be related to observations with greater awareness of how different locations and communities are impacted. This practice amplifies local experts and supports diverse student learning.
6 Broaden Pedagogy, Epistemology, & Communication Styles

We can diversify the geoscience curriculum by broadening our approaches to communication, teaching, and epistemology (or ways of knowing) (Le Grange, 2017; Hall and Tandon, 2017). When educators embrace diverse teaching approaches, their students’ motivation grows and can lead to better engagement and retention (Tremblay-Wragg, 2019), leading to better student engagement and retention. This Embracing these approaches also helps educators to create inclusive learning spaces, be respectful of diverse audiences, be culturally sensitive, and support the full inclusion of disabled learners and educators (Feig et al., 2019). Educators can also develop inter-institution classroom collaborations to co-develop virtual exchanges and course-based collaborative learning projects (Stefanoudis et al., 2021).

We can diversify our communication styles by utilising different strategies in teaching (Mintz, 2020; Illingworth, 2020). This will in turn stimulate learners to diversify how they communicate knowledge. Knowledge sharing (e.g., storytelling, oral histories) by the communities that may not conform to Western teaching practices and tend to be excluded as references and from academia. Academic citations and curriculum-curricula should be adapted to bring academic recognition to all ways of knowing, learning, and relating (MacLeod, 2021; Kornei, 2021). This will enable educators to practice place-based learning and honour the knowledge and communities of a more diverse student population.

7 Support Transformative Agency in Education

Educators can support transformative and critical science-critical science agency by valuing the connected and holistic learning-teaching-knowledge-experience that is grounded in students’ current diverse social-, emotional, and cultural needs (Rodriguez, 1998; Durlak et al., 2011). Here, we write these concepts as one hyphenated term to show that they are connected and must be considered holistically. Agency refers to learners’ ability to create knowledge and translate their lessons learned to take knowledge and intentionally pursue actions that produce actions with tangible benefits for themselves and/or their communities, strengthened by collaborative learning opportunities among learners and educators (Schenkel and Calabrese Barton, 2020; Adewumi and Mitton, 2022).

Pedagogy that places Western scientific knowledge as singular, or the ultimate, source of knowledge and epistemology prevents the development of agency among learners, especially those from historically excluded communities (Smith, 1999; Masta, 2018; Alexiades et al., 2021). However, the weakening of collective and individual agency is not an inevitable outcome of considering different knowledge systems within higher education (Virkkunen, 2006). Different Diversifying knowledge systems in curriculum (e.g., Traditional Ecological Knowledge, and Western science) can lead to stronger overall education, rather than a weakening of previously centred systems (Virkkunen, 2006; Reano and Ridgway, 2015; Smythe, 2017). Multiple epistemologies can be considered (e.g., Traditional Ecological Knowledge and Western science) can be included and valued in the geoscience curriculum without being broken down, othered, or changed to be consistent with one another (Reano and Ridgway, 2015; Smythe, 2017). (Alexiades et al., 2021).
Education scholars have begun implementing strategies demonstrating how supporting transformative agency and actions support educational equity, while serving individual learners.” (Atwater et al., 2014; Bang et al., 2017; Miller et al., 2020). Reano (2020) describes how a co-created climate change adaptation plan created by with the Confederated Tribes and Bands of the Yakama Nation (Yakama Nation) supported the transformative agency of Indigenous students in a communication and policy geoscience module. Holistic educational frameworks support individual learning while serving individuals’ community interests.

Tips for Educators to Diversify Geoscience Education

<table>
<thead>
<tr>
<th>Champion Material Transformation</th>
<th>Diversify Sources</th>
<th>Integrate Historical Context</th>
<th>Connect Across Geographies</th>
<th>Broaden Pedagogy & Communication Styles</th>
<th>Support Transformative Agency in Education</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Support actions to eliminate structural exclusion & barriers</td>
<td>• Explore repositories to find & cite non-Western & marginalized researchers</td>
<td>• Credit local experts & their knowledge that shaped research</td>
<td>• Use non-Western examples to explore geoscience phenomena</td>
<td>• Incorporate different teaching strategies & ways of knowing</td>
<td>• Emphasize non-Western ways of knowing without conforming it to be consistent with Western methods</td>
</tr>
<tr>
<td>• Advocate for collaborative & accountable relationships with marginalized communities</td>
<td>• Co-create reading lists with students</td>
<td>• Incorporate socio-political, historical dimensions of geoscience in existing curricula</td>
<td>• Incorporate local context to connect foundational concepts to real application</td>
<td>• Use different communication methods to contextualize concepts (e.g., art, storytelling)</td>
<td>• Create culturally relevant learning environments by relating it to individuals’ positionality</td>
</tr>
<tr>
<td>• Hire & support diverse educators</td>
<td>• Discuss concepts from primary sources in original languages</td>
<td>• Develop & offer interdepartmental socio-scientific courses</td>
<td>• Select maps that do not further bias</td>
<td>• Consider various disabilities during curriculum development</td>
<td></td>
</tr>
</tbody>
</table>

References

Figure 1: Summarised recommendations for educators to diversify their geoscience curriculum and education.

References

ADVANCEGeo.: https://serc.carleton.edu/advancegeo/index.html, last access: 25 July 2022.

Hall, B. L. and Tandon, R.: Decolonization of knowledge, epistemicide, participatory research and higher education, Research for All, 1(1), 6-19, https://doi.org/10.18546/RFA.01.1.02, 2017.

