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Abstract. Our subject is a new  Catalogue of radar-based heavy Rainfall Events (CatRaRE) over Germany, and how it 

relates  to  the  concurrent  atmospheric  circulation.  We  classify  daily  ERA5  fields  of  convective  indices  according  to 

CatRaRE, using an array of 13 statistical methods, consisting of 4 conventional (’shallow’) and 9 more recent deep machine 

learning  (DL)  algorithms;  the  classifiers  are  then  applied  to  corresponding  fields  of  simulated  present  and  future 

atmospheres from the CORDEX project. The inherent uncertainty of the DL results from the stochastic nature of their 

optimization is addressed by employing an ensemble approach using 20 runs for each network. The shallow Random 

Forest method performs best with an Equitable Threat Score (ETS) around 0.52, followed by the DL networks ALL-CNN 

and ResNet with an ETS near 0.48. Their success can be understood as a result of conceptual simplicity and parametric 

parsimony, which obviously best fits the relatively simple classification task. It is found that on summer days, CatRaRE-

convective atmospheres over Germany occur with a probability of about 0.5. This probability is projected to increase, 

regardless of method, both in ERA5-reanalyzed and CORDEX-simulated atmospheres: for the historical period we find a 

centennial increase of about 0.2 and for the future period of slightly below 0.1, this smaller value likely being a saturation 

effect for growing probabilities.

1 Introduction

Since computing power has grown to levels that were beyond imagination just years ago, automated and numerically 

expensive (machine) learning has evolved into a versatile and capable tool set for data science. This applies in particular to 

Deep Learning (DL), which refers to neural networks with a notably increased number of neuron layers. Many scientists  

are  now curious  whether  their  older,  conventional  models  can stand the test  of  skill  against  these  newer methods. 

Examples are abundant, for example from climate simulations and weather prediction (daily to seasonal) (Gentine et al., 

2018;  Ham et  al.,  2021,  2019;  O’Gorman and Dwyer,  2018;  Rasp et  al.,  2018;  Weyn et  al.,  2021;  Schultz  et  al.,  2021; 

Reichstein et  al.,  2019).  Generally,  DL is  evolving with such a speed that makes it  hard to keep pace;  for a general 

introduction into Deep Learning,  (Bianco et al., 2018; Goodfellow et al., 2016; Alzubaidi et al., 2021) provide a nice and 
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thorough overview. At least in the data driven disciplines, hence, one may be in hope or in fear about the perspective that 

much of the scientific progress of the past several decades is about to be dwarfed by machine learning techniques.

In  this  study  we  aim to  explore  the  potential  of  DL in  the  field  of  atmospheric  weather  types  (classification).  We 

investigate synchronous daily sequences of large- and local-scale weather patterns over Germany. As predictors we use 

reanalyzed atmospheric fields whose spatial resolution is coarse enough to permit long climate model projections. These 

fields are ’labeled’ by the occurrence of local, impact-relevant extreme convective rainfall events anywhere in the study 

area. The events were obtained from a recently published catalog of extreme precipitation events in Germany (CatRaRE, 

(Lengfeld et al., 2021)) which in turn is based on a 20-years record of gridded hourly radar-based precipitation estimates 

(RADKLIM, (Winterrath et al., 2018)).

By interpreting each atmospheric  field as  the 

color code of a 2-dimensional "image", our task 

can be  framed as  one of  image classification. 

Given the geometry and resolution of the fields 

(cf.  section  2),  the  classification  is  done  in  a 

space of dimension ~4k. This number roughly 

compares to some of the classical DL datasets 

such as MNIST (dim. ~1k) and CIFAR-10 (dim. 

~3k), but is certainly small compared to newer 

sets  such  as  ImageNet  (dim.  ~100k)  or  Open 

Images (dim. ~5M), cf. Table 2. Likewise, while 

most  of  the  DL  networks  have  to  choose 

between  as  many  as  1000  classes,  our  initial 

example is just binary. Therefore, if CatRaRE-

relevant patterns of atmospheric moisture over 

Germany can be compared at all to images of 

cats  and  dogs,  one  could  naively  expect  the 

classification performance to be at least as good 

as  published  results  on  those  image  datasets. 

And the prospect for using a more fine-grained 

analysis with more sub-regions (= more classes) 

should then, so we hope, be equally good. A set 

of  methods  representing  state-of-the-art  but 

conventional methods, referred to here for lack of a better expression as shallow methods, shall be used as reference.
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Figure 1. The conditions for cape on July 28, 2014 (blue), along with ET,A 

values of corresponding CatRaRE events of ≤9h duration (dots).

30

35

40

45

50

55

60



Using standard binary skill scores, the best performing methods are applied to simulated atmospheres from the EURO-

CORDEX project  (Jacob et  al.,  2020);  the  predicted classification is  used to  estimate  past  and future  changes  in  the 

frequency of extreme events as represented by CatRaRE. One may object that by choosing all of Germany as the (uniform) 

study area our approach misses important regional detail, leaving only little relevance for the local decision maker. The 

study  is  nevertheless  the  first  of  its  kind  to  actually  estimate  future  statistics  of  CatRaRE-type  events,  and  should 

contribute to raise awareness among researchers and decision makers for an impending change in these statistics. Given 

the wealth of methods, regional detail would at this point just add another strain to deal with, so we decided against it and 

do the regional assessment in an extra study afterwards. Our focus here shall generally not be on obtaining the best result 

currently possible, but rather on better understanding the influence of the ’deep’ in DL with regard to performance. To 

that effect, we explore a selection of DL architectures that had, each in its time, entered the DL arena quite spectacularly; 

an overview of the architectures is given in the Supplemental Information (SI). We attempt to understand if and why they 

perform differently for the case of CatRaRE over Germany.

To summarize, we classify atmospheric fields of selected convectivity indices according to CatRaRE by utilizing an array 

statistical methods, including shallow and deep machine learning, and use those classifiers to estimate future statistics of 

CatRaRE-type events.

Our machine learning framework is Caffe, which provides a genuine Octave/Matlab interface to DL (Jia et al., 2014). The 

Caffe framework along with most of the networks have already seen the height of their days, and are by now being  

superseded by more sophisticated and successful networks and frameworks  (Alzubaidi et al., 2021). This only indicates 

that the development continues to be fast, making it difficult to keep pace.

2 Methods and Data

2.1 Atmospheric data

Since our focus is on convective events, we restrict the analysis to the warmer months from May to August. From the  

ERA5 reanalyses (Hersbach et al.,  2020),  atmospheric convectivity is measured by the indices of convective available 

potential energy (cape), convective rainfall (cp), and total column water (tcw). They are used as potential classifiers, given 

as daily averages over the area between the edges [5.75E 47.25N] and [15.25E 55.25N], normalized with, for each variable, 

mean and standard deviation across time and space1. Future atmospheric fields are obtained from the EURO-CORDEX 

initiative and are simulated by the model CNRM-CM5 (simply "GCM" in this text) driving the regional model COSMO-

crCLIM  ("RCM").  We  use  emissions  from  both  historic  (1951–2005,  "HIST")  and  RCP85  scenarios  (2006–2100).  The 

atmospheric fields are given as anomalies, using as a general reference state the climatology from the common period 

1 In a future version, non-normality of the indices may be taken into account by using a more refined normalization (logit, probit).
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2001–2020. For the GCM/RCM simulations, for which the simulated climatology is taken as reference, the corresponding 

sections from HIST (2001-2005) and RCP85 (2006-2020) are concatenated.

2.2 CatRaRE

We use the catalogue of radar-based heavy rainfall events  (CatRaRE, Lengfeld et al., 2021), which defines heavy rainfall 

based on the exceedance of thresholds related to warning level 3 (roughly 5-year return level2) of Germany’s national 

meteorological service (Deutscher Wetterdienst;  DWD hereafter);  it  corresponds to more than 25 mm in one hour or 

35 mm in six hours. Based on threshold exceedance of individual radar pixels, heavy rainfall objects are constructed that 

are contiguous in space and time, and for which an extremeness index (ET,A, Müller and Kaspar (2014)) is inferred that is a 

combined measure of area, duration and intensity.  In this study, a day is labeled as  extreme if the database contains an 

event for that day with ET,A > 0 and of at most 9 hours duration; it means that somewhere in Germany a corresponding 

severe weather was recorded, and the limited duration serves as a rough proxy that the event was convective.

On average, 51% of the (May–Aug) days see such an extreme event, which means that, although CatRaRE events are 

locally rare by definition, the main classification task (event vs. no event in Germany) is quite balanced. Mainly for later 

use we counter any potential class imbalance nevertheless, and employ a rather simplistic oversampling approach by 

populating the minority class with random duplicates of that class until that class is no longer minor.

The ERA5 grid is shown in Figure 1, along with the average cape values for 28 July 2014. It was a day with particularly 

strong atmospheric convectivity, which led to several severe rainfall events all over Germany, as monitored by CatRaRE, 

so that the day is labeled as extreme. Two active regions are visible, one in the Southwest and one in the central West. 

There, in the city of Münster, occurred the most disastrous event, with one station recording as much as 292 l/m² within 7  

hours (Spekkers et al., 2017) The surrounding cape grids show values > 600 J/kg, similar to other areas in Germany (SE, 

NE).

2.3 Conventional (“Shallow”) and Deep Learning models

Table 1. The Shallow-Learning methods.

abbr. note source

Lasso regression LASSO cross-validated penalty (14 predictors) (McIlhagga, 2016)

random forests TREE 200 trees (Jekabsons, 2016)

shallow neural nnet NNET 2 hidden layers with 7 and 3 neurons Octave

logistic regression NLS nonlinear least squares Octave

2 Given that of the total of 175200 = 20×365×24 hours from 2001 to 2020, about 27000 are listed as extreme, the likelihood of seeing any 
extreme event in Germany is pG = 27000/175200 = 15%. The average size (in pixels) of a CatRaRE event is a=133, while all of Germany 
covers aG=900×1100 = 990000 pixels. If all CatRaRE events can be taken as independent, then the probability of an event per pixel is 
p = 1−(1−pG )aG /a = 2.25×10−5

, which roughly corresponds to a return period of 5 years.
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As competitive benchmarks to DL models, we employ four shallow statistical models: Lasso logistic regression (LASSO), 

random forests (TREE), and a simple neural net with 2 hidden layers (NNET). All of these are applied with and without 

Empirical Orthogonal Functions (EOF) orthogonalization, using 33, 27, and 21 EOFs for  cape,  cp, and  tcw, respectively; 

more details are listed in Table 1 and in the source code mentioned at the end. The architectures of the selected DL models 

are almost exclusively based on  convolutional neural networks (CNNs), a concept that was introduced with the famous 

LeNet-5 model of (LeCun et al., 1989) for the classification of handwritten zip codes. Besides LeNet-5 we use the network 

architectures AlexNet, ALL-CNN, GoogLeNet, DenseNet, and ResNet. These were created for the classification of digitized 

images, such as the CIFAR-10 set with 32×32 image resolution and 10 classes or ImageNet with 256×256 images covering  

1000 classes, and regularly used in annual image classification contests since about 2010 (Krizhevsky et al., 2017). Along 

with these come two quite simplistic benchmark networks, Simple representing a single convolutional and a dense layer, 

and  Logreg  with  just  one  single  dense  layer;  details  are  provided  by  Table  2 and  the  SI.  This  provides  a  fairly 

comprehensive  selection  from  the  most  simple  to  highly  sophisticated  networks.  The  corresponding  model 

implementations can be inspected at  https://gitlab.dkrz.de/b324017/carlofff.  Training and deployment of DL models is 

performed using the Caffe framework with its Octave interface (https://github.com/BVLC/caffe).

Table 2. The Deep-Learning architectures. The number of classes pertains to the reference study.

Year resolution layers3 # parameters (∙103) Reference Original classes

LeNet-5 1989 28×28 4 400 (LeCun et al., 1989) 10

AlexNet 2012 227×227 8 60000 (Krizhevsky et al., 2017) 1000

CIFAR-10 2014 32×32 4 80 (Krizhevsky et al., 2017) 10

ALL-CNN 2014 32×32 9 1000 (Springenberg et al., 2014) 10

GoogLeNet 2014 224×224 76 10000 (Szegedy et al., 2015) 1000

ResNet 2016 32×32 22 300 (He et al., 2016) 10

DenseNet 2016 32×32 159 1000 (Huang et al., 2017) 10

Simple 32×32 3 300 this paper 2

Logreg 32×32 1 6 this paper 2

Compared to the original DL classification tasks in the literature, with e. g. 1000 classes for AlexNet and GoogLeNet, cf. 

Table 2, our classification in its initial form is just binary, so naturally some of the network and solver parameters had to 

be adjusted. A crucial “hyperparameter” is the size of the training and testing batches (batch_size in Caffe), which had to 

be lowered for the broader and deeper networks. Another parameter is maximum iteration (max_iter); unless that number 

is reduced drastically the optimization would enter a runaway overfitting process whose emergence is barely visible. In 

order to stabilize the stochastic optimization, the gradient search is increasingly damped based on a factor called the base 

learning rate (base_lr); the learning rate decay policy poly, which required a single parameter power, helped to steer the 

3 We only count convolutional and fully connected (inner product) layers
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learning process in a parsimonious way; it was used for all DL solvers4. All adjusted parameters are listed in Table S1 from 

the SI.

Because DL optimization generally uses a stochastic gradient descent algorithm and is therefore not fully deterministic,  

we use an ensemble of 20 DL optimization runs. This ensemble, too, is informative about network convergence, and in 

some cases even reveals potential for refined parameter tuning. All relevant details are described in the SI, section 2.

The predictor fields of cape, tcw, and cp are taken as three ’color channels’ (RGB) of an image sequence. Because the 

image  resolution  differs  between  the 

networks, varying from 28×28 pixels for 

LeNet-5 to 227×227 pixels for AlexNet, a 

regridding  of  the  fields  is  required  to 

match  the  resolution  of  the  original 

model,  cf.  Table  2.  Except for LeNet-5, 

this  represents  an  upsampling  so  that 

the pattern itself  (its  shape)  enters  the 

DL  essentially  unchanged  (and  the 

LeNet-5  resolution  is  sufficiently 

similar).  EOF  truncation  was 

consequently  not  applied  to  the  DL 

models.

2.4 Calibration, Validation

The full period from 2001 to 2020 amounts to a total of 2460 days, which we split into a calibration (train) and validation  

(test) period of 2001–2010 and 2011–2020, respectively. For the DL training, cross-entropy is used as a loss function. As 

evaluation measure the Equitable Threat Score (ETS, syn. Gilbert Skill Score) is used. ETS measures the rate of correctly 

forecast extremes relative to all  forecasts except majority class hits,  and adjusted for random hits.  We note that the 

validation data are not completely independent of the DL models. Because they have been used for inspecting the learning 

curves and their convergence, there is a slight chance that the validation scores may reflect sampling properties and would 

therefore not generalize. On the other hand, the tuning goal was to achieve reasonable convergence of the loss function 

and not to minimize its value. Therefore, we are confident that overfitting is reasonably limited.

4 The decay at iteration iter is governed by the formula base_lr·(1 - iter/max_iter)power.
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Figure 2. Learning curve of the LeNet-5 network, with crossentropy as loss. Iter-
ations indicate the number of batch passes (batch size 100).
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3 Results and discussion

3.1 Network training and testing

Convergence of the DL model optimization is exemplified in Figure 2, which depicts the crossentropy loss function during 

the learning and testing (syn. calibration and validation) iterations. LeNet-5 follows a typical path of learning progress, 

with variable but decreasing loss for the training phase that is closely and smoothly traced by the testing phase, the latter 

leveling out somewhat below a loss of 0.4. The learning curves of the other networks look similar but with different 

absolute losses, and are shown in Figure 3. It is noticeable that e. g. ResNet converges after only 40 iterations whereas 

AlexNet and ALL-CNN require, respectively, 500 and 1000 iterations. Also note that the simpler networks such as Simple, 

Logreg, and CIFAR-10 remain stable after reaching convergence while, what is not shown in the Figure, the more complex 

networks AlexNet, GoogLeNet and ALL-CNN do not and start to diverge, indicative of overfitting.
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Figure 3. As Figure 2, for the other DL networks (using blue for Train and green for Test).
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3.2 Classification performance

The probabilistic predictions are now transformed to binary (classification) predictions by choosing,  from the calibration 

period, an optimal probability threshold for each model. Classification performance when driven by ERA5 fields from the 

validation period 2011–2020 is shown in Figure 4. First, it demonstrates the positive effect of using cape as a predictor5, 

which improves skill across all models, an exception being the poorly performing NLS model with no EOF reduction of the 

predictor fields; that reduction obviously improves shallow model skill. The scatter of DL model skill, crossentropy versus 

ETS, is indicative of the stochastic nature that is inherent in all DL results (Brownlee, 2018; see also Kratzert et al., 2019), 

and uncertainty obviously grows with network complexity.  The best  overall  performance according to the Figure is 

achieved  by  the  TREE  method  (ETS = 0.52),  with  several  of  the  ALL-CNN  and  ResNet  realizations  coming  close, 

nevertheless, so that on average these turn out second. The LeNet-5, Simple and CIFAR-10 networks reveal a stretched 

cloud with larger variation along the ETS axis. That this is not a simple scaling issue can be seen by comparing Logreg and 

LeNet-5, whose optimized crossentropy values show virtually no variation while ETS varies stronger. Crossentropy as a 

loss function,  so it  appears,  sufficiently dictates unique convergence for the training phase,  but apparently does not 

constrain the models enough to make good predictions for the testing phase. For logistic regression (NLS), EOF reduction 

is indispensable as it otherwise leads to heavy overfitting. Stochasticity is not limited to DL, it is also contained in NNET 

as a ’normal’ neural net and, as the name suggests, random forests (TREE). Like for the DL networks we form ensembles 

also for NNET and TREE, as further explained in the SI. And as Fig. S3 demonstrates, a second realization of the shallow 

and deep ensembles essentially yields similar results. In the following DL applications the ETS-optimal ensemble members 

are used.

5 by comparing the 3-channel predictors (cape, tcw, cp) against the two channels (tcw, cp).
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‍‍Figure 4. Model performance for the validation period 2011–2020. Left: ETS with and without cape as a predictor. Right: Re-
lation between ETS and crossentropy (both with cape). Squares depict Shallow, diamonds Deep models. Unfilled markers in 
the left panel symbolize no EOF truncation.
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Differences  in  DL  model  performance 

are difficult to interpret, but a few hints 

may  be  obtained  by  inspecting  the 

network architecture. Quite roughly, the 

width  of  a  convolutional  network 

represents  the  number  of  learnable 

features  whereas  the  depth  measures 

the  grade  of  abstraction  that  can  be 

formed  from  these  features.  A 

convective  atmospheric  field  is, 

compared  to  a  landscape  with  cats  or 

dogs  in  it,  quite  simple.  If  a  network 

architecture  scales  well  this  simplicity 

should not matter.  However,  very rich 

architectures also require a wealth of data to learn their many parameters from (14M images in ImageNet), which we do 

not have here. Particularly the very wide and/or deep networks such as AlexNet, GoogLeNet, or DenseNet may suffer 

either from inferior scaling behavior or too little data. ALL-CNN and ResNet, on the other hand, are designed particularly 

for simplicity and parsimony (Springenberg et al., 2014; He et al., 2016), with good performance across a broad spectrum of 

applications and apparently best adapted to our case.

3.3 Probabilistic 
reliability and sharpness

We  further  illustrate  the 

reliability  of  the 

probabilistic predictions by 

means  of  reliability 

diagrams, first in Fig.  5 for 

the shallow methods; these 

come with an inset forecast 

histogram,  displaying  the 

relative  frequencies  of  the 

delivered probabilities as a 

measure  of  sharpness  of 

the  prediction.  The 
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Figure 6. Like Fig. 5, for the deep methods.

‍‍Figure 5. Reliability diagram for the shallow methods, with forecast histogram 
inset based on 10 bins and constant y-axis scale.
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methods are quite reliable, except that TREE’s lower-

probability  predictions  occur  too  rarely  and  the 

higher ones too often. LASSO and TREE predictions 

are, as the inset shows, moderately sharp, unlike NLS 

and especially NNET which is almost perfectly sharp. 

Most  of  the  deep  methods  are  reliable,  cf. Fig.  6, 

exceptions being ResNet, DenseNet and GoogLeNet, 

whose predictions of medium probabilities occur too 

often. They are also more reliable than the shallow 

methods and generally sharper, especially CIFAR-10, 

GoogLeNet, and DenseNet with a high load of near 

yes/no predictions.

3.4 Model application

We now apply the trained models to the observed (reanalyzed) and simulated atmospheric fields. It means we obtain for 

each summer day from the corresponding atmospheric model period a prediction expressing the probability of a CatRaRE-
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Figure 7. Typical probability output of the LeNet-5 model (black) 
around the July 2014 event (red); other events are gray.
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type event happening somewhere over Germany. Starting with the ERA5 reanalyses, we check whether the July 2014 

event is captured by the ERA5 fields. Figure 7 shows a typical probability forecast from the DL model LeNet-5. During the 

days in late July of 2014, there is permanent convective activity over Germany. LeNet-5 shows near-certainty predictions 

for events to occur, including the July 29 extreme event. Sporadic periods of little activity are also well reflected by LeNet-

5.

For a broader temporal picture, we form annual (i. e. May–Aug) averages of the daily probabilities, and display the entire 

reanalysis period (1979–2020) in Figure  8. The classification is obtained from the best-scoring model TREE along with 

ALL-CNN.  The  observed  CatRaRE  climatology  (2001–2020)  shows  a  mean  daily  probability  of  0.51,  and  it  is  well 

reproduced  by  both  models.  For  the  period  1979–2005,  which  is  the  common  period  for  historic  reanalyses  and 

simulations, they reveal strong significantly6 positive centennial trends of 0.34 and 0.35, respectively. (A linear trend is 

obviously only partly meaningful for a bounded quantity such as probability, but we use it here nevertheless.) Annual 

correlations are equally strong (0.65 for both); corresponding plots for all other models are altogether similar and are, for 

completeness, shown in Figs. S3 and S4; note, however, that the centennial trends are slightly weaker, as also shown in 

6 We use a significance level of α=0.05 throughout the study.
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Figure 9. Similar to Figure 8, as simulated by GCM/RCM, for historic (blue) and future (red) emissions. For reference, the 
observed 2001–2020 climatology is also shown (CLIM, gray dashed).

1960 1980 2000 2020 2040 2060 2080 2100

0.3

0.4

0.5

0.6

year

P

TREE
GCM: CNRM-CERFACS-CNRM-CM5
RCM: CLMcom-ETH-COSMO-crCLIM-v1-1

CLIM
HIST
RCP85

1960 1980 2000 2020 2040 2060 2080 2100

0.3

0.4

0.5

0.6

year

P

ALL-CNN

tr=0.07

GCM: CNRM-CERFACS-CNRM-CM5
RCM: CLMcom-ETH-COSMO-crCLIM-v1-1

CLIM
HIST
RCP85

245

250



Table 3. Interestingly, the model with almost the poorest daily performance (ETS = 0.44), NLS, reveals the highest annual 

correlation of 0.62 with observations.

Now we analyze the CatRaRE classifications for the simulated atmospheres from past to future (1951–2100), based on 

HIST and RCP85. Again, we first turn to the overall best performing model TREE along with ALL-CNN, as shown in 

Figure 9. Both appear to be relatively unbiased (with respect to the normal period 2001–2020) and, as Table 3 shows, the 

HIST simulations exhibit positive trends (1979–2005) of around 0.16 and 0.15, respectively, which amounts to only half of 

what was seen for ERA5; for RCP85, only ALL-CNN exhibits a significantly positive centennial trend of 0.07. The much 

larger ERA5 trends as compared to HIST are actually seen only for these two methods, as for all other methods the trends 

for ERA5 and HIST are more similar, cf. Table 3, Figs. S5 and S6. While this case may be related to the stronger annual 

correlations, the discrepancy between ERA5 and HIST trends for the other methods remains unclear. The RCP85 trends 

are, except for TREE, significant but smaller, which we explain as a saturation for growing probabilities.

A final note of caution may be in place. In our modeling approach we have tacitly assumed that the learned statistical 

relationships remain valid when applied to previously unknown atmospheres, and remain so even when those are from a 

dynamical simulation or a different climate. That this may indeed cause problems became apparent when going from 

ERA5 to HIST, with average trends dropping, by reasons unknown, to almost a half. This is an epistemic problem as old as 

statistical climate research itself, and relates back to the concept of perfect prognosis (Klein et al., 1959) or in newer form to 

the concept drift in machine learning (Widmer and Kubat, 1996). There is no generally valid argument in support of the 

approach, and one must resort to heuristic reasoning7. With respect to applying simulated predictor fields (classifiers) it is 

usually assumed that their simulation is sufficiently reliable. And as recent analyses have shown (Kendon et al., 2021), one 

should  indeed  not  be  too  confident  in  our  convective  classifiers  (cape,  tcw,  cp) as  compared  to,  e. g.,  pressure  or 

temperature fields. With respect to a different climate, the argument is that the difference can still be seen as an anomaly  

from a base state and not as a shift to a wholly new climate regime, and at least for now there is little evidence for that 

latter case. – Given this uncertainty, the trend projections of this study, which were derived from a single climate model, 

are remarkably stable, indicating that progress in this direction mainly lies in the dynamical modeling of convection.

4 Conclusions

We have classified ERA5 fields of atmospheric convectivity with respect to the occurrence of heavy rainfall events over 

Germany (based on the recently published CatRaRE catalog), using an array of conventional (’shallow’) and deep learning 

methods. The methods ranged from very basic logistic functions to shallow neural nets, random forests (TREE) and other 

machine learning techniques, including the most complex deep learning (DL) architectures that were available to us. 

Because of the rapid progress in DL, it still means we are at least 5 years behind the state-of-the-art. The conventional 

random forest scheme TREE performed best with an ETS classification score near 0.52 for the independent validation 

7 Observational records of the relevant variables that could be used for verification are not long enough.
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period 2011–2020, followed by the DL networks ALL-CNN and ResNet. Those schemes seem to be best adapted for the 

CatRaRE classification problem presented in this study: TREE uses a clever bootstrap aggregating (bagging) algorithm over 

simple decision trees (200 in our case) whose generalization capacity is obviously crucial; and ALL-CNN and ResNet are 

networks of fairly moderate width and depth, for which training and testing performance are in balance.

Table 3. Summary table of ETS, trends and correlations for all methods. Significant trends are boldface. For the DL meth-
ods, the ETS ensemble mean is shown.

model ETS (mean) model (ERA5) ↔ OBS
annual correlation

centennial increase

ERA5 HIST RCP85
2006–21001979–2005

LASSO 0.46 0.54 0.25 0.21 0.07

TREE 0.52 0.65 0.34 0.16 0.03

NNET 0.47 0.57 0.32 0.20 0.07

NLS 0.44 0.62 0.31 0.21 0.05

LeNet-5 0.46 0.58 0.27 0.22 0.07

AlexNet 0.47 0.59 0.33 0.18 0.05

CIFAR-10 0.45 0.39 0.24 0.20 0.07

ALL-CNN 0.48 0.65 0.35 0.15 0.07

GoogLeNet 0.47 0.50 0.30 0.20 0.05

ResNet 0.48 0.58 0.30 0.20 0.04

DenseNet 0.46 0.51 0.33 0.20 0.05

Simple 0.45 0.46 0.24 0.22 0.08

Logreg 0.43 0.54 0.18 0.21 0.11

The classifiers were then applied to corresponding CORDEX simulations of present and future atmospheric fields. The 

resulting probabilities of convective atmospheric fields and related CatRaRE-type extreme events were increasing during 

the ERA5 period and also for the historic and future CORDEX simulations, independent of method. This is to be expected 

and in line with common wisdom of current climate research (cf. Figure SPM.6, Masson-Delmotte et al., 2021). Specifically, 

using TREE for the historic period (1979–2005) the resulting probabilities, measured as centennial trend, increase by 0.34 

for ERA5 and by 0.16 for HIST. We were unable to resolve this discrepancy (which is less severe for the other methods) 

and its potential modeling inadequacy remains unclear. For the future CORDEX simulations we obtained a smaller but 

significant increase of around 0.07 for most methods, a number that can partly be explained by a saturation effect for 

growing probabilities. The overall tendency towards more extreme convective sub-daily events is consistent with recent 

estimates from Clausius-Clapeyron temperature scaling  (Fowler et  al.,  2021) as well  as from a convection-permitting 

dynamical climate model for Germany (Purr et al., 2021).
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Compared to other classification problems such as the notorious image classification contest ImageNet, our setup of a 

binary classification is quite simple. One must keep in mind, however, that the very design of CNNs, with their focus on 

’features’ of colored shapes (objects), is modeled along the lines of ImageNet and relatives. Applying a CNN to other, not 

object-like ’images’ (blurred boundaries and colors) is not guaranteed to work out of the box. But it does, as we have seen, 

with only moderate adjustments. The main difficulty here was to understand just how much quicker the more complex 

models would learn, so that we had to shorten their learning period considerably to avoid overfitting.

Our study is meant as a starting point for a number of refinements, with the ultimate goal of classifying and projecting 

impact-relevant convective rainfall events for as small a region as the setting allows. So far the only criterion to isolate 

convective events from the CatRaRE database was their duration (here 9 hours). By considering more than two classes, 

e. g. by introducing more regional and temporal detail, or more levels of intensity, the full power of CNNs, and here 

perhaps of ALL-CNN or ResNet, could be exploited. That way, the usefulness of the results for decision makers in risk 

management could be increased substantially. The atmospheric predictor fields, likewise, were so far relatively simple: 

with local indicators of convectivity (cape,  tcw, cp) whose effect can mostly be understood on a gridpoint level,  the 

underlying statistical problem is, except for the EOF filters, essentially univariate. Using truly multivariate, pattern-based 

atmospheric predictors, such as moisture convergence or vorticity, can foster the performance especially of CNNs with 

their feature extracting capabilities. It is hoped that with all these refinements especially the DL methods, which are 

designed to handle considerably more complex classification targets, remain sufficiently reliable.

Getting back to the initial question, our conclusions entail in passing that at least for this study, deep learning methods are 

not surpassing the conventional (’shallow’) statistical toolbox. It will be interesting to follow the evolution in state-of-the-

art dynamical models. Specifically, how does the development of convection-permitting dynamical models (e. g. Kendon et 

al., 2021) compare to DL-based convection schemes (e. g. Pan et al., 2019)? And why should their integration not offer the 

best of both worlds in one (Wang and Yu, 2022; Willard et al., 2022)?

5 Code availability

The relevant code underlying this paper can be found at https://gitlab.dkrz.de/b324017/carlofff.
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