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Abstract. Our subject is a new Catalogue of radar-based heavy Rainfall Events (CatRaRE) over Germany, and how it
relates to the concurrent atmospheric circulation. We classify daily ERA5 fields of convective indices according to
CatRaRE, using an array of 13 statistical methods, consisting of 4 conventional (’shallow’) and 9 more recent deep machine
learning (DL) algorithms; the classifiers are then applied to corresponding fields of simulated present and future
atmospheres from the CORDEX project. The inherent uncertainty of the DL results from the stochastic nature of their
optimization is addressed by employing an ensemble approach using 20 runs for each network. The shallow Random
Forest method performs best with an Equitable Threat Score (ETS) around 0.52, followed by the DL networks ALL-CNN
and ResNet with an ETS near 0.48. Their success can be understood as a result of conceptual simplicity and parametric
parsimony, which obviously best fits the relatively simple classification task. It is found that on summer days, CatRaRE-
convective atmospheres over Germany occur with a probability of about 0.5. This probability is projected to increase,
regardless of method, both in ERA5-reanalyzed and CORDEX-simulated atmospheres: for the historical period we find a
centennial increase of about 0.2 and for the future period of slightly below 0.1, this smaller value likely being a saturation

effect for growing probabilities.

1 Introduction

Since computing power has grown to levels that were beyond imagination just years ago, automated and numerically
expensive (machine) learning has evolved into a versatile and capable tool set for data science. This applies in particular to
Deep Learning (DL), which refers to neural networks with a notably increased number of neuron layers. Many scientists
are now curious whether their older, conventional models can stand the test of skill against these newer methods.
Examples are abundant, for example from climate simulations and weather prediction (daily to seasonal) (Gentine et al.,
2018; Ham et al., 2021, 2019; O’Gorman and Dwyer, 2018; Rasp et al,, 2018; Weyn et al., 2021; Schultz et al,, 2021;
Reichstein et al., 2019). Generally, DL is evolving with such a speed that makes it hard to keep pace; for a general
introduction into Deep Learning, (Bianco et al., 2018; Goodfellow et al., 2016; Alzubaidi et al., 2021) provide a nice and
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thorough overview. At least in the data driven disciplines, hence, one may be in hope or in fear about the perspective that
much of the scientific progress of the past several decades is about to be dwarfed by machine learning techniques.
In this study we aim to explore the potential of DL in the field of atmospheric weather types (classification). We
investigate synchronous daily sequences of large- and local-scale weather patterns over Germany. As predictors we use
reanalyzed atmospheric fields whose spatial resolution is coarse enough to permit long climate model projections. These
fields are ’labeled’ by the occurrence of local, impact-relevant extreme convective rainfall events anywhere in the study
area. The events were obtained from a recently published catalog of extreme precipitation events in Germany (CatRaRE,
(Lengfeld et al., 2021)) which in turn is based on a 20-years record of gridded hourly radar-based precipitation estimates
(RADKLIM, (Winterrath et al., 2018)).

By interpreting each atmospheric field as the

color code of a 2-dimensional "image", our task
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1000 can be framed as one of image classification.
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Figure 1. The conditions for cape on July 28, 2014 (blue), along with Ex,
values of corresponding CatRaRE events of <9h duration (dots). should then, so we hope, be equally good. A set
of methods representing state-of-the-art but

conventional methods, referred to here for lack of a better expression as shallow methods, shall be used as reference.
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Using standard binary skill scores, the best performing methods are applied to simulated atmospheres from the EURO-
CORDEX project (Jacob et al.,, 2020); the predicted classification is used to estimate past and future changes in the
frequency of extreme events as represented by CatRaRE. One may object that by choosing all of Germany as the (uniform)
study area our approach misses important regional detail, leaving only little relevance for the local decision maker. The
study is nevertheless the first of its kind to actually estimate future statistics of CatRaRE-type events, and should
contribute to raise awareness among researchers and decision makers for an impending change in these statistics. Given
the wealth of methods, regional detail would at this point just add another strain to deal with, so we decided against it and
do the regional assessment in an extra study afterwards. Our focus here shall generally not be on obtaining the best result
currently possible, but rather on better understanding the influence of the ’deep’ in DL with regard to performance. To
that effect, we explore a selection of DL architectures that had, each in its time, entered the DL arena quite spectacularly;
an overview of the architectures is given in the Supplemental Information (SI). We attempt to understand if and why they
perform differently for the case of CatRaRE over Germany.

To summarize, we classify atmospheric fields of selected convectivity indices according to CatRaRE by utilizing an array
statistical methods, including shallow and deep machine learning, and use those classifiers to estimate future statistics of
CatRaRE-type events.

Our machine learning framework is Caffe, which provides a genuine Octave/Matlab interface to DL (Jia et al., 2014). The
Caffe framework along with most of the networks have already seen the height of their days, and are by now being
superseded by more sophisticated and successful networks and frameworks (Alzubaidi et al., 2021). This only indicates

that the development continues to be fast, making it difficult to keep pace.

2 Methods and Data

2.1 Atmospheric data

Since our focus is on convective events, we restrict the analysis to the warmer months from May to August. From the
ERA5 reanalyses (Hersbach et al., 2020), atmospheric convectivity is measured by the indices of convective available
potential energy (cape), convective rainfall (cp), and total column water (tcw). They are used as potential classifiers, given
as daily averages over the area between the edges [5.75E 47.25N] and [15.25E 55.25N], normalized with, for each variable,
mean and standard deviation across time and space'. Future atmospheric fields are obtained from the EURO-CORDEX
initiative and are simulated by the model CNRM-CM5 (simply "GCM" in this text) driving the regional model COSMO-
crCLIM ("RCM"). We use emissions from both historic (1951-2005, "HIST") and RCP85 scenarios (2006-2100). The

atmospheric fields are given as anomalies, using as a general reference state the climatology from the common period

' In a future version, non-normality of the indices may be taken into account by using a more refined normalization (logit, probit).
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2001-2020. For the GCM/RCM simulations, for which the simulated climatology is taken as reference, the corresponding
sections from HIST (2001-2005) and RCP85 (2006-2020) are concatenated.

2.2 CatRaRE

We use the catalogue of radar-based heavy rainfall events (CatRaRE, Lengfeld et al., 2021), which defines heavy rainfall
based on the exceedance of thresholds related to warning level 3 (roughly 5-year return level’) of Germany’s national
meteorological service (Deutscher Wetterdienst; DWD hereafter); it corresponds to more than 25 mm in one hour or
35 mm in six hours. Based on threshold exceedance of individual radar pixels, heavy rainfall objects are constructed that
are contiguous in space and time, and for which an extremeness index (Er,, Miiller and Kaspar (2014)) is inferred that is a
combined measure of area, duration and intensity. In this study, a day is labeled as extreme if the database contains an
event for that day with Ez4 > 0 and of at most 9 hours duration; it means that somewhere in Germany a corresponding
severe weather was recorded, and the limited duration serves as a rough proxy that the event was convective.

On average, 51% of the (May-Aug) days see such an extreme event, which means that, although CatRaRE events are
locally rare by definition, the main classification task (event vs. no event in Germany) is quite balanced. Mainly for later
use we counter any potential class imbalance nevertheless, and employ a rather simplistic oversampling approach by
populating the minority class with random duplicates of that class until that class is no longer minor.

The ERAS5 grid is shown in Figure 1, along with the average cape values for 28 July 2014. It was a day with particularly
strong atmospheric convectivity, which led to several severe rainfall events all over Germany, as monitored by CatRaRE,
so that the day is labeled as extreme. Two active regions are visible, one in the Southwest and one in the central West.
There, in the city of Miinster, occurred the most disastrous event, with one station recording as much as 292 1/m* within 7
hours (Spekkers et al.,, 2017) The surrounding cape grids show values > 600 J/kg, similar to other areas in Germany (SE,
NE).

2.3 Conventional (“Shallow”) and Deep Learning models

Table 1. The Shallow-Learning methods.

abbr. note source
Lasso regression LASSO cross-validated penalty (14 predictors) (McIlhagga, 2016)
random forests TREE 200 trees (Jekabsons, 2016)
shallow neural nnet NNET 2 hidden layers with 7 and 3 neurons Octave
logistic regression NLS nonlinear least squares Octave

® Given that of the total of 175200 = 20x365x24 hours from 2001 to 2020, about 27000 are listed as extreme, the likelihood of seeing any
extreme event in Germany is pc = 27000/175200 = 15%. The average size (in pixels) of a CatRaRE event is a=133, while all of Germany
covers ag=900x1100 = 990000 pixels. If all CatRaRE events can be taken as independent, then the probability of an event per pixel is

agla __ -5
p = 1_( 1- pc) = 2.25X10 " which roughly corresponds to a return period of 5 years.
4
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As competitive benchmarks to DL models, we employ four shallow statistical models: Lasso logistic regression (LASSO),
random forests (TREE), and a simple neural net with 2 hidden layers (NNET). All of these are applied with and without
Empirical Orthogonal Functions (EOF) orthogonalization, using 33, 27, and 21 EOFs for cape, cp, and tcw, respectively;
more details are listed in Table 1 and in the source code mentioned at the end. The architectures of the selected DL models
are almost exclusively based on convolutional neural networks (CNNs), a concept that was introduced with the famous
LeNet-5 model of (LeCun et al., 1989) for the classification of handwritten zip codes. Besides LeNet-5 we use the network
architectures AlexNet, ALL-CNN, GoogLeNet, DenseNet, and ResNet. These were created for the classification of digitized
images, such as the CIFAR-10 set with 32x32 image resolution and 10 classes or ImageNet with 256x256 images covering
1000 classes, and regularly used in annual image classification contests since about 2010 (Krizhevsky et al., 2017). Along
with these come two quite simplistic benchmark networks, Simple representing a single convolutional and a dense layer,
and Logreg with just one single dense layer; details are provided by Table 2 and the SI. This provides a fairly

comprehensive selection from the most simple to highly sophisticated networks. The corresponding model

implementations can be inspected at https://gitlab.dkrz.de/b324017/carlofff. Training and deployment of DL models is
performed using the Caffe framework with its Octave interface (https://github.com/BVLC/caffe).

Table 2. The Deep-Learning architectures. The number of classes pertains to the reference study.

Year resolution layers® # parameters (-10°) Reference Original classes
LeNet-5 1989 28x28 4 400 (LeCun et al., 1989) 10
AlexNet 2012 227x227 8 60000 (Krizhevsky et al., 2017) 1000
CIFAR-10 2014 32x32 4 80 (Krizhevsky et al., 2017) 10
ALL-CNN 2014 32x32 9 1000 (Springenberg et al., 2014) 10
GoogLeNet 2014 224x224 76 10000 (Szegedy et al., 2015) 1000
ResNet 2016 32x32 22 300 (He et al., 2016) 10
DenseNet 2016 32x32 159 1000 (Huang et al., 2017) 10
Simple 32x32 3 300 this paper 2
Logreg 32x32 1 6 this paper 2

Compared to the original DL classification tasks in the literature, with e. g. 1000 classes for AlexNet and GoogLeNet, cf.
Table 2, our classification in its initial form is just binary, so naturally some of the network and solver parameters had to
be adjusted. A crucial “hyperparameter” is the size of the training and testing batches (batch_size in Caffe), which had to
be lowered for the broader and deeper networks. Another parameter is maximum iteration (max_iter); unless that number
is reduced drastically the optimization would enter a runaway overfitting process whose emergence is barely visible. In
order to stabilize the stochastic optimization, the gradient search is increasingly damped based on a factor called the base

learning rate (base_Ir); the learning rate decay policy poly, which required a single parameter power, helped to steer the

> We only count convolutional and fully connected (inner product) layers
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learning process in a parsimonious way; it was used for all DL solvers*. All adjusted parameters are listed in Table S1 from
the SL

Because DL optimization generally uses a stochastic gradient descent algorithm and is therefore not fully deterministic,
we use an ensemble of 20 DL optimization runs. This ensemble, too, is informative about network convergence, and in
some cases even reveals potential for refined parameter tuning. All relevant details are described in the SI, section 2.

The predictor fields of cape, tcw, and cp are taken as three 'color channels’ (RGB) of an image sequence. Because the

image resolution differs between the

LeNet-5

networks, varying from 28x28 pixels for 0.7 r;

LeNet-5 to 227x227 pixels for AlexNet, a

regridding of the fields is required to 06

match the resolution of the original 05

model, cf. Table 2. Except for LeNet-5, @

this represents an upsampling so that " 04

the pattern itself (its shape) enters the

DL essentially unchanged (and the 03

LeNet-5 resolution is sufficiently 0.2

similar). = EOF  truncation  was 0 2 4 6 8 10

i iterations (x100)
consequently not applied to the DL Figure 2. Learning curve of the LeNet-5 network, with crossentropy as loss. Iter-

models ations indicate the number of batch passes (batch size 100).

2.4 Calibration, Validation

The full period from 2001 to 2020 amounts to a total of 2460 days, which we split into a calibration (train) and validation
(test) period of 2001-2010 and 2011-2020, respectively. For the DL training, cross-entropy is used as a loss function. As
evaluation measure the Equitable Threat Score (ETS, syn. Gilbert Skill Score) is used. ETS measures the rate of correctly
forecast extremes relative to all forecasts except majority class hits, and adjusted for random hits. We note that the
validation data are not completely independent of the DL models. Because they have been used for inspecting the learning
curves and their convergence, there is a slight chance that the validation scores may reflect sampling properties and would
therefore not generalize. On the other hand, the tuning goal was to achieve reasonable convergence of the loss function

and not to minimize its value. Therefore, we are confident that overfitting is reasonably limited.

* The decay at iteration iter is governed by the formula base_Ir-(1 - iter/max_iter*".
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3 Results and discussion

3.1 Network training and testing

Convergence of the DL model optimization is exemplified in Figure 2, which depicts the crossentropy loss function during
the learning and testing (syn. calibration and validation) iterations. LeNet-5 follows a typical path of learning progress,
with variable but decreasing loss for the training phase that is closely and smoothly traced by the testing phase, the latter
leveling out somewhat below a loss of 0.4. The learning curves of the other networks look similar but with different
absolute losses, and are shown in Figure 3. It is noticeable that e. g. ResNet converges after only 40 iterations whereas
AlexNet and ALL-CNN require, respectively, 500 and 1000 iterations. Also note that the simpler networks such as Simple,

Logreg, and CIFAR-10 remain stable after reaching convergence while, what is not shown in the Figure, the more complex

networks AlexNet, GoogLeNet and ALL-CNN do not and start to diverge, indicative of overfitting.

Simple ResNet CIFAR-10 AlexNet
0.7 0.7 1 0.8
0.6 0.6 0.8 0.7
n 0.5 n 0.5 n 0.6 —
%] %] 0w %]
<04 = 0.4 =04 < 0
- : ' 0.4
0.3 0.3 0.2 0.3
0.2 0.2 0 0.2
246 8 246 8 2 46 8 2 4
iterations (x100) iterations (x10) iterations (x100) iterations (x100)
GooglLeNet ALL-CNN DenseNet Logreg
2 0.7 2 0.7
0.65
15 0.6 1.5
o w 0.5 0 g 0O
ER 2 EER 80.55
. 0.4 . 0.5
: 0.3 ‘ 0.45
0 0.2 0 0.4
2 4 24 6 8 2 4 24638
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iterations (x100)

iterations (x100)

Figure 3. As Figure 2, for the other DL networks (using blue for Train and green for Test).
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3.2 Classification performance

The probabilistic predictions are now transformed to binary (classification) predictions by choosing, from the calibration
period, an optimal probability threshold for each model. Classification performance when driven by ERA5 fields from the
validation period 2011-2020 is shown in Figure 4. First, it demonstrates the positive effect of using cape as a predictor?,
which improves skill across all models, an exception being the poorly performing NLS model with no EOF reduction of the
predictor fields; that reduction obviously improves shallow model skill. The scatter of DL model skill, crossentropy versus
ETS, is indicative of the stochastic nature that is inherent in all DL results (Brownlee, 2018; see also Kratzert et al., 2019),

and uncertainty obviously grows with network complexity. The best overall performance according to the Figure is

, m LASSO 05 F -
0.5 1 ):r B TREE
'9 B NNET
8_ 7 0.0 | m NLS n
7 mY L .
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02ro,” DenseNet 0.35 | v Je e 0 W
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0.2 0.3 0.4 0.5 0.42 0.44 0.46 0.48 0.5 0.52
ETS with cape ETS

Figure 4. Model performance for the validation period 2011-2020. Left: ETS with and without cape as a predictor. Right: Re-
lation between ETS and crossentropy (both with cape). Squares depict Shallow, diamonds Deep models. Unfilled markers in
the left panel symbolize no EOF truncation.

achieved by the TREE method (ETS = 0.52), with several of the ALL-CNN and ResNet realizations coming close,
nevertheless, so that on average these turn out second. The LeNet-5, Simple and CIFAR-10 networks reveal a stretched
cloud with larger variation along the ETS axis. That this is not a simple scaling issue can be seen by comparing Logreg and
LeNet-5, whose optimized crossentropy values show virtually no variation while ETS varies stronger. Crossentropy as a
loss function, so it appears, sufficiently dictates unique convergence for the training phase, but apparently does not
constrain the models enough to make good predictions for the testing phase. For logistic regression (NLS), EOF reduction
is indispensable as it otherwise leads to heavy overfitting. Stochasticity is not limited to DL, it is also contained in NNET
as a ‘normal’ neural net and, as the name suggests, random forests (TREE). Like for the DL networks we form ensembles
also for NNET and TREE, as further explained in the SI. And as Fig. S3 demonstrates, a second realization of the shallow
and deep ensembles essentially yields similar results. In the following DL applications the ETS-optimal ensemble members

are used.

* by comparing the 3-channel predictors (cape, tcw, cp) against the two channels (tcw, cp).
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Differences in DL model performance
are difficult to interpret, but a few hints
may be obtained by inspecting the
network architecture. Quite roughly, the
width of a convolutional network
represents the number of learnable
features whereas the depth measures
the grade of abstraction that can be
formed features. A

field s,

from these

convective  atmospheric
compared to a landscape with cats or
dogs in it, quite simple. If a network
architecture scales well this simplicity

should not matter. However, very rich
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Figure 5. Reliability diagram for the shallow methods, with forecast histogram

inset based on 10 bins and constant y-axis scale.

architectures also require a wealth of data to learn their many parameters from (14M images in ImageNet), which we do

not have here. Particularly the very wide and/or deep networks such as AlexNet, GoogLeNet, or DenseNet may suffer

either from inferior scaling behavior or too little data. ALL-CNN and ResNet, on the other hand, are designed particularly

for simplicity and parsimony (Springenberg et al., 2014; He et al., 2016), with good performance across a broad spectrum of

applications and apparently best adapted to our case.
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0.8 ~ 0.8 = 7l o8
02 L ud] 02277 et 03 Dl
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3ot 0l | =7
§ 0.2 - Ll 02| A~ Lol 02| -2 I
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forecast prob.

Figure 6. Like Fig. 5, for the deep methods.

3.3 Probabilistic

reliability and sharpness
We further illustrate the
reliability of the
probabilistic predictions by
means of reliability
diagrams, first in Fig. 5 for
the shallow methods; these
come with an inset forecast
histogram, displaying the
relative frequencies of the
delivered probabilities as a
measure of sharpness of

the prediction. The
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methods are quite reliable, except that TREE’s lower-
probability predictions occur too rarely and the
higher ones too often. LASSO and TREE predictions
are, as the inset shows, moderately sharp, unlike NLS
and especially NNET which is almost perfectly sharp.
Most of the deep methods are reliable, cf. Fig. 6,
exceptions being ResNet, DenseNet and GoogLeNet,
whose predictions of medium probabilities occur too
often. They are also more reliable than the shallow
methods and generally sharper, especially CIFAR-10,
GoogLeNet, and DenseNet with a high load of near

yes/no predictions.

3.4 Model application

probability
e 2 2
-~ () (o2

o
[\

typical DE events and LeNet-5 predictions

Jul/20

Jul/30
2014

Aug/09

Figure 7. Typical probability output of the LeNet-5 model (black)
around the July 2014 event (red); other events are gray.

We now apply the trained models to the observed (reanalyzed) and simulated atmospheric fields. It means we obtain for

each summer day from the corresponding atmospheric model period a prediction expressing the probability of a CatRaRE-

tr=0.34

2010

2020

1980 1990 2000

year

2010

2020

TREE

ALL-CNN

0.6

0.4

0.6

p = 0.65 .
LX)
o
7 ) *
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p = 0.65 .
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[ J
S sdh .
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e o
. 7
v
0.4 0.6
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Figure 8. Annual values of the probability P of CatRaRE-type events, as observed (crosses) or simulated from ERAS5 (dots),
using TREE (top) and ALL-CNN (bottom); the calibration period is marked as green and the rest as blue. The 1979-2005
time period reveals a significantly positive trend for both models, displayed as AP/100y; observed 2001-2020 climatology
(gray dashed) is given for reference. The scatterplots on the right-hand side depict the same data as a scatterplot against
observations, with correlations for the validation period.
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type event happening somewhere over Germany. Starting with the ERA5 reanalyses, we check whether the July 2014
event is captured by the ERAS fields. Figure 7 shows a typical probability forecast from the DL model LeNet-5. During the
days in late July of 2014, there is permanent convective activity over Germany. LeNet-5 shows near-certainty predictions
for events to occur, including the July 29 extreme event. Sporadic periods of little activity are also well reflected by LeNet-

5.

TREE
GCM: CNRM-CERFACS-CNRM-CM5
RCM: CLMcom-ETH-COSMO-crCLIM-v1-1
0.6 - o o ° o ° ° ° N ° b4
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Figure 9. Similar to Figure 8, as simulated by GCM/RCM, for historic (blue) and future (red) emissions. For reference, the
observed 2001-2020 climatology is also shown (CLIM, gray dashed).

For a broader temporal picture, we form annual (i. e. May—-Aug) averages of the daily probabilities, and display the entire
reanalysis period (1979-2020) in Figure 8. The classification is obtained from the best-scoring model TREE along with
ALL-CNN. The observed CatRaRE climatology (2001-2020) shows a mean daily probability of 0.51, and it is well
reproduced by both models. For the period 1979-2005, which is the common period for historic reanalyses and
simulations, they reveal strong significantly® positive centennial trends of 0.34 and 0.35, respectively. (A linear trend is
obviously only partly meaningful for a bounded quantity such as probability, but we use it here nevertheless.) Annual
correlations are equally strong (0.65 for both); corresponding plots for all other models are altogether similar and are, for

completeness, shown in Figs. S3 and S4; note, however, that the centennial trends are slightly weaker, as also shown in

® We use a significance level of a=0.05 throughout the study.
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Table 3. Interestingly, the model with almost the poorest daily performance (ETS = 0.44), NLS, reveals the highest annual
correlation of 0.62 with observations.

Now we analyze the CatRaRE classifications for the simulated atmospheres from past to future (1951-2100), based on
HIST and RCP85. Again, we first turn to the overall best performing model TREE along with ALL-CNN, as shown in
Figure 9. Both appear to be relatively unbiased (with respect to the normal period 2001-2020) and, as Table 3 shows, the
HIST simulations exhibit positive trends (1979-2005) of around 0.16 and 0.15, respectively, which amounts to only half of
what was seen for ERA5; for RCP85, only ALL-CNN exhibits a significantly positive centennial trend of 0.07. The much
larger ERAS trends as compared to HIST are actually seen only for these two methods, as for all other methods the trends
for ERA5 and HIST are more similar, cf. Table 3, Figs. S5 and S6. While this case may be related to the stronger annual
correlations, the discrepancy between ERA5 and HIST trends for the other methods remains unclear. The RCP85 trends
are, except for TREE, significant but smaller, which we explain as a saturation for growing probabilities.

A final note of caution may be in place. In our modeling approach we have tacitly assumed that the learned statistical
relationships remain valid when applied to previously unknown atmospheres, and remain so even when those are from a
dynamical simulation or a different climate. That this may indeed cause problems became apparent when going from
ERAS5 to HIST, with average trends dropping, by reasons unknown, to almost a half. This is an epistemic problem as old as
statistical climate research itself, and relates back to the concept of perfect prognosis (Klein et al., 1959) or in newer form to
the concept drift in machine learning (Widmer and Kubat, 1996). There is no generally valid argument in support of the
approach, and one must resort to heuristic reasoning’. With respect to applying simulated predictor fields (classifiers) it is
usually assumed that their simulation is sufficiently reliable. And as recent analyses have shown (Kendon et al., 2021), one
should indeed not be too confident in our convective classifiers (cape, tcw, cp) as compared to, e.g., pressure or
temperature fields. With respect to a different climate, the argument is that the difference can still be seen as an anomaly
from a base state and not as a shift to a wholly new climate regime, and at least for now there is little evidence for that
latter case. — Given this uncertainty, the trend projections of this study, which were derived from a single climate model,

are remarkably stable, indicating that progress in this direction mainly lies in the dynamical modeling of convection.

4 Conclusions

We have classified ERA5 fields of atmospheric convectivity with respect to the occurrence of heavy rainfall events over
Germany (based on the recently published CatRaRE catalog), using an array of conventional (’shallow’) and deep learning
methods. The methods ranged from very basic logistic functions to shallow neural nets, random forests (TREE) and other
machine learning techniques, including the most complex deep learning (DL) architectures that were available to us.
Because of the rapid progress in DL, it still means we are at least 5 years behind the state-of-the-art. The conventional

random forest scheme TREE performed best with an ETS classification score near 0.52 for the independent validation

7 Observational records of the relevant variables that could be used for verification are not long enough.
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period 2011-2020, followed by the DL networks ALL-CNN and ResNet. Those schemes seem to be best adapted for the
CatRaRE classification problem presented in this study: TREE uses a clever bootstrap aggregating (bagging) algorithm over
simple decision trees (200 in our case) whose generalization capacity is obviously crucial; and ALL-CNN and ResNet are
networks of fairly moderate width and depth, for which training and testing performance are in balance.

Table 3. Summary table of ETS, trends and correlations for all methods. Significant trends are boldface. For the DL meth-
ods, the ETS ensemble mean is shown.

centennial increase
model ETS (mean) ngrellu(aFiIi?rsr)e;;ioor?s ERA5 HIST RCPS5
1979-2005 2006-2100

LASSO 0.46 0.54 0.25 0.21 0.07
TREE 0.52 0.65 0.34 0.16 0.03
NNET 0.47 0.57 0.32 0.20 0.07
NLS 0.44 0.62 0.31 0.21 0.05
LeNet-5 0.46 0.58 0.27 0.22 0.07
AlexNet 0.47 0.59 0.33 0.18 0.05
CIFAR-10 0.45 0.39 0.24 0.20 0.07
ALL-CNN 0.48 0.65 0.35 0.15 0.07
GoogLeNet 0.47 0.50 0.30 0.20 0.05
ResNet 0.48 0.58 0.30 0.20 0.04
DenseNet 0.46 0.51 0.33 0.20 0.05
Simple 0.45 0.46 0.24 0.22 0.08
Logreg 0.43 0.54 0.18 0.21 0.11

The classifiers were then applied to corresponding CORDEX simulations of present and future atmospheric fields. The
resulting probabilities of convective atmospheric fields and related CatRaRE-type extreme events were increasing during
the ERAS period and also for the historic and future CORDEX simulations, independent of method. This is to be expected
and in line with common wisdom of current climate research (cf. Figure SPM.6, Masson-Delmotte et al., 2021). Specifically,
using TREE for the historic period (1979-2005) the resulting probabilities, measured as centennial trend, increase by 0.34
for ERA5 and by 0.16 for HIST. We were unable to resolve this discrepancy (which is less severe for the other methods)
and its potential modeling inadequacy remains unclear. For the future CORDEX simulations we obtained a smaller but
significant increase of around 0.07 for most methods, a number that can partly be explained by a saturation effect for
growing probabilities. The overall tendency towards more extreme convective sub-daily events is consistent with recent
estimates from Clausius-Clapeyron temperature scaling (Fowler et al., 2021) as well as from a convection-permitting

dynamical climate model for Germany (Purr et al., 2021).
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Compared to other classification problems such as the notorious image classification contest ImageNet, our setup of a
binary classification is quite simple. One must keep in mind, however, that the very design of CNNs, with their focus on
"features’ of colored shapes (objects), is modeled along the lines of ImageNet and relatives. Applying a CNN to other, not
object-like ‘images’ (blurred boundaries and colors) is not guaranteed to work out of the box. But it does, as we have seen,
with only moderate adjustments. The main difficulty here was to understand just how much quicker the more complex
models would learn, so that we had to shorten their learning period considerably to avoid overfitting.

Our study is meant as a starting point for a number of refinements, with the ultimate goal of classifying and projecting
impact-relevant convective rainfall events for as small a region as the setting allows. So far the only criterion to isolate
convective events from the CatRaRE database was their duration (here 9 hours). By considering more than two classes,
e. g. by introducing more regional and temporal detail, or more levels of intensity, the full power of CNNs, and here
perhaps of ALL-CNN or ResNet, could be exploited. That way, the usefulness of the results for decision makers in risk
management could be increased substantially. The atmospheric predictor fields, likewise, were so far relatively simple:
with local indicators of convectivity (cape, tcw, cp) whose effect can mostly be understood on a gridpoint level, the
underlying statistical problem is, except for the EOF filters, essentially univariate. Using truly multivariate, pattern-based
atmospheric predictors, such as moisture convergence or vorticity, can foster the performance especially of CNNs with
their feature extracting capabilities. It is hoped that with all these refinements especially the DL methods, which are
designed to handle considerably more complex classification targets, remain sufficiently reliable.

Getting back to the initial question, our conclusions entail in passing that at least for this study, deep learning methods are
not surpassing the conventional (*shallow’) statistical toolbox. It will be interesting to follow the evolution in state-of-the-
art dynamical models. Specifically, how does the development of convection-permitting dynamical models (e. g. Kendon et
al., 2021) compare to DL-based convection schemes (e. g. Pan et al., 2019)? And why should their integration not offer the
best of both worlds in one (Wang and Yu, 2022; Willard et al., 2022)?

5 Code availability

The relevant code underlying this paper can be found at https://gitlab.dkrz.de/b324017/carlofff.
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