Table S1. Dates of 2019, 2020, and 2021 O₃ exceedance days in the Chicago-Naperville-Elgin, Illinois-Indiana-Wisconsin, core-based statistical area (hereafter the Chicago metropolitan area, or "CMA" for short). An O₃ exceedance day is defined as having at least one ground monitor in the U.S. EPA Air Quality System (AQS) measuring a maximum daily 8-hour average (MDA8) O₃ value greater than 70 parts per billion (ppb). The "# stations" column indicates how many monitors in the CMA measured an exceedance.

2019			2020			2021			
Dates	# stations	Day of week	Dates	# stations	Day of week	Dates	# stations	Day of weel	
5-Jun	4	Wed	4-Jun	5	Thu	22-May	1	Sat	
26-Jun	1	Wed	5-Jun	10	Fri	3-Jun	14	Thu	
28-Jun	1	Fri	8-Jun	3	Mon	4-Jun	5	Fri	
29-Jun	6	Sat	16-Jun	2	Tue	11-Jun	5	Fri	
1-Jul	1	Mon	17-Jun	15	Wed	17-Jun	5	Thu	
3-Jul	3	Wed	18-Jun	20	Thu	18-Jun	8	Fri	
5-Jul	1	Fri	19-Jun	16	Fri	20-Jul	5	Tue	
8-Jul	1	Mon	27-Jun	2	Sat	22-Jul	6	Thu	
9-Jul	12	Tue	1-Jul	4	Wed	23-Jul	4	Fri	
13-Jul	1	Sat	2-Jul	1	Thu	26-Jul	2	Mon	
25-Jul	2	Thu	3-Jul	14	Fri	27-Jul	1	Tue	
2-Aug	2	Fri	6-Jul	14	Mon	28-Jul	5	Wed	
3-Aug	3	Sat	7-Jul	6	Tue	4-Aug	3	Wed	
Total: 13 days			8-Jul	3	Wed	7-Aug	2	Sat	
1	0 weekdays, 3 we	ekends	9-Jul	4	Thu	23-Aug	1	Mon	
			17-Jul	2	Fri	25-Aug	6	Wed	
			25-Jul	5	Sat	26-Aug	4	Thu	
			7-Aug	1	Fri	27-Aug	4	Fri	
			15-Aug	4	Sat	13-Sep	1	Mon	
			21-Aug	3	Fri	1-Oct	3	Fri	
				Total: 20 days			Total: 20 days		
			17 weekdays, 3 weekends			18 weekdays, 2 weekends			

Table S2. Distribution of the number of CMA O₃ exceedance days by year and day of week. The last two columns report the percentage of exceedances that occurred on weekdays and weekends for that row's time period.

	CMA ozone exceedance day of week distribution									
Year(s)	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	All days	Weekdays	Weekends
2019	2	1	3	1	3	3	0	13	77 %	23 %
2020	2	2	3	4	6	3	0	20	85 %	15 %
2021	3	2	3	4	6	2	0	20	90 %	10 %
All years	7	5	9	9	15	8	0	53	85 %	15 %

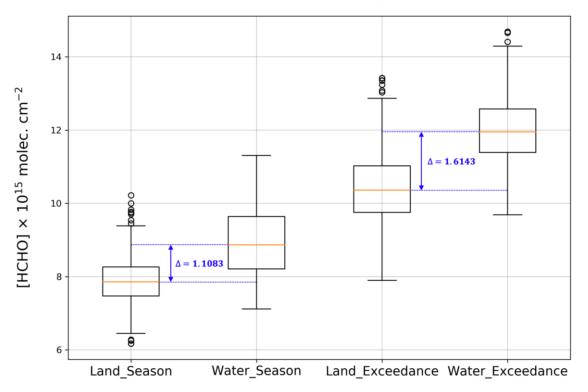
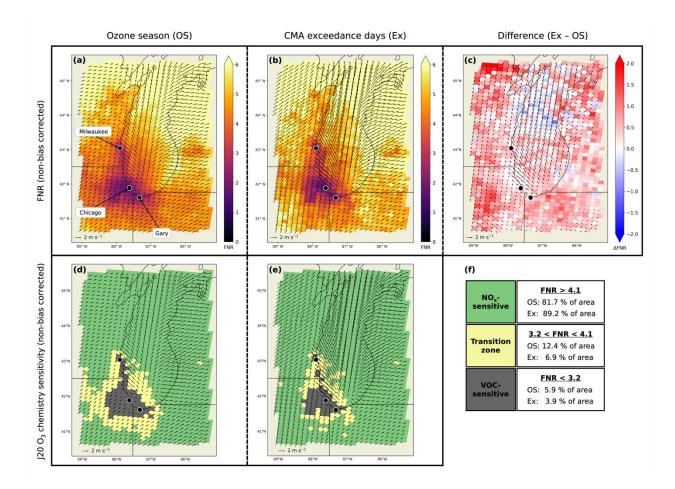
Table S3. Kolmogorov-Smirnov (K-S) test results for comparison of the ozone season and CMA exceedance days composites. For each variable, 1000 K-S tests were performed using a random subsampling approach at the 98 % confidence level. In the "median p-value" column, values <0.001 are represented as 0, and bolded values indicate overall statistically significant results (median p-value <0.020). The "wind divergence – tails" variable refers to only subsampling values greater or less than one standard deviation from the mean wind divergence value. *Sig. diff. = significant difference

2-subsamp	2-subsample K-S test results: ozone season vs. CMA exceedance days						
Variable Percentage of tests with a *sig. diff. Median p-value Full sample size Subsa							
HCHO bias corrected	100 %	0.000	1146	286			
NO ₂	100 %	0.000	1146	286			
FNR bias corrected	100 %	0.000	1146	286			
Wind divergence	1.8 %	0.117	880	220			
Wind divergence – tails	97.1 %	0.001	241	60			
2-m temperature	100 %	0.000	1242	310			

Table S4. Kolmogorov-Smirnov (K-S) test results for comparison of the weekday and weekend composites. For each variable, 1000 K-S tests were performed using a random subsampling approach at the 98 % confidence level. In the "median p-value" column, values <0.001 are represented as 0, and bolded values indicate overall statistically significant results (median p-value <0.020). The "wind divergence – tails" variable refers to only subsampling values greater or less than one standard deviation from the mean wind divergence value. *Sig. diff. = significant difference

2-subsample K-S test results: weekdays vs. weekends							
Variable Percentage of tests with a *sig. diff. Median p-value Full sample size Subsample s							
HCHO bias corrected	100 %	0.000	1146	286			
NO ₂	71.9 %	0.013	1146	286			
FNR bias corrected	100 %	0.000	1146	286			
Wind divergence	0 %	0.607	880	220			
Wind divergence – tails	0 %	0.821	241	60			
2-m temperature	65.5 %	0.023	1242	310			

2019-2020-2021 TROPOMI composite HCHO values

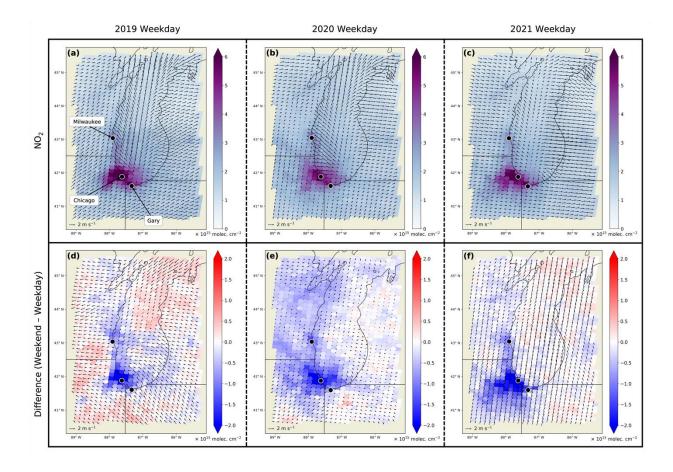

Figure S1. Boxplot distributions of TROPOMI HCHO vertical column densities (VCDs) for the O3 season and CMA exceedance day composites separated by over land and over water values. The mean of each distribution is represented by an orange horizontal line. The difference in means between the over land and over water values (Δ) is the "over water bias value".

Table S5. HCHO absolute and relative over water bias values for the O_3 season and CMA exceedance day composites. The absolute over water bias value is calculated by subtracting the mean over HCHO land value from the mean HCHO over water value. The relative over water bias value is calculated as $\left(\frac{HCHO_{water_mean} - HCHO_{land_mean}}{HCHO_{land_mean}}\right) \times 100 \%$.

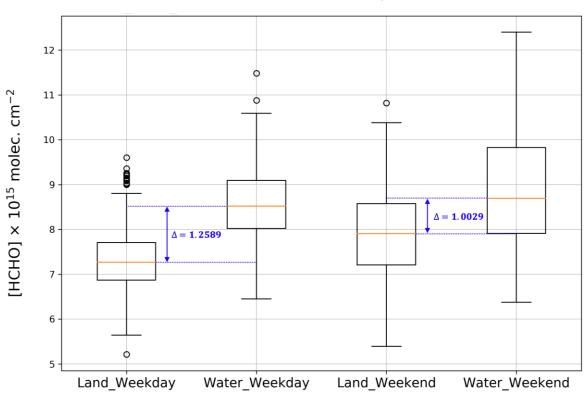

Composite category	Absolute over water bias	Relative over water bias
Ozone season	1.1083×10^{15} molec. cm ⁻²	+14.05 %
CMA exceedance days	1.6143×10^{15} molec. cm ⁻²	+15.51 %

Figure S2. TROPOMI-derived 2019–2021 FNR values (calculated using non-bias corrected HCHO values) in the Lake Michigan region during: (a) the ozone season (OS), (b) CMA exceedance days (Ex), and (c) the difference between them (Ex – OS). Jin et al. (2020; "J20") threshold interpretation of 2019–2021 ozone chemistry sensitivity (using non-bias corrected FNR values) during: (d) the ozone season, (e) CMA exceedance days, and (f) the percent of the domain area classified as each J20 sensitivity regime. Mean 10-meter winds are represented by arrows.

Figure S3. TROPOMI-derived composites of mean weekday tropospheric NO₂ VCDs in the Lake Michigan region during: (a) 2019, (b) 2020, and (c) 2021. The difference between weekday and weekend tropospheric NO₂ VCDs in the Lake Michigan region during: (d) 2019, (e) 2020, and (f) 2021. Mean 10-meter winds are represented by arrows.

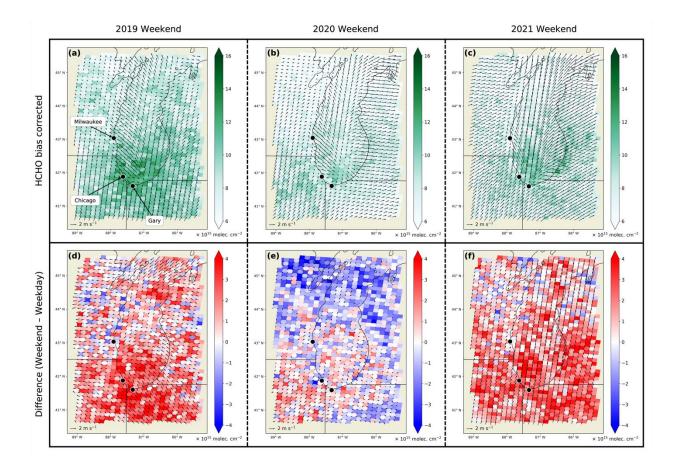
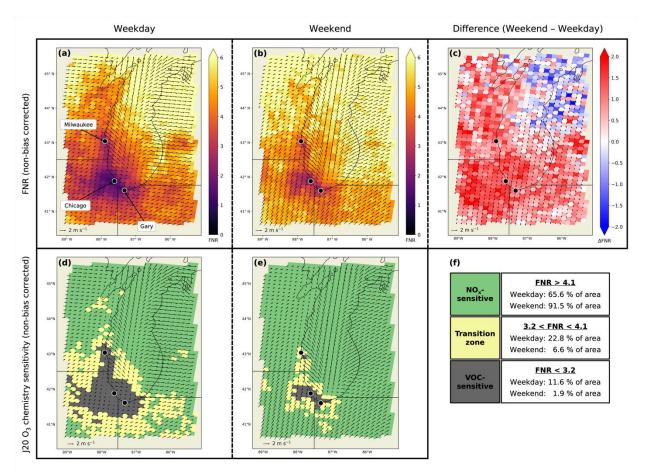

2019–2020-2021 TROPOMI composite HCHO values

Figure S4. Boxplot distributions of TROPOMI HCHO VCDs for the weekday and weekend composites separated by over land and over water values. The mean of each distribution is represented by an orange horizontal line. The difference in means between the over land and over water values (Δ) is the "over water bias value".


Table S6. HCHO absolute and relative over water bias values for the weekday and weekend composites. The absolute over water bias value is calculated by subtracting the mean over HCHO land value from the mean HCHO over water value. The relative over water bias value is calculated as $\left(\frac{HCHO_{water_mean} - HCHO_{land_mean}}{100\%}\right) \times 100\%$.

Composite category	Absolute over water bias	Relative over water bias
Weekday	1.2589×10^{15} molec. cm ⁻²	+17.2 %
Weekend	1.0029×10^{15} molec. cm ⁻²	+12.7 %

HCHO_{land_mean}

Figure S5. TROPOMI-derived composites of mean weekend tropospheric HCHO VCDs in the Lake Michigan region during: (a) 2019, (b) 2020, and (c) 2021. The difference between weekday and weekend tropospheric HCHO VCDs in the Lake Michigan region during: (d) 2019, (e) 2020, and (f) 2021. Mean 10-meter winds are represented by arrows.

Figure S6. TROPOMI-derived 2019–2021 FNR values (calculated using non-bias corrected HCHO values) in the Lake Michigan region during: (a) weekdays, (b) weekends, and (c) the difference between them (weekend – weekday). J20 threshold interpretation of 2019–2021 ozone chemistry sensitivity (using non-bias corrected FNR values) during: (d) weekdays, (e) weekends, and (f) the percent of the domain area classified as each J20 sensitivity regime. Mean 10-meter winds are represented by arrows.