
SMLFire1.0: a stochastic machine learning (SML) model for
wildfire activity in the western United States
Jatan Buch1, A. Park Williams2, Caroline Juang1, 3, Winslow D. Hansen4, and Pierre Gentine5

1Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
2Department of Geography, University of California, Los Angeles, CA, USA
3Department of Earth and Environmental Sciences, Columbia University, New York, NY, USA
4Cary Institute of Ecosystem Studies, Millbrook, NY, USA
5Department of Earth and Environmental Engineering, Columbia University, New York, NY, USA

Correspondence: Jatan Buch (jb4625@columbia.edu)

Abstract. The annual area burned due to wildfires in the western United States (WUS) increased by more than 300% between

1984 and 2020. However, accounting for the nonlinear, spatially heterogeneous interactions between climate, vegetation, and

human predictors driving the trends in fire frequency and sizes at different spatial scales remains a challenging problem for

statistical fire models. Here we introduce a novel stochastic machine learning (SML) framework, SMLFire1.0, to model ob-

served fire frequencies and sizes in 12km×12km grid cells across the WUS. This framework is implemented using Mixture5

Density Networks trained on a wide suite of input predictors. The modeled WUS fire frequency matches observations at both

monthly (r = 0.94) and annual (r = 0.85) timescales, as do the monthly (r = 0.90) and annual (r = 0.88) area burned. More-

over, the
:::::::
modeled

:
annual time series of both fire variables exhibit strong correlations (r ≥ 0.6)

:::
with

:::::::::::
observations in 16 out of

18 ecoregions. Our ML model captures the interannual variability and the distinct multidecade increases in annual area burned

for both forested and non-forested ecoregions. Evaluating predictor importance with Shapley additive explanations, we find10

that fire month vapor pressure deficit (VPD) is the dominant driver of fire frequencies and sizes across the WUS, followed by

1000-hour dead fuel moisture (FM1000), total monthly precipitation (Prec), mean daily maximum temperature (Tmax), and

fraction of grassland cover in a grid cell. Our findings serve as a promising use case of ML techniques for wildfire predic-

tion in particular and extreme event modeling more broadly. They also highlight the power of ML driven parameterizations

for potential implementation in the fire modules of Dynamic Global Vegetation Models (DGVMs) and Earth System Models15

(ESMs).

1 Introduction

Wildfire is an important biophysical process that structures natural and anthropogenic systems, and is, in turn, affected by

climate, vegetation, and humans [Bowman et al., 2009; Krawchuk et al., 2009]. The relative strength of each driver and the

interactions between them, however, vary across multiple spatial and temporal scales. For instance, sediment charcoal records20

indicate that while global biomass burning, a proxy for total area burned, responded strongly to warming and drought in the

past, these relationships weakened beginning in the late 1800s in many regions due to changes in land use as well as more
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active fire management [Marlon et al., 2008]. Modern satellite observations between 1998 and 2015 [Giglio et al., 2013], on

the other hand, indicate divergent trends along tree cover gradients [Andela et al., 2017]; although the decreased fire activity

in grasslands and shrublands contributed to the overall decline in global burned area, forest area burned increased across the25

globe [Zheng et al., 2021]. In fact, for regions like the western United States (WUS), there was a & 300% increase in the

total area burned between 1984 and 2020, promoted by high flammability of fuels induced by more frequent hot temperature

extremes, rising atmospheric aridity, and prolonged drought-like conditions [Dennison et al., 2014; Abatzoglou et al., 2016;

Zhuang et al., 2021; Kuhn et al., 2021]. The effect of recent warming and drought on area burned is also exacerbated due

to the fuels accumulated in many areas as a result of century-long fire suppression efforts [Marlon et al., 2012; Parks et al.,30

2015]. Incidences of large and severe fires often result in severe environmental and social impacts, such as: poor air quality

[Odell et al., 2019; Xie et al., 2022], negative health effects from smoke exposure [Burke et al., 2022], enhanced streamflow

[Williams et al., 2022], increased flood and debris risk [Jong-Levinger et al., 2022], major vegetation shifts in ecosystems

[Coop et al., 2020], and mass displacement of human populations [Jia et al., 2019]. Moreover, to manage these fires, federal

firefighting expenditures in the United States soared from∼ $0.5 billion in the late 1980s to an average of∼ $3 billion between35

2016 and 2021 (source: https://www.nifc.gov/fire-information/statistics/suppression-costs). Thus, understanding the complex,

multiscale interactions between climate, vegetation, and human drivers of wildfire activity is of vital scientific and societal

importance.

Individual wildfire events in the WUS are caused by the coincidence of fire conducive hot and arid weather in presence

of adequate vegetation and sources of ignition [Parisien and Moritz, 2009; Williams and Abatzoglou, 2016]. However, the40

influence of specific climatic conditions such as high temperatures and low precipitation may vary spatially due to the fuel

moisture content, biomass distribution, and local topography in flammability-limited regions such as forests [Westerling, 2016],

and temporally through the response of vegetation growth to antecedent conditions in fuel-limited regions such as grasslands

and shrublands [Swetnam and Betancourt, 1998]. Meanwhile, the larger WUS fires typically burn over a period of several

weeks or more, so the climatic effect on total area burned is regulated by short-term fire weather conditions such as prolonged45

temperature and aridity extremes [Gutierrez et al., 2021; Juang et al., 2022], sustained intense wind events over multiple

days [Potter and McEvoy, 2021], or even the continuity provided by fuels within a landscape’s heterogeneous vegetation

structure [Rollins et al., 2002]. Although difficult to model precisely, fire regimes across the WUS are also affected by the

spatial variability of lightning strikes [Romps et al., 2014; Kalashnikov et al., 2022] and stochastic human ignition patterns

[Balch et al., 2017; Keeley and Syphard, 2018; Keeley et al., 2021]. When aggregated over multiple wildfire events, the observed50

trends in fire frequency and total area burned carry imprints of the nonlinear, spatially heterogeneous, temporally integrated

interactions between climate, vegetation, human, and topographic variables. Physical models of wildfire activity in the WUS,

consequently, require a wide suite of input predictors over multiple spatiotemporal scales to accurately represent the various

dynamical processes that promote or inhibit fire ignitions and growth.

Here we focus on statistical models for two important fire variables, frequency and area burned. Broadly, these models55

infer the empirical relationships between observed wildfire activity at a given spatiotemporal scale and its various climate,

vegetation, and human drivers. To account for the multiple degrees of freedom characteristic to the problem, regression based
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models tend to study the mean state relationship between wildfire activity and its drivers by averaging all variables along

spatial [Abatzoglou and Williams, 2016] or temporal dimensions [Parisien and Moritz, 2009; Parisien et al., 2012]. Despite

being instrumental in clarifying the role of different fire drivers on large spatiotemporal scales, these, and similar, analyses60

are unable to model fire activity at smaller scales that are important for allocating fire suppression and rescue resources or

identifying regions for preventive fuel treatment. On the other hand, other efforts based on classical [Westerling et al., 2011]

and Bayesian [Joseph et al., 2019] statistical methods as well as machine learning (ML) approaches [Coffield et al., 2019;

Jain et al., 2020; Wang and Wang, 2020; Wang et al., 2021; Joshi and Sukumar, 2021; Kuhn-Régnier et al., 2021; Kondylatos

et al., 2022; Richards et al., 2022] have modeled grid-scale fire activity across various spatial extents. Besides representation of65

finer-scale processes, another key advantage of the grid-scale analyses over the mean state approach is their ability to determine

the hierarchy of important wildfire drivers at various spatiotemporal scales.

In this paper, we introduce a stochastic ML (SML) model, SMLFire1.0, to estimate the probability distributions of monthly

fire frequencies and sizes in 12km×12km grid cells across the WUS based on data from 1984 to 2020. SMLFire1.0 consists

of a pair of mixture density networks (MDNs) constructed by appending a custom loss function [Ebert-Uphoff et al., 2021] to a70

neural network. We adopt the MDNs to determine the parametric distributions of fire frequencies and sizes using a combination

of static and dynamic climate, vegetation, human, and topographic predictors. We then simulate fire frequencies for each grid

cell as well as sizes for grid cells with non-zero frequencies. Our results are visualized and discussed at broader spatial scales

of ecoregions for ease of comparison with results from previous analyses.

Our modeling approach for SMLFire1.0 builds upon and extends previous methods in four important ways: a) unlike other75

ML methods based on gradient boosted trees or quantile regression, our use of parametric distributions in SMLFire1.0, es-

pecially for individual fire sizes, provides a straightforward way to implement uncertainty quantification for our predictions;

b) we account for the spatiotemporal variability of the predictors and their nonlinear interactions; c) our model includes fire

frequencies and locations while simulating the total area burned, thus enabling projections of total area burned for different

idealized future scenarios of fuel flammability, human ignition patterns, and fuel treatment; d) the combined frequency and80

size ML framework serves as a single model across the entire WUS and does not require separate training for predicting fire

activity in each constituent region. While we do not explore the scenario in detail here, the flexibility and efficiency of our

ML framework also makes it an ideal subgrid-scale parameterization scheme for the fire modules of regional scale Dynamic

Vegetation Models (DGVMs) [Li et al., 2012; Rabin et al., 2017] as well as Earth System Models (ESMs) [Zou et al., 2020].

2 Data85

2.1 Study Ecoregions and Divisions

Our study region consists of all 12km×12km grid cells in the continental US west of 103◦ W longitude. We visualized the

results of our analysis at the Bailey’s Level III (L3) ecoregion [Bailey, 1996] scale for clarity and ease of comparison, especially

in terms of interannual variability, with prior results in the literature [Abatzoglou et al., 2017; Williams et al., 2019; Joseph

et al., 2019]. Moreover, in several analyses [Littell et al., 2009; Parisien and Moritz, 2009; Dennison et al., 2014], organizing90
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Figure 1. Wildfire activity in the western United States (WUS) from 1984 to 2020. Left: locations of fire centroids (black dots) across the

WUS with the spatial extent of three ecological Divisions characterized by their primary vegetation type – Forests (green), Deserts (yellow),

and Plains (gray). Individual Ecoregions are delineated with thick black lines and referenced with abbreviated names in rounded boxes. A

full list of Ecoregion names is given in Table 2. More details about Level III ecoregions, including high resolution maps, can be found here:

https://www.epa.gov/eco-research/level-iii-and-iv-ecoregions-continental-united-states Right: Observed annual fire frequencies (blue) and

annual area burned (AAB) (red) for each Division. The black curves indicate the statistically significant
::::::::
(p < 0.05) trends for each AAB

(solid) and annual frequency (dashed) time series.

the study region in terms of ecoregions or ecoprovinces has been useful in identifying the broad contours of climate-fire

relationships. We define an “Ecoregion" to be constituted by one or more similar L3 ecoregions to ensure sufficient statistics

(refer to Table S1 for more details), considering a total of 18 Ecoregions across the western United States for this study.

Further, we follow [Brey et al., 2018] and organize our Ecoregions in terms of three broad ecological “Divisions" that are

characterized by their primary vegetation types, namely Forests, Deserts, and Plains. Note that all three Division types consist95

of a combination of both forested and non-forested areas albeit in different proportions.

2.2 Wildfire Activity

We focus on two primary fire variables in this analysis: occurrences and sizes. Both these variables are available in the Western

US MTBS-Interagency (WUMI) wildfire dataset [Juang et al., 2022] that contains 18646 fire locations and burned areas from
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1984 to 2020. The recently released WUMI dataset (accessed Sep 12, 2022) is a collection of unique fires ≥ 4km2 from100

the Monitoring Trends in Burn Severity (MTBS) program [Eidenshink et al., 2007] and fires ≥ 1km2 from the following

federal agencies: California Department of Forestry and Fire Protection (CalFire), US Fish and Wildlife Service (FWS), US

Forest Service (FS), Bureau of Indian Affairs (BIA), Bureau of Land Management (BLM), Bureau of Reclamation (BOR),

and the National Park Service (NPS). Notably, the WUMI dataset underrepresents fires ≤ 4km2 from 2018–2020, especially

in non-forested areas outside of California because of missing post-2017 data from the BLM, BIA, BOR, and NPS (source:105

https://famit.nwcg.gov/applications/FireAndWeatherData/ZipFiles; accessed Sep 24, 2022). Although fires smaller than 4km2

have a negligible contribution to the total area burned, they constitute ∼ 50% of all fires in our study domain. Thus, the

artificially low frequency of smaller fires in 2018-2020 as represented in the current version of the WUMI database likely

hinders with accuracy with which our current modeling effort can simulate the probability of small fires.

In Fig. 1, we map all WUMI fire locations as well as plot time series of
::
the

:
annual frequency and annual area burned (AAB)110

time series for the Forests, Deserts, and Plains Divisionsalong with their statistically significant trends
:
.
:::
We

::::
also

:::::::
indicate

:::
all

:::::::::
statistically

:::::::::
significant

:::::::::
(p < 0.05)

::::::
trends,

::::::
which

:::::
were

:::::::::
determined

:::::
using

:::
the

:::::::::
Student’s

::::
t-test. The AAB trends are evaluated

using a least squares linear regression fit to the log transformed area burned time series as in [Williams et al., 2019].

2.3 Input Predictors

We consider four broad classes of input predictors – three dynamic plus one static – aggregated to the 12km×12km grid115

scale: climate and fire weather, vegetation, human-related (henceforth human), and topographic. At this spatial scale, a vast

majority of fires (∼ 97%) have sizes smaller than the size of the grid cell. Choosing a finer resolution would require explicitly

modeling the spatial autocorrelation between the burned area in neighboring grid cells, whereas a coarser resolution results in

lower accuracy while correlating fire properties to its environmental variables.

We select six primary climate and fire weather predictors: temperature, precipitation, vapor pressure deficit (VPD), snow120

water equivalent (SWE), wind speed, and lightning. Monthly climate grids for mean daily maximum temperature (Tmax),

mean daily minimum temperature (Tmin), and precipitation total (Prec) are taken from the National Oceanic and Atmospheric

Administration’s (NOAA) Climgrid dataset [Vose et al., 2014]; additionally, gridded dew point temperatures for computing

VPD are adapted from PRISM [Daly et al., 2004]. We consider two additional fire danger predictors which have been shown to

significantly correlate with fire activity [Abatzoglou and Kolden, 2013]: 1,000-hr dead fuel moisture (FM1000), and the Fosberg125

Fire Weather Index (FFWI). Monthly mean FM1000 values, an indicator of climate-derived moisture balance, were adapted

from gridMET [Abatzoglou, 2013]. The FFWI, which is calculated using temperature, humidity, and wind speed [Fosberg,

1978], has been shown to be an important correlate of dry, windy conditions associated with fire weather [Moritz et al., 2010].

Since wind speed in gridMET is derived using a spatial interpolation of the National Atmospheric Regional Reanalysis (NARR)

data from a coarser (32km×32km) resolution, we instead use high (9km×9km) resolution temperature, humidity, and wind130

speed predictors from the dynamically downscaled UCLA ERA5-WRF reanalysis [Rahimi et al., 2022] to calculate the monthly

mean FFWI. Furthermore, we use daily scale data from the UCLA ERA5-WRF reanalysis to calculate the monthly maximum

X-day running average of daily maximum and minimum temperature (TmaxmaxX, TminmaxX), where X ∈ {3,5,7}. Similar
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X-day extreme predictors are also derived for VPD, FFWI, and wind speed. TheX-day running average variables are included

as predictors to improve the model’s sensitivity to synoptic scale extreme weather caused by events such as heatwaves.135

The monthly mean and maximum daily SWE variables come from the gridded National Snow and Ice Data Center (NSIDC)

dataset [Zeng et al., 2018, 2019]. Antecedent conditions often exhibit significant correlations with fire activity through drying

of soils and fuels as well as promoting fuel growth over multiple months [Westerling et al., 2006; Wang and Wang, 2020;

Abolafia-Rosenzweig et al., 2022]. Thus, for a given month m with potential fire activity (henceforth fire month), we include

temperature, precipitation, VPD, and SWE based predictors that are running averages of monthly mean values from month140

m− 1 to m− t, where t ∈ {2,3,4}. We also include the mean annual precipitation for each of the two years prior to the fire

year (AntPreclag1 and AntPreclag2) as additional predictors to probe long drought legacy effects [Bastos et al., 2020; Wu

et al., 2022]. An important source of ignitions over a large area of the WUS is lightning, most frequently as part of summer

thunderstorms. We use the Vaisala National Lighning Detection Network (NLDN) lightning strike density data [Wacker and

Orville, 1999; Orville and Huffines, 2001] aggregated to monthly scale with coverage from 1987 to 2020. For all months145

between December 1983 and January 1987, we assume monthly climatological means for the missing lightning data.

We leverage land type data from the National Land Cover Dataset (NLCD) [Yang et al., 2018] for deriving annual scale vege-

tation predictors. Since the NLCD classifies land cover type (e.g., evergreen forest, cropland etc.) across the US at a 30m spatial

resolution, we calculate the fraction of each 12km×12km grid cell occupied by a given NLCD land-cover classification. The

NLCD is not an annual product and provides maps of landcover classification for: 1992, 2001, 2004, 2006, 2008, 2011, 2013,150

2016, and 2019. For years between two NLCD years, the landcover in each grid cell is linearly interpolated between the NLCD

years, whereas for years before or after 1992-2019, landcover is assumed to be the same as the nearest NLCD year. We adopt

three predictors: Grassland, Shrubland, and Forest, each of which represents the fraction of landcover in a grid cell covered

by the respective vegetation type. Besides the fraction of landcover, we include a more direct representation of fuel abundance

through the aboveground biomass map from [Spawn et al., 2020]. Although the biomass map (Biomass) is available for only155

one year, 2010, we justify its inclusion by positing that the spatial variability of vegetation across the WUS is more dominant

than the temporal variability of the vegetation in a majority of grid cells. Thus, for all modeling purposes, we treat Biomass as

a static predictor. In future work, it will be ideal to include simulated vegetation biomass maps (e.g., [Hansen et al., 2022]) in

a coupled framework within the wildfire model.

Combining the following NLCD land cover types that reflect the presence of urban areas: “Developed High”, “Developed160

Low”, “Developed Medium”, and “Developed Open” we construct a single, annual scale human predictor, Urban
::::::
fraction. For

more granular information of human settlements, we include predictors for human population (Pop10_dist), defined in terms

of
:::
the

::::::::
following

:::::::::
predictors: distance from the nearest area with population density greater than 10 people per square kilometer

::::::::::
(Pop10_dist), mean population density (Popdensity), and mean housing density (Housedensity). These predictors are adapted to

annual timescales using data for three years: 1990, 2000, and 2010 from the SILVIS dataset [Radeloff et al., 2005] following the165

same interpolation procedure that we used for NLCD predictors. Other static human predictors include: mean number of camp

grounds (Camp_num), mean distance to nearest camp grounds (Camp_dist), and the distance to nearest highway (Road_dist)

derived from publicly available datasets (source: https://www.naturalearthdata.com/downloads/10m-cultural-vectors/roads/;
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http://www.uscampgrounds.info/takeit.html). These predictors serve as potential correlates of human ignitions for fire occur-

rences as well as proxies for access to fire suppression or containment resources. Some predictors such as Popdensity could170

play a dual role through both increasing the likelihood of ignitions while also providing easier access for fire suppression.

Lastly, to incorporate the effect of topography on fire activity [Holsinger et al., 2016; Harris and Taylor, 2017], we include

two static variables: mean slope (Slope) and mean south-facing degree of slope (Southness). In the Northern Hemisphere,

Southness is associated with higher insolation which results in drier conditions and low fuel moisture relative to other slope

directions [Rollins et al., 2002; Dillon et al., 2011]. Altogether we include a total of 51 potential predictors, and summarize175

their names, identifiers, spatial resolution, temporal scale, and sources in Table S2. A short summary of the predictors’ physical

meaning as well as their qualitative effect on fire frequency and size is provided in Table S3.

Before analyzing the data with a statistical model, we perform an additional preprocessing step. To account for spatiotempo-

ral heterogenity of the WUS ecological landscape, we “standardize", i.e subtract the mean and divide by the standard deviation,

all input predictors. Dynamic predictors, including all climate and most vegetation variables, at each location are standardized180

in time, whereas the static predictors are standardized across the entire spatial domain.

3 Model Description

3.1 Theory

Our main goal is to develop a statistical model for fire frequency and sizes as a function of input predictors described in the

previous section. Specifically, we want our model to: a) capture the nonlinear, spatially heterogeneous interactions among185

the climate, vegetation, human, and topographic variables that influence wildfire activity; b) rely on physical variables and be

independent of location and time of year; c) be based on parametric distributions that could be sampled using Monte Carlo

simulations for estimating the mean and parametric model uncertainty of modeled fire frequency and sizes. While tree-based

ML approaches using xGBoost have shown high performance in predicting area burned across the continental US [Wang et al.,

2021], we adopt a neural network based architecture here because it combines the flexibility of machine learning techniques190

with the robustness of parameterized distribution based methods traditionally used in statistical fire modeling [Westerling et al.,

2011; Joseph et al., 2019]. Additionally, since
::::::
Recent

::::
work

:
[
:::::::::::::
Levin et al., 2022]

:::
has

::::
also

::::::
shown

:::
that

:
neural network models are

more powerful at learning feature representations than gradient-boosted trees Levin et al., 2022, they are better equipped for

:
.
::::::::
However,

:
generalizing the learned relationships between input predictors and fires to test

::::::::::::
out-of-sample data from future

climate states or different fire regimes
:::::::
remains

:
a
::::::::::
challenging

::::::::
problem

:::
for

::::
most

::::
ML

::::::::::
approaches,

:::::::::
including

:::::
neural

::::::::
network195

:::::
based

::::::
models [

::::::::::::::
Rasp et al., 2018;

:::::::::::::::::::::::
Yuval and O’Gorman, 2020].

In SMLFire1.0, we use two mixture density networks (MDNs) to separately model the conditional probability (henceforth

conditional for brevity) distributions for fire frequency and sizes on a monthly time scale. A MDN is a fully connected,

feedforward neural network whose output layer consists of parameters of a mixture model [Bishop, 1994]. In other words, we

use a neural network with multiple hidden layers, illustrated in Fig. 2, to map the nonlinear functional relationship between200

different predictor variables and output data onto the parameters of a mixture of standard statistical distributions. A mixture
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Figure 2. Schematic diagram illustrating the input (blue), hidden (green), and output (purple) layers of a Mixture Density Network (MDN)

model within the SMLFire1.0 framework. While a fully connected neural network is implemented in practice, only a partial connected one is

shown here for clarity; the solid black line on the left denotes the direction from the input to the output layer, whereas the dotted black lines

represent additional nodes and layers in the network. Also shown above the output layer are the parameters for a two component mixture

distribution of the form given in Eq. 1.

distribution is a useful tool for representing the probability distribution of outputs with multiple modes or peaks. Thus, given

observed data Y , we learn the functional mapping between input predictors X and output parameters ψ by minimizing a loss

function of the general form,

L(Y |X;ψ ∈ {π,θ}) =
N∏
n=1

(
M∑
m=1

πm(Xn)pm(Yn|θm(Xn))

)
;

M∑
m=1

πm = 1, (1)205

where M and N denote the number of mixture components and data points respectively, and each mixture component consists

of a conditional distribution pm(θm) as well as a weight parameter πm. To ensure that the resultant mixture distribution is

normalized, we constrain the sum of all individual weight parameters to be 1.

We use the monthly fire counts (including zeros) in each grid cell across the WUS as the data for our fire frequency model.

In total, we consider data in about ∼ 10 million grid cells out of which only 17489 correspond to observed fires. Common210

choices of parametric distributions for representing count data include: binomial, Poisson, and negative binomial distributions.
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All of these distributions are often also used in conjunction with another distribution, as part of a zero-inflated mixture model,

that accounts for the additional zeros in the data coming from an independent process such as fire suppression. In this analysis,

for each space-time grid cell (henceforth grid cell), n, we use a zero-inflated Poisson lognormal distribution (ZIPD) to model

the observed fire frequencies fn as a function of the input predictors Xn,215

L(fn|Xn;π,µ,δ) =


π(Xn)+ (1−π(Xn))Pois(fn|µ(Xn), δ(Xn)), , fn = 0;

(1−π(Xn))Pois(fn|µ(Xn), δ(Xn)) , fn > 0,

(2)

where π is the probability of an independent process that generates zeros, and the rate parameter of the Poisson (Pois) distribu-

tion is drawn from a lognormal distribution with mean µ and variance δ2. There are two major challenges to this approach for

modeling fire frequencies: a) a large proportion of grid cells contain no fires, resulting in a significant data imbalance problem,

b) minimizing the risk of missing fires in our predictions, we tend to overpredict fires in grid cells that saw no fires, leading to220

a high false positive rate. To address point a), we experiment with both downsampling, i.e. considering only a random subset

of all available grid cells with no fires similar in size to the number of observed fires, and upsampling, i.e. generating multiple

duplicate samples of the observed fires to match the size of grid cells with no fires, to address this imbalance in our analy-

sis. On the other hand, to fix the effects of a high false positive rate due to the large number of non-fire grid cells, we use a

spline regression model for calibrating the mean and variance of the predicted frequencies to those of the observed data at the225

Ecoregional scale. Finally, we aggregate the predicted fire frequencies across all grid cells within an Ecoregion and compute

the mean and variance of the fire frequency, F , for a given month, l, as follows,

E[F l|X]≡
∑
n∈L3

ELn(π̂,µ̂,δ̂)
[f ln|X l

n],

Var[F l|X]≡
∑
n∈L3

VarLn(π̂,µ̂,δ̂)
[f ln|X l

n],
(3)

where ELn(·)[·] and VarLn(·)[·] indicate the expected value, or mean, and variance with respect to the conditional frequency

distribution given by Eq. 2, and the hats denote the distribution parameters fixed to their optimal values determined by training230

the MDN. The expected value and variance are evaluated using Monte Carlo (MC) simulations of the frequency distribution at

monthly and annual timescales. We treat the variance as an estimate of the parametric model uncertainty, or equivalently the

uncertainty in modeled frequency due to different realizations of a parametric model.

Meanwhile, as shown previously [Schoenberg et al., 2003; Littell et al., 2009; Li and Banerjee, 2021], wildfire sizes across

several spatial scales follow a probability distribution with large tails, or equivalently an extreme value distribution, such that a235

majority of fires are small but the total area burned is dominated by a small number of large fires. In this analysis, we consider

three extreme value mixture distributions for fire sizes: Generalized Pareto distribution (GPD), Lognormal distribution, and a

composite Lognormal-Generalized Pareto distribution (Lognormal-GPD) [Scollnik, 2007]. The Lognormal-GPD is included to

account for the possibility that the fire sizes follow a hybrid distribution with a pronounced hump as well as a significant tail,

which are the features of the Lognormal distribution and GPD respectively. We consider 9953 fires from the WUMI dataset240

with sizes greater than a threshold of 4km2 for the GPD and Lognormal-GPD fire size models, whereas we consider all fires

9



for the Lognormal case as it does not require a threshold for extreme events. Due to our fixed choice of the grid for input

predictors, a majority of the fires have burned areas that are spread across two or more grid cells. This raises the question:

which values of the input variables should we consider as predictors for our model? Approximating each fire as a circle with

area equal to its size, we consider the “effective" input predictors for a given fire to be the average of inputs over all grid cells245

intersected by the fire’s perimeter weighted by the fraction of burned area in each grid cell. In future work, we will use burned

area polygons from MTBS for large fires instead of the circular approximation while deriving the effective input predictors.

We model each fire j as independent draws from a conditional mixture distribution [Carreau and Bengio, 2007] of the form,

L(Aj |Xj ;π,θ1,θ2) = w(Aj)

M∑
m=1

πm(Xj)pm(Aj |θm,1(Xn),θm,2(Xj)), (4)

where (θ1,θ2) are the parameters of a heavy tailed distribution determined by the MDN for each fire. For the GPD, (θ1,θ2)250

represent the scale and concentration parameters, whereas for the Lognormal case they represent the mean and standard devi-

ation of the distribution’s natural logarithm. We include a weight factor w(Aj), that is inversely proportional to the frequency

of size Aj in the training data, to account for data imbalance due to the relative disparity in the number of small and large fires.

The conditional distributions of monthly and annual area burned (MAB and AAB respectively) are obtained by aggregating

the distribution of fire sizes for each grid cell in an Ecoregion with a fire. We compute the mean and variance for the fire size255

distributions using MC simulations and formulas similar to the ones described in Eq. 3.

The expressions for MAB and AAB can be schematically interpreted as follows: assuming that the mean size of all fires at

a given spatiotemporal scale l are identical and denoted by A, the mean total area burned Al is simply given by E[Al|Xl] =

E[Fl|Xl]×A. Phrased differently, the expected area burned at a given spatiotemporal scale is linearly proportional to the mean

fire frequency, E[Fl|Xl] with a constant coefficient A. We note, in practice, that since the mean fire size of the GPD model is260

similar for most fires, the mean fire frequency plays an important role in determining the mean MAB or AAB.

Following Iglesias et al. [2022], we consider the total size distribution to be time-dependent or nonstationary, in general. We

allow for an enhancement or weakening in the response of fire sizes to one or more predictors by including a nonstationary

response in the size model. In particular, we use the entire training dataset to construct two models for consecutive time periods:

a reweighted GPD loss function (GPD-Ext) for the time period with larger fire sizes and an unweighted loss function (GPD)265

for the remaining years. We stitch the two models together at a breakpoint year to construct the combined GPD MDN model.

In order to isolate the role of frequency in the total area burned, we first derive the AAB using the combined GPD MDN

model evaluated with observed fire frequencies and values of input predictors corresponding to the observed locations of

fires given in the WUMI dataset. We also explore three further variations for the WUS AAB time series: one, using modeled

frequencies for each Ecoregion from the frequency MDN model with observed fire locations; second, with observed frequencies270

but input predictors corresponding to model fire locations predicted by the frequency MDN; and third, with both fire frequencies

and locations drawn from the frequency MDN model. Since our modeled frequencies also include smaller fires, we apply an

additional time-dependent scaling factor to account for the relative abundance of large fires (≥ 4km2) while deriving the area

burned with modeled frequencies.
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Lastly, to obtain percentiles of the burned area distribution we require the full probability density function defined over all275

grid cells with fires,

p(Al|X,N l) = pAl
1|Xl

1
∗ · · · ∗ pAl

Nl |X
l

Nl
; pAl

j |Xl
j
= L(Alj |X l

j ,f
l
j > 0; π̂lj , θ̂

l
1;j , θ̂

l
2;j). (5)

where ∗ denotes the convolution operator, and N l are the number of fires at a given spatiotemporal scale. Rather than solving

this expression analytically [Nadarajah et al., 2018], we sample it with MC simulations and report the 0.5th, 50th and 99.5th

percentiles of the monthly and annual area burned at the WUS and Divisional scales.280

3.2 Implementation

We implement our SMLFire1.0 framework using the Keras interface for TensorFlow library version 2.7.0. During training,

we allow our neural networks to have the following tunable hyperparameters: number of hidden layers, nl; number of neurons

per layer, nne; and the number of mixture components, nc. We use the relevant distributions available in the TensorFlow

Probability library version 0.15.0 for designing custom loss functions for both the frequency and size data.285

For model training, we hold out 1 contiguous year (which we take to be 2020, unless specified otherwise) of fires and input

predictors as test data, and split the monthly data from the remaining 36 years 70% to 30%, chosen randomly, between training

and validation data. The out-of-sample validation data is useful for evaluating model performance, which we measure through

several metrics defined in the section below.

We train our model for up to 500 epochs using the Adam optimizer with learning rate, lr_rate = 10−4, to learn the290

optimal distribution parameters for each model. Since a typical MDN with several hidden layers consists of∼O(1000) hidden

weights and biases, it is plausible that the model overfits the training data; we address this issue by applying three regularization

steps: early stopping of the training process when the model performance does not improve for 10 epochs; L2 regularization,

which constrains the squared sum of all the network weights; and a Dropout layer which randomly sets a fraction, dr_frac,

of inputs to 0 to improve co-learning of the remaining weights. Based on numerical experiments in the pre-training phase,295

we fix the L2 regularization rate to be reg_rate = 10−3, and the dropout fraction to be dr_frac = 0.4. Altogether, the

regularization procedure reduces overfitting and improves generalization for the MDN.

3.3 Metrics

We define metrics for two broad purposes: enabling model selection and measuring model performance. For the former, a

straightforward choice is the value of the loss function, given in Eq. 1, averaged across all batches and epochs: reducing300

the loss improves the model. As our model size is small, we ignore the effects of model complexity that may be included

through metrics such as the Akaike Information Criterion (AIC). Since we are predicting a mixture distribution rather than

a point estimate of the output, we use a variation of the Kullback-Leibler (KL) divergence to measure the distance between

distributions,

D′KL(Cψ||Ĉ)≡
N∑
n=1

log

(
Cψ(yn|xn)
Ĉ(yn|xn)

)
; Accuracy = 100× (1−D′KL(Cψ||Ĉ)), (6)305
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Fire variable MDN type (nl,nne,nc) Loss Accuracy LOO-CV score

Frequency
ZIPD (Upsampled) (2, 16, 2) 3.29 87.53 % 75.75 %

ZIPD (Downsampled) (2, 16, 2) 0.85 95.67% 94.18 %

Size

GPD (3, 8, 2) 4.22 91.71% 90.60 %

Lognormal distribution (3, 8, 2) 4.45 91.39 % 86.92 %

Lognormal-GPD (2, 16, 4) 4.36 87.15 % 85.49 %
Table 1. Summary of the mixture density network (MDN) architecture and performance metrics used for modeling fire frequencies and sizes

in SMLFire1.0. nl, nne, and nc refer to the number of hidden layers, neurons per layer, and the number of mixture components respectively.

The loss is dimensionless for the frequency MDN whereas the loss for size MDN has units of inverse area burned, or km−2. Both the loss

and accuracy metrics are reported for validation data, whereas the leave-one-out cross validation (LOO-CV) score is the validation accuracy

averaged over different subsets of fire years, where each subset is obtained by excluding all fires in a randomly chosen year. Lower values of

loss as well as higher values of accuracy and LOO-CV score indicate better model performance.

where Cψ is the cumulative distribution function (CDF) of fire frequencies or sizes predicted by the respective MDN, and Ĉ

is the empirical CDF estimated from data. Unlike the ratios of the probability density functions used in calculating the classic

KL divergence, we adopt a ratio of the CDFs which is an equivalent estimator in the asymptotic limit [Perez-Cruz, 2008].

We also perform leave-one-out cross validation (LOO-CV) to approximate the model’s generalization error. Specifically, we

create subsets of fires by excluding the fires that occurred in 1 contiguous year for all years in our study period and report the310

validation accuracy averaged over all such subsets as the LOO-CV score.

Having selected a model, we characterize its performance by measuring, statistically, how well or poorly the modeled time

series fits the observed data. We use the Pearson’s correlation coefficient, r, to gauge the proportion of variance in the observed

data explained by the predicted time series. Moreover, to account for the point-wise uncertainty that we obtain from our MC

simulations, we use the chi-squared statistic,315

χ2 =
∑
n∈ST

(yn− ŷn)2
σ̂2
n

, (7)

as a measure of the goodness-of-fit for all frequencies or area burned at a particular spatiotemporal scale, ST . To ensure

uniformity of scale, we report the reduced chi-squared statistic, χ2
r , which is the chi-squared value defined above divided by

the degrees of freedom. In our case, the degrees of freedom are simply given by the number of years with non-zero values

minus the number of parameters.320

Finally, we determine the optimal number of predictor variables by iteratively dropping all predictors that do not improve

overall model performance and are highly correlated (r ≥ 0.5) with other predictors. We include all fire month and static

predictors in this step, using the iterative procedure to identify the most important antecedent and extreme weather permutations

of each relevant climate variable. After this step we are able to narrow our predictor basis from 51 to 28 variables. Successive

removal of each additional variables drastically reduces model performance.325
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3.4 Predictor importance

We estimate the sensitivity of model output to input predictors using the SHapley Additive exPlanation (SHAP) technique [Lund-

berg and Lee, 2017]. SHAP values are a recent approach (see Wang et al. [2021] for an application to fire modeling) to charac-

terize the marginal contribution of each input predictor on local predictions by using a game-theoretic approach to account for

the contributions of all possible coalitions of the remaining predictors. This is in contrast to traditional predictor importance330

techniques which only rely on a fixed coalition of predictors to assess the importance of any predictor. We implement the SHAP

technique by adapting the KernelExplainer method from the shap package (source: https://github.com/slundberg/shap).

We note that a drawback of using the KernelExplainer method is that its assumption of predictor independence could

lead, in practice, to a biased estimation of predictor importance in the presence of two or more strongly correlated features.

A SHAP value s for an input predictor p can be interpreted as follows: p contributes s additional units to the model output335

determined by combining the mean baseline value along with the contributions of all other predictors. To estimate the sensitivity

of our model outputs to various predictors in a particular Ecoregion, we first randomly choose a subset of grid cells within that

Ecoregion with no observed frequencies, or background points, to compute our mean baseline SHAP value. Then combining

a fraction of the background points with grid cells that have observed fires in a fixed ratio to create a pool of test points, we

evaluate the SHAP values for all predictors relative to the mean baseline value at each test point. The choice of the ratio does340

not affect our results as long as the number of background points constitute a minority fraction of the test points. For the results

shown in the following section, we use a 1:3 ratio of background to test points for each Ecoregion to ensure sufficient statistics.

In total, we evaluate the SHAP values for all input predictors at ∼ 20,000 test points across the WUS.

We visualize our results using two types of plots: a summary plot that shows the SHAP values of the leading input predictors

at each test point colored by the predictor value alongside the partial dependence plots of two important predictors, and a345

global feature importance plot of the leading predictors ordered according to their mean absolute SHAP values, or S, for each

Ecoregion. We also assess the interaction effect between predictors by applying a color gradient of one predictor’s values to all

test points in the partial dependence plots of the other. However, since all test points do not explicitly include information about

vegetation transitions under climatic perturbations in the respective grid cell or the effect of repeated fire burns, the indicated

predictor importance and partial dependence plots are valid only under the assumption of a stationary relationship between the350

input predictors and fire sizes.

4 Results

4.1 Model Selection

An important step in our model selection process is determining the optimal hyperparameter configuration for each loss func-

tion. We train the frequency and size MDNs on a subset (∼ 40%) of the overall training data over a grid of hyperparamater355

configurations. In particular, for both the frequency MDNs as well as the Lognormal-GPD size MDN, we fix the number of

components, nc = 2, while varying the number of hidden layers, nl, the number of neurons per layer, nne; for the rest of the
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cases, we vary nc as well. The model performance is evaluated using the three metrics defined above: average loss, maximum

accuracy, and the LOO-CV score computed over all the epochs. The optimal configuration for a MDN type is defined as the

one with the lowest loss and the highest validation accuracy. Since our choice of validation data as a random subset of the360

training data (as opposed to selecting data for consecutive years) already serves as a form of cross-validation, the LOO-CV

score may be interpreted as a measure of the model’s mean performance across different initial conditions as it is computed

with different subsets of validation data.

The optimal hyperparameters and performance metrics for each MDN are outlined in Table 1. For the fire frequency model,

we indicate results for the ZIPD MDN trained with upsampled and downsampled data separately. We find that the downsampled365

ZIPD MDN performs slightly better than its upsampled counterpart, despite the latter using more data (see Chatterji et al.

[2022] for a discussion of an analogous problem in the ML literature). Among the size models, we find that the GPD MDN

has the best performance and prefers only two components, while the optimal Lognormal distribution MDN configuration

contains four components albeit with a higher loss and lower validation accuracy. The optimal Lognormal-GPD MDN has an

intermediate performance relative to those of the GPD and Lognormal distributions. We also calculated the LOO-CV score370

with 3 contiguous years of data held out and find that there is only a marginal decline in model performance, highlighting the

robustness of our ML models. In the following sections, unless stated otherwise, we refer to the downsampled ZIPD and GPD

MDNs as the frequency MDN and size MDN respectively.

4.2 Fire Frequency

We use a MDN trained on downsampled training data to determine the parameters of the ZIPD for fire frequencies in each375

grid cell across the WUS from 1984 to 2020. MC simulations of the parametric frequency distributions for all grid cells are

aggregated to compute the mean fire frequency and its 2σ uncertainty intervals over monthly and annual time scales. These

are plotted for the entire study domain in Fig. 3 as well as individual Ecoregions selected on the basis of total fire counts and

their quality of fit in Figs. 4 and 5. The frequencies are plotted for both monthly and annual timescales and are contrasted

with the observed values at the respective spatial scale. We note that the observed fire frequency between 2018 and 2020 could380

increase after including several missing smaller fires in the WUMI dataset, which may also potentially affect our modeled

frequencies. We evaluated the goodness-of-fit between our predictions and observations at the annual timescale through the

Pearson’s correlation coefficient and the reduced chi-squared statistic shown in Table 2 for all the WUS Ecoregions.

An upshot of our likelihood-based MDN model in SMLFire1.0 is the availability of uncertainty estimates [Riley and Thomp-

son, 2016] for the predicted fire frequencies. Since our frequencies are modeled as a Poisson distribution, we expect their stan-385

dard deviation to scale as ∼
√
N for N fire counts. Thus, the relatively narrow 95% error band shown for both the WUS and

regional frequency plots comes with an important caveat: we only estimate the statistical uncertainty for our results while ignor-

ing the (possibly dominant) contribution to the model uncertainty from sources such as climate-vegetation linkages [Kitzberger

et al., 2017; Zhou et al., 2019; Bastos et al., 2020; Tschumi et al., 2022].

At the WUS level, our mean modeled frequencies are in good agreement with the total number of observed fires, exhibit-390

ing high correlations at both monthly (r = 0.94) and annual (r = 0.85) timescales. Our model also successfully captures the
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Figure 3. Observed (blue) and modeled (orange) fire frequencies across the western United States at monthly (top) and annual (bottom)

time scales from 1984 to 2020. Orange shaded regions represent 2σ uncertainty intervals for the mean fire frequency aggregated over the

Monte Carlo simulations for all grid cells. The mean number of modeled fires over the study period as well as its 2σ uncertainty interval are

indicated at the top of the bottom panel. Also shown is the Pearson correlation (r) between the observed and modeled time series.

interannual variability and monthly extremes across most of the Ecoregions. In particular, the modeled annual frequencies for

Sierra Nevada, Pacific Northwest Mountains, Northern, Middle, and Southern Rockies among the Forests Division; American

Semidesert, Intermountain (IM) Desert, Columbia and Colorado Plateaus among the Deserts Division; and the Northern Great

Plains are strong correlated (r ≥ 0.7) with the observed frequencies.395

Broadly, the trends in fire frequencies can be characterized as a competition between three independent drivers. One, an in-

creasing trend in climate dryness [Seager et al., 2015; Abatzoglou and Williams, 2016], which is correlated with regional water

balance and hence fuel flammability; two, better communication of fire risk resulting in fewer accidental ignitions [Keeley and

Syphard, 2018] and enhanced preparedness levels; and three, increased human fire suppression efforts through improvements

in fire prevention and containment techniques. While the WUMI dataset indicates moderate increases in the annual number of400

wildfires > 1km2 in areas defined as forest by NLCD, this is almost fully compensated by a reduction in frequency of fires

in non-forested areas. As a result, there is no clear trend in the observed fire frequency for the WUS. On the other hand, our

modeled frequencies indicate a mildly increasing trend at the overall WUS scale as well as for several Ecoregions such as PNW

Mountains, Columbia Plateau, and IM Desert. A potential contributing factor to this variability could be the high sensitivity
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Figure 4. Observed (blue) and modeled (orange) fire frequencies at monthly and annual scales from 1984 to 2020 for Ecoregions selected

based on the total number of fires and goodness-of-fit metrics. The orange shaded regions within each subplot indicate 2σ uncertainty

intervals for the mean regional fire frequency aggregated over the Monte Carlo (MC) simulations for all constituent grid cells. Also shown is

the Pearson correlation coefficient (r) between the observed and modeled fire frequency time series for each Ecoregion.
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Figure 5. As in Fig. 4, but with different WUS Ecoregions.
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Frequency Size

Division Ecoregion r χ2
r r χ2

r

Forests

Sierra Nevada [SNV] 0.70 20.98 0.60 0.84

California (CA) North Coast [CNC] 0.68 107.75 0.58 1.52

CA Central Coast [CCC] 0.46 75.64 0.60 1.17

CA South Coast [CSC] 0.61 40.91 0.66 1.70

Pacific Northwest Mountains [PNW] 0.70 9.63 0.81 0.66

Northern Rockies [NRM] 0.89 11.28 0.93 0.34

Middle Rockies [MRM] 0.85 25.69 0.84 1.30

Southern Rockies [SRM] 0.82 10.20 0.79 0.81

Arizona/New Mexico Mountains [AZNMM] 0.72 45.57 0.63 1.18

Deserts

American (AM) Semidesert [AMSD] 0.88 15.80 0.95 0.77

Intermountain (IM) Semidesert [IMSD] 0.66 36.52 0.90 0.43

IM Desert [IMD] 0.80 34.99 0.92 0.39

Chihuahuan (CH) Desert [CHD] 0.62 68.93 0.91 0.52

Columbia Plateau [CLP] 0.78 14.79 0.77 0.56

Colorado Plateau [COP] 0.71 12.10 0.72 0.39

Southwestern (SW) Tablelands [SWT] 0.67 15.88 0.94 0.71

Plains
Northern Great Plains [NGP] 0.87 5.75 0.93 0.43

High Plains [HP] 0.65 8.73 0.94 0.57

Table 2. Goodness-of-fit metrics in terms of Pearson’s correlation (r) and the reduced chi-squared statistic (χ2
r) between the observed and

modeled time series for both frequencies and area burned at an annual time scale. Both r and χ2
r are dimensionless metrics; higher values of

r and lower values of χ2
r indicate a better fit. Results are shown for each Ecoregion organized by their ecological Division. The abbreviated

Ecoregion names shown in Fig. 1 are given in square brackets.

of fire frequencies to hot and dry conditions in our model combined with the inadequate representation of human action. The405

latter is important especially since human predictors such as population and housing density can have a dual effect on fire

frequencies: proximity to urban settlements increases the probability of ignitions and access to suppression resources, whereas

reductions in fuel continuity due to development and land management drastically reduce the probability that an individual

ignition grows into a large wildfire [Knorr et al., 2014; Andela et al., 2017].

Since our model is trained on data over the whole WUS, its performance, on average, is better over Ecoregions with larger410

number of fires, such as the Middle Rockies and IM Semidesert. On the other hand, our model performs quite poorly for

regions with a low number of total fires, where it is more likely to exhibit large interannual variations over a baseline of very

few to no fires. This behavior is evident in the plot for CH Desert in Fig. 5 as well as the low r and high χ2
r values in Table 2

for Ecoregions such as CA North Coast, SW Tablelands, CH Desert, and High Plains.
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The SHAP values for individual predictors of the frequency MDN as well as the partial dependence plots for two important415

predictors, VPD (S = 0.042) and FM1000 (S = 0.030), with a color gradient corresponding to Tmax values are plotted for the

WUS in Fig. 6. Here, S denotes the mean absolute SHAP values of each predictor. Similar plots at the Divisional level for

Forests, Deserts, and Plains are shown in Fig. 7. We also include the mean SHAP plots for each of the 18 Ecoregions considered

in our analysis in Figs. S2 and S3. The main drivers of fire frequencies at all spatial scales are climate predictors correlated with

hot and arid fire weather conditions. Thus, high VPD is the leading predictor for most Ecoregions, most frequently combined420

with low fuel moisture in large diameter fuels, FM1000. Other important predictors include Tmax, Prec, and Slope, such that

high daily maximum temperatures, lower fire month precipitation total, and higher mean slope all contribute to higher fire

frequency on average.

Among the other subdominant predictors, antecedent climate conditions play a varying role across different Divisions. An-

tecedent snowpack estimated using 3 month average SWE, AvgSWE3mo, is an important predictor especially in the Rocky425

Mountains Ecoregions (S = 0.023), with lower SWE in 3-4 antecedent months leading to higher predicted frequencies in the

fire month. Increases in modeled fire frequencies for several Ecoregions in Deserts and Plains are also driven by antecedent

conditions at both the seasonal and annual timescales through lower values of AntPrec3mo and higher values of AntPrec1yr

predictors. The latter result corroborates previous analyses [Crimmins et al., 2004; Abatzoglou et al., 2017] which have high-

lighted the role of high prior year precipitation in promoting fuel growth within arid regions where vegetation is often too430

limiting to allow for large fires. The spatial variability in vegetation predictors, however, is of low importance for most Ecore-

gions. Interestingly, for similar dryness levels, our model simulates more fires for sites with lower values of Biomass relative to
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Figure 6. SHapley Additive exPlanation (SHAP) analysis of the fire frequency MDN model outputs across the western United States. Left:

Input predictors sorted in descending order of their mean SHAP values aggregated over the entire study period. Each colored point along

the x-axis represents an individual prediction with the color corresponding to high (yellow) or low (indigo) values of the respective input

predictor. Middle and Right: Partial dependence plots for two important predictors shown on the x-axis, colored corresponding to high

(yellow) or low (indigo) values of the mean daily maximum temperature, Tmax. The colorbar (far right) is normalized in terms of standard

deviations (σs) for all relevant values across the three panels.
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Figure 7. SHapley Additive exPlanation (SHAP) analysis of the fire frequency MDN model outputs for different western United States’

Divisions: (top) Forests, (middle) Deserts, and (bottom) Plains. Left column: Input predictors sorted in descending order of their mean

SHAP values aggregated over the entire study period. Each colored point along the x-axis represents an individual prediction with the

color corresponding to high (yellow) or low (indigo) values of the respective input predictor. Middle, Right: Partial dependence plots for

two important predictors shown on the x-axis, colored corresponding to high (yellow) or low (indigo) values of the mean daily maximum

temperature, Tmax (top and middle panel), and high (indigo) or low (yellow) values of the 1000-hr dead fuel moisture, FM1000 (bottom

panel). The colorbar (far right) is normalized in terms of standard deviations (σs) for all relevant values across the three panels.
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sites with higher Biomass in Forests; meanwhile, higher fraction of grassland results in a higher fire frequency across all three

Divisions. Our model considers lightning strike density as an important predictor across several Ecoregions, most notably over

the CA North (S = 0.021) and South (S = 0.024) Coasts, PNW Mountains (S = 0.021), and Middle Rockies (S = 0.019).435

Human predictors, on the other hand, are not among the top 10 predictors for any Ecoregion. Given that a large fraction of fires

in parts of the WUS, especially Mediterranean California and coastal PNW, are human ignited [Balch et al., 2017], this result

could stem from a skewed sampling of fires while training SMLFire1.0 as well as the lack of correlation between our chosen

human predictors and fire occurrences.

We visualize the response of fire frequencies to individual predictors through the partial dependence plots in Figs. 6 and 7.440

SHAP values for all four variables shown in the plots: VPD, FM1000, Prec, and AntPrec3mo exhibit near-linear relationships

above a threshold with their respective predictor values. The color gradient of all test points in Forests and Deserts shows that

VPD and FM1000 are strongly correlated with Tmax, while also highlighting the interaction effect between Tmax and Prec.

In Plains, instead of Tmax, we consider the interaction effect of FM1000 on VPD and AntPrec3mo to explore the influence

of antecedent and fire month predictors on fuel moisture. FM1000 values exhibit a strong interaction effect with antecedent445

precipitation in our model, but not with fire month VPD since fuel moisture shows significant correlations with atmospheric

aridity. In other words, SHAP values for our frequency model vary with Prec and AntPrec3mo predictors only for sites with

high values of Tmax and low values of FM1000.

4.3 Fire Size

We use MDNs trained on fires≥ 4 km2 to determine the parameters of the combined GPD and GPD-Ext (henceforth combined450

GPD) distribution of individual fire sizes. MC simulations of the parametric size distributions for all observed fires from

1984 to 2020 are aggregated to compute the mean of the monthly and annual area burned (MAB and AAB respectively) and

their 1σ uncertainty intervals. The total MAB and AAB simulated using the combined GPD model with a breakpoint after

2004 are plotted for the entire WUS in Fig. 8 and separately at the Ecoregion level in Figs. 9 and 10. The goodness-of-fit

metrics, namely Pearson’s correlation and reduced chi-squared statistic, between the predicted and observed sizes for each455

Ecoregion are summarized in Table 2. We plot the SHAP values for individual predictors at test points across the WUS in

Fig. 12, alongside partial dependence plots for two important fire size predictors, VPD and Grassland, with a color gradient

corresponding to Tmax values. These plots are constructed using a procedure similar to the one described in the previous

section for fire frequencies. We also show the partial dependence plots at the Division level are in Fig. 13 and plot the mean

SHAP values for individual Ecoregions in Figs. S7 and S8.460

The introduction of a time-dependent response and a breakpoint after 2004 in our modeling is justified through the following

analysis. As indicated by Fig. 8, there is a rising trend in the AAB for the WUS with significantly more large MAB months

∼ 2000 onward than in 1984-1999. Moreover, as shown by Juang et al. [2022], this increase in AAB is driven by the exponential

response of fire size to atmospheric aridity and not due to increasing fire frequency. We confirm their result by noting that the

complementary cumulative distribution function (CCDF) of observed fire sizes between 1984-2004 is markedly different from465

the CCDF for sizes observed between 2005-2020 as plotted in Figs. S4 and S5. In fact, as shown in Fig. S4 (right panel), the
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Figure 8. Observed (red) and mean modeled (teal) area burned across the western United States at monthly (MAB) and annual (AAB) time

scales from 1984 to 2020. The teal shaded regions indicate 1σ uncertainty intervals for the mean area burned aggregated over the Monte

Carlo (MC) simulations from the combined GPD model for all observed fires. The mean total area burned over the study period as well as

its 1σ uncertainty interval are indicated at the top of the lower panel. Also shown within each subplot is the Pearson correlation coefficient

between the observed and modeled burned area time series.

CCDF of the combined GPD model is in much better agreement with the observed CCDF than the CCDFs of either model

individually (Fig. S4; left and middle panels). After varying the breakpoint for different years between 2000 and 2006, we find

that a breakpoint after 2004 results in the best fit to the observed area burned. Thus, we successfully model the shift to larger

fire sizes observed after 2004 by including an additional GPD distribution with fatter tails.470

We emphasize that the improved agreement between the CCDFs of observed and modeled sizes is not merely an artifact of

the breakpoint procedure; in fact the choice of the distribution plays a critical role. Specifically, we verify this by repeating our

analysis with the Lognormal distribution, which has thinner tails than the GPD. In Fig. S5, we demonstrate that the CCDF of

the reweighted Lognormal MDN (Lognorm-Ext) underestimates large portions of the observed sizes’ CCDF while being able

to account for only the most extreme fires. Consequently, the combined distribution (Lognorm-Comb) is an inadequate model475

for the observed fire sizes over the study period.

The choice of fire frequencies – either observed or modeled – and the stochasticity in fire locations affects both the inter-

annual variability and total area burned of the modeled AAB time series. Contrasting the results shown in Fig. 8 and Fig.
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Figure 9. Observed (red) and mean modeled (teal) monthly (MAB) and annual area burned (AAB) from 1984 to 2020 for the Ecoregions

shown in Fig. 4. The teal shaded regions within each subplot indicate 1σ uncertainty intervals for the mean regional area burned aggregated

over the Monte Carlo (MC) simulations from the combined GPD model for all observed fires. Also shown is the Pearson correlation coeffi-

cient (r) between the observed and modeled area burned time series for each Ecoregion.
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Figure 10. As in Fig. 9, but with different WUS Ecoregions.
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S6, we note that the AAB using modeled frequencies and observed locations results in a moderate decrease in the total area

burned along with a marginal improvement in the correlation with the observed AAB. Further, simulating fire sizes with model480

locations leads to a significant rise in the total area burned irrespective of the frequency source, although the AAB time se-

ries with observed frequencies has a notably weaker correlation (r = 0.77) compared to the case with modeled frequencies

(r = 0.91). We explain this behavior with respect to both fire locations and frequencies. First, the frequency MDN tends to

locate fires in grid cells with extreme values of input predictors such as VPD and Prec, leading to simulated fire sizes larger

than those at observed fire locations; important fire predictors at the latter, especially before 2004, having high (or low), but not485

extreme, values. Second, as shown in Fig. 3, the modeled frequencies are consistently lower than the observed ones between

1993 and 2001 leading to a lower simulated area burned relative to the case with observed frequencies for the same source

of fire locations. At the same time, the anomalously high modeled frequency for 2020 leads to improved correlations for the

modeled AAB time series irrespective of the choice of fire locations. As a cross-check, we compute the correlation coefficient

for the two AAB time series simulated with observed locations and the observed AAB between 1984 and 2019, and find that490

the simulation with observed frequencies has a higher correlation (r = 0.93) than the one with modeled frequencies (r = 0.89).

We do not find a similar improvement in the correlations of the two AAB time series simulated with model locations. These

results serve as an important lesson for modeling fire activity: improved correlations of model predictions with observed data

may not always be a good indicator of improved model accuracy.

Using the combined GPD MDN model, our modeled MAB (r = 0.90) and AAB (r = 0.88) time series are very good fits495

to the observed area burned, within the 1σ uncertainty interval, when considering the entire WUS. Our model performs well

across most of the WUS with AAB predictions for 15 out of the 18 Ecoregions exhibiting strong correlations (r ≥ 0.7) with the

observed area burned. Moreover, as shown in Figs. 9 and 10, the trends in the modeled AAB time series successfully emulate

the distinct multidecade increases in observed AAB over both forested and non-forested Ecoregions.

Our model has mixed skill in predicting large MAB and AAB during the study period. For example, our model is able to500

simulate the full range of AAB variability in the Northern Rockies, Northern Great Plains (Fig. 9; top and middle left panels),

and American Semidesert (Fig. 10; middle right panel), but it fails to capture the largest AAB between 1984 and 2019 in

Middle Rockies, IM Semidesert (Fig. 9; top and middle right panels), and PNW Mountains (Fig. 10; top right panel). This

tendency holds even after reweighting the size distribution for post-2004 fires. In particular, the total AAB during the year

2020 deserves further scrutiny. The modeled AAB significantly underestimates the observed 2020 AAB in Fig. 8, predicting505

only about half of the observed value. We see similar behavior at the Ecoregional level in Columbia Plateau (Fig. 9; middle left

panel), Sierra Nevada, and Southern Rockies (Fig. 10; top and middle left panels).

With these results, we can make a stronger assessment about our modeling framework: first, for almost all years in our study

period, the mean of the aggregate area burned distribution is a good approximation for the observed time series, so the only

challenging part is determining the time dependence of the mean sizes of individual fires; and second, while the discrepancy510

between modeled and observed area burned in 2020 highlights a clear limitation of our model, can we use still use it to make

meaningful predictions for anomalous extreme fire years?
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Figure 11. Boxplots of predicted annual area burned (AAB) for two extreme fire years, 2012 and 2020, for the entire western United States

(WUS) (teal) and three Divisions organized by their primary vegetation types: Forests (green), Deserts (yellow), and Plains (gray). The

lower and upper whiskers of each boxplot indicate the 0.5th and 99.5th percentile of the predicted AAB distribution, whereas the black line

represents its median value. Also shown for reference are the observed AAB for both 2012 (red diamond) and 2020 (indigo traingle).

In Fig. 11, we show the total modeled AAB for two extreme fire years with the largest area burned, 2012 and 2020, at

both the WUS and Divisional scales. We find that the observed AAB for 2012 is in the ∼ 80th percentile of the predicted

WUS AAB, driven primarily by the large AAB in Deserts. However, for 2020, the observed & 99.5th percentile Forests AAB515

resulted in the total WUS AAB to be in the 99.5th percentile of our model predictions. Contrasted with previous extreme fire

years, 2012 and 2017 (see Fig. S9), the observed 2020 AAB is: a) in very high percentiles of the modeled AAB simulated

with observed frequencies,implying that the observed fire sizes for 2020 were much greater than those in the 1984-2019 period

that our model is trained on; b) dominated by anomalously high AAB in the Forests Division, and is a striking example of an

extreme fire year driven by large fires in flammability-limited areas rather than fuel-limited ones.520

Among the 10 input predictors of fire size shown in descending order of importance in Fig. 12, the SHAP technique selects

VPD (S = 3.95), Grassland (S = 2.60), and FM1000 (S = 2.34) as the three most important predictors at the WUS level.

Again, S refers to the mean absolute SHAP value for each predictor. These are also among the top predictors at the Divisional

scale as shown in Fig. 13, with Grassland being more important than FM1000 in Deserts (S = 2.75) and Plains (S = 3.33).

Broadly, SHAP values for all predictors besides FM1000, Prec, and AntPrec3mo, have a positive relationship with higher525

predictor values. Another important predictor at the WUS and Forests level is Slope (S = 2.43): its SHAP values indicate that

fire size is promoted by large topographic slope, which is consistent with previous findings [Andrews, 2018]. Assessing the
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predictor importance at the Ecoregion level, as illustrated in Fig. S7 and S8, we find that climate and fire weather predictors

are dominant drivers across Forests, whereas Grassland plays a larger role in Deserts and Plains. The importance of grassland

cover could also signal the role of invasive grass species [Knapp, 1998; Balch et al., 2013] in driving large area burned within530

our model. Thus, vegetation plays a much more important role in simulating area burned for the size model as compared to

the frequency model. This is also true for most Ecoregions in Forests Division, where the spatial distribution of aboveground

biomass serves as an important secondary predictor. The mean absolute SHAP values suggest that weekly scale extreme

weather predictors such as FFWImax3 are also important predictors in several Ecoregions. We interpret the response of fire

sizes simulated by our model to the climate at different temporal scales as follows: monthly to seasonal scale hot and arid535

weather create favorable conditions for fire spread, while the growth of large fires is facilitated by weekly scale extreme fire

weather. The SHAP plot for Pop10_dist in Deserts (S = 1.54) and Plains (S = 1.32) indicates that higher predictor values

result in simulation of larger fire sizes. This could be because increased distance from populated areas is correlated with a

decrease in accessibility for fire suppression efforts, and therefore higher occurrences of larger fires in the observed record.

We also retrain our fire size model with two different variations of the input predictors selected for the main analysis: first540

with relative humidity (RH), average RH over 3 antecedent months (AvgRH3mo), and 3 day minimum RH (RHmin3) instead

of VPD and its corresponding permutations; and second including all VPD and RH predictors. There are no significant differ-

ences in the correlations between the simulated and observed WUS AAB time series in either case, but the SHAP summary

plots shown in Fig. S10 provide valuable insights. In the first case where VPD is not considered as a potential predictor, RH

(S = 1.67) replaces VPD as the leading fire size driver across the WUS, and AvgRH3mo (S = 1.00) is more important relative545

to other antecedent climate predictor. When allowing both VPD and RH to serve as predictors, VPD (S = 3.58) has higher

predictive power than RH (S = 1.95) in our model at both the WUS and Forests Divisional scales. From the perspective of

predictor importance, there might actually be an advantage to using RH instead of VPD: the correlation between VPD and

Tmax leads to a small but spurious trend in SHAP value for Tmax in Forests as shown in Fig. 13, whereas using only RH and
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Figure 12. As in Fig. 6, but for the fire size MDN model.
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Figure 13. SHapley Additive exPlanation (SHAP) analysis of the fire size MDN model outputs for different western United States’ Divisions:

(top) Forests, (middle) Deserts, and (bottom) Plains. Left column: Input predictors sorted in descending order of their mean SHAP values

aggregated over the entire study period. Each colored point along the x-axis represents an individual prediction with the color corresponding

to high (yellow) or low (indigo) values of the respective input predictor. Middle, Right: Partial dependence plots for two important predictors

shown on the x-axis, colored corresponding to high (yellow) or low (indigo) values of the mean daily maximum temperature, Tmax (all

panels). The colorbar (far right) is normalized in terms of standard deviations (σs) for all relevant values across the three panels.
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Tmax yields the correct Tmax effect on fire size (see lower left panel of Fig. S10). On the other hand, from the perspective of550

future climate-fire relationships, the fact that the decision of including VPD, RH, or both does not substantially affect model

performance does not mean that this decision is unimportant. As Brey et al. [2021] point out, VPD is projected to continue

rising dramatically while projected RH decreases are more moderate. In this paper we prioritize the model that uses VPD,

because VPD is more directly representative of the atmosphere’s evaporative demand [Anderson, 1936; Monteith, 1965].

Lastly, we show the responses of fire sizes to individual predictor values for all test points at the WUS and Divisional level555

in Figs. 12 and 13 respectively. We find that fire sizes simulated by our model respond, above a threshold, exponentially to

increases in VPD and decreases in FM1000 at all spatial scales, although the response is notably stronger in Forests. This result

is consistent with the findings of Juang et al. [2022] who showed that the exponential response of fire sizes to increasing aridity

appears to arise from the fact that large fires have much greater capacity for area growth than smaller fires. Meanwhile, we do

not find any significant interactions between Tmax and VPD as well as FM1000; Grassland shows a weak interaction effect560

with Tmax, such that sites with the same fraction of grassland cover yield larger sizes at higher values of Tmax.

5 Discussion

We have developed a novel stochastic ML framework, SMLFire1.0, for modeling fire activity across different WUS Ecoregions.

Although the fire frequency and area burned time series simulated using this framework are in good agreement with obser-

vations at multiple spatial and temporal scales, there are several areas of improvement across three interconnected themes:565

modeling approach and architecture, vegetation, and other potential predictors. We discuss each one of these themes in detail

below.

– Modeling: A limitation of the frequency model is that we are, effectively, estimating a joint distribution between ig-

nitions and fire likelihood. In other words, we are using data for observed fires, which occur randomly, to learn the

relationships between different predictors that contribute to fire conducive conditions. However, such an approach may570

introduce a bias in ignition-limited regions that could have large fire-prone areas with no fire occurrences [Parisien and

Moritz, 2009]. One way to improve our framework would be to model ignitions using spatial stochastic processes, or to

compute fire probabilities using a presence-only approach [Chen et al., 2021]. Alternatively, we could leverage the sea-

sonal differences between human and lightning started fires to account for potential selection biases in training data for

SMLFire1.0. We also expect that further improvements to the WUMI dataset, especially for smaller fires, would improve575

the accuracy of our modeled frequency time series. For the fire size model, a major limitation of our current approach is

its reliance on climate predictors whose spatial and temporal scales are coarse relative to the physical scales involved in

fire front propagation [Bakhshaii and Johnson, 2019]. Bridging these two regimes [Sullivan, 2009] is an important focus

of our ongoing work to improve predictability of extreme fire behavior. Moreover, we combined two GPD distributions

with a breakpoint after 2004 to obtain a distribution that best fit the cumulative distribution of observed fire sizes. Rather580

than introduce a breakpoint by hand, in future work we intend to explore and model the mechanisms that may have led to

such a distribution shift. At the computational level, we plan on incorporating a recurrent neural network component to
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our ML architecture in order to model the nonstationary fire size responses over longer timescales. An extension would

be to expand the parametric size distribution by including a smooth, differentiable form of the Lognormal-GPD with an

arbitrary threshold parameter. Using such a hybrid distribution would ensure that our model has more flexibility in simu-585

lating a large number of small fires from a distribution with finite mean and variance as well as a small number of larger

fires from a distribution with finite mean but infinite variance [Cohen and , 2015]. To improve model interpretability and

avoid post hoc evaluations of feature importance such as SHAP [Hooker et al., 2021], a more robust alternative would

be to build an interpretable ML model from the bottom up as outlined in Alvarez-Melis and Jaakkola [2018].

– Vegetation: A major area of desired improvement for SMLFire1.0 is the representation as well as the dynamic struc-590

ture of vegetation predictors. This could be done in several different ways. First, by including finer scale vegetation

characteristics through a combination of integrated data products, such as Effective Vegetation Type (EVT) [Rollins,

2009] or Normalized Difference Vegetation Index (NDVI) [Didan, 2015], and outputs from physically parameterized

models [Hansen et al., 2022]. These predictors would be helpful in informing the model about the type and spatial dis-

tribution of different live and dead fuels. Second, for predictions of future fire activity over longer time scales, it would595

be important to account for the nonstationarity of the climate-vegetation relationship, a pivotal factor in determining

the spatially heterogeneous shifts in vegetation patterns [Higuera et al., 2009; Bradstock, 2010; Hansen et al., 2018].

We may already be seeing evidence of this effect in our analysis: recent increases in aridity coupled with transitions in

vegetation patterns could have precipitated a shift in the fire regimes across the WUS and promoted larger and more

severe fires in the past two decades. Third, besides climate induced shifts, vegetation patterns are also affected by human600

and natural disturbances such as changes in land use [Klein Goldewijk and Ramankutty, 2004], tree mortality [Williams

et al., 2013], insect range expansions as well as infestations [Pureswaran et al., 2018], and fire itself [Parks et al., 2018].

Importantly, multiple studies have shown that fire-induced fuel limitations are expected to slow, but not abate the con-

tinued heat- and drought-induced increases in annual area burned across the WUS over the next few decades [Hurteau

et al., 2019; Abatzoglou et al., 2021a]. Thus, coupling the current stochastic ML model framework with a DGVM for a605

variety of vegetation types and different human intervention scenarios is a promising research direction.

– Other predictors: Several potentially relevant land-surface predictors were not considered here since their records are

not available over the full duration of our study period. For instance, recent work has highlighted the role of remotely

sensed soil moisture [Rigden et al., 2020] and the sensitivity of live fuel moisture content to atmospheric aridity [Rao

et al., 2022] in regulating wildfire ignitions and area burned respectively. Reliable measurements over the WUS for both610

these predictors are only available after 2015. Meanwhile, human influence on individual fire sizes could be affected by

synchronous fire activity over several regions. Abatzoglou et al. [2021b] approximate this effect by concurrent fire danger

days, a metric that measures the strain on available resources for suppressing new ignitions as well as containment of

ongoing fires. We will explore the role of additional land-surface and human action predictors in forthcoming analyses.
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6 Conclusions615

Disentangling the various climate, vegetation, and human drivers of wildfire frequency and sizes in the western United States

is critical for developing accurate seasonal as well as longer term forecasts of fire activity. In this paper, we introduced a novel

stochastic ML framework, SMLFire1.0, for estimating the parametric distributions of observed fire frequencies and sizes in

12km× 12km grid cells observed on a monthly time scale. These distributions were sampled using Monte Carlo simulations to

obtain the mean and variance for fire frequency as well as area burned at monthly and annual scales in several WUS Ecoregions.620

We improve upon previous regression-based and ML approaches in several concrete ways. In particular, our model: relies only

on the spatiotemporal variability of dynamic predictors, the spatial variability of static predictors, and not on any predictors

related to location and time such as latitude or calendar month; captures the nonlinear interactions among different predictors

at multiple spatial scales; and provides robust parametric model uncertainty estimates for our results.

Our main results are as follows: a) the time series for both modeled frequencies and area burned are in good statistical625

agreement with the observed data over monthly and annual timescales at spatial scales from Ecoregions to the whole WUS;

b) the modeled area burned successfully accounts for the interannual variability and multidecadal trends in the observed area

burned in both forested and nonforested regions; c) for anomalous extreme fire years such as 2020, the stochastic model is

useful for estimating the upper percentiles, i.e. 95th, 99th . . ., of the total annual area burned distribution; d) the cumulative

observed fire size distribution is best fit by a combined GPD model with finite mean but infinite variance, which has important630

consequences for how resources are allocated for fuel treatment and fire containment.

We used the SHAP technique to evaluate the predictor importance for the frequency and size models at the Ecoregional,

Divisional, and WUS scales. While VPD is the leading predictor at both smaller and larger scales, the order of subleading fire

month predictors – precipitation total, mean daily maximum and minimum temperatures, moisture in large diameter dead fuels

– as well as the fraction of grassland cover, aboveground biomass, and topography varies across Ecoregions, indicating that635

our model is able to generalize well across spatially heterogeneous climate, vegetation, and human gradients. Furthermore,

we visualized the different functional relationships between predictor values and wildfire activity with potential interaction

effects through partial dependence plots for several important predictors. Besides fire month variables, we find that increased

fire frequencies in our model are driven by a set of antecedent predictors acting at two distinct timescales across Forests,

Deserts, and Plains: a seasonal (3-4 months) scale associated with snow or precipitation drought, and a cumulative longer term640

(1-2 years) scale correlated with wetter conditions that promote fuel growth. Modeled fire sizes, on the other hand, are mostly

sensitive to seasonal scale antecedent conditions.

Future research directions will focus on expanding the SMLFire1.0 model framework to include: a stochastic model for

human ignitions, nonstationary relationships between predictors and fire activity, fire-fuel feedback over different climate and

vegetation gradients, as well as additional finer scale moisture and human action predictors. Moreover, we intend to incorporate645

SMLFire1.0 as a subgrid-scale parameterization scheme for the fire modules of a regional scale DGVM and ESM while also

benchmarking it against existing parameterizations.
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