
(Note: The reviewers’ comments are in gray and the author’s responses are in blue. Unless
specified otherwise, the line numbers quoted in our responses are with reference to the revised
manuscript.)

Reviewer #1

Overall, this study has interesting components and would be a nice contribution to the literature
applying ML approach on wildfire prediction. The paper is well-written, and I think that the
authors’ are in a strong position to introduce the stochastic ML method, which is a relatively new
concept, to the wildfire modeling community. There are a few aspects that could be further
addressed before the paper is suitable for publication.

We thank the reviewer for their positive feedback on our manuscript. A detailed response to
their individual comments is given below:

1a. This study used SHAP values to compare importance between predictors for the entire
period as a global perspective and for each Ecoregion. But, how about the importance changes
for temporal aspects (e.g. dry/wet season or extreme fire events)?

We have split the reviewer’s original point into two parts for clarity. We agree that the temporal
aspects of SHAP are an important diagnostic given that previous works (in particular, Wang and
Wang, 2020) have shown subtle differences in the fire behavior between the dry and wet
seasons in south central United States (US). Shown in Figs. R1a and R1b are the western US
SHAP importance plots for the dry (May - September) and wet (October - March) seasons
respectively for a MDN frequency model trained on all fires. The most significant differences
between the two seasons are: the number of fires, with the dry season experiencing a factor of
~10 more fires than the wet season, and the increased importance of extreme weather variables
such as VPDmax3 and FFWImax3.

Figure R1a. SHapley Additive exPlanation (SHAP) analysis of the fire frequency MDN model
outputs across the western United States for the wet (left) and dry (right) seasons. Input
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predictors sorted in descending order of their mean SHAP values aggregated over the entire
study period. Each colored point along the x-axis represents an individual prediction with the
color corresponding to high (yellow) or low (indigo) values of the respective input predictor.

Figure R1b. Same as Fig. R1a but for the fire size MDN model.

1b.  It is interesting that none of the results in this study actually show significant importance for
wind speed, although it is a key factor of fire spread.

The reviewer is correct in pointing out that wind speed is a key driver of fire spread. Indeed our
results in the manuscript corroborate this fact since the monthly mean of 3-day maximum
Fosberg Fire Weather Index (FFWImax3) is an important predictor in our SHAP plots for the fire
size model in almost all the ecoregions and their aggregations. The FFWI is an index of fire
severity calculated using temperature, humidity, and wind speed, which has been shown to be
an important correlate of wind-driven fires (Moritz et al., 2010; Barbero et al., 2014).

As such, the SHAP importance values shown in the manuscript are for a model trained with
both the monthly mean of 3 day maximum wind speed (Wind) and FFWImax3, with the FFWImax3

being more important in all ecoregions. When we repeated our analysis after removing FFWImax3

as a predictor, we obtained SHAP importance plots with Wind as one of the important predictors
as shown in Fig. R2, as anticipated by the reviewer.

To clarify the properties of the FFWI as a correlate of hot, dry windy conditions, we have also
included the following sentence in our revised manuscript,

L124-125: The FFWI, which is calculated using temperature, humidity, and wind speed
(Fosberg, 1978), has been shown to be an important correlate of dry, windy conditions
associated with fire weather (Moritz et al., 2010).
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Figure R2. SHapley Additive exPlanation (SHAP) analysis of the fire size MDN model outputs
across the western United States with wind speed as a predictor instead of FFWI (left), and both
wind speed as well as FFWI (right).

2. The discrepancy of the year 2020 (Figure 11) can be further analyzed with input predictors.
Although the scale of AAB 2020 is out of the range during the training period, it can be
associated with abnormal patterns in climate/vegetation or sudden changes in human induced
predictors. The authors may consider this further.

The reviewer raises an interesting point that we considered while preparing our manuscript, but
never explicitly addressed in its writing. Essentially, the question can be posed as follows: “Are
extreme sizes for individual fires a result of extreme or anomalous values of various predictors?”

As the plots in Fig. R3 indicate: individually, the largest fires in 2020 across the WUS did not
correspond to extreme fire weather conditions at either monthly or sub-monthly scales. In fact,
there is a significant difference in the fire sizes of the largest fire and the fire corresponding to
the most extreme value of an important predictor, potentially highlighting the confounding role of
prompt human action in containing the growth of large fires.

We consider three different plots to argue the above point. First, we contrast the distribution of
three important fire weather predictors: VPD, FFWImax3, and FM1000 in grid cells with and
without fires. As shown in Fig. R3a, we observe a clear shift in the distributions of VPD and
FM1000 in the presence and absence of fires, but there is also a sizable overlap for months with
moderate fire weather. This overlap is even more significant when contrasting the predictor
distributions for small and large fires in Fig. R3b. Moreover, while the most extreme predictor
values correspond to large fires (red circle), the largest fire size (red diamond) occurred at
moderately high but not extreme fire weather on both monthly and sub-monthly scales. Most
strikingly, while comparing the predictor distributions for large fires that occurred between
1984-2019 and those that occurred in 2020, we find in Fig. R3c that: a) the most extreme
weather conditions led to smaller fires (red, black circles) relative to the largest fire sizes (red,
black diamonds) in the respective time period; b) with the exception of FFWImax3 values for
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several fires in 2020, the distributions of other predictors in grid cells with large fires were on
average less extreme than in 1984-2019.

In summary, there appears to be only a weak monotonic relationship between extreme predictor
values and individual fire sizes. An important caveat being that the predictor values used in our
analysis are at coarse spatial and temporal resolutions relative to the physical scales of fire front
propagation. We are exploring different ways to bridge the two regimes in ongoing work.
Following are the changes in the text that summarize this point,

L571-574: For the fire size model, a major limitation of our current approach is its reliance on
climate predictors whose spatial and temporal scales are coarse relative to the physical scales
involved in fire front propagation (Bakhshaii and Johnson, 2019). Bridging these two regimes
(Sullivan, 2009) is an important focus of our ongoing work to improve predictability of extreme
fire behavior.

a)

b)
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c)

Figure R3. Contrasting probability distributions of VPD, FFWImax3, and FM1000 values (in 𝜎) for
grid cells with: a) no fires and fires; b) small fires and large fires; c) all large fires in 1984-2019
and 2020. In b) and c), the circles indicate fires that occurred in grid cells with the most extreme
predictor value, whereas the diamonds indicate the largest fire by burned area.

3. Why is ‘Southness’ selected rather than other directions? Also, interesting since it is included
in the top 10 important predictors for the size model (Figure 12 and 13). It would be nice to
further describe the role of ‘Southness’ in this study domain.

We appreciate the reviewer raising this comment. Mean south-facing degree of slope (also
referred to as slope aspect in the fire ecology literature), or Southness, is associated with higher
insolation in the Northern Hemisphere, resulting in drier conditions and low fuel moisture than all
other slope directions (Rollins et al., 2002; Dillon et al., 2011). We think it is one of the strengths
of our model that it is able to simultaneously assess the relative importance of climatic
predictors such as VPD and topographic predictors like Slope and Southess simultaneously.

We have included the following sentence in the Data section of our revised manuscript to clarify
the reviewer’s comment,

L170-172: In the Northern Hemisphere, Southness is associated with higher insolation which
results in drier conditions and low fuel moisture relative to other slope directions (Rollins et al.,
2002; Dillon et al., 2011).

4. A typo in L361 : ‘are modeled’

We have fixed this typo in the revised manuscript.
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Reviewer #2

Overall Feedback

This is another work applying ML to predict fires, but this time more focusing on the WUS where
fires are more connected to human activities. This take on the ML-based fire model is unique
and interesting. The ML framework used here is standard, though the advantage of SMLFire1.0
compared to the gradient-boosted tree model needs to be more explicitly described and
discussed in the main text. For instance, one of the advantages of SMLFire1.0 is uncertainty
quantification. What source of uncertainty is evaluated? If it is only statistical uncertainty, would
it be model-dependent? How does this model account for the spatiotemporal variability of the
predictors and their non-linear interactions and why the other models couldn’t? The cited work
Wang et al., 2021 also considered those features in their XGBoost model and SHAP analysis.
The interpolation of SHAP values also needs to be more carefully reviewed. Such as human
predictors can introduce contrast impacts even at the same location. Higher population density
can cause both fire ignition and suppression, a small SHAP value would overlook the impact of
this predictor. For these reasons, and others mentioned below, major revisions to the
manuscript are needed before possible publication.

We thank the reviewer for carefully reading through our manuscript and providing constructive
feedback on our ML framework as well as its interpretation through SHAP values.

One major point raised by the reviewer is regarding the comparison of SMLFire1.0 with the
gradient-boosted tree model of Wang et. al., (2021). While the Wang et. al., (2021) model also
accounts for the spatiotemporal variability of predictors and their nonlinear interactions, we
identify two major differences, namely their gradient-boosted tree model: a) only predicts the
area burned at the grid cell level and not the fire probability or frequency, thus missing an
important element of stochasticity in fire activity; b) does not perform uncertainty quantification,
while our model uses the variance of Monte Carlo samples from the optimized mixture model to
estimate the parametric model uncertainty for fire frequency and sizes. Although we view the
analysis of Wang et. al., (2021) as complementary to ours, we make the following distinction
between our approaches sharper in the Theory section,

L184-191: c) be based on parametric distributions that could be sampled using Monte Carlo
simulations for estimating the mean and parametric model uncertainty of modeled fire frequency
and sizes. While tree-based ML approaches using xGBoost have shown high performance in
area burned prediction across the continental US (Wang et al., 2021), we adopt a neural
network based architecture here because it combines the flexibility of machine learning
techniques with the robustness of parametric distribution based methods traditionally used in
statistical fire modeling (Westerling et al., 2011, Joseph et al., 2019). Moreover, since neural
network models have more powerful representation learning capabilities than gradient-boosted
trees (Levin et al., 2022), they are better equipped for generalizing the learned relationships
between input predictors and fires to test data from future climate states or different fire regimes.
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L227-228: We treat the variance as an estimate of the parametric model uncertainty, or
equivalently the uncertainty in modeled frequency due to different realizations of a parametric
model.

The first paragraph of the Conclusions section (L608-616) has also been lightly edited to make
the point about parametric model uncertainty estimation clearer.

We address the reviewer’s comments regarding the interpretation of SHAP values and possible
confounders in the section on “Explanation of SHAP values” below.

Major Remarks

Selection of predictors

1. The meteorological predictors were obtained from multiple data sources. The inconsistency
between the data sources may introduce additional uncertainties. Why are the daily and X-day
minimum and maximum temperatures extracted from different sources? The fire weather index
is calculated from relative humidity and wind speed from gridMET. Both variables from
UCLA-ERA5 were used as individual predictors. Why not use the same data source to derive
FFWI?

We thank the reviewer for raising these points. Firstly, we used the NOAA nClimgrid data to
obtain the monthly means of daily maximum and minimum temperature data, which is only
available on monthly (and not daily) scales. We preferred the NOAA data over gridMET because
it is of higher quality and extends back to 1895, which will enable us to validate our model on
fire data from the early 20th century in forthcoming work.

In order to calculate the X-day daily maximum and minimum temperatures we used daily scale
data from the UCLA-ERA5 reanalysis. More importantly, we used temperature, humidity, and
wind speed data from UCLA-ERA5 reanalysis to calculate the monthly mean FFWI and X-day
maximum FFWI. We acknowledge an unfortunate error in the original manuscript (line 124)
where we stated that FFWI data was taken from gridMET. The only predictor obtained from
gridMET in our analysis is the monthly mean FM1000 value.

We could have used daily scale data from gridMET for all the above predictors besides FM1000,
however since wind speed in gridMET is derived by downscaling NARR data from a coarser
resolution of 32 km x 32 km resolution, we instead used wind speeds from UCLA-ERA5
reanalysis which downscaled ERA5 wind data to a higher 9 km x 9 km resolution using the WRF
regional climate model. Figure 11 in Rahimi et. al., (2022) illustrates the improvement in wind
speed resolution due to UCLA ERA5-WRF as compared to gridMET-NARR. Following is the
revised data description in the manuscript,

L123-129: Monthly mean FM1000 values, an indicator of climate-derived moisture balance,
were adapted from gridMET (Abatzoglou, 2013).The FFWI, which is calculated using
temperature, humidity, and wind speed (Fosberg, 1978), has been shown to be an important
correlate of dry, windy conditions associated with fire weather (Moritz et al., 2010). Since wind
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speed in gridMET is derived using a spatial interpolation of the National Atmospheric Regional
Reanalysis (NARR) data from a coarser (32 km x 32 km) resolution, we instead use high (9 km
x 9 km) resolution temperature, humidity, and wind speed predictors from the dynamically
downscaled UCLA ERA5-WRF reanalysis (Rahimi et al., 2022) to calculate the monthly mean
FFWI.

2. In addition to monthly mean daily maximum and minimum temperature, what physical
information can the X-day mean variables add in? Is X-day mean calculated from the running
average?

We have expanded the discussion around the current description of X-day mean variables and
also commented upon the physical meaning behind their inclusion,

L129-132: Furthermore, we use daily scale data from the UCLA ERA5-WRF reanalysis to
calculate the monthly maximum X-day running average of daily maximum and minimum
temperature (TmaxmaxX, TminmaxX), where X ∈ {3, 5, 7}. Similar X-day extreme predictors are
also derived for VPD, FFWI, and wind speed. The X-day running average of these predictors
are included to improve our model's sensitivity to weekly scale extreme fire weather caused by
events such as heatwaves.

3. The predictors are selected with physical meanings. Could the authors elaborate on why a
variable is chosen?

Besides adding an explanation for including FM1000, FFWI, and X-day extreme weather
variables in the Data section, we have now included an additional table in the Supplementary
information, Table S3, that elaborates briefly on the relationship between each predictor and fire
response variables.

4. Line 162: Table S2 lists 30 predictors. This number of predictors is more close to the one after
iteratively dropping off predictors that do not improve overall performance and are highly
correlated as the authors mentioned in the results section. If two variables are highly correlated,
which one will be kept? I would also move this to the method section.

We have added an extra line in the caption explaining how the total number of potential
predictors in Table S2 adds up to 51:

Considering each predictor's M antecedent months’ average and maximum X-day running
average components as distinct predictors, the total number of predictors adds up to 51.

As per the reviewer’s suggestion, we have also moved the discussion regarding variable
selection to the Methods section (L316-320).

5. Since the authors found that the antecedent precipitation is one of the most important drivers
affecting plant growth, would it be helpful to include vegetation predictors that more closely
connect to fuel conditions? Meanwhile, the results show low importance of the spatial variability
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of vegetation predictors, however, the temporal variability is important, which appears to conflict
with the justification of using time-invariant biomass.

Figure R1. Spatial map of the correlation between the mean of antecedent precipitation in the
previous year (AntPreclag1) and aboveground biomass aggregated for each Level III ecoregion.
The boundaries of various ecoregions are indicated by solid black lines.

The reviewer raises an important point regarding the importance of temporal variability of
vegetation predictors. We acknowledge that the abundance and flammability of fine fuels is one
of the main drivers of fire activity. Time-varying biomass maps would be an ideal predictor for
our model; however, to the best of our knowledge, no such products exist in the fire ecology or
remote sensing literature.

Thus, we use a combination of both: a static biomass map to inform the model of relative fuel
abundance as well as antecedent precipitation predictions in lag years as a proxy of dynamic
plant growth. Interestingly, as we show in Fig. R1 above, the long term mean of AntPrec lag1

shows moderate correlations with the time-invariant aboveground biomass across different L3
Ecoregions.

We also note from Fig. S2, S3 and S7, S8 in our Supplementary Information that AntPrec lag1 is
an important predictor for fire frequency while Biomass is an important predictor for fire size. A
potential explanation could be that while AntPrec lag1 is responsible for plant growth that drives
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fire frequency in arid climates, the spatial fuel abundance given by Biomass, especially in
Forests, is a major driver of fire spread resulting in larger burned areas.

6. Surprisingly, human predictors are not among the top 10 predictors for fire frequency, while
over 90% of the California fire ignitions were associated with human activities (e.g. Balch et al.,
2017).

This is an insightful comment and is related to point 3 of Referee Comment (RC) #3 on our
original preprint. Before outlining how we addressed the reviewer’s comment, we note that the
FPA-FOD data used in Balch et. al., 2017 contains significantly more smaller fires than the
WUMI dataset that we are using which only contains fire ≥ 1 km2. Since human fires are mostly
small fires, we expect the ~90% number for human started fires in California to be slightly lower
for the WUMI dataset.

There are two potential explanations for the lack of human predictors among top 10 predictors
for fire frequency: a) since our model is trained on fires across the WUS where the proportion of
human started fires is ≤ 50%, there could be a potential skewed sampling of fires while training
SMLFire1.0 (note that we do not have access to labels for human vs natural ignitions in our data
set); b) our choices of human predictors are poorly correlated with fire occurrences.

As outlined in RC#3, we also performed a toy experiment to test the explanations outlined
above. Based on our findings, we have added the following sentences to our discussion
clarifying the potential bias in SMLFire while modeling fires with human vs natural ignitions:

L431-434:Given that a large fraction of fires in parts of the WUS, especially Mediterranean
California and coastal PNW , are human ignited (Balch et. al. 2017), this result could stem from
a skewed sampling of fires while training SMLFire1.0 as well as the lack of correlation between
our chosen human predictors and fire occurrences.

L568-570: Alternatively, we could leverage the seasonal differences between human and
lightning started fires to account for potential selection biases in training data for SMLFire1.0.

Explanation of SHAP values

1. Line 303-304 As far as I know, the Kernel SHAP also makes an assumption about feature
independence. If two features are highly correlated, one value will be replaced with random
ones from the background dataset, and then SHAP will generate predictions based on the new
datasets while making the SHAP value estimation less reliable.

We agree with the reviewer’s comment that the Kernel SHAP method assumes feature
independence while calculating the Shapley additive value of a particular feature and also relies
on random draws from the dataset for replacing absent features. Thus, in case there are
correlated features, Kernel SHAP could end up overweighting the importance of unlikely data
points. We have modified our writing in the ‘Predictor Importance’ subsection to clarify this point,
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L325-329: This is in contrast to the traditional predictor importance techniques which only rely
on a fixed coalition of predictors to assess the contribution of an individual variable … We note
that a drawback of using the Kernel Explainer method is that its assumption of predictor
independence could lead, in practice, to a biased estimation of predictor importance in the
presence of two or more strongly correlated features.

2. Figure 11-Forests shows increases in both grassland fraction and above-ground biomass
increase the burned area. In the forests, the above-ground biomass is mainly contributed by
wooden biomass. Therefore, I am wondering if grassland fraction and biomass will increase
simultaneously. Could the authors plot a partial dependence plot for those two predictors? How
to understand the higher Tmax would suppress fire spread? When replacing VPD with relative
humidity relevant variables, the relationship between Tmax and burned area becomes positive
(Figure S10-lower left panel). Would the correlation between the predictors affect the results?

We find that Ecoregions are the more appropriate spatial scale to assess the relative predictor
importance of Biomass and Grassland. Analyzing Figs. S7 and S8, it is clear that the cumulative
importance of Grassland at the Forests Division level is primarily driven by its role in CA Central
and South Coasts, Southern Rockies, and AZ/NM Mountains Ecoregions, whereas Biomass is
the more important predictor in Sierra Nevada, CA North Coast, PNW Mountains, and Northern
Rockies. For completeness, we also show in Fig. R2 a comparison between the partial
dependence plots for Biomass and Grassland for the aggregated Forests Division:

Figure R2. SHAP dependence plots for Biomass (left) and Grassland (right) predictors of the
MDN size model.

Indeed, as the reviewer’s previous comment suggests, correlation between VPD and Tmax
appears to affect the predictor importance of Tmax in Forests (Fig. 13) relative to the case with
only RH and Tmax (Fig. S10; lower left panel). We have now added an additional line in our
Results section clarifying this point,
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L542-547: From the perspective of predictor importance, there might actually be an advantage
to using RH instead of VPD: the correlation between VPD and Tmax leads to a small but
spurious trend in SHAP value for Tmax in Forests as shown in Fig. 13, whereas using only RH
and Tmax in Fig. S10 yields the correct Tmax effect on fire size. On the other hand, from the
perspective of future climate-fire relationships, the fact that the decision of including VPD, RH,
or both does not substantially affect model performance does not mean that this decision is
unimportant.

Specific Remarks

1. A stochastic ML fire model is introduced. I am wondering if any physical processes (e.g.,
lighting and human ignition) are included in this model?

We have included lightning the lightning strike density as a correlate of natural ignitions and
several human predictors for human ignitions. However, unlike process-based models such as
SPITFIRE (Thonicke et. al., 2010), we do not include any physical parameterizations for
ignitions. We appreciate the reviewer’s comment here and we will consider including additional
physics in future versions of SMLFire1.0 to improve its ignition modeling capacity.

We have also included two additional sentences in the Data section to clarify the inclusion of
human predictors and the dual role played by predictors such as population density,

L166-168: These predictors serve as potential correlates of human ignitions for fire occurrences
as well as proxies for access to fire suppression or containment resources. Some predictors
such as Popdensity could play a dual role through both increasing the likelihood of ignitions
while also providing easier access for fire suppression.

2. Mapping the Ecoregions also on Figure 1 would much help the reader to understand their
locations. The “desert” is not a place closely related to fires, considering using an alternative
name for this division.

We acknowledge the scope for confusion due to our use of “Desert” to describe the arid
grassland and shrubland regions spanning several Ecoregions through the center of our study
region. However, we chose “Desert”  following the nomenclature used by the EPA while referring
to the Level II ecoregion, North American Cold and Warm Deserts, containing the area roughly
equivalent to our Deserts Division.

3. Line 125: What’s the spatial resolution of ERA5-WRF? Suggest adding spatial resolution to
Table S2.

We have added spatial resolution to Table S2 as an additional column, and also included a
clarification in the caption about how all predictors, despite having different native resolutions,
are aggregated to the 12 km resolution in our statistical analysis.
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4. Line 153: The variable Popdensity actually measures the distance to human settlements.
However, the Popdensity sounds like population density which is inversely proportional to the
distance. Suggest changing to Pop_dist or similar terms.

We have modified all references to ‘Popdensity’ throughout the text as well as within plots to
‘Pop10_dist’ following the reviewer’s suggestion.

5. Line 221-224: While I am okay with this approximating, the MTBS dataset provides the extent
of fires 1000 acres or greater in the WUS, which might be more precise than approximating
each fire as a circle.

We agree with the reviewer’s comment; the main consideration for approximating the fire shape
as a circle was driven by the absence of burned area polygons in the WUMI dataset, which
contains both interagency and MTBS fires. We have added the following sentence in the
Methods section to clarify the reviewer’s comment.

L241-242: In future work, we will use burned area polygons from MTBS for large fires instead of
the circular approximation while deriving the effective input predictors.

6. Line 235-238: Can the MDN predict burned area at each grid cell directory or for individual
fires? If yes, why not sum up burned area at each grid cell or individual fires to get the
Ecoregion level burned area?

We derive the Ecoregion level burned area by summing up the areas for individual fires –
exactly as the reviewer has suggested (see lines 249-250 in the revised manuscript). In the
referenced passage, we have outlined a simple analytic expression for estimating the relative
contribution from frequency as well as fire sizes to the mean burned area at a given scale. For
instance, if we were to use a ML model for fire frequency and overpredict the number of fires but
underpredict individual fire sizes, we would still get the correct burned area. Using the analytic
expression provides a helpful diagnostic tool in such a scenario.

We have lightly edited our writing around this point in the revised manuscript to emphasize that
the burned area is calculated by summing up individual fires, and the average burned area
calculation is only for interpreting our calculation schematically.

7. Line 235: What does the spatialtemporal scale mean here? How can the CCDF plot support
the breakpoint selection based on this definition?

As we described above, the use of spatiotemporal scale here is merely schematic. The
breakpoint selection procedure is based on creating the CCDF plot with individual fire sizes and
not cumulative burned area.

8. Line 242: Should this be “consecutive time period”? Please describe how a breakpoint will be
determined in the method.
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We have outlined our procedure for determining the breakpoint year as well as different
validation steps in the Results section (lines 456 - 465). A similar version of the text can be
found in the original manuscript (lines 435-444) but may have been obscured due to the
unfortunate page break due to the placement of Figs. 9 and 10.

9. Line 310-315: As stated in Line 189, 17489 grid cells correspond to active fires. Is it
associated with the same value as stated here “˜20000” test points?

To construct the set of test points for our SHAP values, we consider all (i.e 17,489) grid cells
with a fire and combine them in a ratio of 1:3 with a random sample of background points with
no fires (i.e 17,489/3 ~ 5830), bringing the total number of test points to 23,319 points, or
~20,000 as we mention in the text.

10. Line 361: “are modeled”.

We have fixed this typo in the revised manuscript.

11. Line 451: Which fire frequency is used in the follow on analysis?

Both modeled and observed fire frequency are used to calculate the monthly and annual area
burned across the WUS. Another source of stochasticity that we explore in Fig. S6 is deriving
the burned area using input predictors corresponding to observed as well as modeled fire
locations.

12. Line 449-500: Was this statement based on all the 28 predictors or the top 10 shown in
Figure 12? Increasing the distance to the camp ground does not seem to increase the burned
area.

We are slightly confused by the reviewer’s comments here since we do not discuss the effect of
distance to camp grounds in Fig. 12. The one human related variable that shows up as an
important predictor in Fig. 12 is the distance to areas with population density greater than 10
people per square kilometer (Popdensity; or Pop10_dist in the revised manuscript), which
indicates that more remote areas are more conducive to larger fire sizes.

13. Line 591-592: The slope variables are also invariant with time.

This is a good point. We have amended lines 591-592 (now lines 616-618) as follows:

…our model: relies only on the spatiotemporal variability of dynamic predictors, the
spatial variability of static predictors, and not on any predictors related to the location
and time such as latitude or calendar month;...

14. Line 603-604: What does the “fire month'' stand for?

We have adopted “fire month” as a descriptor throughout the manuscript to refer to monthly
scale predictors for any month with a fire. We mainly use it to distinguish the effect of climate
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and fire weather conditions during a month from the influence of antecedent climate predictors.
We have now clarified this usage in the Data section by modifying the following sentence where
we first use the term fire month,

L136: Thus, for a given month m with potential fire activity (henceforth fire month) …
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Reviewer #3

Jatan Buch et al. developed a SMLFire model based on Mixture Density Networks and monthly
climate, land surface, and atmospheric conditions. This work focused on both fire frequency and
total burnt area over Western US. In general, this study is timely and important. The high
performance of SMLFire is exciting for both fire frequency and burnt area. The presentation is
smooth and well-done. Congratulations. Below are my comments and recommendations.

We thank the reviewer for their positive feedback on our manuscript. A detailed response to
their individual comments is given below:

1. Fuel load seems missing in the input variable list, which is an important predictor for fire
spread thus burnt area. Also GDP (missing) is often considered as an important indicator of
human effects on fire management and firefighting efforts. Some others are also potentially
useful to consider, e.g. road density. I would suggest creating a new table with a full list of input
variables and explaining how these variables possibly affect fire frequency and burnt area.

We agree with the reviewer’s comments that fuel load is an important input variable for fire
activity. Ideally, we would like to include dynamic fuel load variables that track changes in fuel
density from climate perturbations as well as previous fires. However, we could not find any fuel
load products solely based on observations in the literature, so we used the fractional land
cover outputs from the National Land Cover Database (NLCD) as input predictors instead. We
have also mentioned (lines 148-150 in the original manuscript) that a promising future direction
of research is to precisely accomplish what the reviewer suggests: include fuel load variables
such as dead and live biomass from a dynamic vegetation model.

We appreciate the reviewer's suggestion of including GDP as a predictor for our model.
Unfortunately, one challenge of using socioeconomic predictors, such as GDP, is that they are
often only available at the county or census block level which is much coarser than the
12 km x 12 km grid cells we are using in our analysis. In the future, gridded socioeconomic
predictors will be a powerful addition. It is worth noting however, that the majority of resources
used to suppress fire are allocated at the national level, not the county level.

We have now included the following table (Table R1) as Table S3 in our supplementary
information section as per the reviewer’s suggestion to clarify the qualitative effect of individual
variables on fire frequency and burned area:

Predictors Qualitative effect Comments

Fire frequency Fire size

VPD,
AntVPD_Mmon,
VPDmaxX

↑ ↑ VPD on multiple timescales, from weekly to
seasonal, is positively correlated with both fire
frequency and size.
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Tmax,
AntTmax_Mmon
TmaxmaxX

↑ ↑ Tmax on multiple timescales, from weekly to
seasonal, is positively correlated with both fire
frequency and size.

Tmin,
TminmaxX

/ ↑ Both extreme Tmin and monthly mean Tmin are
positively correlated with fire size. Tmin is not a
significant predictor for fire frequency.

Prec,
AntPrec_Mmon

↓ ↓ Prec on multiple timescales, from monthly to
seasonal, is negatively correlated with both fire
frequency and size.

AntPrec_lag1,
AntPrec_lag2

↑ ↑ Annual mean of Prec in lagging years, a proxy for
biomass growth, is positively correlated with fire
frequency and size.

SWE_mean,
SWE_max
AvgSWE_Mmon

↓ ↓ Snow water equivalent on multiple timescales,
from monthly to seasonal, is negatively correlated
with both fire frequency and size.

FM1000 ↓ ↓ 1000-hour dead fuel moisture is negatively
correlated with fire frequency and size.

FFWI, FFWImaxX ↑ ↑ Mean and extreme values of FFWI are positively
correlated with fire frequency and size.

WindmaxX / ↑ Monthly maxima of X-day mean wind speed is
positively correlated with fire size. Wind speed is
not a significant predictor for fire frequency.

Biomass ↕ ↑ Spatial variance in biomass is positively
correlated with fire size, however its effect on fire
frequency is ambiguous with potential
confounding by human action predictors.

Grassland,
Shrubland

↑ ↑ Fraction of grassland and shrubland cover
increases fuel flammability and continuity over a
landscape, and is thus positively correlated with
fire frequency and fire size.

Lightning ↑ / Increased lightning strike density contributes
additional ignitions, and is positively correlated
with fire frequency. Lightning is not a significant
predictor of fire size.

Slope ↑ ↑ Slope is positively correlated with fire frequency
and size since the rate of fire spread is
proportional to the degree of slope.

Southness ↑ ↑ Southness, or mean south-facing degree of
slope, dictates the level of solar insolation and is
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positively correlated with fire frequency and size.

Pop10_dist ↕ ↑ Increased distance from areas with population
density greater than 10 km2 is a correlate of
remoteness leading to a larger fire size. Its effect
on fire frequency is ambiguous since these areas
experience fewer ignitions while also having
reduced access to early fire containment efforts.

Table R1. Summary of the physical meaning of important model predictors as well as their
qualitative effect on fire frequency and size. The symbols ↑, ↓, ↕, and / refer to positive, negative,
ambiguous, and insignificant correlations between a predictor and fire response variable
respectively.

2. Spatial evaluation of SMLFire simulation is limited to regions, but evaluation on gridcell scale
is also important because the model is gridcell-based and spatially-explicit. Suggest showing
spatial maps of simulated vs observed western US fire frequency and burnt area statistics for
long-term mean, decadal trend etc. It is interesting to see 12-km scale spatial hot spots of
trends and variability as well.

Thank you for raising an important point. We think spatial validation of our model at the 12-km
scale is difficult for two main reasons:

i) Most 12 km grid cells (≳ 99%) do not experience any fires in the study period of ~40 years,
and only ~5% of the grid cells with fires experience more than 1 fire in any month. Even on
decadal scales, fires are incredibly rare, so unless the model is trained on 1-2 degree (~50-100
km) grid size scale, it will not contain enough fires for a meaningful trend. Thus, we choose
aggregate EPA Level III (L3) ecoregions to demonstrate the monthly, interannual, and decadal
variability of fire frequency and burned area across the western United States.

ii) Moreover, the stochasticity of monthly scale climate predictors that our model is trained on
also contributes to the lack of spatial precision over longer timescales. Most papers in the
literature that simulate long-term trends in fire probability (for example, Parisien and Moritz,
2009; Chen et. al., 2021) end up relying on climate normals (i.e. long-term averages) as
predictors. We believe that one of the strengths of our models is its ability to leverage this
stochasticity for projecting a range of possible outcomes, which is more useful than accuracy for
planning fire mitigation.

3. Human vs natural ignited fires have clear differences in ignition location and background
climate. I understand that SMLFire does not distinguish human vs natural fire, but it is worth
exploring or discussion on how that might bias SMLFire in simulating spatial-temporal
distribution of fires as well as the interpretation of underlying control factors for fire frequency
and burnt area.
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We appreciate the reviewer’s comment about accounting for the difference in human vs natural
ignitions. As a preliminary exploration of potential biases in SMLFire, we performed the following
experiment: based on Fig. 1 of Balch et al., 2017, we identified that a large proportion of
human-started fires (≳ 60% of all fires in that ecoregion) in our western United States (WUS)
study region occur in Mediterranean California (CA) ecoregions as well as coastal parts of the
Pacific Northwest (PNW). Next, we trained SMLFire on fires from all 5 L3 ecoregions from this
area and performed the SHAP analysis for fire frequency predictors.

In Fig. R1 below, we compared the SHAP values for all fires in the CA+PNW ecoregions from
the above experiment with the results for SMLFire trained on fires across the WUS (as shown in
Fig. 6 of the manuscript, which is also reproduced in the right panel of Fig. R1). We find that
relative to the WUS case, the SHAP values for Lightning are more important for the CA+PNW
case. However, unlike the WUS case, we find that Campnum, or the mean number of campsites
in a grid cell, emerges as an important predictor of fire frequency. None of the other human
related predictors are selected in our experiment.

Figure R1. Mean absolute SHAP values for all fires in the CA+PNW ecoregions with the
frequency MDN model trained on: (Left) only fires from the 5 L3 ecoregions in the CA+PNW
area; (Right) fires from across the WUS as shown in Fig. 6 of the manuscript.

Based on the experiment outlined above, we have added the following sentences to our
discussion clarifying the potential bias in SMLFire while modeling fires with human vs natural
ignitions:

L431-434: Given that a large fraction of fires in parts of the WUS, especially Mediterranean
California and coastal PNW, are human ignited (Balch et. al. 2017), this result could stem from a
skewed sampling of fires while training SMLFire1.0 as well as the lack of correlation between
our chosen human predictors and fire occurrences.
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L568-570: Alternatively, we could leverage the seasonal differences between human and
lightning started fires to account for potential selection biases in training data for SMLFire1.0.

4. It’s not clear how uncertainty quantification is done. Does it only consider parametric
uncertainty? How about model structure (how many layers of hidden layer, number of neurons
for each layer), other hyperparameters? How about forcing data uncertainties?

The mixture density network used in our analysis learns the function map between input
predictors and the parameters of a mixture distribution for each individual fire. This may be
interpreted as approximating the likelihood of fire occurrence or size given the input predictors.
We estimate the parametric model uncertainty by performing Monte Carlo simulations on a
frequency or size MDN model with parameters fixed to their optimal values and calculating the
variance of the samples.

Our framework does not account for uncertainties due to hyperparameter or forcing data
uncertainties in this analysis. However, given that we are approximating the likelihood function,
a promising direction for future work is to embed the likelihood in a hierarchical Bayesian model
to account for the hyperparameter and data forcing uncertainties. Typically, we expect the data
forcing uncertainties to be a much bigger factor while using SMLFire in conjunction with
seasonal and subseasonal-to-seasonal (S2S) climate model forecasts. We have edited the
following sentence in the Methods section to clarify the reviewer’s point,

L227-228: We treat the variance as an estimate of the parametric model uncertainty, or
equivalently the uncertainty in modeled frequency due to different realizations of a parametric
model.

We have also lightly edited the first paragraph of the Conclusions section (lines 614-615) to
make the point about parametric model uncertainty estimation clearer.
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