(Note: The reviewer’s comments are in gray and the author’s responses are in blue. Unless
specified otherwise, the line numbers quoted in our responses are with reference to the revised
manuscript.)

Jatan Buch et al. developed a SMLFire model based on Mixture Density Networks and monthly
climate, land surface, and atmospheric conditions. This work focused on both fire frequency and
total burnt area over Western US. In general, this study is timely and important. The high
performance of SMLFire is exciting for both fire frequency and burnt area. The presentation is
smooth and well-done. Congratulations. Below are my comments and recommendations.

We thank the reviewer for their positive feedback on our manuscript. A detailed response to
their individual comments is given below:

1. Fuel load seems missing in the input variable list, which is an important predictor for fire
spread thus burnt area. Also GDP (missing) is often considered as an important indicator of
human effects on fire management and firefighting efforts. Some others are also potentially
useful to consider, e.g. road density. | would suggest creating a new table with a full list of input
variables and explaining how these variables possibly affect fire frequency and burnt area.

We agree with the reviewer’s comments that fuel load is an important input variable for fire
activity. Ideally, we would like to include dynamic fuel load variables that track changes in fuel
density from climate perturbations as well as previous fires. However, we could not find any fuel
load products solely based on observations in the literature, so we used the fractional land
cover outputs from the National Land Cover Database (NLCD) as input predictors instead. We
have also mentioned (lines 148-150 in the original manuscript) that a promising future direction
of research is to precisely accomplish what the reviewer suggests: include fuel load variables
such as dead and live biomass from a dynamic vegetation model.

Since our fire model is based only on the western US, it is unclear to us how GDP, typically a
national level economic indicator, will be a helpful predictor. We would appreciate helpful
references from the reviewer on this point.

We have now included the following table as Table S3 in our supplementary information section
as per the reviewer’s suggestion to clarify the qualitative effect of individual variables on fire
frequency and burned area:

Predictors Qualitative effect Comments

Fire frequency | Fire size
VPD, ) 1 VPD on multiple timescales, from weekly to
AntVPD_Mmon, seasonal, is positively correlated with both fire
VPD™maX frequency and size.
Tmax, 1 1 Tmax on multiple timescales, from weekly to




AntTmax_Mmon

seasonal, is positively correlated with both fire

TmaxmaX frequency and size.

Tmin, Both extreme Tmin and monthly mean Tmin are

TminmaX positively correlated with fire size. Tmin is not a
significant predictor for fire frequency.

Prec, Prec on multiple timescales, from monthly to

AntPrec_Mmon

seasonal, is negatively correlated with both fire
frequency and size.

AntPrec_lag1,
AntPrec_lag2

Annual mean of Prec in lagging years, a proxy for
biomass growth, is positively correlated with fire
frequency and size.

SWE_mean,
SWE_max
AvgSWE_Mmon

Snow water equivalent on multiple timescales,
from monthly to seasonal, is negatively correlated
with both fire frequency and size.

FM1000

1000-hour dead fuel moisture is negatively
correlated with fire frequency and size.

FFWI, FFW|ma

Mean and extreme values of FFWI are positively
correlated with fire frequency and size.

Windmaxx

Monthly maxima of X-day mean wind speed is
positively correlated with fire size. Wind speed is
not a significant predictor for fire frequency.

Biomass

Spatial variance in biomass is positively
correlated with fire size, however its effect on fire
frequency is ambiguous with potential
confounding by human action predictors.

Grassland,
Shrubland

Fraction of grassland and shrubland cover
increases fuel flammability and continuity over a
landscape, and is thus positively correlated with
fire frequency and fire size.

Lightning

Increased lightning strike density contributes
additional ignitions, and is positively correlated
with fire frequency. Lightning is not a significant
predictor of fire size.

Slope

Slope is positively correlated with fire frequency
and size since the rate of fire spread is
proportional to the degree of slope.

Southness

Southness, or mean south-facing degree of
slope, dictates the level of solar insolation and is
positively correlated with fire frequency and size.




Pop10_dist ) 1 Increased distance from areas with population
density greater than 10 km? is a correlate of
remoteness leading to a larger fire size. Its effect
on fire frequency is ambiguous since these areas
experience fewer ignitions while also having
reduced access to early fire containment efforts.

Table 1. Summary of the qualitative effect and physical meaning of important model predictors
on fire frequency and burned area. The symbols 1, |, I, and / refer to positive, negative,
ambiguous, and insignificant correlations between a predictor and fire response variable
respectively.

2. Spatial evaluation of SMLFire simulation is limited to regions, but evaluation on gridcell scale
is also important because the model is gridcell-based and spatially-explicit. Suggest showing
spatial maps of simulated vs observed western US fire frequency and burnt area statistics for
long-term mean, decadal trend etc. It is interesting to see 12-km scale spatial hot spots of
trends and variability as well.

Thank you for raising an important point. We think spatial validation of our model at the 12-km
scale is difficult for two main reasons:

i) Most 12 km grid cells (* 99%) do not experience any fires in the study period of ~40 years,
and only ~5% of the grid cells with fires experience more than 1 fire in any month. Even on
decadal scales, fires are incredibly rare, so unless the model is trained on 1-2 degree (~50-100
km) grid size scale, it will not contain enough fires for a meaningful trend. Thus, we choose
aggregate EPA Level Il (L3) ecoregions to demonstrate the monthly, interannual, and decadal
variability of fire frequency and burned area across the western United States.

i) Moreover, the stochasticity of monthly scale climate predictors that our model is trained on
also contributes to the lack of spatial precision over longer timescales. Most papers in the
literature that simulate long-term trends in fire probability (for example, Parisien and Moritz,
2009; Chen et. al., 2021) end up relying on climate normals (i.e. long-term averages) as
predictors. We believe that one of the strengths of our models is its ability to leverage this
stochasticity for projecting a range of possible outcomes, which is more useful than accuracy for
planning fire mitigation.

3. Human vs natural ignited fires have clear differences in ignition location and background
climate. | understand that SMLFire does not distinguish human vs natural fire, but it is worth
exploring or discussion on how that might bias SMLFire in simulating spatial-temporal
distribution of fires as well as the interpretation of underlying control factors for fire frequency
and burnt area.



We appreciate the reviewer’s comment about accounting for the difference in human vs natural
ignitions. As a preliminary exploration of potential biases in SMLFire, we performed the following
experiment: based on Fig. 1 of Balch et al., 2017, we identified that a large proportion of
human-started fires (* 60% of all fires in that ecoregion) in our western United States (WUS)
study region occur in Mediterranean California (CA) ecoregions as well as coastal parts of the
Pacific Northwest (PNW). Next, we trained SMLFire on fires from all 5 L3 ecoregions from this
area and performed the SHAP analysis for fire frequency predictors.

In Fig. 1 below, we compared the SHAP values for all fires in the CA+PNW ecoregions from the
above experiment with the results for SMLFire trained on fires across the WUS (as shown in
Fig. 6 of the manuscript, which is also reproduced as the right panel of Fig. 1). We find that
relative to the WUS case, the SHAP values for Lightning are more important for the CA+PNW
case. However, unlike the WUS case, we find that Campnum, or the mean number of campsites
in a grid cell, emerges as an important predictor of fire frequency. None of the other human
related predictors are selected in our experiment.
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Figure 1. Mean absolute SHAP values for all fires in the CA+PNW ecoregions with the
frequency MDN model trained on: (Left) only fires from the 5 L3 ecoregions in the CA+PNW
area; (Right) fires from across the WUS as shown in Fig. 6 of the manuscript.

Based on the experiment outlined above, we have added the following sentences to our
discussion clarifying the potential bias in SMLFire while modeling fires with human vs natural
ignitions:

(lines 421-423) Given that a large fraction of fires in parts of the WUS, especially Mediterranean
California and coastal PNW (Balch et. al. 2017), are human ignited, this result could stem from a
skewed sampling of fires while training SMLFire1.0 as well as the lack of correlation between
our chosen human predictors and fire occurrences.



(lines 557-559) Alternatively, we could leverage the seasonal differences between human and
lightning started fires to account for potential selection biases in training data for SMLFire1.0.

4. It's not clear how uncertainty quantification is done. Does it only consider parametric
uncertainty? How about model structure (how many layers of hidden layer, number of neurons
for each layer), other hyperparameters? How about forcing data uncertainties?

The mixture density network used in our analysis learns the function map between input
predictors and the parameters of a mixture distribution for each individual fire. This may be
interpreted as approximating the likelihood of fire occurrence or size given the input predictors.
We estimate the parametric model uncertainty by performing Monte Carlo simulations on a
frequency or size MDN model with parameters fixed to their optimal values and calculating the
variance of the samples.

Our framework does not account for uncertainties due to hyperparameter or forcing data
uncertainties in this analysis. However, given that we are approximating the likelihood function,
we can easily embed it in a hierarchical Bayesian model to account for the hyperparameter and
data forcing uncertainties. Typically, we expect the data forcing uncertainties to be a much
bigger factor while using SMLFire in conjunction with seasonal and subseasonal-to-seasonal
(S2S) climate model forecasts.

We have edited the following sentence in the Methods section to clarify the reviewer’s point
(lines 223-224):

We treat the variance as an estimate of the parametric model uncertainty, or equivalently
the uncertainty in modeled frequency due to different realizations of a parametric model.

We have also lightly edited the first paragraph of the Conclusions section (lines 603-608) to
make the point about parametric model uncertainty estimation clearer.
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