(Note: The reviewer’s comments are in gray and the author’s responses are in blue. Unless
specified otherwise, the line numbers quoted in our responses are with reference to the revised
manuscript.)

Overall, this study has interesting components and would be a nice contribution to the literature
applying ML approach on wildfire prediction. The paper is well-written, and | think that the
authors’ are in a strong position to introduce the stochastic ML method, which is a relatively new
concept, to the wildfire modeling community. There are a few aspects that could be further
addressed before the paper is suitable for publication.

We thank the reviewer for their positive feedback on our manuscript. A detailed response to
their individual comments is given below:

1a. This study used SHAP values to compare importance between predictors for the entire
period as a global perspective and for each Ecoregion. But, how about the importance changes
for temporal aspects (e.g. dry/wet season or extreme fire events)?

We have split the reviewer’s original point into two parts for clarity. We agree that the temporal
aspects of SHAP are an important diagnostic given that previous works (in particular, Wang and
Wang, 2020) have shown subtle differences in the fire behavior between the dry and wet
seasons in south central United States (US). Shown in Fig. 1a and Fig. 1b are the western US
SHAP importance plots for the dry (May - September) and wet (October - March) seasons
respectively for a MDN frequency model trained on all fires. The most significant differences
between the two seasons are: the number of fires, with the dry season experiencing a factor of
~10 more fires than the wet season, and the increased importance of extreme weather variables
such as VPD™ and FFW/|™a<3,
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Figure 1a. SHapley Additive exPlanation (SHAP) analysis of the fire frequency MDN model
outputs across the western United States for the wet (left) and dry (right) seasons. Input
predictors sorted in descending order of their mean SHAP values aggregated over the entire



study period. Each colored point along the x-axis represents an individual prediction with the
color corresponding to high (yellow) or low (indigo) values of the respective input predictor.
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Figure 1b. Same as Figure 1a. but for the fire size MDN model.

1b. It is interesting that none of the results in this study actually show significant importance for
wind speed, although it is a key factor of fire spread.

The reviewer is correct in pointing out that wind speed is a key driver of fire spread. Indeed our
results in the manuscript corroborate this fact since the monthly mean of 3-day maximum
Fosberg Fire Weather Index (FFWI™?) is an important predictor in our SHAP plots for the fire
size model in almost all the ecoregions and their aggregations. The FFWI is an index of fire
severity calculated using temperature, humidity, and wind speed, which has been shown to be
an important correlate of wind-driven fires (Moritz et al., 2010; Barbero et al., 2014).

As such, the SHAP importance values shown in the manuscript are for a model trained with
both the monthly mean of 3 day maximum wind speed (Wind) and FFWI™*3, with the FFWI™*
being more important in all ecoregions. When we repeated our analysis after removing FFW|™@3
as a predictor, we obtained SHAP importance plots with Wind as one of the important predictors
as shown in Fig. 2.

To clarify the properties of the FFWI as a correlate of hot, dry windy conditions, we have also
included the following sentence in our revised manuscript (lines 124-126):

The FFWI, which is calculated using temperature, humidity, and wind speed (Fosberyg,
1978), has been shown to be an important correlate of dry, windy conditions associated
with fire weather (Moritz et al., 2010).
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Figure 2. SHapley Additive exPlanation (SHAP) analysis of the fire size MDN model outputs
across the western United States with wind speed as a predictor instead of FFWI (left), and both
wind speed as well as FFWI (right).

2. The discrepancy of the year 2020 (Figure 11) can be further analyzed with input predictors.
Although the scale of AAB 2020 is out of the range during the training period, it can be
associated with abnormal patterns in climate/vegetation or sudden changes in human induced
predictors. The authors may consider this further.

The reviewer raises an interesting point that we considered while preparing our manuscript, but
never explicitly addressed in its writing. Essentially, the question can be posed as follows: “Are
extreme sizes for individual fires a result of extreme or anomalous values of various predictors?
And since such conditions are rare, by definition, how do we train our statistical or machine
learning model to correctly assign extreme responses to extreme predictor values?”

The second question is admittedly harder, but as the plots in Fig. 3 indicate: the largest fires in
2020 did not correspond to extreme fire weather conditions. In fact, there is a significant
difference in the fire sizes of the largest fire and the fire corresponding to the most extreme
value of an important predictor, potentially highlighting the role of prompt human action in
containing the growth of large fires.

We consider four different types of plots to argue the above point. First, we contrast the
distribution of three important fire weather predictors: VPD, FFWI™<3 and FM1000 in grid cells
with and without fires. As shown in Fig. 3a, we observe a clear shift in the distributions of VPD
and FM1000 in the presence and absence of fires, but there is also a sizable overlap for months
with moderate fire weather. This overlap is even more significant when contrasting the predictor
distributions for small and large fires in Fig. 3b. Moreover, while the most extreme predictor
values correspond to large fires (red circle), the largest fire size (red diamond) occurred at
moderately high but not extreme fire weather. Most strikingly, while comparing the predictor
distributions for large fires that occurred between 1984-2019 and those that occurred in 2020,
we find in Fig. 3c that: a) the most extreme weather conditions led to smaller fires (red, black



circles) relative to the largest fire sizes (red, black diamonds) in the respective time period; b)
with the exception of FFWI™*3 values for several fires in 2020, the distributions of other
predictors in grid cells with large fires were on average less extreme than in 1984-2019.

In summary, there appears to be only a very weak monotonic relationship between extreme
predictor values and fire sizes. An important caveat being that the predictor values used in our
analysis are at coarse spatial and temporal resolutions relative to the physical scales of fire front
propagation. We are exploring different ways to bridge the two regimes in ongoing work.
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Figure 3. Contrasting probability distributions of VPD, FFWI™*3 and FM1000 values (in o) for
grid cells with: a) no fires and fires; b) small fires and large fires; c¢) all large fires in 1984-2019
and 2020. In b) and c), the circles indicate fires that occurred in grid cells with the most extreme
predictor value, whereas the diamonds indicate the largest fire by burned area.

3. Why is ‘Southness’ selected rather than other directions? Also, interesting since it is included
in the top 10 important predictors for the size model (Figure 12 and 13). It would be nice to
further describe the role of ‘Southness’ in this study domain.

We appreciate the reviewer raising this comment. Mean south-facing degree of slope (also
referred to as slope aspect in the fire ecology literature), or Southness, is associated with higher
insolation in the Northern Hemisphere, resulting in drier conditions and low fuel moisture than all
other slope directions (Rollins et al., 2002; Dillon et al., 2011). We think it is one of the strengths
of our model that it is able to simultaneously assess the relative importance of climatic
predictors such as VPD and topographic predictors like Slope and Southess simultaneously.

We included the following sentence (lines 161-163) in the Data section of our revised
manuscript to clarify the reviewer’s comment:

In the Northern Hemisphere, Southness is associated with higher insolation which
results in drier conditions and low fuel moisture relative to other slope directions (Rollins
et al., 2002; Dillon et al., 2011).

4. Atypo in L361 : ‘are modeled’
We have fixed this typo in the revised manuscript.
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