
We are thankful for the numerous constructive comments and suggestions provided by 

the two reviewers. Below, the comments of the reviewers are indicated in grey, our 

answers in black, the modifications of the text after the comments of Anonymous Referee 

#1 in blue, and the modifications of the text after the comments of Anonymous Referee 

#2 in red.  

Anonymous Referee #1 

 

Overview: 

 

Criado et al. present a data-fusion workflow that uses Universal Kriging (UK) to merge 

dispersion model output (from CALIOPE-Urban) to hourly observations and microscale 

land-use regression (LUR) models. The authors’ workflow is able to create high-

resolution street-scale data of NO2 to compute exceedance probabilities, with 

uncertainty calculations based on the UK technique estimated error variance. This 

work is comprehensive and appears to have good improvement in correlation and 

error metrics. I will be happy to recommend this manuscript for publication after my 

(mostly minor) comments below are addressed. 

 

Major comments: 

 

1. I want to note that the code isn’t available and thus cannot be reviewed in its current 

form. The authors state that “So, at this moment only reviewers can access these 

relevant sources under a previous mail in the request form.” But the request form on 

Zenodo requires the full name, e-mail address, and affiliation of the requester, 

compromising the anonymity of the referees. Thus, I was not able to review the code 

that is associated with this work. I would request that the authors provide the code 

used in this work for review, either through the Editor or the GMD portal. While I 

appreciate that the authors have archived the code in a repository with a DOI, access 

during review is important. Many other authors have publicly archived their code when 

submitting to GMD, despite the manuscript being under review. 

 

We apologize for the problems associated with the revision of the code. The code is now 

publicly available in the following repository: 

 

Criado, A., Mateu Armengol, J., Petetin, H., Rodríguez-Rey, D., Benavides, J., 

Guevara, M., Pérez García-Pando, C., Soret, A., and Jorba, O. (2022). Code and 

data set from data fusion uncertainty-enabled methods to map street-scale 

hourly NO2 in Barcelona city: a case study with CALIOPE-Urban v1.0 (1.0). 

Zenodo, https://doi.org/10.5281/zenodo.7185913 

 

2. The authors have performed data-fusion using data from two LCS campaigns, one 

from 2018, and one from 2017. Is there an impact on the quality of the data-fusion 

technique if LCS data are provided in different years? Similarly, if only one LCS 

campaign data set is used, how would it impact the quality of the results? A brief 

assessment of how much data is necessary and the applicability of the methods shown 

in this work will help future readers to apply this technique in the future to other major 

cities where urban pollution is also a major health issue. 

 

We agree with the reviewer that assessing the data-fusion skills depending on the 

available data would help future researchers apply this technique. An Appendix has 

been added to the new version of the manuscript : 

 

 

 



Appendix A: Impact of selected passive dosimeter campaigns on the data-fusion results

An assessment of the passive dosimeters data needed for the present data-fusion methods is provided here. Although the480

specificities of the data, this assessment is intended to aid in the transferability to other cities. Firstly, Sect. A1 provides

a statistical assessment of the data-fusion techniques as a function of the experimental campaign used. Secondly, Sect. A2

includes a brief discussion of the number of samplers required.

A1 Impact of combining different experimental campaigns

We have calculated the effect of using campaigns from different years at two distinct levels: effects on the microscale-LUR485

performance, and effects on the overall data-fusion workflow performance (UK-DM-LUR).

A1.1 Impact on the microscale-LUR performance

Applying the performance evaluation procedure described in Sect. 3.1.1, Table A1 compares statistical results for the microscale-

LUR model when relying solely on data from the CSIC or the xAire campaigns. As a reference, we have also added the results

of the raw CALIOPE-Urban model and the microscale-LUR performance when using both campaigns (already shown in Table490

2).

Campaign Model n COE MB (µg/m3) r RMSE (µg/m3)

CSIC
Microscale-LUR

Training-validation set 1580 0.51 0.24 0.85 8.70

Test set without adding the residuals 170 0.32 0.31 0.75 10.74

Test set adding the residuals 170 0.35 -0.27 0.75 10.68

Raw CALIOPE-Urban Annual mean 170 0.20 0.71 0.67 12.66

xAire
Microscale-LUR

Training-validation set 6030 0.29 -0.13 0.67 11.49

Test set without adding the residuals 660 0.23 -0.18 0.59 12.40

Test set adding the residuals 660 0.26 -0.25 0.64 11.87

Raw CALIOPE-Urban Annual mean 660 0.09 -1.23 0.51 13.81

CSIC and xAire
Microscale-LUR

Training-validation set 7600 0.30 0.15 0.69 11.38

Test set without adding the residuals 840 0.24 0.22 0.62 12.17

Test set adding the residuals 840 0.27 -0.27 0.64 11.87

Raw CALIOPE-Urban Annual mean 840 0.13 -0.81 0.54 13.68

Table A1. Statistical results of the microscale-LUR model in nested CV, considering both campaigns or solely one of them. The 2017 annual

mean concentration of NO2 of the raw dispersion model (CALIOPE-Urban) is also shown.

The microscale-LUR model based solely on the CSIC campaign exhibits superior performance compared to the model based

on both campaigns, whereas the model based solely on the xAire campaign demonstrates the opposite trend. However, there

are notable differences in the number of data points and the motivation behind each campaign. The CSIC campaign deployed

many fewer samplers (175), which raises concerns about possible overfitting. In this line, the COE statistic shows a significant495
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decline (~40 %) between the training set and the test set without residuals, although the decrease in performance for the other

statistics is not as prominent. Additionally, we expect a higher data quality of the CSIC campaign, since it was conducted

by a specialized research agency. In contrast, the xAire campaign was a citizen science initiative, involving school children

and their families. All of this could have affected issues such as clustering (see Fig. 3), although the number of dosimeters of

this campaign included here is considerably larger (669). Combining both campaigns allows us to consider more samples to500

characterize the complex NO2 gradients in the city, while reducing potential errors associated with overfitting and clustering.

A1.2 Impact on the full data-fusion workflow performance

Figure A1 shows the statistical results (COE, MB, r, and RMSE) obtained through an hourly LOOCV approach across the 12

monitoring stations. The statistical analysis compares the Universal Kriging technique that employs only the CALIOPE-Urban

output as a covariate (UK-DM), the Universal Kriging technique adding the microscale-LUR model resulting from combining505

both dosimeter campaigns (UK-DM-LUR), and the UK-DM-LUR models based only on one campaign (UK-DM-LUR CSIC

and UK-DM-LUR xAire). For reference, the raw CALIOPE-Urban statistical results are also presented.

COE MB (μg/m3) r RMSE (μg/m3)
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Figure A1. Statistical results for each station after applying UK-DM and UK-DM-LUR to 2019 hourly data in LOOCV. For the UK-DM-

LUR application, we have considered developing the microscale-LUR model only with one experimental campaign (UK-DM-LUR CSIC or

UK-DM-LUR xAire), or both of them (UK-DM-LUR). In addition, we show the statistical results for the CALIOPE-Urban estimates at each

station. The All stations row refers to the average over all stations.

Regardless of the configuration, UK-DM-LUR improves the UK-DM methodology (and, therefore, CALIOPE-Urban) for

the COE, r, and RMSE indicators. For the MB indicator, there is no clear trend once again. Once the microscale-LUR model
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is integrated into the Universal Kriging framework, the statistical differences among UK-DM-LUR configurations were less510

significant than the ones shown in Table A1. It should be noted that the LOOCV is carried out in a limited number of moni-

toring stations (12), which represents a significant constraint on the current statistical evaluation. Despite this limitation in the

evaluation, we consider that the broader spatial coverage of the samplers when combining both campaigns is the better option,

allowing to capture a greater number of complex NO2 structures not reproduced by CALIOPE-Urban.

A2 Impact of the number of samplers considered on the microscale-LUR performance515

For the case of using the two campaigns, we have computed the microscale-LUR performance gradually increasing the number

of samplers from 140 to 790 by uniform increments of 50 random samplers, which results in 14 new models. In addition, we

have also added the final model with all samplers (844) to make the comparison. To ensure the robustness of the results, we

repeated these computations three times, randomly varying the selected samplers. Then, from these three series, the average

and the standard deviation of the statistical indicators are computed. Figure A2 compares the COE, MB, r, and RMSE when520

gradually increasing the number of samplers for the training dataset, the test dataset, the test dataset interpolating the residuals,

and the raw CALIOPE-Urban output.

As expected, as more samplers are considered, the standard deviation of the different metrics decreases. Also, an increasing

trend in COE and r for the test sets is observed, while the same statistics decrease for the training sets. This opposite trend

indicates that the overfitting is being reduced as more samplers are considered. For the test sets, the RMSE fluctuates around 12525

µg/m3 beyond 290 samplers with a moderated variability. Despite some fluctuations in the results, we can conclude that from

290 sampler onwards, the COE differences between training and test sets remain more or less constant, as well as the resulting

RMSE. Therefore, based on these results, we would recommend a minimum of 290 samplers to build the microscale-LUR.
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Figure A2. Statistical results of the 15 microscale-LUR models in nested CV. The models are built by considering both dosimeters campaigns

and gradually increasing the number of samplers from 140 to 790 by uniform increments of 50 random samplers, in addition to the final

model with all the samplers (844). The statistics represent the evaluation of the microscale-LUR models for the training and test (with and

without the correction of the residuals) sets. The 2017 annual mean concentration of NO2 of the raw dispersion model (CALIOPE-Urban) is

also shown and evaluated in the dosimeter’s locations.
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Regarding transferability to other cities, and in line with Specific comment 6 of 

Anonymous Referee #2, the following text has been added to Section 4. Conclusions: 

 

L464-473: A strong point of the presented methodology is the characterization of 

the NO2 spatial patterns by combining two sources of information: the urban 

dispersion model and the microscale-LUR model. Therefore, the transferability of 

this method to other cities depends upon the existence of relevant passive 

dosimeter observations (or other observations providing constraints on the spatial 

variability at urban/street level) and the availability of a high-resolution urban air 

quality model. Regarding the urban dispersion model, key aspects are the 

availability of a detailed road network to derive meaningful emissions and using a 

skilled regional model to prescribe the boundary conditions accurately. On the other 

hand, Appendix A presents an assessment of the necessary amount of samplers to 

retrieve a valid microscale-LUR model. On top of that, a network of monitoring 

stations plays a crucial role in the regression step of Universal Kriging, as a linear 

model is derived every hour. In this study, we observed that at least 4 monitoring 

stations have to be available to build robust linear regressions. However, this might 

vary depending on the specificities of the analysis, such as the urban model skills 

and the size of the city. 

 

Specific comments: 

 

1. L57: “while the time-dependent LCS network explains the temporal behavior.” Is it 

implied that the temporal behavior is short-term here in contrast with the long-term 

spatial distribution provided by the urban model?  

 

Thank you for raising this point. Indeed, temporal behavior does refer to short-term 

temporal behavior. We have clarified this point in the new version of the manuscript as 

follows: 

 

L54-57: Schneider et al. (2017) use a popular geostatistic technique, Universal 

Kriging, considering the time-aggregated annual mean of an urban model as a 

basemap (or climatology) to explain the long-term spatial gradients at the street-

scale, while the time-dependent LCS network explains the short-term temporal 

behavior. 

L132-134: While the monitoring stations and the urban dispersion model provide 

information on the pollutants' short-term temporal behavior, the microscale-LUR 

basemap (long-term mean) remains constant in time. 
 

2. L134: An adjustment factor is computed as the ratio between the observed 2017 

annual mean and the average over the period of the experimental campaign. The 

LCS campaigns span only a few weeks (February 16th to March 15th, 2018; and 

February and March, 2017) – why is the 2017 annual mean used here instead of, for 

example, February- March mean? 

 

The main reason to scale the campaigns at the annual level is that the resulting basemap 

is used to correct the model output throughout the whole year. However, the basemap 

may better represent the NO2 gradients observed during February-March than the real 

annual mean gradients. Ideally, if several campaigns at different seasons were available, 

a microscale-LUR model would have been fitted for each season. In the new version of 

the manuscript, we have clearly stated this limitation in the following lines:  

 

L145-148: Note that the microscale-LUR model is trained using experimental 

campaigns deployed in February and March. As a result, even though the 



annualization process corrects the NO2 levels and the predictors are expressed 

as annual averages, the captured spatial gradients may still have a significant 

seasonal bias. 

 

L447-452: In developing our microscale-LUR model, a limitation arises when 

using campaigns conducted between February and March. Although the 

annualization adjustment factor corrects the NO2 values, the spatial patterns are 

still linked to the period of the campaigns. If additional campaigns from different 

seasons of the year were available, assessing the seasonal bias effects on the 

spatial gradients would be highly interesting. Ideally, the basemap should be on 

a seasonal scale rather than a yearly scale. This highlights a potential 

improvement in our methodology that we could not quantify in the present 

analysis due to the lack of experimental campaigns during other seasons of the 

year. 

 

3. L136-137: The authors say that this processing adds some noise to experimental 

results but corrects the “environmental conditions influence”. What environmental 

conditions are referred to here? My impression is that this would mainly correct for 

bias in the low cost sensors’ instruments. 

 

Environmental conditions (e.g., wind speed, atmospheric stability, precipitation, radiation, 

temperature) likely induce a difference between the NO2 levels averaged over the 

campaign period and the annual mean. We agree with the reviewer that the adjustment 

factor mainly corrects the bias of the campaign-averaged levels with respect to the annual 

mean. We have clarified this point in the manuscript as follows:  

 

L142-145: Despite adding some noise to the experimental results, it corrects the 

bias induced by environmental conditions (e.g., wind speed, atmospheric stability, 

precipitation, radiation, temperature) and also corrects the environmental 

conditions influence and allows combining both campaigns, producing a dataset of 

844 samplers on which the microscale-LUR model relies. 
 

4. Figure 3: Useful to label inset in the figure “Combined data” “CSIC” “xAire”. 

 

As suggested by Anonymous Referee #1, we have included titles in each of the three 

panels to easily identify the different campaigns. Figure 3 in the manuscript has been 

changed by the following one: 



           
Figure 3. Sampler locations of the two different NO2 experimental campaigns used to train the microscale-

LUR model. The left panel shows the NO2 values and the locations of the combined campaigns. The top- and 

bottom-right panels show the CSIC and xAire campaign locations, respectively. The colour scale refers to the 

2017 annualized NO2 values, in μg/m3. The map has been generated using ggplot2 and ggmap R packages, 

and data from OpenStreetMap. © OpenStreetMap contributors 2017. Distributed under the Open Data 

Commons Open Database License (ODbL) v1.0. 

 

5. L247-248: The authors indicate that with the criteria (covariate slopes must be 

positive, less than four observations available in the hour) 14% and 2% of the hours 

in UK-DM, UK- DM-LUR are not corrected. How much percentage of these are due 

to negative covariate slopes? And how much are due to too few observations? If 

there is a significant percentage of nonphysical negative covariates, is there a 

common pattern to the conditions causing these? 

 

We agree with Anonymous Referee #1 that detailing the results of the statistical check is 

relevant information to add to the paper. In the new version of the manuscript, the 

following text has been added in Lines 258-264: 

 

L258-264: Following the above criteria, the percentage of cases with fewer than 

4 monitoring observations is relatively small, 0.034 % (3 hours), and is the same 

for each kriging application. For the UK-DM methodology, 14.11 % of the hours 

have not been corrected due to negative regression coefficients. On the other 

hand, for the case of UK-DM-LUR, only  1.47 % of the hours have been discarded 

due to a negative regression coefficient in both covariates.  As Benavides et al. 

(2019) identified, the poor skills of the urban model are attributed to low wind 

speeds and atmospheric stability situations, for which the performance of the 

mesoscale model decreases. Concerning the static microscale-LUR basemap, the 



poor correlation on an hourly basis is associated with hours that significantly 

deviate from the average behavior. 

 

6. L273: “We attribute this behavior … also to the already poor predictive skills of 

CALIOPE- Urban in this concentration range.” A citation will be useful for CALIOPE-

Urban’s underperformance in high-NOx conditions. 

 

We forgot to refer to Fig. 5a in which the referred behavior of CALIOPE-Urban can be 

observed. The new version of the manuscript clarifies this point as follows: 

 

L291-293: We attribute this behavior to the limited number of points in this 

range, which can weaken the model training, particularly in the nested CV 

context, but also to the already poor predictive skills of CALIOPE-Urban in this 

concentration range as seen in Fig. 5a. 

 

 

Technical corrections: 

1. L204: “back-transformed” -> “back-transformation” 

2. L210: “exceedance (P) a certain…” -> “exceedance (P) of a certain…” 

3. Lines 233, 234: middle dot -> cross sign for scientific notation. 

4. Figure 7: Units for MB, RMSE are missing the “^3” (shows as micrograms/m)  

 

We are thankful for the technical corrections provided by Anonymous Referee #1. All of 

them have been included in the text as suggested. 



Anonymous Referee #2

Overview:

Urban NO2 pollution shows strong gradients, and is almost always undersampled by
reference networks. The authors present an interesting approach to assimilate
complementary observational datasets, having different temporal sampling and
accuracy, in a high-resolution urban dispersion model. Using Universal Kriging, they
show that the predictive performance of the dispersion model improves if hourly
measurements are included. Moreover, they show that the system further improves
if a basemap is added in the data fusion, based on 840 Palmes tube measurements.
The observations clearly resolve local spatial structures which are not properly
described by the street model alone. The authors show that the error margin
provided from the Kriging method is fairly realistic, which enables them to calculate
maps with expected local exceedances of annual and hourly limit values of NO2 air
pollution.

The paper is well-referenced, positioning the study well in the current research
efforts on this topic. I recommend publication after addressing the following
comments:

General comments:

1. The microscale LUR model is trained by Palmes observations done in end-
February/begin-March. Although an annualization is applied (L132-L136), I assume
the resulting basemap would look differently when evaluated for months with e.g.
different typical NOx lifetime, boundary layer height, dominant wind direction. Does
the usage of a February/March basemap throughout the year introduce a significant
seasonal bias?

Anonymous Referee #2 pointed out that the microscale-LUR model was trained using
experimental campaigns conducted between February and March. Although an
adjustment factor corrects the seasonal bias of the dosimeter values through the
annualization process, the spatial patterns reflected by the dosimeters are still linked
to that particular season. Consequently, there may be a stationary bias. However, with
the currently available campaigns, we believe that annualizing the values is the best
way to use this information beyond the sampling period to obtain a basemap for the
entire year.

This discussion highlights a limitation of our methodology due to the lack of data
throughout the year. We have included it to enrich the manuscript in Sections 2.3 and
4. Note that this question is also linked with Specific comment 2 of Anonymous
Referee #1:

L145-148: Note that the microscale-LUR model is trained using experimental
campaigns deployed in February and March. As a result, even though the
annualization process corrects the NO2 levels and the predictors are expressed
as annual averages, the captured spatial gradients may still have a significant
seasonal bias.

L447-452: In developing our microscale-LUR model, a limitation arises when
using campaigns conducted between February and March. Although the
annualization adjustment factor corrects the NO2 values, the spatial patterns
are still linked to the period of the campaigns. If additional campaigns from
different seasons of the year were available, assessing the seasonal bias effects



on the spatial gradients would be highly interesting. Ideally, the basemap
should be on a seasonal scale rather than a yearly scale. This highlights a
potential improvement in our methodology that we could not quantify in the
present analysis due to the lack of experimental campaigns during other
seasons of the year.

2. The study uses hourly NO2 measurements of 12 reference stations in the
Barcelona area. To my knowledge, NO2 reference measurements are also done at
the Observatori Fabra site, which is also within the considered domain. Is there any
reason why this station is excluded?

We thank the reviewer for raising this point. Indeed, data from the Observatori Fabra
station is available and located within the study domain. However, after conducting
statistical analyses, we decided to exclude this station. In the new version, we added
the station’s location in Fig. 2 and the text below describing why it was excluded:

Figure 2. Domain of study and location of the referenced monitoring stations. The map has been generated
using ggplot2 and ggmap R packages, and data from OpenStreetMap. © OpenStreetMap contributors 2017.
Distributed under the Open Data Commons Open Database License (ODbL) v1.0. Map tiles are © Stamen
Design, under a Creative Commons Attribution (CC BY 3.0) license.

L93-94: There are 12 13 stations available on the Barcelona agglomeration
(Fig. 2), with a percentage of availability of hourly data greater than 93 %.

L94-96: Gràcia and Eixample are urban traffic monitoring stations, Segnier,
Observatori Fabra and Jardins are sub-urban background stations, and the
remaining 8 correspond to urban background stations.

L96-101: The Observatori Fabra station is not used in our data-fusion
methodology since its inclusion significantly degraded the data-fusion skills in
the urban environment. This is expected since the station is located on a hill



relatively far from built-up areas. In fact, it is not exactly an urban station
because it measures air pollution above the urban canopy while the other
stations measure pollution within the urban canopy. We are aware that by
removing this station, we may lose relevant information on the low NO2-level
regions surrounding the city. However, the main goal of our urban model is to
characterize NO2 exceedances in critical trafficked areas. Therefore, we decided
to exclude the Observatori Fabra station.

L393-396: The high uncertainty values in the upper left corner of Figs. 10b and
10e correspond to the low NO2 levels predicted in the Collserola mountains.
These high uncertainty values can be reduced by considering the Observatory
Fabra station, located in this area. However, as explained in Sect. 2.1, we
excluded this station since its inclusion decreases the data-fusion model’s
ability to predict high NO2 values in critical trafficked areas.

L452-455: As another limitation, the Observatori Fabra station has been
excluded from the data-fusion methodology because its inclusion worsened the
results in the urban environment. Although its exclusion means losing relevant
information regarding low NO2-level areas, the primary objective of the urban
model is to identify NO2 exceedances in high-trafficked areas.

3. Oftentimes, local authorities evaluate the air quality in their city based on
measurements of the reference network only. This gives a distorted impression, as
many local exceedances are not sampled. Data fusion methods, such as in this study,
correct for this sampling bias. The authors show that a large part of the city does not
meet the annual and hourly limit values for NO2 (L365-385). It would be interesting to
see how this contrasts with an analysis based on station data alone.

We thank the reviewer again for highlighting an advantage of using our methodology
that we did not explicitly refer to in our original manuscript. Indeed, Munir et al.
(2021) also raised this point. They compared various data-fusion methods
incorporating observational NO2 data from multiple sources (monitoring stations,
diffusion tubes, and low-cost sensors). In line with the reviewer’s comment, they
showed that monitoring stations provide the most accurate air quality information.
However, an analysis based on station data alone fails to capture the spatial patterns
and exceedances across the urban area needed for exposure studies. In this context,
we believe that adding the following comment to the conclusions will increase the
impact of our results:

L456-463: Local authorities frequently conduct air quality diagnoses solely
based on available monitoring stations, resulting in inaccurate assessments of
the situation since numerous local pollution hot-spots remain unmonitored. We
have shown that data-fusion methods can provide a more comprehensive
analysis by minimizing the sampling bias. For instance, in 2019, only the Gràcia
and Eixample stations exceeded the annual legal NO2 limit of 40 μg∕m3, and
only four hourly exceedances were recorded during this period in Barcelona. In
contrast, our results point out that large built-up areas and the main transit
streets in the city recurrently exceeded the legal limits during the same period.
Particularly, 13% of Barcelona city has a probability of 0.7 or higher of
exceeding the NO2 annual limit value of 40 μg/m3, which increases to 30%
with a probability of 0.5 or higher. For the Eixample district, which is the most
populous and densely populated, those percentages are 69% and 95%,
respectively.



Specific comments:

4. Section 3.1.2, Figure 6: The LUR basemap (6a) seems to be richer in detail
than the mean of the dispersion model (6b). However, it misses the lower pollution
levels in the mountainous area in the NW part of the domain. This introduces an
unwanted bias in this area for UK-DM-LUR when compared to UK-DM, which escapes
the validation statistics as there is no reference data available (or used) in this area.
How could the microscale-LUR model be improved for non-built-up areas?

We agree with the reviewer that the microscale-LUR basemap overpredicts the upper
left corner of the domain, where NO2 levels are low. Moreover, as the referee
commented, this issue is not captured in the statistical evaluation since we excluded
the Observatori Fabra station. This unwanted bias is caused by the lack of samplers in
this region and, more generally, the lack of samplers in low NO2-level areas. Thus, to
improve our microscale-LUR model in the non-built-up areas, we would require more
passive dosimeters in low NO2 regions. Alternatively, we could assign more weight to
the samplers in these areas during the microscale-LUR model training process.
However, this would probably degrade results in the built-up areas. This bias in the low
NO2-level areas has been highlighted in the new version of the manuscript. We have
clearly stated that this question escapes the statistical evaluation of the data-fusion
method:

L313-318: For instance, there is a noticeable increase in NO2 levels for the
microscale-LUR basemap (Fig. 6a) in the mountainous north-western area of
the study domain. This artifact is probably caused by the spatial distribution of
the passive dosimeters campaigns (Fig. 3), which poorly cover this region. The
NO2 overprediction of this area is not reflected in the statistical evaluation of
the data-fusion since we deliberately omitted the monitoring station located in
this area. We excluded this station to improve the data-fusion model’s ability to
capture NO2 exceedances in built-up areas, which is the main goal of the urban
model.

5. Section 3.2.2, Figure 8: Can part of the skewness of the distributions be
explained from the back-transformation from the log-domain (L202-204)?

The log-transformation is applied to correct the skewness of the NO2 distribution before
applying Kriging. As pointed out by the reviewer, when back-transforming the results, a
skewed distribution is retrieved. The skewness of the distribution of observed NO2,
which consists of recurrent moderate values and infrequent peaks, is linked to the
distribution of the normalized bias shown in Fig. 8. We have clarified this point in the
new version when discussing Fig. 8:

L363-367: Both methodologies, especially UK-DM, exhibit negative skewness.
This is because the corrected model struggles to capture the infrequent high
pollution peaks, tending to underestimate them significantly. Thus, negative
biases (Mh<Oh) are rare but stronger. On the other hand, the model tends to
overpredict moderate observed values slightly. Therefore, positive biases
(Mh>Oh) are more frequent and less severe. In agreement with the overall null
bias, the rare strong underestimations are compensated by frequent moderate
overestimations.

6. Conclusions: I miss some general words about transferability of this method to
other cities, referring to dependencies on databases, dispersion models, and local



network configurations. Also, I recommend summarizing briefly the estimated
exceedances in L265-385.

We have added some information about transferability in the conclusions. This is also
linked with the Major comment 2 of Anonymous Referee #1:

L464-473: A strong point of the presented methodology is the characterization of
the NO2 spatial patterns by combining two sources of information: the urban
dispersion model and the microscale-LUR model. Therefore, the transferability of
this method to other cities depends upon the existence of relevant passive
dosimeter observations (or other observations providing constraints on the spatial
variability at urban/street level) and the availability of a high-resolution urban air
quality model. Regarding the urban dispersion model, key aspects are the
availability of a detailed road network to derive meaningful emissions and utilizing
a skilled regional model to prescribe the boundary conditions accurately. On the
other hand, Appendix A presents an assessment of the necessary amount of
samplers to retrieve a valid microscale-LUR model. On top of that, a network of
monitoring stations plays a crucial role in the regression step of Universal Kriging,
as a linear model is derived every hour. In this study, we observed that at least 4
monitoring stations have to be available to build robust linear regressions.
However, this might vary depending on the specificities of the analysis, such as
the urban model skills and the size of the city.

We have also summarized the exceedances in the conclusions:

L461-463: Particularly, 13% of Barcelona city has a probability of 0.7 or higher of
exceeding the NO2 annual limit value of 40 μg/m3, which increases to 30% with
a probability of 0.5 or higher. For the Eixample district, which is the most
populous and densely populated, those percentages are 69% and 95%,
respectively.

7. L394-395: “The obtained microscale-LUR basemap (r=0.64,
RMSE=11.87μg/m3) outperformed the raw annual-averaged dispersion model results
(r=0.54, RMSE=13.68 μg/m3)”. This is not very surprising, as the annual-averaged
model results is one of the inputs of the LUR model.

Thanks for your comment, we have modified that part to reflect the fact that the
microscale-LUR basemap outperforms the raw annual-averaged dispersion model
results is indeed not surprising:

L425-427: As expected, the obtained microscale-LUR basemap (r=0.64,
RMSE=11.87 μg/m3) outperformed the raw annual-averaged dispersion model
results (r=0.54, RMSE=13.68 μg/m3), highlighting the convenience of using
passive dosimeters campaigns to explain the spatial distribution of NO2.

Technical corrections

We are thankful for the technical corrections provided by the reviewer. All suggested
modifications are changed in the new version of the manuscript.

L22: “obtaining high-resolution exposure to NO2 is crucial”→ “obtaining information
on high-resolution exposure to NO2 is crucial”



L22-23: In this context, obtaining information on high-resolution exposure to
NO2 is crucial for decision-making in urban air quality management.

L245: “if their slope is positive”. Confusing for me. I guess that a positive slope refers
to a positive coefficient in the linear combination.

L250: The correlation coefficient (r) and the regression coefficient (slope) of the
regression model…
L255: the covariates are used only if their regression coefficient is positive…
L256: In case all regression coefficients are negative…


