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Abstract. We develop a new data assimilative (DA) approach by combining two parallel frameworks: a parallel DA 

framework (PDAF) and a flexible model coupling framework (ESMF). The new DA system is built on the ESMF at the top 15 

level that drives the PDAF and any combination of Earth system modeling (ESM) components, to allow maximum flexibility 

and easy implementation of data assimilation for fully coupled ESM applications. We demonstrate the new DA system using 

a 3D unstructured-grid ocean model as ESM in this paper. The new system is validated using a simple benchmark and 

applied to a realistic case of Kuroshio simulation around Taiwan. The new system is demonstrated to significantly improve 

the model skill for temperature, velocity and surface elevation before, during and after typhoon events. The flexibility and 20 

ease of implementation make the new system widely applicable for other coupled ESMs. 

1 Introduction 

Ensemble based data assimilation (DA) approaches are popular choices for DA due to their advantage of being less intrusive 

to the original model code than the adjoint based approaches (Kalnay et al., 2007, Carrassi et al., 2018, Vetra-Carvalho et al., 

2018). A prominent example of a community-supported package is the Parallel Data Assimilation Framework (PDAF; 25 

Nerger et al. 2005, Nerger and Hiller 2013), which has been successfully utilized by several Earth system models (ESMs) 

such as FESOM, AWI-CM, NEMO, MITgcm etc. It is model agnostic and can handle different types of ESMs written in 

modern parallel computing languages, e.g., structured or unstructured grid, explicit or implicit models. It allows the choices 

of offline and online coupling between the DA component and the ESMs. While the offline coupling mode interfaces 

between the model and data assimilation codes using disk files and is hence less intrusive to the model code, the online mode 30 
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augments model code with DA functionality and is significantly more efficient and allows the nonlinear feedback from DA 

results to the ‘forward’ model. We will focus on the online mode in this paper. 

A large and growing selection of ensemble filters of both ensemble Kalman and nonlinear particle filters is available inside 

PDAF (Table 1). Furthermore, 3D variational (3DVar) methods (see Bannister, 2017) can also be supported by PDAF; 

parameterized covariances can be used to represent the uncertainty in the model state or ensembles, which are propagated 35 

using the same ensemble infrastructure as the ensemble filters for maximum efficiency. For operations, PDAF supports two 

modes: (1) fully parallel mode where all ensemble members are executed simultaneously during time stepping; (2) flexible 

mode where subsets of members (‘cohorts’ as shown in Fig. 2) are executed in batches. Obviously, the fully parallel mode 

allows maximum efficiency as measured by ‘time-to-solution', but the flexible mode is more practical when computational 

resources are limited. This flexibility is very important for practical applications because computational resources may not 40 

always be sufficient to support the fully parallel mode (Valcke 2022). 

Despite its success, the PDAF enabled DA applications have mostly focused on a single ESM component so far, like the 

ocean (e.g. Nerger et al. 2007, Brune et al, 2015), sea-ice (e.g., Yang et al., 2014, Mu et al., 2019), ocean-biogeochemistry 

(e.g., Pradhan et al., 2019, 2020; Goodliff et al., 2019), atmospheric transport (Pardini, 2020), or the solid Earth (Fournier et 

al., 2013; Schachtschneider et al. 2022). While extension to cover multiple coupled components is feasible with PDAF 45 

(Nerger et al., 2020, Kurtz et al, 2016), this often involves non-trivial amount of developmental work. The ensemble based 

DA systems such as PDAF require time-stepping of multiple ensemble members of the forward model, often written in 

domain decomposition based MPI parallelism (Gropp et al., 1994). While PDAF allows partitioning of global (‘world’) 

communication space into sub-communicators for each ‘instance’ of the model (ensemble member), it is challenging to 

generalize it to account for complex nonlinear coupling between ESMs in the future. Therefore, we implement the new DA 50 

system under the umbrella of a parallel coupling framework, Earth System Modeling Framework (ESMF, 

https://earthsystemmodeling.org/, last access: 10 May 2022). This allows DA to be performed on fully coupled ESMs 

running on different grids/meshes as ESMF can perform regridding and interpolation between different ESM components. 

In this paper, we develop a DA system based on ESMF-PDAF that can be easily extended to assimilate multiple coupled 

ESMs simultaneously. To clearly demonstrate the methodology, however, in this paper we will only validate the new DA 55 

system with an ocean model. Extension to coupled ESMs (e.g., ocean-atmosphere-biology etc) is trivial. The paper is 

organized as follows. We first describe the building blocks and overall structure of the new DA system in Section 2. We then 

validate the new system using a simple twin experiment in Section 3.1, before applying it to a challenging realistic case of 

northwestern Pacific in Section 3.2. Efficiency and overhead of the new DA system are examined in Section 3.3 using the 

realistic case. Finally, we summarize the major findings in this paper and future work in Section 4. 60 
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2 SCHISM-PDAF implementation under ESMF 

ESMF is a suite of software tools for developing high-performance, multi-component Earth science modeling applications. 

Such applications may include many components representing atmospheric, oceanic, terrestrial, or other physical domains, 

and their constituent processes (dynamical, chemical, biological, etc.). Often these components are developed by different 

groups independently and must be “coupled” together using software that transfers and transforms data among the 65 

components in order to form functional simulations. ESMF supports the development of these complex applications in a 

number of ways. It introduces a set of simple, consistent component interfaces that apply to all types of components, 

including couplers themselves. These interfaces expose in an obvious way the inputs and outputs of each component. It 

offers a variety of data structures for transferring data between components, and libraries for regridding, time advancement, 

and other common modeling functions. ESMF coupling has been used to construct modular ESMs at low, high, and flexible 70 

granularity (e.g. the Community Earth System Model CESM, the Goddard Earth Observing System (GEOS-5, Ott et al. 

2009), the Modular System for Shelves and Coasts MOSSCO, Lemmen et al. 2018). In general, using ESMF as mediator to 

link all components leads to less intrusion to the model code and maintain independence for each library. 

Once the parallel world is partitioned into smaller worlds using ESMF for each ensemble member used in the DA (which is 

executed by a persistent execution thread (PET)), the ESM and PDAF interface codes are then inserted into the main ESMF 75 

driver (Fig. 1).  The PDAF interface is relatively straightforward and consists of initialization (at the start of simulation), and 

a few subroutine calls to PDAF during time stepping. The latter include PDAF_get_state() for updating member state and 

assimilate_pdaf() at the specified times of assimilation. The types of filters available in the latest PDAF version are 

described in Table 1. Currently we have fully implemented 2 types of filters (ETKF, ESTKF) together with their localization 

variants (LETKF, LESTKF) with plans for other filters in the near future. 80 

On the ESM (ocean model) side, we first supply PDAF with the required ‘binding’ (interface) codes to link PDAF and the 

ocean model, SCHISM (schism.wiki; Zhang et al. 2016). PDAF is designed to link with ESMs model with a more 

generalized interface through a set of functions (Fortran subroutines in our case). Thus, one can simply follow the online 

tutorial to link DA capability into any model. Here we list the major interface codes as follows, and more detail can be found 

in the tutorial (http://pdaf.awi.de/trac/wiki/PdafTutorial, last access: 10 May 2022): 85 

1) collect_state_pdaf/distribute_state_pdaf: create functions to fill model state with specified SCHISM variables or update 

SCHISM variables with values from state vector; 

2) init_dim_obs_pdaf/init_dim_obs_f_pdaf: add interface to read in observation data including error estimates for each type; 

3) obs_op_pdaf/obs_op_f_pdaf: choose an observation operator to map model state onto observed state; 

4) init_dim_l_pdaf: specify local analysis domain, e.g., a vertical grid column, and localization radius within which 90 

observations are utilized by the local filter; 

5) init_dim_obs_l_pdaf: locate elements of model state in local analysis domain; 

6) l2g_state_pdaf/g2l_state_pdaf: add ‘local to global’ / ‘global to local’ model state conversion routine for local filter;  
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7) output_netcdf_pdaf: add interface to output DA (ensemble mean) result. 

Furthermore, to accommodate the flexible mode of PDAF, i.e., using a fewer number of PETs than the number of ensemble 95 

members, the time stepping part of SCHISM is modified. Significantly, the flexible mode requires ‘rewinding’ of time clock 

after an ensemble member reaches the next assimilation time. This is because another ensemble member shares the same 

memory space, and the model forcing (wind, etc) needs to go back to the starting time to redo the time stepping (Fig. 2). To 

this end, we have modified the reading of forcing inside SCHISM to allow arbitrary rewinding. 

At the lowest level of the DA system is the Earth system model component. In this paper we will focus on a single 100 

component, the ocean model. SCHISM is an open-source 3D baroclinic model for cross-scale hydrodynamic and hydrologic 

applications. It uses unstructured quadrangular-triangular elements in the horizontal dimension and a very flexible vertical 

gridding system (LSC2; Zhang et al. 2015). The model has been successfully applied to many nearshore and offshore 

systems around the world (see schism.wiki for a complete publication list). Related to this study, the model has been used as 

the engine for the operational forecasting system for Taiwan since 2011 (Yu et al. 2017; 105 

https://npd.cwb.gov.tw/NPD/products_display/product?menu_index=4, last access: 10 May 2022). 

Extension to coupled ESMs with the current DA system involves preparation of the binding codes (1-7) for each ESM 

component, and addition of ESM interfaces inside the main ESMF driver similar to the SCHISM part in Fig. 1. The complex 

model coupling is handled by ESMF in a modular way using high-level function calls. 

 110 
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Fig. 1: Schematic code structure for the new DA system. At the top level, ESMF is used to orchestrate the parallel environment 

and model coupling. It initiates the environment for PDAF (for each ensemble member) and for ESMs. The code requires multiple 

libraries: ESMF, PDAF and one for each ESM (SCHISM in this case). 
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 115 

Fig. 2: Time stepping part of the new DA system (i.e., the dashed yellow box in Fig. 1) under fully parallel mode (top panel) and 

flexible mode (bottom panel). Task IDs (1,2...6) are distributed into 3 ‘cohorts’ for concurrent execution in ESMF under the 

flexible mode of PDAF. The task IDs in each orange box are executed on the same PET sequentially, and the clock needs to be 

rewound during the hand-over between ‘1’ and ‘3’ etc via the subroutine ‘other_hot_init’. 
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Table 1: Types of filters supported in PDAF 

Filter Localized version Status Reference 

Error-Subspace Transform Kalman Filter 

(ESTKF) 

LESTKF Ready Nerger et al. (2012a, 

2012b) 

Ensemble Transform Kalman Filter (ETKF) LETKF Ready Hunt et al. (2007) 

Ensemble Kalman Filter (EnKF) LEnKF In development Evensen (1994) 

Singular Evolutive Extended Kalman (SEEK)  In development 

 

Pham et al. (1998b) 

Singular Evolutive Interpolated extended 

Kalman (SEIK) 

LSEIK In development 

 

Pham et al. (1998a, 

2001) 

Non-linear Ensemble Transform Kalman Filter 

(NETF) 

LNETF In development 

 

Tödter & Ahrens 

(2015) 

 Particle Filter with resampling (PF)  In development Vetra-Carvalho 

Sanita et al. (2018) 

3DVar with parameterized covariance matrix 

(3DVar) 

 In development Bannister (2017) 

3DVar using ensemble covariance matrix 

(3DEnVar) 

Ensemble 

perturbations are 

updated with the 

LESTKF filter 

In development Bannister (2017) 

Hybrid 3DVar using a combination of 

parameterized and ensemble covariance matrix 

(Hyb3DVar) 

Ensemble 

perturbations are 

updated with the 

LESTKF filter 

In development Bannister (2017) 

3 Validation and application of the new DA system 130 

In this section, we will first validate the new DA system using a simple idealized test with manufactured ‘observations’. We 

then apply the system to a realistic and challenging case of simulating typhoons in the northwestern Pacific with a focus on 

the regions near Taiwan using satellite and in-situ profiler observations. We will also demonstrate the efficiency and 

overhead of the DA system in the realistic case. 
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3.1 Lock-exchange test 135 

3.1.1 Test description 

To verify that this DA framework works as intended, we start from a simple test case with lock-exchange experiment. This 

test case is initialized with a horizontally varying (but vertically uniform) temperature distribution (10℃ at x=0km and 

linearly increases to 16℃ at x=20km) in a narrow, closed tank with sloped bathymetry (Fig. 3). The tank dimension is 20km 

in length with 1km width, with depth varying from 50m to 10m with a linear slope between x=6km and 13 km (Fig. 3). The 140 

only external forcing is the surface wind that mixes the water. 

3.1.2 Generation of ensemble and observation 

The generation of an initial ensemble of model state realizations is a key step in PDAF and a good ensemble spread is 

desirable to cover potential model state trajectory to ensure success of assimilation (Vetra-Carvalho et al., 2018). Here we 

follow Pham’s method (Pham et al. 2001) to generate member states as suggested by PDAF. We first conduct a 5-day free 145 

model run and extract hourly snapshots of the model state during the entire simulation period. With EOF-decomposition 

analysis, singular vectors and values are extracted from these snapshots. The ensemble member states are then initialized 

from these values; a particular matrix that represents the model mean and covariance is generated by multiplying each 

singular vector with the corresponding singular value. This matrix is then multiplied by a random matrix with properties that 

ensure conservation of the mean state and covariances to yield the ensemble perturbations. This method basically utilizes the 150 

inherent variability of model dynamics to represent uncertainty. 

We follow the common twin-experiment setup here. The free run snapshots are used as “truth”.  Observation data is then 

extracted from the free run by adding Gaussian-distributed random values within a standard deviation of 0.15℃ that 

represents the observation error. To assess how well the assimilation can rectify the ‘erroneous’ model states, the ensemble 

model mean is initialized by intentionally adding -1℃ to the first 24-hour mean state. 155 

Major DA parameters include filter type, frequency of DA cycle, forgetting factor, localization parameters and observation 

error (Carrassi et al. 2018). The observation error, whose estimates usually come with observation data, is found to be an 

important control. For practical applications, we have implemented 3 types of observation error input options. The first 

option sets the errors uniformly for all observation types. The second option allows different errors to be used for different 

variables, such as elevation, temperature etc. The third option is the most flexible, allowing the errors to be specified at each 160 

observation point, and is most useful for operational forecasts. 

3.1.3 Results from assimilating a single profile 

To clearly see how DA affects the model state, we start with only assimilating one near-surface temperature profile (down to 

10m). LESTKF filter is used here with 8 ensemble members and 500m as the localization range to perform the analysis. The 

local filter usually gives better results than the corresponding global filter (cf. Section 3.1.4, Nerger et al. 2006). Fig. 3 shows 165 
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the difference between before and after assimilation. The ‘forecast’ is the ensemble mean just before the DA, while the 

‘analysis’ is the ensemble mean after DA. The analysis results indicate that the local filter (LESTKF) alters the model state 

mostly in the specified horizontal range (500 m). 

The sensitivity to the observation error can be clearly seen in Fig. 4. Smaller observation errors lead to results closer to the 

‘observation’, as expected. However, we remark that in general smaller observation errors do not always guarantee the 170 

analysis result is closer to the “truth” because ‘observation’ inevitably contains errors. In practice, observation errors must be 

set appropriately to achieve desired results. In summary, Figs. 3 and 4 indicate that the DA system works as intended. 

 

Fig 3. Lock-exchange test with 1 profile observation. The contour plots show the surface (top) and mid transect view (bottom) of 

the temperature difference before and after DA (i.e. Analysis-Forecast). The right-side plot shows the comparison of the 175 

temperature profile at the observation location. 
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Fig 4. DA results with different observation errors. 

3.1.4 Results from assimilating multiple profiles 

In this setup, the temperature observation data points are extracted from 9 transects along the y-axis (y=100m, 200m, 300m 180 

…, 900m, every 100m) direction every 250 meters in the x direction as shown in the first panel of Fig. 5. In the vertical, 

observations are selected every 2.5 meters from surface to 40m depth. Here we test 4 different filters including 2 global 
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(ETKF, ESTKF) and 2 local filters (LETKF, LESTKF). Using 8 ensemble members, all those filters can immediately correct 

the model bias at the first DA cycle (Fig. 5). Both global and local filters achieved similar results. However, the global filters 

produce larger errors compared to the local filters (Fig. 5). Localization helps to limit observation effects within the analysis 185 

domain and the local filter analysis results at both ends of the domain (x< 6km and x> 13km) are shown to be closer to the 

truth. This difference can be understood from the fact that the global filter computes a global optimal ensemble combination 

with which the state estimate is incremented. This optimum is given by the relative errors of the model state and the 

observations. Since there are no observations at the ends of the domain, the assimilation results can deviate more there. In 

contrast the local filters decouple the computations of the optimums for distant locations from each other, so the increments 190 

on both ends of the domain are independent from each other. Our results confirm that the local filters tend to give better 

analysis results than the global filters. This effect of localization is well known for cases with abundant observations but also 

seems true for relatively sparse observations used here. Among the two local filters, LESTKF has certain advantages in that 

even if observation is locally missing for a long time, the inflation can still increase the ensemble spread for LETKF, but not 

the LESTKF (Nerger et al. 2012b), which may lead to over-amplified ensemble spread and thus worse analysis results with 195 

LETKF. Also, LESTKF is computationally slightly more efficient than LETKF. Thus, LESTKF is generally recommended 

for most applications. 
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Fig 5. The vertical temperature transects after the 1st DA cycle using different filters. Initial model state is derived from 24-hour 

mean state with –1 oC  offset. Domain-wide averaged Mean Absolute Errors (MAEs) are shown for each case. 200 
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3.2 Northwestern Pacific during typhoon events 

3.2.1 DA setup 

Northwestern Pacific is a very complex system with multiple current systems interacting with each other and with complex 

bathymetry and geometry (Johns et al. 2001; Jan et al. 2006). A major western boundary current, Kuroshio, plays a critical 

role in transporting warm and salty water from equatorial pacific to higher latitudes (Oey et al., 2013). Previously, we have 205 

successfully applied the 3D unstructured-grid model, SCHISM, to this challenging domain (Yu et al. 2017). In particular, we 

demonstrated that the combination of the flexible vertical gridding system with the flexible horizontal unstructured mesh is 

essential to capture many topographically driven processes. 

The focus here is on circulations around Taiwan, which exhibit very complex features (Jan et al. 2006). The SCHISM setup 

can be found in Yu et al. (2017). HYCOM data is used for model initialization and open boundary conditions. The surface 210 

forcing is derived from ERA5 reanalysis surface field (Hersbach, H. et al., 2020). The simulation period starts from 18 June 

2016 and ends on 2 August 2016 and covers Typhoon Nepartak, which made landfall near Taiwan around 7 July 2016. We 

selected this period to clearly show the improvement made by DA, as the forward model had larger errors. 

Compared to the simple case shown in Section 3.1, this realistic case is much more challenging because (1) the observation 

is usually much sparser than model points and often distributed unequally in space; (2) different types of observation come 215 

with different uncertainties, which may adversely affect DA results. To illustrate the 2nd point, we compare SST 

observations at two coastal buoys with satellite SST observations (cf. Table 2). As shown in Fig. 6, the discrepancies 

between the two types of observations can be as large as 2.5℃. Therefore, we will not assimilate the buoy SST data. In 

general, conflicts between different types of observations represent a major hurdle for DA, in addition to poor data quality. 

Table 2 summarizes the observation types used in this section. ESA CCI-SST level-4 satellite analysis products are used as 220 

the main observation (Merchant et al., 2019). In addition, there are about 20-30 ARGO floats (Argo, 2021) in our domain 

depending on specific periods. Fig. 7 shows an example of ARGO distribution on 8 July 2016. In addition, AVISO sea level 

anomaly (SLA) from The Ssalto/Duacs altimeter products as produced and distributed by the Copernicus Marine and 

Environment Monitoring Service (CMEMS; https://www.copernicus.eu/en/copernicus-services/marine, last access: 10 May 

2022) is combined with TPXO (Egbert and Erofeeva, 2002, https://www.tpxo.net/global, last access: 10 May 2022) tidal 225 

database to provide the observation for the total water elevation. 

Two tests are shown here to illustrate the impact of different DA approaches (Table 3). Case A assimilates ESA CCI-SST 

with sparse ARGO data (about 20-30 vertical profiles each day) to correct the temperature. Case B additionally assimilates 

the sea level data from AVISO and TPXO. Validation for both cases will focus on SST and SLA around Taiwan. The 

observation error is provided by the data providers for the two satellite datasets. The observation errors of ARGO were set to 230 

0.25℃ for temperature and 0.25 PSU for salinity to account for the small mismatches between ARGO and ESA CCI-SST. 

The approach for model ensemble member generation follows that in the previous section, and we use 16 members in this 

test. We use LESTKF with a specified influence range of 0.5 degrees longitude and latitude. 
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 235 

 

Fig. 6: Comparison of SST measured by in-situ buoys (blackline) and satellite (red dots) at two buoys near Taiwan. The buoy 

locations can be seen in Fig.7. 
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 240 

Fig. 7: Model domain for Northwestern Pacific with bathymetry, ARGO locations (yellow dots) on 8 July 2016, Central Weather 

Bureau buoy locations (green triangles), and Kuroshio transect location (black thick line), typhoon Nepartak track (red line), with 

the red squares representing the typhoon center locations corresponding to the times used in Figs. 9 & 11 (i.e., Day 19 (before), 

Day 20 (during), and Day 22 (after typhoon)). 

 245 
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Table 2 Observations data types used 

OBSERVATION TYPE HORIZONTAL 

RESOLUTION 

FREQUENCY OBSERVATION ERROR 

ESA LEVEL 4 CCI-SST 0.05 degree Daily Directly derived from error 

estimation (0.16 ~ 3.66℃) 

ARGO Sparse and random Input with daily frequency  0.25 ℃ & 0.25 PSU 

AVISO SLA + TPXO 0.25 degree Daily Directly derived from SLA error 

estimation (range: 0.01~0.14 m) 

 

Table 3 Real case setup 

CASE OBSERVATION ASSIMILATED 

A ESA CCI-SST, ARGO 

B EST CCI-SST, ARGO, AVISO-SLA + TPXO 

3.2.2 Discussion of assimilation results 

Since both cases assimilate SST data, the simulated SST is improved immediately after the first DA cycle compared to the 250 

free run. This improvement is persistent throughout the entire 45-day simulation period, starting from relatively calm 

weather conditions to the brief severe typhoon and restoration period afterward. Fig. 8 shows that after 19 DA cycles, SST 

from both Cases A&B have similar improvement compared to the free run and remain close to the observation in the entire 

domain. Closer to Taiwan, Fig. 9 reveals some small differences between the two cases: assimilation of the SLA observation 

in Case B made a small difference in the deeper region, especially along the Kuroshio near Okinawa (in the region 124° 255 

E~128° E, 20° N~24° N). This difference persisted throughout the typhoon period (Fig. 9). Other than that, both cases 

captured well the Kuroshio induced upwelling near northeast corner of Taiwan. Overall, the two cases have similar SST 

skills (Fig. 10); however, Case A shows a slightly better score in the latter half of the simulation (Fig. 10), probably due to 

some minor compensating effects from assimilating the AVISO. The two DA results show significant improvement from the 

free run (Fig. 10). 260 

https://doi.org/10.5194/egusphere-2022-114
Preprint. Discussion started: 20 May 2022
c© Author(s) 2022. CC BY 4.0 License.



17 

 

 

Fig. 8: SST comparison on Day 19 (7 July 2016, before typhoon). 
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Fig. 9: SST comparison around Taiwan. Panels (a-c) represent observation on Day 19 (before typhoon, 7 July 2016), 20 (during 

typhoon, 8 July 2016),22 (after typhoon, 10 July 2016). The typhoon center locations are shown in Fig. 7. Panels (d-f) represent 265 

Case A; (g-i) represent Case B; (j-l) represent the Free run. 
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Fig 10: Comparison of averaged MAE of SST in the Taiwan region (shown in Fig. 9). The vertical jumps in cases A and B 

represent the DA effects at each analysis step. 270 

For the SLA, both cases also deliver similar results. Case B, which explicitly assimilates AVISO, shows a slightly better 

performance and captures eddy location more accurately (Fig. 11). On the other hand, performance of Case A is also largely 

satisfactory (Fig. 11). Note that for Case A, the SLA data can be considered as an independent validation dataset to evaluate 

how assimilating the temperature observation may improve other variables. Results from Cases A&B show improved skill 

from the free run in all stages of the typhoon (Fig. 11). As expected, the SLA in Case B has the best skill among all cases, 275 

especially after 10 days of DA (Fig. 12). 
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Fig 11: SLA comparison around Taiwan. The three columns correspond to before, during and after the typhoon. (a-c): 

observation; (d-f): Case A; (g-i): Case B; (j-l): Free run. 
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 280 

 

Fig. 12: Comparison of averaged MAE for SLA in the subdomain region around Taiwan; the jumps in Case B correspond to 

before/after DA step. 

The DA has also improved the model skill for Kuroshio transport. As shown in Fig. 13, both Cases A&B manage to increase 

the Kuroshio velocity over the top 700 m, which in turn has enhanced the Kuroshio transport near Taiwan (Fig. 14), nudging 285 

it closer to the climatological value of 23 Sv (Johns et al. 2001). The improved model skill can be attributed to the increased 

SST after DA, which has enhanced the density gradients (Fig. 9). 
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Fig. 13: Normal velocity along a transect along the Kuroshio path at 24.5° N (see Fig. 7 for its location) on Day 19 from different 

cases. 290 

 

Fig. 14: Time series of the total Kuroshio transport from different cases along a transect (see Fig. 7 for its location). 
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3.3 Code efficiency 

PDAF allows maximum flexibility in setting up the DA experiments in either ‘flexible’ or ‘full parallel’ modes, based on 

availability of computational resources. If sufficient resources are available, the ‘fully parallel’ mode is the most efficient 295 

option. Under this mode, all ensemble members are executed concurrently (Fig. 2). In reality, however, computational 

resources are usually limited, and the flexible mode is often the practical option. Under this mode, the user can specify how 

many members are executed concurrently in batches, and memory sharing and rewinding of clock are necessary between 

different cohorts (Fig. 2). Obviously, one way to maximize efficiency is to minimize the number of cohorts. 

In this section we test the performance using different numbers of ensemble members under the fully parallel and flexible 300 

modes using the same test shown in Section 3.2. The simulations were conducted on Extreme Science and Engineering 

Discovery Environment (XSEDE)’s Frontera (https://frontera-portal.tacc.utexas.edu/user-guide/, last access: 10 May 2022). 

Table 4 summarizes the simulation times from different tests. The results indicate that there is no significant time difference 

between different numbers of ensemble members under the fully parallel mode, which demonstrates the excellent scaling 

and minimal overhead induced by PDAF and ESMF. Both ensemble forecast and assimilation analysis steps took similar 305 

times. Using the flexible mode, the ensemble DA time is very close to that in the corresponding run using the fully parallel 

mode after factoring in the number of cohorts (=4), and the time spent on the assimilation analysis step is about the same as 

that in the fully parallel mode. This again illustrates minimal overhead induced by PDAF and ESMF. The code can 

efficiently handle both modes and thus give users options to adjust the cost of ensemble simulation based on available 

resources.  Compared to the free run, the ensemble forecast step using fully parallel mode only induces less than 4% 310 

overhead cost. Furthermore, the overhead is negligible under the flexible mode for the forecast step (after factoring in the 

number of cohorts). The cost for the analysis step is mainly dependent on the amount of observation data as each observation 

data point needs to be searched within the local analysis domain, which accounts for about 93% of the cost for the analysis 

step. In other words, the PDAF filter only accounts for ~7% of the cost in the analysis step, and the search algorithm is the 

bottleneck for DA analysis. This bottleneck will be further improved in the future using newer versions of PDAF. Overall, 315 

the DA tool adds a modest (~20%) overhead to the free run in the total time. 
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Table 4. Wall-clock time (for 28 days of simulation) from using different numbers of ensemble members under fully parallel and 

flexible mode on Frontera (with 56 cores/node). 

Ensemble members 
 

Compute Nodes Cores Init  

(mins) 

Ensemble 

forecast 

(mins) 

DA analysis 

(mins) 

Total  

(mins) 

Freerun 10 560 0.5 306 0 306.5 

 8 (fully parallel) 80 4480 0.5 308.3 54.4 363.2 

16 (fully parallel) 160 8960 0.5 312.5 55.7 368.7 

24 (fully parallel) 240 13440 0.5 312.55 55.5 368.55 

8 

(flexible mode, 2 

members in each 

cohort) 

20 1120 0.5 1219.98 56.4 1276.88 

 330 

4. Conclusions 

We have developed a new data assimilative (DA) system by combining two parallel frameworks: a parallel DA framework 

(PDAF) and a flexible model coupling framework (ESMF). The new DA system is built on the ESMF at the top level that 

drives the PDAF and any combination of earth system modeling (ESM) components. In addition, the new DA system 

supports the two operating modes of PDAF: full parallel (when sufficient resources are available) or flexible (when 335 

resources are insufficient). Therefore, the new system allows maximum flexibility and easy implementation of data 

assimilation for fully coupled ESM applications. The new system was successfully applied to a realistic case of Kuroshio 

simulation around Taiwan using remote sensed and in-situ observation, and it significantly improved the model skill for 

temperature, velocity and surface elevation before, during and after typhoon events. Future work will extend the current 

system to include other types of observations (e.g., velocity measurement from Coastal Ocean Dynamics Applications Radar 340 

(CODAR), Acoustic Doppler Current Profiler (ADCP)) and coupled ESM applications. 
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