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Abstract. This paper describes the new open-source framework PyFLEXTRKR (Python FLEXible object TRacKeR), a flexible 

atmospheric feature tracking software package with specific capabilities to track convective clouds from a variety of observations 

and model simulations. This software can track any atmospheric 2D objects and handle merging and splitting explicitly. The 

package has a collection of multi-object identification algorithms, scalable parallelization options and has been optimized for large 

datasets including global high-resolution data. We demonstrate applications of PyFLEXTRKR on tracking individual deep 15 

convective cells and mesoscale convective systems from observations and model simulations ranging from large-eddy resolving 

(~100s m) to mesoscale (~10s km) resolutions. Visualization, post-processing, and statistical analysis tools are included in the 

package. New Lagrangian analyses of convective clouds produced by PyFLEXTRKR applicable to a wide range of datasets and 

scales facilitate advanced model evaluation and development efforts as well as scientific discovery. 

 20 

Short summary. PyFLEXTRKR is a flexible atmospheric feature tracking framework with specific capabilities to track convective 

clouds from a variety of observations and model simulations. The package has a collection of multi-object identification algorithms 

and has been optimized for large datasets. This paper describes the algorithms and demonstrate applications on tracking deep 

convective cells and mesoscale convective systems from observations and model simulations at a wide range of scales. 

  25 
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1 Introduction 

Processing and analyzing model output to perform scientific studies have become more challenging and resource demanding due 

to the growth of weather and climate model data volume with ever increasing resolution. Automated feature tracking software has 

become increasingly popular in weather and climate research with the recognition that propagating weather phenomena affect 

society, thus highlighting the importance of assessing their prediction. Feature tracking software tools in atmospheric science 30 

typically identify specific types of weather features (e.g., tropical cyclones, atmospheric rivers, convective storms) based on a basic 

scientific understanding of their spatiotemporal structure within available datasets, from which the features are labeled and tracked 

in space and time. These tracking tools enable extraction of relevant information from a large amount of data and typically distill 

them into a summary of statistics in a Lagrangian framework (e.g., location, time, movement, duration) that facilitates scientific 

analyses of the weather phenomena of interest.  Examples in the literature include tracking of tropical cyclones (Walsh et al., 2007; 35 

Knapp et al., 2010), extratropical cyclones (Hewson and Titley, 2010; Sinclair, 1997), frontal systems (Catto et al., 2015), low-

pressure systems (Vishnu et al., 2020), large-scale temperature anomalies (Tamarin-Brodsky et al., 2020), atmospheric rivers (Rutz 

et al., 2019), convective storm systems (Williams and Houze, 1987; Laing and Fritsch, 1997), and individual convective cells 

(Dixon and Wiener, 1993).  

There are a number of open-source feature tracking software tools available for atmospheric research. A few of them are built for 40 

general-purpose feature tracking. For example, TempestExtremes (https://github.com/ClimateGlobalChange/tempestextremes) 

was originally developed as a pointwise feature tracking that can detect and track general features in climate datasets with either 

structured or unstructured grids (Ullrich and Zarzycki, 2017), but has recently been updated to also work on areal features (Ullrich 

et al., 2021). The Tracking and Object-Based Analysis of Clouds (TOBAC, Heikenfeld et al., 2019) (https://github.com/tobac-

project/tobac) is a Python-based package for tracking cloud systems in fine-scale model simulations or remote sensing datasets. 45 

Both 2D and 3D datasets are supported in TOBAC, allowing tracking of individual convective clouds from cloud-resolving model 

outputs and satellite or radar observations.  

Most of the feature tracking algorithms are tuned for tracking specific phenomena. For example, many existing methods tracking 

mesoscale convective systems (MCSs) use satellite infrared (IR) images, remote-sensing precipitation retrievals, or ground-based 

weather radar observations. The method for object-based diagnostic evaluation time-domain (MODE time-domain, or MTD, Clark 50 

et al., 2014) (https://met.readthedocs.io/) uses area overlap techniques for tracking convective objects, similar to those first 

developed nearly three decades ago (Williams and Houze, 1987; Velasco and Fritsch, 1987; Laing and Fritsch, 1997; Machado et 

al., 1998). The “Grab ‘em, Tag ‘em, Graph ‘em” (GTG) algorithm (Whitehall et al., 2015) also uses area overlap method combined 

with graph theory to track satellite IR brightness temperature (Tb) defined objects and identify MCSs. The Tracking Of Organized 

Convection Algorithm through a 3-D segmentation (TOOCAN, Fiolleau and Roca, 2013) tracks convective systems using satellite 55 

IR Tb data. Their technique uses 3-D segmentation on a sequence of Tb images (spatial and temporal) and improves upon traditional 

area overlap techniques. More recently, further improvements in the technique to account for cloud movements have been 

developed, such as the Tracking Algorithm for Mesoscale Convective Systems (TAMS, Núñez Ocasio et al., 2020) 

(https://tams.readthedocs.io/en/latest/). Other studies label and track precipitation objects to identify MCSs using either ground-

based radar reflectivity (Haberlie and Ashley, 2018a, b), or precipitation retrievals from radar or spaceborne platforms (Hayden et 60 

al., 2021; Prein et al., 2017). 

Tracking of individual convective cells that are either isolated or as part of a convective complex typically requires the use of 

active remote sensing observations such as scanning radar. The pioneering work that uses optimization to match convective cell 

objects between successive radar volume scans for tracking was developed in the early 1990s, known as the Thunderstorm 

Identification, Tracking, Analysis, and Nowcasting (TITAN, Dixon and Wiener, 1993) (https://github.com/NCAR/lrose-titan). A 65 
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similar technique written in Python has recently been developed (TINT, Raut et al., 2021) (https://github.com/openradar/TINT). 

More sophisticated methods using atmospheric wind and storm motion estimates were developed to track supercells (Gropp and 

Davenport, 2021) (https://github.com/wxmatt/Supercell-Tracking). Despite the many available open-source feature tracking tools, 

most are tailored to track a specific phenomenon only (e.g., either convective cells or MCSs), limited to using a single type of data 

for tracking (e.g., IR Tb or radar reflectivity), do not treat merging and splitting, or are not optimized to work with large volumes 70 

of data. 

In this study, we introduce a new framework called the Python FLEXible object TRacKeR (PyFLEXTRKR), a flexible object-

based atmospheric feature tracking Python software package with the specific capability to track convective clouds using datasets 

from satellite, radar, or model simulations. PyFLEXTRKR has a collection of multi-object identification algorithms and a modular 

design. Unlike most existing packages tuned for a specific phenomenon or a single type of data, PyFLEXTRKR is adapted to track 75 

different types of features at a variety of scales, handles feature merging and splitting explicitly, and includes visualization, post-

processing, and analysis of tracked features. In addition, the package includes scalable parallelization options and performance 

optimizations for large datasets, which makes it particularly suitable for high resolution models or general circulation models with 

long term outputs. FLEXTRKR has been used in previous studies to track MCSs (Feng et al., 2018; Feng et al., 2019; Zhang et al., 

2021; Feng et al., 2021b), deep convective cells (Li et al., 2021; Feng et al., 2022), shallow cumulus (Chen et al., 2022; Fast et al., 80 

2019), and precipitation-driven cold pools (Feng et al., 2015). FLEXTRKR is adaptable to work with a variety of observations 

including satellite Tb (Feng et al., 2012; Hagos et al., 2013), precipitation (Feng et al., 2016), radar reflectivity (Feng et al., 2022), 

and model simulations across scales from large-eddy resolving (Fast et al., 2019) to convection-permitting (Feng et al., 2018; Chen 

et al., 2021; Barber et al., 2021) and mesoscale (Feng et al., 2021a; Lin et al., 2022). The algorithm has recently been implemented 

in Python. The goal of this paper is to describe the PyFLEXTRKR algorithm and demonstrate its capabilities with examples 85 

applying to models and observations at different scales. 

The rest of the paper is structured as follows: Section 2 describes the PyFLEXTRKR algorithm and general workflow; Section 3 

demonstrates application to track convective cells on radar observations and high-resolution model simulations; Section 4 describes 

the MCS tracking workflow; examples of visualization and post analysis are provided in Section 5; a summary is given in Section 

6. 90 

2 Workflow 

This section describes the design and general workflow of PyFLEXTRKR as shown in Fig. 1. PyFLEXTRKR has a modular design 

where different parts of the workflow can be updated, replaced, and run independently, making it flexible and adaptable for specific 

usage cases. 
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 95 
Figure 1. PyFLEXTRKR general workflow. (a) Identify and label features on input 2D grid, (b) link features in pairs of adjacent times, (c) assign 
track numbers, (d) calculate track statistics, (e) map track numbers back to input 2D grid. See Section 2.1 for more details. 
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2.1 Feature Tracking Algorithm 

The basic design of PyFLEXTRKR is illustrated in Fig. 1. The five steps represent an end-to-end workflow starting from reading 100 

the input data, identifying features, tracking, calculating statistics, to outputting final tracking data. Each step is handled by a driver 

module that produces netCDF files as intermediate data that are used for the subsequent steps (indicated by the grey arrows). Such 

a design makes it easy to update or replace individual modules and allows them to be run independently. It also reduces the time 

to perform sensitivity tests of adjusting tracking parameters because only the modules affected by the altered parameters need to 

be run. The current version of PyFLEXTRKR only tracks features in 2D, but the workflow is adaptable to 3D tracking in future 105 

updates due to the modular design. 

Similar to many other feature tracking softwares, Step 1 in PyFLEXTRKR identifies features from input data for each time frame 

(Fig. 1a). The identified features are assigned a label number on the original input 2D grid (e.g., latitude × longitude). The 2D 

labeled feature masks are treated as image-like arrays for subsequent tracking, which is independent of the spatial resolution or 

projection of the input data. The feature numbers, determined by the number of grid points associated with the feature, are sorted 110 

by the feature size in each time frame. The feature of interest can be any object that can be defined as a contiguous region (e.g., 

grid cells exceeding a threshold and are adjected in the x, y direction). Two specific examples of convective clouds associated with 

individual convective cells and MCSs are discussed in more detail in Sections 3 and 4. An example of a generic feature 

identification method using thresholds and connectivity (e.g., contiguous grid points with values greater than a threshold) is 

provided in the package. 115 

In Step 2, the 2D labeled features are linked in pairs of adjacent time frames based on their overlap area (Fig. 1b). If their overlap 

area fraction exceeds the user defined threshold, their label numbers are recorded in a correspondence pair. This simple overlap 

tracking technique has been used in previous studies (e.g., Williams and Houze, 1987) and other tracking software (e.g., MTD, 

TAMS). The underlying assumption with the overlap technique is that the temporal resolution of the dataset is sufficient to resolve 

the spatial movements of the features, and that objects with sufficient overlap between two timesteps belong to the same feature. 120 

In PyFLEXTRKR, the overlap area fraction is calculated in both temporal directions (i.e., from time 1 to time 2 and from time 2 

to time 1), such that objects that are either growing or shrinking in size are considered. In addition, more than one object at a time 

can be linked to an object between two time frames if they satisfy the overlap threshold. In this case, they are candidates for 

merging or splitting and are treated explicitly in the subsequent steps. It is important to note that the accuracy of feature tracking 

for any automated technique hinges upon sufficient spatial and temporal resolution of the dataset to resolve the feature of interest. 125 

While higher resolution dataset (particularly in the temporal dimension) is typically desired for more accurate tracking, lower 

resolution datasets (e.g., earlier generation of geostationary satellite Tb images, large-scale model simulation outputs) are more 

widely available. Caution is needed when applying PyFLEXTRKR to lower temporal resolution datasets and specific examples 

for tracking convective cells and MCSs are further discussed in Sections 3 and 4. 

After the objects are linked in adjacent pairs of time frames throughout the tracking period, Step 3 assigns track numbers to the 130 

features by going over all pairs of linked label numbers (Fig. 1c). The same labeled object linked across different time frames is 

assigned a track number (e.g., each colored line in Fig. 1c). If more than one object at a time is linked to one object at the next 

time, merging occurs and is flagged (e.g., Track 4 merges with Track 1 at time = 4 in Fig. 1c). Similarly, if one object at a time is 

linked to more than one object at the next time, splitting occurs and is flagged (e.g., Track 5 splits from Track 2 at time = 5 in Fig. 

1c). When merging or splitting occurs, the largest object is assumed to be the same feature and tracked continuously, whereas the 135 

smaller objects are marked as terminated (in merging) or started (in splitting). The track numbers these smaller features merge with 

or split from are recorded for subsequent use. A track is terminated at the time when no objects are recorded in the pair from Step 
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2 (i.e., no object exceeds the overlap fraction). This list of merges and splits forms a directed acyclic graph and can be used to 

reassemble whole lifetime behaviors and to understand original sources of down graph features.  

In Step 4, the tracked data saved in Step 3 is reorganized into a more convenient format for use, and additional statistics of the 140 

features are calculated and saved (Fig. 1d). Individual object statistics, such as their size, duration, and intensity are calculated by 

reading from the pixel-level files generated in Step 1. These statistics, along with the objects’ centroid locations and physical times 

are then saved in a 2D array format with “tracks” (track numbers) and “times” (relative to each track) as the two dimensions (right 

panel of Fig. 1d). This way, “times = 0” is the starting time of each track, and selecting a specific track is straightforward. The 

empty space in the array after a track ends is filled with missing values (grey blocks in the right panel of Fig. 1d). While easy to 145 

use, this format requires the array to be large enough to store the longest duration of a track, with many missing values in the array. 

We use SciPy’s Sparse matrices (https://docs.scipy.org/doc/scipy/reference/sparse.html) to store these arrays to reduce internal 

memory usage, and provide an option to output traditional 2D dense matrices in netCDF format. In addition, the start and end 

status of each track including whether a track starts as a split or ends as a merge, the track number it splits from or merges with, 

and the time and object number associated with the merger or split are all recorded as 1D arrays for each track. These variables 150 

enable users to make decisions on how to treat these merge/split tracks based on specific scientific needs. An example of including 

merger and splits as parts of the identified MCS cloud shields is provided in Section 4.3. 

Step 5 of the general workflow maps the tracked feature numbers to the native pixel-level grid as masks (Fig. 1e). The track 

numbers correspond to the “tracks” indices in the track statistics file generated in Step 4. For example, the area labeled as tracks 

= 1 at any time (red object masks in Fig. 1e) corresponds to the track statistics for “tracks = 0” (Python array indices are 0-based). 155 

The tracked feature masks make it easy to link the track statistics data at a given time to a specific region in the native pixel-level 

grid. 

2.2 Usage and Performance Considerations 

Installation of PyFLEXTRKR uses the Conda environment set up. An environment YAML file containing all the required Python 

packages is provided for setting up the PyFLEXTRKR environment. Simple instructions for installing PyFLEXTRKR are provided 160 

on GitHub (https://github.com/FlexTRKR/PyFLEXTRKR).  

All user-defined parameters are contained in a YAML (https://yaml.org/) format configuration file, which is essentially a text file 

with key-value pairs and supports comments. Example configuration files for tracking generic features, convective cells, or MCSs 

are provided in the package. The configuration file also controls which steps in PyFLEXTRKR to run, data locations, various 

thresholds, and parallel processing options.  165 

PyFLEXTRKR uses Dask (https://www.dask.org/) for parallelization. Dask enables scalable parallelization options that work 

seamlessly from personal computers (PC) to high-performance computing (HPC) clusters. Most of the time-consuming steps are 

parallelized in the current version. These steps typically include processing the native pixel-level data (e.g., Step 1, 2, 4, 5 described 

in Section 2.1 and illustrated in Fig. 1). Two options for Dask parallelization are included: 1) multi-CPUs on a single cluster (or 

PC), and 2) multi-CPUs on network clusters (or HPC). These parallel options enable a large amount of data (e.g., multi-year, large 170 

domain convection-permitting simulations or high-resolution satellite observations) to be processed in a short amount of time on 

HPCs and facilitate the scientific analysis of the tracking results. Example scripts for running on HPCs are also provided in the 

package. 
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3 Convective Cell Tracking 

In this section, we provide an example of tracking individual convective cells from scanning radar observations and simulations 175 

from the Weather Research and Forecasting (WRF) model at both convection-permitting (~1000 m) and large-eddy resolving 

(~100 m) resolutions. The radar observations are collected during the Cloud, Aerosols, and Complex Terrain Interactions (CACTI) 

field campaign in central Argentina (Varble et al., 2021). The WRF simulations are produced by the Department of Energy’s 

Atmospheric Radiation Measurement (ARM) user facility under the Large-Eddy Simulation (LES) ARM Symbiotic Simulation 

and Observation (LASSO) activity (Gustafson et al., 2020) (https://www.arm.gov/capabilities/modeling/lasso). The input data used 180 

for convective cell tracking in PyFLEXTRKR is Cartesian gridded (fixed horizontal resolution) 3D radar reflectivity. The vertical 

resolution can either be fixed (e.g., from gridded radar observations) or variable (e.g., from WRF with terrain following vertical 

coordinates). The quality-controlled CACTI C-band radar observations (Hardin et al., 2018a, b) are gridded to a Cartesian grid 

using the Python ARM Radar Toolkit (PyART) (Helmus and Collis, 2016). The CACTI C-band radar convective cell tracking 

database (Feng, 2022) is available through ARM.  185 

3.1 Cell Identification 

The convective cell identification implemented in the current version of PyFLEXTRKR is a modified version of the technique first 

introduced by Steiner et al. (1995). The technique primarily uses radar reflectivity horizontal texture to identify convective cells. 

Convective cells are marked by their horizontal “peakedness” of radar reflectivity (i.e., the difference in radar reflectivity between 

a grid point and its surrounding background reflectivity Zbkg for a horizontal 2D field). Besides intense convective cells with high 190 

reflectivity (e.g., > 60 dBZ), this texture method can identify moderate to weak convective cells that would be missed by a purely 

threshold-based method, and hence is more general in studying convective cloud populations with varying sizes, depths, and 

intensities. Composite reflectivity (maximum radar reflectivity in a vertical column) is currently used as input to identify convective 

cells, although it is easy to modify the input to use reflectivity at an individual height if needed. Echo-top heights with a series of 

thresholds (e.g., 10, 20, …, 50 dBZ) are also calculated from the 3D radar reflectivity data. More details of the modified Steiner 195 

technique are described in Feng et al. (2022), who applied the adapted algorithm to scanning radar observations collected during 

the CACTI field campaign (Varble et al., 2021). 

All threshold parameters used to define convective cells, such as the background radius, radar reflectivity differences between a 

grid point and the background (peakedness), and expansion radius are set up in the configuration file. Many of these thresholds 

depend on the resolution of data and the nature of the convective cells being studied. Based on our recent work that tracked ~7,000 200 

convective cells in central Argentina over a 3.5-month period (Feng et al., 2022), the cell identification works quite well across 

with a wide range of conditions, including relatively shallow and isolated cells, intense deep convection, and organized convective 

clusters embedded within MCSs with broad stratiform rain areas. The algorithm is able to identify both weak and intense cells 

while avoiding contamination from strong brightbands associated with MCS stratiform rain due to tuned horizontal peakedness 

criteria. Nevertheless, users can set threshold parameter values to any values that satisfy their specific research needs and/or dataset 205 

constraints. The parallel processing options in PyFLEXTRKR allow fast processing of a large amount of data to facilitate this 

tuning of threshold parameters. 

Fig. 2 shows examples of convective cell identification applied to three sets of WRF simulations with grid-spacings of 2.5 km, 500 

m, and 100 m, respectively. The convective cell masks show that the modified Steiner algorithm implemented in PyFLEXTRKR 

can identify convective cells across various resolutions ranging from convection-permitting to large-eddy resolving. To facilitate 210 

tracking, the convective cell masks (colored shading in Fig. 2d-f) are incrementally dilated outward within a 5-km radius with 1-

km radius steps, starting from the largest cell in a scene without merging the cells. Such an expansion creates larger footprints 
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(black contours in Fig. 2a-f) for the cell masks to improve cell tracking accuracy. The dilation radii in this example are tuned to 

work well for 15-min temporal resolution data (discussed further in Section 3.2). The dilation radii are user-defined parameters, 

which can be easily adjusted to adapt for different datasets and research applications. The identified convective cells using radar 215 

reflectivity correspond to important model simulated physical processes, as demonstrated by vertical velocities at 6-km altitude 

showing most of the significant updrafts and downdrafts encapsulated within the footprints of the cell masks (Fig. 2h-j) across the 

three resolutions. In addition, tracking convective cells using radar reflectivity can be applied consistently to both radar 

observations and model simulations, facilitating model evaluation and interpretation. 

 220 

 
Figure 2. Convective cell identification example from WRF simulations at horizontal grid spacings of 2.5 km (left column), 500 m (middle 
column), and 100 m (right column). The domain size shown is the same across the three simulations (~200 km ´ 200 km). (a-c) Composite 
reflectivity, (d-f) convective cell masks, (h-j) vertical velocity at 6-km altitude MSL. Numbers in the cell centers in (a-f) are the labeled cell 
numbers. Black contours show convective cell mask boundaries expanded outward to a 5-km radius. 225 
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Figure 3. Schematic of mean advection estimate by (a) using the 2D cross correlation method between Time 1 and Time 2, and (b) shifting the 
cell masks from Time 1 and overlaying them on those in Time 2. An example application on actual data is shown in (c-d): shadings are composite 
reflectivity from two radar scans 15 min apart, contours of convective cells at the two respective times are shown in blue, and the cell masks 
shifted by the mean advection are shown in dark red. 230 

3.2 Advection Estimates 

We implemented a hierarchical methodology to estimate the mean advection velocity of convective features in PyFLEXTRKR to 

assist cell tracking, which is illustrated in Fig. 3. This method helps improve the tracking accuracy for fast-moving convective cells 

when background winds are strong, and/or when the temporal frequency of the dataset is insufficient to capture the movement of 

individual cells. First, we estimate large scale horizontal wind, before estimating individual feature advection based on that wind.  235 

The large-scale mean advection is calculated by performing a 2D cross correlation using a Scikit-image implementation of Padfield 

(2012) between composite reflectivity fields with significant echoes (composite reflectivity > user-defined threshold) from two 

adjacent timeframes. The offsets in the x and y directions between the timeframes that have the maximum 2D cross correlation are 

saved to a netCDF file. An optional median filter can be applied to the time series of advection estimates to remove occasional 

spurious values. 240 

The convective cell masks from the previous time are shifted by the estimated advection (black arrow in Fig. 3a), and the shifted 

cell masks are then used to calculate the overlap fraction with the next time (Fig. 3b). This method increases the overlap of 

convective cell masks between times, as demonstrated by the example in Fig. 3c-d, therefore improving the accuracy of tracking 

individual cells. While using storm motion in tracking is similar to techniques used in some existing cell tracking tools (e.g., 

TITAN, TOBAC, TAMS), in the current version of PyFLEXTRKR, mean advection is calculated over a single domain, rather than 245 

for individual cells. If convective cells move in significantly different directions (e.g., when the domain is sufficiently large [> 300 

km] with significantly different background wind directions), it is recommended to run cell tracking over a subset of the domain. 
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PyFLEXTRKR provides a simple domain subset capability (by specifying the latitudes and longitudes boundary in the 

configuration file) to perform tracking. We will expand the capability to enable advection estimates in multiple sub-domains in 

future versions. 250 

An example sequence of convective cell tracking applied to CACTI C-band radar observations is shown in Fig. 4. The volume 

scan update from the radar observation is 15 min, which is slower than many operational radars (e.g., the Next-Generation Weather 

Radar network, or NEXRAD in the United States typically updates a volume scan in 5 min or less) and presents a challenge for 

cell tracking. The estimated mean cell advection during the period shown in Fig. 4 is ~14 m s-1 (~50 km h-1), suggesting the cells 

are being advected by the background wind quickly. Nevertheless, most of the significant convective cells embedded in broad 255 

stratiform anvils (composite reflectivity < 25 dBZ) are tracked reasonably well as indicated by the relatively smooth cell tracks 

(thick black lines with symbols in Fig. 4). This example demonstrates that PyFLEXTRKR is capable of tracking convective cells 

even in challenging situations with fast moving convective cells and slow radar volume update time. Our previous work developing 

the C-band radar convective cell tracking database during the CACTI field campaign used an area overlap fraction of 0.3, which 

seems to work well with the advection technique and the 15-min volume scan update (Feng et al., 2022). PyFLEXTRKR thus 260 

enables individual convective cell tracking on observations and model simulations with radar reflectivity outputs at 15 min or 

shorter for at least most deep convective situations. This capability reduces the need for model simulations to output very frequent 

3D radar reflectivity data (e.g., 10 min or less) but still allows tracking of individual convective cells. 
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Figure 4. Example cell tracking for an event on 11 Nov 2018 observed by a C-band radar in central Argentina during the CACTI field campaign. 265 
Symbols denote tracked cells and are color coded by their lifetime (color bar at upper left of each panel). Only tracks that last longer than 30 min 
are shown in the figure. CI locations are indicated by a larger symbol for each track. An animation of this event is provided in the supplementary 
material. 

 

3.3 Convective cell statistical analysis 270 

For convective cell tracking, additional statistics of the features are calculated in Step 4 (Fig. 1d), such as maximum radar 

reflectivity and echo-top heights with various reflectivity thresholds (e.g., 10 dBZ, 20 dBZ, etc.), with a flag indicating the features 

being tracked are “radar_cells”. Additional statistics can be easily added in the function if needed. All variables calculated in the 

function will be written out in the statistics driver module without additional I/O coding. 
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 275 
Figure 5. Example convective cell tracking statistics. Convection initiation location kernel density estimates (KDE) from (a) radar observations, 
and WRF simulations with (b) 500-m grid-spacing and (c) 100-m grid-spacing. Color contours in (a-c) are terrain heights (500-m interval starting 
from 500-m altitude MSL in white), and the red dot is the radar location. (d) KDE of cell lifetime, and joint KDEs of (e) maximum cell area and 
maximum reflectivity, and (f) maximum 20 dBZ echo-top height and maximum reflectivity. In (e-f), shadings are from observations and contours 
are from simulations with marginal distributions also shown. The maximum cell area, reflectivity and echo-top heights are obtained over the 280 
lifetime of each cell. 

Fig. 5 shows several example convective cell statistical comparisons between radar observations and WRF simulations based on 

PyFLEXTRKR outputs. The frequencies of convection initiation (CI, defined as the starting location of the tracked cells) locations 

show that the model simulations generally capture the radar-observed CI enhancement associated with the elevated terrain (colored 

contours in Fig. 5a-c), but the peak CI frequency locations in the simulations are shifted slightly westward over the peak of the 285 

mountain range as opposed to over the eastern slope in the radar observations. The simulations with 100-m grid-spacing have a 

slightly less concentrated CI near the peak of the mountain close to the radar site, compared to the 500-m simulations and radar 

observations (Fig. 5a-c). The simulated cell lifetime distributions also compare quite well with the radar observations (Fig. 5d). In 

addition, some important radar observed convective cell characteristics reported by Feng et al. (2022) are also reasonably 

reproduced by the model. For example, wider and deeper convective cells have higher maximum reflectivity (i.e., more intense) 290 

as shown in Fig. 5e-f. There are notable differences such as simulated maximum reflectivity and echo-top heights having slightly 

narrower distributions, and the increase in simulated maximum reflectivity with echo-top height is faster than observed. The cell 

tracking outputs from PyFLEXTRKR facilitate many statistical comparisons between observations and model simulations with a 

minimal amount of coding. More examples of visualization, analysis and Python notebooks included in the PyFLEXTRKR package 

are discussed in Section 5. 295 
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4 MCS Tracking 

4.1 Workflow 

The current implementation of MCS tracking in PyFLEXTRKR primarily uses infrared brightness temperature (Tb) that is 

commonly available from geostationary satellite observations. Model simulations, however, typically output top-of-atmosphere 

outgoing longwave radiation (OLR). A simple empirical function is provided in PyFLEXTRKR to convert OLR to Tb following 300 

the formula from Yang and Slingo (2001). A new method using collocated surface precipitation to further constrain MCS 

identification recently developed by Feng et al. (2021b) has also been implemented, which will be described in more detail next. 

One of the advantages of using Tb/OLR and precipitation for tracking MCSs is that models can typically output these 2D variables 

at relatively high temporal frequency (e.g., hourly or finer) without incurring much additional computational cost. Therefore, MCS 

tracking using PyFLEXTRKR should be applicable to a wide range of regional and global models with convection-permitting (< 305 

5 km) to mesoscale resolutions (grid-spacing finer than ~50 km). 

PyFLEXTRKR tracks all deep convective clouds larger than a user-defined minimum area threshold (can be as small as a single 

grid point), and then subsequently identifies MCSs from the tracked clouds. Therefore, MCS tracking in PyFLEXTRKR includes 

the early growth stage of individual deep convection before they reach mesoscale dimensions, as well as the decay stage when the 

systems shrink in size.  310 

4.2 Deep Convective Cloud System Identification 

Cold cloud systems (CCS) are first identified as proxies for deep convection using Tb data. Two methods are provided in the 

package to identify CCSs: 1) contiguous grid points with Tb < a user-defined threshold are labelled as a CCS, and 2) a detect-and-

spread method using two Tb thresholds (Tb-cold, Tb-warm), similar to the approach in Futyan and Del Genio (2007). The first 

method is straightforward and fast. The second method first labels cold cores, which are defined as contiguous grid points with Tb 315 

< Tb-cold and area > N pixels. Each cold core is treated as an individual convective cloud object, which is then spread outward 

iteratively to surrounding grid points with higher Tb until the Tb-warm threshold is reached (Fig. 6a). The spreading procedure does 

not merge individual cold cores. The remaining area with Tb < Tb-warm but without cold cores (thus have not been identified as 

CCS in the detect-and-spread method) is further labeled using the simple connectivity method. In analyzing high-resolution 

(kilometer-scale) satellite observations and CPM simulations from past studies (Feng et al., 2018; Feng et al., 2019; Feng et al., 320 

2021b), we find that the second method produces more “natural” segmentation of CCSs, where cloud systems with individual cold 

cores (resembling active convective updrafts) that share surrounding anvil clouds are better segmented. Hence it is recommended 

to use the detect-and-spread method for high-resolution datasets.  
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Figure 6. Schematic to identify cold cloud systems (CCS) using Tb and precipitation. (a) Cold cores (contiguous area with Tb < Tb-threshold-325 
cold) are spread outwards through an iterative dilation process until reaching Tb-threshold-warm to identify and label CCSs (black contours), (b) 
CCSs that share a coherent precipitation feature (PF, contiguous area with precipitation rate > threshold) are combined (thick black contour). 

An optional smoothing function with a user-defined window size using the convolution filtering in Astropy 

(https://docs.astropy.org/en/stable/convolution/index.html) can be applied to the Tb field. The convolution function in Astropy 

provides better treatment for missing values that occur in satellite images compared to the equivalent function in SciPy. This 330 

smoothing procedure (only applied in labeling cold cores) reduces over-segmentation of cold cores in high-resolution Tb datasets. 

Tuning of the Tb thresholds and smoothing window size may be needed to adapt to specific scientific needs and datasets to define 

desirable CCS objects, as they can alter the MCS tracking results. Several example configurations that have been used in previous 

studies to track MCSs at resolutions of 2-4 km, 10 km, 25 km and 50 km are provided in the package. 

When collocated gridded mean surface precipitation data is available with the same temporal resolution as the Tb data, an optional 335 

function to improve CCS segmentation is provided. This function uses precipitation rate to identify precipitation features (PFs), 

which are defined as contiguous objects with precipitation rate > a user-defined threshold. The purpose of this function is to reduce 

segmenting of coherent PFs in the CCS identification procedure. If multiple CCSs share a coherent PF, this option combines those 

CCSs (Fig. 6b). 

After CCSs are identified, they are tracked by running the first four steps in Fig. 1. For tracking DCSs using satellite-observed Tb 340 

or model simulated OLR, an area overlap fraction of 0.5 typically works well for datasets with hourly temporal resolution and 

O(10 km) spatial resolution, although finer resolution data is preferred for more accurate tracking. Similar to convective cell 

tracking, additional statistics of the features are calculated in Step 4 (Fig. 1d), such as cold core and CCS area and minimum Tb, 

with a flag indicating the features being tracked are “tb_pf”. The additional workflow used to identify MCSs is illustrated in Fig. 

7. 345 

4.3 MCS Identification 

In Step 5, MCSs are identified based on the CCS area and duration, which has been widely used in past studies (Fritsch et al., 

1986; Ashley et al., 2003; Laing and Fritsch, 1997; Roca et al., 2014; Roca et al., 2017). If the CCS area exceeds a user-defined 

threshold continuously for more than a user-defined period, that track is defined as MCS and saved (Fig. 7a). Short-lived (a user-

defined duration threshold) non-MCS tracks that merge with or split from the identified MCSs are also retained. The labeled cloud 350 

numbers and sizes from these merge/split tracks at the same corresponding times with MCSs are stored in the MCS track statistics 

file, which allow their areas to be included in calculating the total MCS cloud shield area by users. This treatment helps reduce 

large fluctuations of MCS cloud shield area due to merging/splitting or cloud segmentation artifacts in Step 1. The cloud mask 
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associated with these merge/split tracks are included as part of the MCS cloud shield in subsequent steps (see illustration in Fig. 

8). Other non-MCS tracks that do not merge with or split from MCS tracks are removed. This step can reduce the number of tracks 355 

by an order of magnitude or more. For MCS tracking using only Tb data, the final output is the netCDF file containing track 

statistics produced from this step. 

 
Figure 7. Additional PyFLEXTRKR workflow for MCS tracking. (a) Identify MCS using Tb-defined CCS area and duration, (b) calculate 
precipitation feature (PF) statistics within CCS masks, (c) identify robust MCS using PF characteristics, (d) map robust MCS track numbers to 360 
input 2D grid, and (e) calculate MCS movement by maximizing the 2D cross correlation on MCS PFs between adjacent times. See Section 4.1 
for more details. 
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Table 1. Sensitivity of MCS metrics to Tb thresholds. The bold values in the first column are defaults. Results are obtained from 1 month of MCS 
tracking using the combined satellite Tb and GPM IMERG precipitation data from Feng et al. (2021b) over South America during January 2019. 
Note that starting as split means the tracked CCS that is identified as MCS start from a split from another CCS, not necessarily from another 365 
MCS. Similarly, ending as merge is referring to track ending by merging with another CCS. 

Tb Thresholds 

Tb-cold, Tb-warm 

Number of MCS Fraction starting 

as split 

Fraction ending 

as merge 

Average MCS 

Lifetime (hour) 

Average Max 

CCS Area (km2) 

210 K, 226 K 244 17% 16% 16.2 143,889 

215 K, 231 K 303 20% 20% 16.7 159,127 

220 K, 236 K 360 29% 26% 17.2 174,788 

225 K, 241 K 399 29% 27% 18.1 202,802 

230 K, 246 K 417 34% 34% 19.0 240,740 

235 K, 251 K 433 39% 36% 19.5 290,869 

240 K, 256 K 428 44% 46% 19.7 353,582 

 

While merging and splitting of clouds can occur naturally during the lifetime of MCSs, it is often more important to identify 

whether an MCS initiates or decays naturally (i.e., a complete lifecycle) as opposed to starting as a split from an existing system 

or ending as a merger to another system (i.e., a partial lifecycle). PyFLEXTRKR provides two variables (start_split_cloudnumber, 370 

end_merge_cloudnumber) to easily identify the status of each MCS at the track start and end time (a positive value indicates a split 

or merge). Table 1 shows the sensitivity of the fraction of MCS merging/splitting to Tb thresholds used to define CCS for tracking. 

As Tb thresholds increase, more MCS are identified, MCS maximum cloud area and lifetime both increases, and the fraction of 

MCSs that start as split or end as merge also increase from ~16% at the lowest Tb thresholds to ~44% to the highest Tb thresholds. 

This is expected because as larger part of the anvil clouds surrounding the cold cores or clouds with warmer cloud-tops are included 375 

in the tracking with higher Tb thresholds, the probability of merging/splitting would increase due to more complex morphologies 

as anvils spread and interact with nearby convection. The default Tb thresholds result in ~28% splits/mergers during the test period, 

suggesting that majority of the MCS tracks obtained have complete lifecycles. 

 
Figure 8. Treatments of merge/split tracks for MCS tracking in PyFLEXTRKR. The blue mask denotes the MCS track, the green, 380 

orange and yellow tracks denote non-MCS tracks that merge with or split from the MCS track, respectively. Their associated cloud 

numbers and sizes are stored at the same corresponding time of the MCS (marked as “Time 2, 3, 4”, etc.) in the MCS track statistics 

file in Step 5, and their cloud masks are included as part of the MCS track in Steps 6-9. 

Small & short-lived merging
tracks included as part of MCS

Small & short-lived splitting
tracks included as part of MCS

Treatment of merge/split tracks for MCS

MCS Track

Time 1 Time 2 Time 3 Time 4 Time 5 Time 6 Time 7 Time 8 Time 9 Time 10

Time 2 Time 3 Time 4 Time 5

Time 7
Time 8 Time 9

Time 6

Non-MCS Track Non-MCS Track
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If collocated precipitation data is available, Step 6 calculates PF statistics associated with the MCS cloud masks using the MCS 385 

track statistics file from Step 5 and labeled CCS mask files from Step 1 (Fig. 7b). For each MCS at a given time, both the MCS 

cloud mask and all non-MCS merging/splitting cloud masks (Fig. 8) are used to locate PFs underneath the MCS cloud shield. PF 

statistics including PF centroids, area, major axis length, mean/max rain rate, rain rate skewness, total and heavy (rain rate > user-

defined threshold) rain volume are calculated. If there are multiple PFs under a MCS cloud shield, they are sorted by their sizes 

and the largest “nmaxpf” PFs are saved where nmaxpf is the user-defined maximum number of PFs to save. These newly derived 390 

PF variables are added to the track statistics and written to a netCDF file. 

With saved PF variables, Step 7 identifies robust MCSs using the method developed by Feng et al. (2021b). Four tracked PF 

parameters are used to define a robust MCS: PF area, PF mean rain rate, PF rain rate skewness, and heavy rain volume ratio. For 

a given track, the periods when the largest PF major axis length exceeds 100 km is examined (yellow shading period in Fig. 7c). 

If all four PF parameters exceed their corresponding thresholds, that track is defined as robust MCS and retained. The PF thresholds 395 

follow a simple linear formula 𝑦 = 𝑎 ∙ 𝑋 + 𝑏, where a and b are user-defined slope and intercept thresholds, and X is the time 

period when the largest PF major axis length exceeds 100 km. The lifetime-dependent PF threshold method was developed in our 

previous works based on observations (Feng et al., 2021b; Feng et al., 2021a). These PF thresholds are sensitive to the spatial 

resolution of the dataset. Coarser resolution data tend to have larger PF area, smaller PF mean rain rate and PF rain rate skewness 

(see Fig. S4 in Feng et al., 2021a). Therefore, adjustments to these thresholds to adapt to the specific dataset may be needed. 400 

Multiple sets of example configurations that have been used to identify robust MCSs at spatial resolutions of 10 km, 25 km, and 

50 km are provided in the package based on previous studies (Feng et al., 2021b; Feng et al., 2021a).  

After robust MCSs are identified, Step 7 maps the tracked MCSs to the native pixel-level grid as masks (Fig. 7d), similar to Step 

5 in the general workflow. Both cloud masks and PF masks are labeled with the MCS track number. Clouds that merge with or 

split from MCSs are also labeled with the MCS track number (Fig. 8) and in separate masks such that they can be separated if 405 

needed. In addition, the input Tb and precipitation fields are written in the output pixel-level netCDF files for convenience.  

Lastly, MCS movements are estimated in Step 9 using the labeled MCS pixel-level files. For a given MCS, the precipitation fields 

between two adjacent times are masked, and a 2D cross correlation is applied between the masked precipitation fields (Fig. 7e). 

Similar to the advection estimate method described in Section 3.2, the offsets in the x and y directions between the timeframes that 

have the maximum 2D cross correlation are the movements of the MCS PFs. An optional median filter can be applied to the time 410 

series of movement estimates to remove occasional spurious values. This method generally provides smoother MCS movement 

speed and direction estimates than using the centroid difference method, as the latter is prone to the changes in MCS shapes that 

could result in large fluctuations. The MCS movement variables are added to the robust MCS track statistics netCDF file from 

Step 7, which is the final MCS track statistics output file using the Tb + PF method. 

An example sequence of MCS tracking applied to a WRF simulation with 4 km horizontal grid spacing over South America is 415 

shown in Fig. 9. The simulation uses ERA5 reanalysis (Hersbach et al., 2020) as lateral boundary conditions and is ran continuously 

from 1 June 2018 to 31 May 2019. No cumulus parameterization or spectral nudging was used in the simulation. For more details 

of the experimental setup, see Liu et al. (2022, in prep.). The simulation provided hourly OLR and precipitation, which are used to 

track MCSs. The example was produced using both the MCS pixel-level tracking outputs at native data resolution (Tb, precipitation, 

MCS masks) and the MCS track statistics output that provides track locations, duration, and PF statistics (e.g., size and centroid).  420 
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Figure 9. Example MCS tracking from a WRF simulation with 4-km grid spacing showing (a) IR Tb and (b) precipitation every 6 hours. The 
magenta contour in (a) and the color shadings behind large clusters of PFs in (b) denote MCS masks. The purple color lines are MCS tracks, the 
purple dots are MCS initiation locations, and the numbers are MCS track numbers. The magenta circles in (b) show the largest PF equivalent 
diameter (multiplied by 2 for visibility) within an MCS. An animation with hourly resolution of this event is provided in the supplementary. 425 
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4.4 Performance Considerations 

Similar to the general workflow described in Section 2.2, the time-consuming steps for MCS tracking that involve working with 

native pixel-level data have parallel processing options using Dask (Step 6, 8, 9 in Fig. 7). The parallel options improve run time 

by scaling approximately with the number of processors for most parallel steps, enabling PyFLEXTRKR to process a large amount 

of data (e.g., global data) relatively quickly using systems ranging from a desktop computer up to a full HPC installation. As an 430 

example, running PyFLEXTRKR using 16 processors (parallel) to track MCSs over South America (Fig. 9) for a one-month period 

results in a ~10x speed up compared to using a single processor (serial), cutting down the processing time from ~30 min (serial) 

to ~3 min (parallel). In addition, much of the codes split the data processing to individual (or a pair of) pixel-level files at a time 

or use optimized SciPy tools, which limits memory usage and allows highly parallel tasks with continuous tracking for a long 

period. For example, PyFLEXTRKR is capable of tracking MCSs nearly globally using hourly satellite Tb and precipitation data 435 

at ~10 km resolution continuously for one year. The data volume per year is approximately 37.8 billion pixels (3600 × 1200 pixels 

× 8760 timeframes) and the number of tracked objects exceeds 2 million. The HPC system used to run this task has 64 processors 

(AMD EPYC CPU) and 256 GB memory on a single node. It is possible to run continuous global MCS tracking for even longer 

periods (e.g., multiple years), but system memory and HPC wall-clock constrain may negate such benefit, as tracking of individual 

years can be run in simultaneous jobs on an HPC system and completed in much shorter wall-clock time. 440 

In addition, important statistics that are used to identify MCSs, including CCS area, duration (produced in Step 4) and various PF 

characteristics (produced in Step 6) that require time-consuming calculations from pixel-level data are saved in a single summary 

netCDF file. This design allows for alterations of various parameters (e.g., area, duration, intensity, etc.) that are used to identify 

MCSs to be quickly tested, as only a certain step that is relatively fast (e.g., Step 5 or 7) needs to be rerun. Therefore, testing the 

sensitivity of MCS identification to parameter selections is greatly simplified. 445 

4.5 Quality Control on Input Dataset 

The accuracy of convective cloud tracking could be affected by various issues in the input dataset, such as missing data and various 

data artifacts (e.g., bad data, calibration error, etc.) often found in observations. Thus, data quality control is an important factor to 

consider before applying feature tracking to observations. While advanced data quality control is beyond the scope of 

PyFLEXTRKR, a few procedures have been developed for tracking DCSs using satellite Tb data. For example, a median filter 450 

(using the scipy.signal.medfilt2d function) with a user-defined window size is applied to the Tb images to fill in pixels with missing 

Tb data that can occur with bad scan lines from satellite imagers. An acceptable range of Tb data can be defined by the user to filter 

out unphysical data (e.g., Tb must be between 160 K and 330 K). These simple procedures help reduce cloud object identification 

errors due to satellite data quality issues. In addition, satellite images with missing data larger than a fraction of the domain (user-

defined) are skipped in PyFLEXTRKR, and if the time gap of missing satellite images is larger than a user-defined threshold (e.g., 455 

3 hours), tracking is stopped and restarted from the next available Tb image to avoid erroneous tracking. For convective cell tracking 

using radar reflectivity data, no quality control procedure is currently implemented in PyFLEXTRKR. Users should perform quality 

control of radar observations prior to applying PyFLEXTRKR to track convective cells. 

5 Visualization and Analysis 

The PyFLEXTRKR package provides tools for visualizing the tracking output as well as post-processing analysis scripts and 460 

Jupyter notebooks for statistical analysis. This section highlights some examples that have been applied to both observations and 

model simulations to demonstrate how the package facilitates their comparison. 
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5.1 Visualization 

Both Python scripts and Jupyter notebooks are provided to create the quick look plots that mark the tracked convective cells (Fig. 

4) or MCSs (Fig. 9) on the native input data. These visualizations help researchers quickly review the tracking results, identify 465 

potentially interesting features from the tracks, and/or perform tuning or sensitivity tests from various tracking parameters. The 

Python scripts use the same configuration files from the tracking that simplify input/output specifications. The scripts also accept 

various command line input arguments to customize the visualization and have built-in parallelization options to generate a large 

number of figures quickly. For example, users can specify plotting period, subset domain, aspect ratio, and output location for the 

figures in human readable form. See Appendix A for commands that are used to produce the two example figures (Fig. 4 and Fig. 470 

9). 

5.2 Statistical Analysis 

Several Python notebooks that perform various statistical analysis are provided, along with example tracking data produced by 

PyFLEXTRKR. These notebooks demonstrate different types of analysis that facilitate the comparisons between observations and 

model outputs. 475 

 
Figure 10. MCS statistics comparison between satellite observations and a 4-km grid spacing WRF simulation showing KDEs of (a) MCS 
lifetime, (b) MCS movement speed, (c) MCS cold cloud shield equivalent diameter, and (d) MCS PF equivalent diameter. Joint KDEs of (e) 
MCS lifetime and total volumetric rainfall, (f) MCS lifetime and maximum PF area, (g) MCS lifetime-mean rain rate and total volumetric rainfall, 
and (h) MCS lifetime-mean minimum Tb and heavy rainfall (rain rate > 10 mm h-1) volume are also shown. 480 

Fig. 10 shows comparisons of various MCS characteristics between satellite observations and WRF simulations. All of these MCS 

characteristics are already calculated and included in the tracking statistics netCDF file, such as time, location, lifetime (duration), 

size (both cloud shield and precipitation area), movement, and precipitation intensity and volume. The notebook 

(plot_obs_wrf_robust_mcs_trackstats_jointpdf.ipynb) provides examples of selecting MCS tracks based on their locations and 

seasons and computing statistics such as Kernel Density Estimates (KDE) from given quantities for comparisons. More advanced 485 

statistics such as joint KDE are also provided, which further show the relationships between pairs of MCS characteristics and how 

well models compare with observations. For example, the WRF simulation can reproduce the distributions of MCS lifetime and 

cloud shield area fairly well, while the simulated MCSs move faster and their PF areas are smaller than observations (Fig. 10a-d). 
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Further, volumetric rainfall increases exponentially with longer-lived MCSs, which is reproduced by the simulation (Fig. 10e). 

However, the model achieved this by compensating errors. The PF area is underestimated, while the mean rainfall intensity is 490 

overestimated (Fig. 10f-g). Moreover, for the same convective intensity (using lifetime averaged minimum Tb as a proxy), the 

simulated convective rainfall volume is much higher. These results suggest that the simulated MCS convective intensity (i.e., 

updrafts) and associated precipitation may be too strong, while the stratiform cloud area and associated precipitation that dominate 

PF area are weaker, though satellite observational estimates of precipitation also likely contain biases (Cui et al., 2020; Li et al., 

2022), therefore caution is needed when interpreting the tracking results. 495 

 
Figure 11. Annual MCS track density from (a) observations and (b) WRF with (c) differences (WRF – observations). Annual mean fraction of 
MCS precipitation to total precipitation from (d) observations and (e) WRF with (f) differences (WRF – observations). The black box in (d-f) 
shows the region used for the diurnal cycle analysis in Figure 11. 

 500 

Fig. 11 demonstrates two types of spatial maps associated with MCS statistics that can be produced. The track density of MCSs 

(Fig. 11a-c) during a period can be computed using the MCS track statistics files alone. Each given MCS centroid over a specific 

grid (e.g., 1°×1°) is only counted once if the MCS stays within that grid for multiple times. An example function is provided in 

plot_obs_wrf_robust_mcs_tracks_map.ipynb. The track density map allows quick comparisons of MCS frequency between model 

and observations directly using PyFLEXTRKR outputs.  505 

The other type of spatial maps is produced on the native pixel-level grid of the input data. Fig. 11d-f shows the fraction of the 

annual total rainfall contributed by MCSs. An example post-processing script to compute monthly MCS precipitation amount and 

frequency (calc_tbpf_mcs_monthly_rainmap.py) is provided. This calculation uses the MCS masks and precipitation in the pixel-
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level files produced in Step 8 (Fig. 7d) to separate precipitation produced by MCSs and non-MCSs with saved monthly statistics 

in a netCDF file. The analysis notebook (plot_obs_wrf_mcs_seasonal_rainmap.ipynb) combines monthly data to further compute 510 

seasonal and annual means and creates the plots in Fig. 11d-f. In this example, the WRF simulation outputs have been pre-regridded 

to match the observations, allowing their differences to be computed directly on each grid (Fig. 11f). The results indicate that the 

example WRF simulation can capture the spatial distribution and density of observed MCSs over much of continental South 

America. Simulated MCS numbers are slightly lower over northern Brazil and Columbia, the Atlantic Intertropical Convergence 

Zone, and the South Atlantic Convergence Zone. As a result, the MCS precipitation fraction in these respective regions are lower 515 

than that in the observations.  

Fig. 12 shows an example of MCS precipitation diurnal cycle analysis over the central Amazon region (black box in Fig. 11d-f). 

An example post-processing script to compute monthly Hovmöller diagram of MCS precipitation over a user-defined region 

(calc_tbpf_mcs_monthly_rainhov.py) is provided in the Analysis directory of PyFLEXTRKR. The analysis notebook 

(plot_obs_wrf_mcs_diurnal_hovmoller.ipynb) combines the monthly Hovmöller diagram data to further compute diurnal cycle 520 

composites as a function of longitude and creates the plots in Fig. 12. In this example, 50%-60% of the observed nocturnal wet 

season (December to March) precipitation in the Amazon is contributed by MCSs. This feature is captured by the example WRF 

simulation, although the simulated nocturnal fraction is higher over the western Amazon. In addition, a westward moving 

precipitation signal initiated in the local afternoon that is largely associated with MCSs can be seen near the mouth of the Amazon 

River (~ –45° to –50°), and central (~ –55°) and western (–70° to –65°) Amazon. The MCS precipitation diurnal cycle amplitudes 525 

are enhanced correspondingly over these regions. 

 
Figure 12. Diurnal cycle of precipitation as a function of longitude during December-March for (a-b) total precipitation, (c-d) MCS precipitation, 
and (e-f) fraction of MCS precipitation. Precipitation is averaged in the latitude dimension over the central Amazon region (10°S – 2°N, see 
Figure 11). Orange lines (a-d) and black lines (e-f) show the first harmonic of the diurnal cycle composite amplitude along each longitude. 530 
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Lastly, we show an example of how the two methods of MCS identification in PyFLEXTRKR affect the comparison and 

interpretation of MCS frequency between satellite observations and a global model simulation from E3SM with ~25 km grid 

spacing (Caldwell et al., 2019). Recall that PyFLEXTRKR tracks CCSs associated with deep convection (using infrared Tb or 

OLR) to identify MCSs based on the area and duration of tracked CCSs in Step 5 (Fig. 7a). Subsequently, if collocated precipitation 

data is available and used, additional criteria based on PF within the Tb-defined MCSs are applied to further identify robust MCSs 535 

(i.e., long-lived and large cloud systems that produce strong precipitation) in Step 7 (Tb + PF method, Fig. 7c). Fig. 13 shows that 

the distributions of global MCS frequency in observations as defined by the two methods have largely consistent patterns in the 

tropics and differ slightly in magnitude (Fig. 13a,c). In contrast, the model simulated tropical MCS frequency defined by the Tb + 

PF method is significantly less than that defined by the Tb-only method (Fig. 13b,d). This is likely due to the simulated precipitation 

being much weaker than observations, a typical bias associated with cumulus parameterizations in global models (e.g., Caldwell 540 

et al., 2019, Fig. 12). In state-of-the-art global convection-permitting models with kilometer-scale grid spacing, MCS precipitation 

is generally much better simulated, although challenges remain in faithfully representing the observed spectrum of deep convective 

systems (Feng et al., 2023). In summary, the conclusions on the model skill in simulating global observed MCS frequency could 

be drastically different depending on what quantities and metrics are used to identify MCSs. The results in Figure 13 show that 

while the model overproduces large and long-lived cloud clusters that resemble MCSs, many of them fail to meet the PF thresholds. 545 

The example highlights the MCS identification methods available in PyFLEXTRKR that provide different perspectives in 

evaluating model skills in simulating MCSs. 

 
Figure 13. Example maps of 20-year mean MCS density during June-July-August for observations and E3SM model outputs as defined by using 
(a-b) only infrared brightness temperature (IR Tb) and (c-d) both IR Tb and precipitation feature (PF). Gray contours in the background are 550 
topography higher than 1000 m ASL. 
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6 Summary 

This paper documented the algorithm and workflow of PyFLEXTRKR, a Python-based flexible atmospheric feature tracking 

software package with specific capabilities to track convective clouds from a variety of observations and model simulations. 555 

PyFLEXTRKR can track any 2D objects and handle merging and splitting explicitly, allowing it to work on a variety of weather 

and climate datasets. The software has a collection of multi-object identification algorithms, while the modular design of the 

package makes it adaptable to track different types of features with easy maintenance, updating, and testing of different parts of 

the software. The package has scalable parallelization options that can be run on laptops or high-performance computers and has 

been optimized to work on large datasets such as global satellite observations and high-resolution regional or global model 560 

simulations.  

We demonstrated the applications of PyFLEXTRKR on tracking deep convective cells and MCSs from model simulations and 

observations across a range of scales from large-eddy resolving (~100s m) to mesoscale (~10s km). The current version of 

PyFLEXTRKR can identify and track convective cells using 3D radar reflectivity from observations or high-resolution simulations 

with resolution < 5 km, and deep convective systems including MCSs using satellite IR Tb (or model simulated OLR) along with 565 

optional surface precipitation with resolutions from a few kilometers to 50 km. All user-definable parameters are specified in a 

configuration file that contains detailed explanations for ease of use. Additional features of interest can be implemented without 

much coding due to the modular framework design. 

Various visualization, post processing, and statistical analysis examples are included as part of PyFLEXTRKR, facilitating 

statistical comparisons between observations and model simulations and assisting in interpretation and scientific discovery of the 570 

datasets. For example, tracking of convective cells in large-eddy simulations along with post-processing tools to extract important 

but difficult to observe cell properties (e.g., updraft/downdraft characteristics, microphysical processes, near-cloud environmental 

conditions) can help facilitate studies to improve our understanding of primary processes that control the evolution of convective 

clouds. As global models are now run with convection-permitting resolutions (Satoh et al., 2019; Stevens et al., 2019) and multi-

decade regional climate simulations with a few kilometer grid-spacing are a reality (Liu et al., 2017; Prein et al., 2017), open-575 

source feature tracking software such as PyFLEXTRKR that is adaptable, easy to use, and computationally efficient should be a 

valuable tool for the research community to explore these ever-growing large datasets with contributions to model evaluation and 

development efforts. 

We are currently working on implementing additional capability to calculate multi-tile advection from convective features to allow 

tracking of convective cells in large domains and convective systems with smaller spatial scales. In addition, we are adding the 580 

ability to use 3D radar reflectivity data in conjunction with Tb to identify MCSs following our previous works (Feng et al., 2019; 

Feng et al., 2018). We welcome community contributions to the continued development of PyFLEXTRKR. 

7 Code and data availability 

The open-source software described in this paper is available for use under the BSD3 license. The latest version of the software 

can be obtained from GitHub at: https://github.com/FlexTRKR/PyFLEXTRKR. The version of the code used in this manuscript is 585 

available at https://doi.org/10.5281/zenodo.7429446. Datasets used in the manuscript can be downloaded from 

https://doi.org/10.5281/zenodo.7236445 and more example datasets for tracking can be obtained from 

https://portal.nersc.gov/project/m1867/PyFLEXTRKR/sample_data/. 
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Appendix A 

The two example figures (Fig. 4 and Fig. 9) are generated by the following commands, respectively: 

Cell tracking: 

>python plot_subset_cell_tracks_demo.py -s STARTDATE -e ENDDATE -c CONFIG.yml --radar_lat LAT --radar_lon LON 

MCS tracking: 615 

>python plot_subset_tbpf_mcs_tracks_demo.py -s STARTDATE -e ENDDATE -c CONFIG.yml -o horizontal  

STARTDATE/ENDDATE format: ‘yyyy-mm-ddThh:mm:ss’ (e.g., ‘2019-01-20T03:00:00’) 

Optional arguments: 

-p 0 (serial), 1 (parallel) 

--extent lonmin lonmax latmin latmax (subset domain boundary) 620 

--figsize width height (figure size in inches) 

--output output_directory (output figure directory) 

The sequence of snapshot images can be combined to produce animations using the command line tool ffmpeg (https://ffmpeg.org/). 

For example: 

>ffmpeg -framerate 2 -pattern_type glob -i '*.png' -c:v libx264 -r 10 -crf 20 -pix_fmt yuv420p -y output.mp4 625 
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