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Abstract. The quest for hydrological hyper-resolution modelling is already on-going for more than a decade. 10 

While global hydrological models (GHMs) have seen a reduction in grid size, thus far they never have been 

consistently applied at hyper-resolution (<= 1km) at the large scale. Here, we present the first application of the 

GHM PCR-GLOBWB at 1 km over Europe. We thoroughly evaluated simulated discharge, evaporation, soil 

moisture, and terrestrial water storage anomalies against long-term observations, and subsequently compared 

results with the ‘established’ 10 km and 50 km resolutions of PCR-GLOBWB. Subsequently, we could assess the 15 

added value of this first hyper-resolution version of PCR-GLOBWB as well as assess scale dependencies of model 

and forcing resolution. Eventually, these insights can help understanding current challenges and opportunities of 

hyper-resolution models and formulating model and data requirements for future improvements. 

We found that for most variables epistemic uncertainty is still large and issues with scale commensurability exist 

with respect to the long-term yet coarse observations used. Merely for simulated discharge we can confidently 20 

state that model output at hyper-resolution improves over coarser resolutions due to better representation of the 

river network at 1 km. However, currently available observations are not yet widely available at hyper-resolution 

or lack sufficiently long timeseries, which makes it difficult to assess the performance of the model for other 

variables at hyper resolution. Here, additional model validation efforts are needed. At the model side, hyper-

resolution applications require careful revisiting of model parameterization and possibly implementation of more 25 

physical processes to be able to resemble the dynamics and spatial heterogeneity at 1 km. 

With this first application of PCR-GLOBWB at 1 km, we contribute to meeting the ‘grand challenge’ of hyper-

resolution modelling. Even though the model was only assessed at the continental scale, valuable insights could 

be gained which have global validity. As such, it should be seen as a modest milestone on a longer journey towards 

locally relevant model output. This, however, requires a community effort from domain experts, model 30 

developers, research software engineers, and data providers. 
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1. Introduction 

Climate change is projected to impact patterns and intensity of precipitation and temperature world-wide, resulting 

in increased occurrence of hydrological extremes and, in turn, to rising hazard probability and risk globally 

(Dottori et al., 2018; Hirabayashi et al., 2013; Winsemius et al., 2016; Ward et al., 2020b; van der Wiel et al., 

2019). To explore large-scale climate adaption options and mitigation measures, as well as the efficacy of risk 5 

management plans, output from global hydrological models (GHMs) is increasingly employed as a basis for 

discussion and policy-making. Examples are the Aqueduct Flood Analyzer (Aqueduct Global Flood Analyzer, 

2021; Ward et al., 2020a), the Aqueduct Water Risk Atlas (Hofste et al., 2019), the WWF Water Risk Filter 

(WWF, 2022), and water2invest (Straatsma et al., 2020; water2invest web service, 2021).  

One of the main advantages of GHMs is that their outputs are readily available and provide spatially and 10 

temporally consistent estimates of hazard probability and risks (Bierkens, 2015). However, global climate change 

impacts are often evaluated at the level of river basins or at country-scale. Therefore, it is critical that the use of 

GHMs, which typically employ a relatively coarse spatial resolution (≥ 5 arc-min, equivalent to around 100 km2 

at the Equator), is fit for purpose and the current GHMs are used as intended (Ward et al., 2015). Nevertheless, 

the actual impact of hydrologic hazards happens at the local level and may vary greatly within countries which 15 

pushes the boundaries of applicability of the current generation of GHMs. To capture these important spatial 

variations and to eventually make GHMs “locally relevant” (Bierkens et al., 2015) and usable by local water 

managers (Beven and Cloke, 2012), it is hence the current understanding that models need to move towards 

“hyper-resolution” (Wood et al., 2011; Bierkens et al., 2015), that is to a spatial resolution below 1 km2 (30 arc-

seconds). With hydrologic hazards already having increased and projected to increase further (see e.g. Winsemius 20 

et al. (2016), Alfieri et al. (2017), Samaniego et al. (2018), van der Wiel et al. (2019), and the work of the World 

Weather Attribution initiative (Kew et al., 2021; Philip et al., 2019)), it is paramount to better understand their 

impact not only for entire economies, but also more granular on the sub-national to community level. Once 

actionable local model output becomes available, large-scale and target-oriented adaptation and mitigation 

measures can be devised. 25 

Global models have their own raison d’etre as discussed in Ward et al. (2015), for instance analyses over data-

sparse areas or continuous trans-boundary simulations, thereby complementing bespoke local and country-scale 

models which may already be able to run at hyper-resolution. Moving towards hyper-resolution may potentially 

improve these analyses and, as a result, their meaningfulness and applicability. However, due to issues with, inter 

alia, model parameterization as well as computational demand, running GHMs at a meaningful and actionable 30 

spatial resolution over large extents was considered to be a “grand challenge” (Bierkens et al., 2015; Wood et al., 

2011).  

With computational power increasing and input data sets becoming available at ever finer spatial resolutions, the 

spatial resolution of current GHMs has increased in past years too. Currently, most GHMs can be run globally at 

a resolution of 5 to 6 arc-min according to Bierkens et al. (2015). However, a grid cell at a resolution of 5 arc-min 35 

still translates to roughly 102 km2 at the Equator. Recently, various modeling attempts were made to further 

increase spatial resolution or to pave the way towards hyper-resolution. For example, the HydroBlocks model 

(Chaney et al., 2016) was coupled with remotely sensed data to obtain soil moisture estimates at 30 m spatial 

resolution over the continental United States of America (CONUS)  (Vergopolan et al., 2020, 2021). While 

HydroBlocks brings the simulations to an effective 30 m resolution, it still takes advantages of grouping regions 40 

based on hydrological similarity to reduce computational demands. O’Neill et al. (2021) applied and evaluated 

the hydrological model ParFlow (Maxwell et al., 2015) configured over the CONUS at 1 km spatial resolution 

covering the years 2003 until 2006, constituting the first-of-its-kind studies covering such an extensive area at 

‘true’ hyper-resolution. Aerts et al. (2021) assessed changes of model accuracy of the hydrological model 

wflow_sbm (Schellekens et al., 2020) at multiple resolutions below 1 km2 for the CAMELS dataset (Newman et 45 

al., 2015; Addor et al., 2017) again solely covering the CONUS. While the spatial resolution applied is ‘hyper-

resolution’, the lack of either spatially-continuous simulations over large extents or short simulation periods make 

it challenging to define a substantial benchmark that is representative to the realm of GHMs. Other studies already 

proposed scalable routing networks (Thober et al., 2019) and measures how to seamlessly model across scales 

(Samaniego et al., 2010, 2017) which are essential when moving towards hyper-resolution.  50 
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On a more general note, the call for “hyper-resolution” is strongly driven by an expected increase of model 

accuracy and consequently applicability. One hypothesis thereby is that particularly locations with a small 

upstream area will profit as more interactions will be simulated there and that representation of the storage and 

response times in these regions are improved. The question whether this is really the case depends also on the 

ability to populate the many fine resolution cells with accurate parameters (Wood et al., 2011; Beven and Cloke, 5 

2012). It is believed that this is not possible without additional locally specific information and as such Beven et 

al. (2015) concluded that hyper-resolution modelling will not achieve the necessary accuracy. Thus, we first need 

to establish an understanding to what extent accuracy of GHMs is improved when only their resolution is increased 

while still employing globally available datasets currently used for parameterizing GHMs. Even though models 

at different resolutions should ideally use bespoke parameterization and input data when applied at these three 10 

resolutions, we kept both as unaltered as possible to be able to better separate the impact of spatial resolution. 

A second avenue towards improved model accuracy is the use of more accurate meteorological forcing. In studies 

using GHMs, it is shown that particularly the quality and spatial resolution of meteorological variables, notably 

precipitation, can have a pronounced impact on model accuracy (Beck et al., 2020; Towner et al., 2019; Biemans 

et al., 2009). Hence, a second question is raised whether it is needed to go all the way to “model hyper-resolution” 15 

or if using “forcing hyper-resolution” with current GHMs already suffices. This would reduce the need for updated 

model parameterization and design as well as greatly shorten run times and reduce model data storage 

requirements. A locally relevant spatial resolution could then be achieved using post-processing tools, for 

instance. 

The main objective of this paper is therefore to increase our understanding of scale dependencies of both the 20 

model and the meteorological input and formulate ways forward towards meeting the above-named “grand 

challenge”. To that end, we developed a 30 arc-seconds (~1 km) version of the existing 10 km PCR-GLOBWB 

model (Sutanudjaja et al., 2018) for the entire European continent and applied it over the period 1981 until 2019. 

As such, it constitutes a first-of-its-kind effort to set-up, run, and evaluate a GHM at hyper-resolution over multiple 

decades. We acknowledge that this constitutes only a continental-scale application of a global model, but study 25 

set-up and choice of data sets has been made such that both methods and findings can potentially be transferred 

to the global scale. The main reason to focus on Europe only is the data richness there improving our ability to 

better create and evaluate models. The model was used to test how a stepwise increase in spatial resolution (30 

arc-min/~50 km, 5 arc-min/~10 km, 30 arc-sec/~1 km) impacts model accuracy. To test the impact of forcing 

resolution, the model simulations at the different spatial resolutions  were forced with ERA5-Land data (Muñoz-30 

Sabater et al., 2021) at the same spatial resolutions or coarser. Finally, we combine both experiments to disentangle 

the relative importance of the model and forcing resolution. Except for the precipitation forcing, all simulations 

make use of the same input and parameter sets and are downscaled or upscaled only if necessary. In our analysis, 

we focus not merely on simulated discharge as done by Aerts et al. (2021), for instance, but also on terrestrial 

water storage anomalies, evaporation, and soil moisture to provide a more holistic picture of model performance 35 

than what is typically the norm (see O’Neill et al., 2021). Such a very first thorough analysis of a hyper-resolution 

GHM is in the first place not intended to claim that hyper-resolution should be the ‘new normal’ for GHMs, but 

rather to gather opportunities and challenges of the scale dependencies of refining the spatial resolution of the 

model and its forcing. These insights may help identifing the most effective model development pathways and 

advancing current efforts to produce spatially consistent and locally relevant estimates at (sub-)kilometer scale. 40 

2. Methods, data, and study area 

2.1. Study area and input data 

In addition to the already existing global schematizations of PCR-GLOBWB at 30 arc-min (roughly 50 km cell 

length at the Equator) and 5 arc-minutes (roughly 10 km cell length at the Equator), respectively, we developed a 

novel 30 arc-seconds (roughly 1 km cell length at the Equator) schematization. 45 

The study period for which each run was executed is 1981 until 2019 at a daily timestep. However, to reduce 

storage requirements and due to the timestep of most observations, our evaluations focused on the monthly 

timestep except for discharge analysis where both daily and monthly timestep were used.  
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Each of the model resolutions1 was forced with precipitation at the model resolution or coarser, yielding in total 

six combinations of model and forcing spatial resolutions (see Table 1). 

Table 1: Overview of model and forcing as well as used run names 

Model Forcing Run name 

PCR-GLOBWB 50 km ERA5-Land 50 km 50k_50k 

PCR-GLOBWB 10 km ERA5-Land 50 km 10k_50k 

PCR-GLOBWB 10 km ERA5-Land 10 km 10k_10k 

PCR-GLOBWB 1 km ERA5-Land 50 km 1k_50k 

PCR-GLOBWB 1 km ERA5-Land 10 km 1k_10k 

PCR-GLOBWB 1 km ERA5-Land 1 km 1k_1k 

 

For all three spatial resolutions, identical model input data and parameter sets are used to guarantee comparability 5 

across set-ups. The ‘default’ resolution is 1 km, meaning that all model development including runoff, soil, and 

groundwater processes, was geared towards this resolution and all other resolutions are derivatives. A detailed 

overview over datasets used for model parameterization and forcing input can be found in A1. Appendix A, 

including the scaling techniques used to derive them at various resolutions (i.e., 1 km, 30 km, and 50 km). It 

should be mentioned here that resampling the default 1 km data to coarser resolution affects model schematization 10 

(Samaniego et al., 2017) although greatest care was taken to minimize this effect. Hence, the impact of using 

different model resolutions is not assessed in isolation but rather in its bigger context of how the model 

schematization would appear for a given model resolution. Each run includes water demand and use for irrigation, 

industry, livestock, and household as well as accounts for reservoir storage based on the GranD database (Lehner 

et al., 2011). Note that none of the runs were calibrated to not have differences in parameterization affect the 15 

comparability across different model resolutions and forcing resolutions. 

2.2. Model evaluation 

To fully grasp the impact of an increase in spatial resolution on hydrological states and fluxes, various model 

output variables were compared to observations: simulated discharge, total evaporation, terrestrial water storage 

anomaly, and upper layer soil moisture. When selecting the observational data sets, we preferred a long record 20 

over spatial resolution due to two reasons: i) because a long observational record is needed to establish a 

benchmark of hyper-resolution as intended here, potentially also capturing interannual variability and 

hydrological extremes; ii) the coarser-scale simulations greatly reduce the added value of fine-resolution 

observations. Additionally, we benchmarked the computational demand of the various runs performed. While 

discharge was evaluated at locations, the other variables were evaluated at the water province level (Straatsma et 25 

al., 2020). Hereby water provinces smaller than the coarsest cell size of the observational data used (here: the 

original 3-degree footprint of the GRACE/GRACE-FO data, see section 2.2.4) were merged with the adjacent 

province having the longest common border. While the use of these water provinces, which serve as a ‘common 

denominator’ across the multiple spatial resolutions used, allows us to make a fair comparison across the different 

model set-ups, it also has the downside that some level of detail is lost, particularly for the simulations with finer 30 

spatial resolution. Nevertheless, there are still sufficient water provinces to make robust conclusions. 

It should be noted that by evaluating the 1 km hyper-resolution outputs at the water province level, we can only 

assess the overall performance of these simulations, rather than site-specific improvements. While it would be 

preferable to evaluate the model simulations at the native 1 km resolution this is difficult due to the coarse spatial 

resolution of some of the validation datasets. 35 

2.2.1. Simulated discharge 

To evaluate simulated monthly discharge, we employed data from the Global Run-off Data Centre (GRDC). To 

assess the accuracy of monthly simulated discharge, we determined the Kling-Gupta Efficiency (KGE; Gupta et 

 

1 The term ‘resolution’ refers to spatial resolution throughout this manuscript, if not specifically stated otherwise 
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al. (2009)). Based on Knoben et al. (2019), a value of KGE ≥ -0.41 indicates that the model improves upon the 

mean flow benchmark.  

For meaningful analyses, we used only GRDC stations from our dataset which met the following requirements: i) 

the timeseries of a station extends at least until 1991; ii) the timeseries of a station contains at least 10 years of 

data; iii) the catchment area of a station is at least 400 km2, which is equivalent to four upstream cells for the 10k 5 

resolution. This yielded in total 564 stations. Since this large number of stations did not allow manual matching 

of their locations and the model river network, we determined the corresponding model cell by searching for the 

smallest deviation between mean observed and simulated discharge in proximity of the location as specified by 

GRDC. This radius was determined by testing, and we consider it a balanced distance between sufficient search 

space and allocating discharge stations over non-realistically large distances.  10 

For all runs, we evaluated the KGE distribution as is and additionally compared KGE values as function of 

upstream catchment area per station. This way we expect to obtain a better picture whether finer spatial resolution 

has a more marked impact on upstream stations compared to downstream stations. To analyse this, we categorized 

all stations depending on their catchment area with a minimum catchment area of 400 km2 due to the above-

described selection criteria. Stations with a catchment area falling in the 25 % quantile were considered upstream 15 

stations, those falling in the 75 % quantile downstream stations, and all remaining ones midstream stations. One 

hypothesis is that a finer model spatial resolution improves especially discharge simulations in upstream areas 

due to the refined channel network and thus better representation of upstream processes. 

Per station, the change of obtained KGE between two different runs can be compared by computing the KGE skill 

score (KGEss) based on the subsequent equation (Towner et al., 2019): 20 

𝐾𝐺𝐸𝑠𝑠 =
𝐾𝐺𝐸𝑎 − 𝐾𝐺𝐸𝑟𝑒𝑓

1 − 𝐾𝐺𝐸𝑟𝑒𝑓
 

Here, KGEa is the KGE of the model run under consideration, while KGEref is the KGE of the reference run for 

which we use the 50k_50k run. Positive KGESS indicates improved skill, whilst a negative score represents a 

decrease in skill. 

Thus far, we focused on monthly discharge results only as it reduces file size and makes the required analyses 25 

manageable. Moreover, the runs did use the simpler routing scheme implemented in PCR-GLOBWB, named 

‘accuTravelTime’, which has limitations on accurately simulating discharge since it relies on a characteristic 

method and fixed flow velocities. For daily discharge simulations, particularly in larger channels, a kinematic or 

dynamic wave approximation is needed. We did not apply these as it would lead to very large computation times 

at 1 km resolution under the current PCR-GLOBWB code. Nevertheless, we think it may add to the evaluation if 30 

we also assessed how fast model processes, for which a short temporal resolution is crucial, profit from an 

increased spatial resolution of the model, as argued by Melsen et al. (2016). To that end, we compared KGE values 

obtained with both daily and monthly output per catchment area category. 

2.2.2. Upper soil moisture 

For validating the average soil moisture of the upper layer, we compare simulations with remotely sensed  ESA-35 

CCI soil moisture data v06.1 (Dorigo et al., 2017; Gruber et al., 2019). The native temporal resolution is daily and 

the spatial resolution is 0.25 degree (roughly 25km at the Equator). It is noteworthy that the observed data is 

representative for the upper 5 cm of the soil column whereas simulated upper soil moisture from PCR-GLOBWB 

is an average of the first 30 cm. It is also due to this difference that applying the KGE across all evaluated variables 

is not feasible. It should additionally be mentioned that an older version of ESA-CCI soil moisture data is one of 40 

the input data for GLEAM evaporation data (see section 2.2.3). Nevertheless, we can still use the EDA-CCI data 

as indicator for actual soil moisture dynamics. By computing the spatial mean per water province per time step 

for both observation and simulation, the resulting timeseries were used to derive the relative root-square-mean-

error (RRMSE) per water with the subsequent equation: 
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𝑅𝑅𝑀𝑆𝐸 =  
𝑅𝑀𝑆𝐸(𝑜𝑏𝑠, 𝑠𝑖𝑚)

𝜎(𝑜𝑏𝑠)
 

Here, RMSE(obs, sim) is the root-square-mean-error between observation and simulation timeseries, and σ(obs) 

the standard deviation of the observation timeseries. 

2.2.3. Total evaporation 

Evaporation makes up a significant factor in in the terrestrial water cycle as well as water balance, strongly 5 

determining water availability. Accurate simulation of evaporation is therefore paramount. Unfortunately, there 

is only little independent observation data available with sufficient temporal and spatial variation and extent. 

Therefore, to benchmark simulated total evaporation per water province, we used data from the remote sensing-

based dataset GLEAM version 3.5a (Global Land Evaporation Amsterdam Model; Gonzalez Miralles et al., 

(2011), Martens et al., (2017)), covering the period from 1980 to 2020. GLEAM v3.5a has a native monthly 10 

temporal resolution and a spatial resolution of 0.25 degree (~25 km). Since the algorithms implemented in 

GLEAM aim much more on correctly simulated correct evaporation than PCR-GLOBWB, and because GLEAM 

employs different (remotely sensed) input data sets, the choice to use a partly model-based benchmark is 

defensible. Similar as for upper soil moisture evaluation, the RRMSE was determined per water province. 

2.2.4. Terrestrial water storage anomaly 15 

By validating model total water storage against remotely sensed terrestrial water storage, it is possible to evaluate 

the model’s storage dynamics. As such, it provides a more holistic validation including the entire hydrological 

system state. 

Here, simulated terrestrial water storage anomaly was validated against JPL-Tellus GRACE/GRACE-FO 

(Kornfeld et al., 2019) data for the period 2002 until 2019. While the native spatial resolution of the data is at 3 20 

degrees, the data used here is at 0.5 degree. Again, monthly averages were computed for both observation and 

simulations to obtain the RRMSE per water province. 

3. Results 

3.1. Simulated discharge 

We see that simulated discharge, as expressed by the KGE value averaged over all GRDC stations per water 25 

province, improves greatly with finer model spatial resolution (Figure 1, Figure 2; Table 2). While the 50k_50k 

run yields a negative median KGE values, this picture improves for finer resolutions with the 1k_1k and 1k_10k 

runs comfortably exceeding the accuracy threshold of -0.41 as defined by Knoben et al. (2019). Higher skill with 

finer resolution is in line with previous research (Altenau et al., 2017), although this is should not be expected to 

be the case for all stations due to locality effects in the scaling process (Aerts et al., 2021). As in our case only 30 

around 7 % of all stations do not show an improvement at all but roughly 70 % of the stations receive their highest 

KGE values for the 1k_1k run (Figure B1), results nevertheless indicate a robust relation between model resolution 

and accuracy of simulated discharge. 
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Figure 1: KGE values of all selected GRDC stations in Europe. 

 

Figure 2: Boxplot of KGE values obtained for all runs; right zoomed in to smaller value range. 

Results furthermore indicate that the impact of forcing spatial resolution is present but limited to the 1k runs, and 5 

even there only the distribution of KGE values contains slightly higher values (as expressed by the whisker extents 

in Figure 2) while mean KGE values are close to identical. Overall, results suggest that model resolution is a more 

important determinant of the accuracy of simulated discharge. Due to the minor differences found across forcing 

resolutions, the subsequent discharge analyses focus on results from the 1k_1k, 10k_10k, and 50k_50k runs.  

When analysing results per catchment area category, they also show that KGE values increase when moving to 1 10 

km hyper-resolution, with the magnitude of improvement depending on upstream area (Figure 3). In line with 

previous results and our hypothesis, employing finer resolutions than the reference 50 km has the most pronounced 

effect at upstream locations where the 50 km model is seemingly less capable of reproducing observed discharge. 

For midstream and downstream stations, KGEss values show the greatest improvement for the 1k_1k run, and 

hence a clear beneficial effect of hyper-resolution hydrological modelling. In fact, simulated discharge at 1 km 15 

improves over either 10 km or 50 km or both at around 93 % of the GRDC stations assessed (see Figure B1). In 
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addition to our hypothesis that hyper-resolution is beneficial in upstream areas, these results suggest that a better 

representation of smaller streams contributes to more accurate discharge simulations at large.  

 

Figure 3: Boxplots of obtained KGEss values for all stations categorized as downstream, midstream, and upstream for 

selected runs. 5 

 

Figure 4: Comparison between KGE distribution presented as boxplots for different spatial resolution and temporal 

resolution of discharge output. 

Another hypothesis we tested is whether the accuracy of fast processes simulated at daily resolution, such as 

discharge generation, improve compared to longer aggregation periods, for example months, with finer spatial 10 

resolution. This is in line with Melsen et al. (2016) who argues that ‘the calibration and validation time interval 

should keep pace with the increase in spatial resolution’. Based on Figure 4, this hypothesis cannot be confirmed 

for the PCR-GLOBWB model. We do, however, want to stress that these results do not mean that moving to 

hyper-resolution does not yield improvements for shorter temporal intervals at all. It is highly likely that the 

simplistic routing schematization used in this experiment limits the improvement of daily discharge dynamics. 15 

Using more advanced routing schemes was not feasible due to the resulting high computation demand. It can thus 

be assumed that the here presented daily discharge estimates do not fully represent the potential benefits which 

could be achieved with hydrological simulations at hyper-resolution. 
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3.2. Upper soil moisture 

To assess the model skill in reproducing upper soil moisture, we analysed RRMSE values obtained per water 

province (Figure 5). Overall, we find areas with consistently low and high RRMSE values. Particularly the UK, 

Ireland, southern Sweden and Norway, the Rhine-Meuse delta, and a larger area centred around Austria have high 

RRMSE values. Large parts of Spain, Portugal, and Finland as well as northern Sweden show overall good model 5 

performance as indicated by low RRMSE values.  

 

Figure 5: Relative Root Mean Square Error (RRMSE) values computed per water province based on simulated upper 

soil moisture and observations from ESA-CCI. 

Comparing RRMSE values across both model resolutions (Figure 6A and Table 2) reveals that the 10k runs, when 10 

benchmarked against the 1k run, produce overall lower RRMSE values and are thus more accurate, although 

differences between median values are overall small especially between the 1k_1k and 10k_10k runs. It is in line 

with our expectations that the 50k run has the highest RRMSE values. Figure 6B and Figure 6C compare RRMSE 

values across forcing resolutions, indicating that employing coarser forcing resolution decreases model accuracy 

for the 1k runs while not having significant impact on the 10k run (see also Table 2) – a similar pattern to that 15 

found in the discharge evaluation. 

It should be noted, however, that observed and simulated soil moisture values are based on different soil depths, 

which may have a not further quantifiable impact on analysis results. The fact that a similar pattern is found when 

assessing timeseries variability as expressed by the coefficient of determination R2 indicates that the relation 

between observation and simulations is well-represented also when assessing RRMSE values (Figure B2). 20 
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Figure 6: Scatterplot of RRMSE values obtained in evaluation of simulated upper soil moisture with ESA-CCI data 

for: A) comparing different model resolutions; B) comparing different forcing resolutions for 1k runs; C) comparing 

different forcing resolutions for 10k runs. 

Ranking the accuracy of the runs by their mean RRMSE value, we see that the 10k runs perform best, followed 5 

by the 1k_1k run (Table 2). The fact that the 10k_10k runs clearly outperform the 1k_10k and 1k_50k runs 

indicates that a too coarse forcing resolution can eradicate potential benefits of finer model resolution, and that 

employing a coarser model resolution with a (relatively) fine forcing resolution may lead to similar accuracy.  

3.3. Total evaporation 

Results indicate that model accuracy is lowest for the 1k runs, followed by the 50k run (Figure 7, Figure B3A; 10 

Table 2). The 10k runs show overall best performance in resembling evaporation estimates from GLEAM. We 

furthermore find that RRMSE values are smaller and range between 0.22 and 1.78, indicating overall better 

agreement between simulation and observation than for surface soil moisture. The deterioration of model accuracy 

at 1 km scale is visible over the entire European continent except for Great Britain where we see improvement 

when moving towards 1 km model resolution. 15 
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Figure 7: RRMSE values computed per water province based on simulated total evaporation and evaporation data 

from GLEAM. 

In line with the soil moisture evaluation, employing a coarser forcing resolution increases RRMSE values for the 

1k runs, and hence decreases model accuracy, but has no impact on the 10k runs (Figure B3B,  Figure B3C; Table 5 

2). 

3.4. Terrestrial water storage anomalies 

As with all previous evaluations, evaluating terrestrial water storage (TWS) anomalies indicates that coarser 

forcing resolutions yield reduced model accuracy, but in this case the impact is smaller than for previously 

assessed variables (Figure B4B, Figure B4C; Table 2).  10 

Figure 8 shows that there are distinct hotspots (Scandinavia, the UK and Ireland, Italy, and water provinces along 

the Atlantic and Mediterranean coast) where model accuracy is limited, regardless the model resolution or forcing 

resolution employed. Furthermore, the same pattern occurs as with total evaporation, namely that overall RMSE 

values are lowest for model resolutions coarser than 1 km, in that case the 50k run (Figure B4A; Table 2). These 

findings, again, may be related to the fact that the large original footprint of the GRACE data of 3 arc-min or 15 

roughly 300 km cell length, despite downscaling it to 0.5 degree, favours coarser resolutions. In fact, the match 

in spatial resolution may be explaining some of the good performance of the 50 km run. Consequently, the 

(potentially) added value of finer model resolutions may not be captured when using GRACE data for evaluation.  
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Figure 8: RRMSE values computed per water province based on simulated total water storage anomalies and 

terrestrial water storage anomalies from GRACE/GRACE-FO. 

Table 2: Overview of median evaluation metrics per run per evaluated variable except for discharge.  

dataset metric 1k_1k 1k_10k 1k_50k 10k_10k 10k_50k 50k_50k 

GRDC median KGE 0.38 0.38 0.37 0.07 0.07 -0.70 

ESA-CCI median RRMSE 3.00 3.13 3.16 2.67 2.68 2.63 

 median R2 0.30 0.30 0.30 0.32 0.32 0.28 

GLEAM median RRMSE 0.66 0.70 0.70 0.40 0.40 0.46 

 median R2 0.97 0.97 0.97 0.97 0.97 0.98 

GRACE median RRMSE 1.00 0.99 1.00 0.75 0.75 0.72 

 median R2 0.71 0.71 0.71 0.71 0.71 0.66 

 5 

4. Discussion 

4.1. Model parameterization 

In the debate of “hyper-resolution”, the role of model parameterization is a major topic. Here, we did not attempt 

to improve model parameterization or replace parameterized processes with empirical scaling relations when 

moving from coarse to fine resolution. This allows us to make inferences about the importance of scale-consistent 10 

model parameterization and where using the thus far default approach (simple parameter upscaling and changing 

forcing resolutions) may reach its limits.  

As an example, we assessed in more detail the parameterization for the groundwater response times, which has a 

major impact on groundwater storage dynamics. Our hypothesis is that it needs to be adjusted for finer spatial 

resolutions as it does not (yet) correctly scale with the underlying drainage network and therefore results in the 15 

lower accuracy when evaluating TWS anomalies of the 1km runs (section 3.4). Consequently, model response, 

particularly with respect to regional groundwater dynamics, may be too slow at model resolutions finer than the 

thus far default 10 km resolution, and hence the groundwater response is out-of-sync with observations. A lower 
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correlation (expressed here as the coefficient of determination R2) may thus result in high RRMSE values. To 

further analyse this, we categorized each water province according to its R2 and RRMSE values (Figure 9). Indeed, 

results suggest that R2 is an overall good predictor of RRMSE: water provinces with a high R2 tend to have low 

RRMSE values and vice versa, accounting for in total 66 % to 68 % of all provinces across all runs. More 

importantly is here that for the 1 km run we find the greatest median RRMSE value. Consequently, issues related 5 

to correct scaling of the recession parameter may indeed contribute to the not-improvement at finer model 

resolutions. 

 

Figure 9: Plot of R2 and RRMSE values per water province, categorized in four quartiles based on their median R2 

and RRMSE values, respectively, for 1k_1k, 10k_10k, and 50k_50k runs (from left to right). Values in corners of 10 
quartiles represent the fraction of data points in the respective quartiles. 

Another example how the question whether using a parameter or equation can affect model accuracy is the 

accumulation of water storage over time, particularly in snow-dominated areas where the downscaled temperature 

at 1 km is mostly below the freezing point. Again, such accumulation decreases model accuracy of simulated 

TWS anomalies. In these areas, PCR-GLOBWB does not yet contain enough physical processes to re-distribute 15 

snow to other 1 km cells (e.g., glaciers or avalanches). Indeed, correcting for snow cover of the 1k_1k run had a 

positive effect when evaluating TWS anomalies (Table 3) for two water provinces (not surprisingly located in and 

around the Alps, see Figure B5), strongly suggesting that the current approach to calculate snow cover and changes 

thereof may locally limit model accuracy for hyper-resolution runs.  

Table 3: RRMSE values for two selected water provinces without and with correction for snow cover when evaluating 20 
simulated TWS anomalies. 

 RRMSE (w/o correction) RRMSE (w correction) RRMSE reduction 

ID 45 1.318 0.597 45 % 

ID 179 5.553 0.862 84 % 

 

4.2. Scale commensurability of simulated and observed data 

Scale commensurability is an important aspect when comparing simulated and observed data, when (in)validating 

a model (Beven et al., 2022). In line with previous research (Gleeson et al., 2021) commensurability errors are 25 

reduced for increasingly finer spatial resolutions, which translates to more accurate river networks and in turn less 

spatial aggregation, when evaluating simulated discharge. 

For most of the other evaluated variables, however, results tend to be favourable for coarser model resolutions. A 

clear answer what causes these ambiguous results is currently, however, not possible as epistemic uncertainty is 

large: either the observations, the model schematizations derived at coarser resolutions from the default 1 km 30 
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model data, the mismatch in spatial resolutions between observations and model, or all of them may lead to mixed 

results and additional efforts need to be taken to reduce this uncertainty.  

Currently, the difference between the finest resolution of the model (1 km) and of observational datasets that cover 

the entire European domain and have a sufficiently long record (25 to 50 km) is undoubtedly great. However, as 

only recent satellite missions, such as the ESA Sentinel mission or commercially-driven ones, can produce data 5 

at the (sub)kilometre-scale, it will still take some time until the observed period is sufficiently long for robust 

long-term model evaluations. For example, surface soil moisture data collected by Sentinel1B started in 2015 

only, whereas the here used ESA-CCI data covers the period 1978 to 2020. Similarly, MODIS16A ET data 

provides sub-kilometre scale evapotranspiration data starting in 2001. Even though this is already a longer track 

record, it would mean disregarding 20 years of simulations which may be too short for establishing a baseline 10 

understanding of the effect of hyper-resolution.  

4.3. Computing and data storage demand 

Another important aspect of hyper-resolution hydrological modelling is the computational demand as well as the 

numerical scheme used. Table 4 shows computational demands for different model resolutions using the Dutch 

super-computer Snellius. Without parallelization, the wall clock time for a 10 km run was about 36 hours. This 15 

entails that the 1 km model, having the size of about 100 times the 10 km model, would result in a wall clock time 

of 3,600 hours (~150 days). This wall clock time is clearly not viable and therefore 1 km model was run in parallel 

for 45 chunks. 

Table 4: Overview of indicators for computational demand of the runs at different model resolutions. The file sizes 

refer to output for one variable. 20 

 1k 10k 50k 

Run time    

- Without parallelization 3,600 h 36 h 9h 

- With parallelization 204 h not parallelized 

File size monthly data 25.000 MB 500 MB 15 MB 

File size daily data 750.000 MB 15.000 MB 450 MB 

 

As the underlying numerical scheme of PCR-GLOBWB has not been changed for computationally more 

demanding hyper-resolution simulations, it is clearly sub-par. Besides using ever more powerful high-

performance computers (HPCs), additional efforts should be taken to improve model parallelization capacities as 

implemented in comparable models (Kollet and Maxwell, 2006; Kollet et al., 2010; Bierkens et al., 2015). 25 

Evidently, the challenge of hyper-resolution hydrological modelling is not only one of data and parameters, but 

also one of model design which needs to be following most recent software and hardware developments, for 

instance distributed memory parallel modelling (Verkaik et al., 2021, 2022), asynchronous many-tasks (de Jong 

et al., 2022, 2021) or running the simulations on GPUs (Shaw et al., 2021) or XPUs in general.  

Once shorter run times are achieved, it can have direct positive effects on model results too, especially discharge. 30 

With the thus far default model design, we had to employ the ‘accuTravelTime’ routing scheme, the largest 

simplification of the shallow water equations. This renders particularly daily discharge simulations potentially 

inaccurate and does not make full use of a hyper-resolution river network as relevant physical processes are not 

included. Once a speed up of the model is realized by considering one of the above-mentioned options, it could 

be feasible to employ more sophisticated versions of the shallow water equations. But also for other model 35 

variables, an improved numerical scheme will be crucial when processes replace parameterization at 1 km 

resolution. 

5. Conclusion and recommendations 

In this study, we assessed challenges and opportunities of refining both model and forcing spatial resolution from 

50 km to 10 km to hyper-resolution 1 km, aiming to increase our understanding of scale dependencies of both the 40 

model and the meteorological input. Our work shows that too coarse forcing resolution can eradicate benefits of 
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model hyper-resolution. Hence, if forcing is only available at coarse spatial resolution, applying a hyper-resolution 

model will not provide any performance gain and only increase computational demand. Furthermore, results show 

that model resolution is greatly defining overall output accuracy: if model skill at a given model resolution and 

coarse forcing resolution is already low (or high), employing finer forcing resolution will only yield limited 

improvement. Consequently, future work should be aimed at advancing both model and forcing data. For the 5 

latter, the scale gap between currently achievable model resolution and available meteorological data sets needs 

to be closed. 

Even though the here presented hyper-resolution model is not just the same old model with more grid cells but 

populated with as much high-resolution parameter data as possible, there is still room for model improvement. 

Currently, the used parameterization design is not fully scalable from the current default of 10 km to 1 km. Clearly, 10 

some parameters or sub-grid approaches should be replaced by actual data at when moving to hyper-resolution. 

As exemplified in section 4.1, model accuracy at 1km spatial resolution may be lower than necessary due to an 

unfit model parameterization. Considering the growing number of openly available datasets it is needed to 

carefully review model parameters and their values currently used. In some instances, it may be better to include 

additional physical processes to capture the immense natural heterogeneity which can be resembled at the 1 km 15 

scale (Clark et al., 2017; Beven and Cloke, 2012), while making sure that including these processes and fine-scale 

data result in consistent parameterizations across scales (Samaniego et al., 2010). It is only when model 

parameterization is improved and more processes are implemented at hyper-resolution, that the full potential of a 

hyper-resolution model grid can be employed. Then, we expect that model realism will improve and epistemic 

uncertainty will decrease, leading to overall improved accuracy. 20 

While finer model resolution has a clear positive effect on simulated discharge, answering the question of scale 

commensurability when employing long-term observational datasets with coarse spatial resolutions remains 

challenging (see section 4.2). Following up the baseline study presented here, a second step in (in)validating the 

simulated results is recommended in which finer-resolution observational data should be employed to reduce 

scale-related commensurability uncertainties (Beven, 2018, 2016). The availability of 1 km model output over 25 

large extents now offers a great opportunity to make full use of the benefit of these novel data. In that context, the 

need to use water provinces to link across spatial resolutions could be lifted when merely assessing hyper-

resolution model output, allowing the model evaluation to be performed at the individual grid scale. 

As discussed in section 4.3, performing hyper-resolution simulations is still pushing the boundaries of what is 

currently possible. Despite advances made in both software and hardware acceleration, access to high-30 

performance computers with sufficient CPU, memory, and disk space remains vital for hyper-resolution 

simulations at the continental-scale, let alone for global application. Democratizing this access will therefore be 

crucial to enable researchers world-wide to advance hyper-resolution hydrological modelling. Additionally, the 

numerical scheme of any model attempting continental-scale hyper-resolution simulations needs to be on-par with 

the task at hand. This is not to say that all models need to be refactored entirely, but undoubtedly optimized code 35 

and some form of advanced cyberinfrastructure (Condon et al., 2021) needs to be in place – possibly supported 

by research software engineers (Hut et al., 2017) – to deal with the high storage and computational demand of not 

only running the simulations but also storing both input and output data as well as analysing results. 

All in all, the here presented results should not be considered the final outcomes of a development towards global 

hyper-resolution hydrological modelling. For one, they are rather a first effort to map both opportunities and 40 

challenges of continuous simulations at 1 km resolution over large extents, with lessons learned for iterative open-

ended model evaluation and subsequent improvement of model parameterization and configuration (Gleeson et 

al., 2021; Bierkens et al., 2015). Since the study here is at the continental scale - yet with global model 

configurations and global data sets -, the findings made should be confirmed (or disregarded) in a global-scale 

study, ideally using high-resolution observation data sets for benchmarking. Now that a modelling and evaluation 45 

workflow is established, the threshold for performing such a study is lowered. Since most hyper-resolution studies 

are done over data-rich regions, it will be revealing to see how hyper-resolution models perform over data-scarce 

areas. As such, the results here should be seen as first steps in the realm of hyper-resolution with many more to 

follow.  
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Despite the currently limited availability of observation dataset at matching spatial resolution and the still very 

demanding computations, we share the positive outlook of O’Neill et al. (2021) and are convinced that on-going 

data collection efforts, advanced satellite missions, and ever-powerful computers will eventually result in hyper-

resolution becoming the default in the foreseeable future, and in turn providing globally continuous yet locally 

relevant results. 5 
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A. Appendices 

A1. Appendix A 

This part provides some brief description about the PCR-GLOBWB model input used in this study. For more 

extensive details, we refer to previous PCR-GLOBWB model studies, particularly the ones at 50 km resolution 

(van Beek et al., 2011; van Beek, 2008; van Beek and Bierkens, 2008) and 10 km resolution (Sutanudjaja et al., 5 

2018) as well at 1 km resolution (Sutanudjaja et al., 2011).  

Meteorological forcing 

As the meteorological forcing input, PCR-GLOBWB requires daily spatial fields of precipitation and temperature, 

as well as reference potential evaporation. For this study, reference potential evaporation is calculated using the 

Penman-Monteith method following the FAO guidelines (Allen et al., 1998) that requires net radiation, wind 10 

speed, and vapor pressure deficit (see van Beek (2008) for details).  

For all of the aforementioned required meteorological fields, we downloaded the ERA5-Land dataset (Muñoz-

Sabater et al., 2021), which are provided at 6 arc-minute and hourly resolution. We then resampled the ERA5-

Land precipitation and temperature variables, to daily spatial fields at 5 arc-minute resolution so that they can be 

used for our 10 km model runs. We also resampled the required variables for the reference potential evaporation 15 

calculation at 5 arc-minute resolution and used it as the reference potential evaporation input of our 10 km model 

runs. 

For our 50 km model run, we upscaled or averaged the 5 arc-minute daily precipitation, temperature, and reference 

potential evaporation variables to their 30 daily arc-minute fields. For 1 km model runs, we downscaled the daily 

precipitation and temperature fields from 5 arc-minute to 30 arc-second using the monthly lapse rate fields from 20 

Sutanudjaja et al. (2018). We refer to Sutanudjaja et al. (2011) for more details about the downscaling procedure. 

The downscaled 30 arc-second temperature fields were also used to calculate the reference potential evaporation 

fields based on the Hamon-method (Hamon, 1963) that requires only daily mean temperature as its input. We then 

used these Hamon 30 arc-second fields to downscale the 5 arc-minute fields of the Penman-Monteith reference 

potential evaporation to 30 arc-second resolution.  25 

Land surface: soil, and cover, and topography 

For soil parameterization, the maps from SoilGrids250 (Hengl et al., 2017) were used in this study. This is 

different than previous PCR-GLOBWB studies that used the Digital Soil Map of the World (DSMW; FAO, 2007). 

An obvious advantage using SoilGrids250 from is its sufficiently fine resolution at 0.002 arc-degree resolution 

(0.12 arcmin, about 250 m at the equator), while DSMW may not be suitable for model grids finer than 5 arc-30 

minute resolution (see e.g. Batjes, 2012). 

The PCR-GLOBWB model cannot directly use the soil information of SoilGrids250, which not only has a finer 

spatial resolution than 1 km PCR-GLOBWB, but also specifies only some general attributes such as soil texture. 

Here we transformed these attributes of SoilGrids into soil hydraulic properties, such as water holding capacity, 

field capacity and wilting point, using the pedotransfer functions from Balland and Arp (2005) and Balland et al. 35 

(2008). These pedotransfer functions allow the estimation of bulk density and related soil-hydraulic properties at 

any given depth, which is required to link the layer information from SoilGrids to the two-layer schematization 

in PCR-GLOBWB. We derived these soil properties at the spatial resolution of 0.002 arc-degree and subsequently 

upscaled and resampled them to the various coarser PCR-GLOBWB model resolutions used in this study, i.e. 30 

arc-second (~1 km at the equator), 5 arc-minute (~10 km) and 30 arc-minute (~50 km).  40 

For the standard parameterization of the land cover the following data sets were combined: the map of Global 

Land Cover Characteristics Database (GLCC) version 2.0 (Loveland et al., 2000) with the land cover classification 

following Olson (1994a, b) and the parameter sets from Hagemann et al. (1999) and Hagemann (2002). For the 

extent of irrigation areas, the map of Global Food Security-support Analysis Data (GFSAD) version 1.0 

(Teluguntla et al., 2016) was used. The GLCC and GFSAD maps are available at 30 arc-second resolution (~1 45 

km). Hence, for 1 km model runs, only one land cover type exists per cell. For the resolutions of 10 km and 50 
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km, land cover types were divided into four land cover types consisting of tall natural vegetation, short natural 

vegetation, non-paddy irrigated crops, and paddy irrigated crops (i.e. wet rice). Irrigation land cover types (i.e. 

paddy and non-paddy), including their crop calendars and growing season lengths, were parameterized based on 

the data set of MIRCA2000 (Portmann et al., 2010) and the Global Crop Water Model (Siebert and Döll, 2010). 

Detailed description can be found in the key PCR-GLOBWB model description literature (Sutanudjaja et al., 5 

2011, 2018; van Beek et al., 2011). 

For topographical related input, we made use of the state of the art Multi-Error-Removed Improved-Terrain Hydro 

digital elevation (MERIT Hydro DEM, Yamazaki et al. (2019)) that is available at 3 arc-second resolution (~90 

m at the equator). This is different than the previous PCR-GLOBWB studies (Sutanudjaja et al., 2018; van Beek 

et al., 2011) that used previous generation DEM datasets, such as HydroSHEDS (Lehner et al., 2008) or GTOPO30 10 

(Gesch et al., 1999). The 3 arc-second MERIT Hydro DEM was upscaled to the resolutions 30 arc-second (1 km), 

5 arc-minute (10 km) and 30 arc-minute (50 km). Yet, we also used its original 3 arc-second resolution elevation 

values to obtain several sub-grid variability parameters that influences various schemes in PCR-GLOBWB, such 

as for runoff-infiltration partitioning, interflow, groundwater recharge and capillary rise, as well as evaporation 

processes (van Beek, 2008; van Beek and Bierkens, 2008; Hagemann and Gates, 2003; Todini, 1996). 15 

Groundwater 

In PCR-GLOBWB, groundwater discharge (also commonly known as groundwater baseflow) depends on a linear 

storage-outflow relationship, in which a groundwater recession coefficient field is calculated following the 

drainage theory of Kraijenhoff Van de Leur (1958) based on the drainage network density and aquifer properties. 

For the drainage density, we used the estimate from van Beek and Bierkens (2008). The aquifer properties were 20 

estimated from the GLobal HYdrogeology MaPS (GLHYMPS) dataset of Gleeson et al. (2014). These datasets 

are reasonably sufficiently fine for modeling at 1 km resolution and can be upscaled to 10 km resolution and 50 

km resolution. 

Surface water routing: lakes, reservoirs and drainage/river network 

PCR-GLOBWB also includes lakes and reservoirs that are taken from the Global Lakes and Wetlands Database 25 

(GLWD) of Lehner and Döll (2004) and from the Global Reservoir and Dam Database (GRanD) of Lehner et al. 

(2011). Reservoirs are processed as follows: for every resolution, we rasterize GranD shapefiles containing 

information about reservoir surface areas and capacities. During the rasterization process we need account for 

many factors, such as reservoir locations to the drainage networks (at different resolutions), number of reservoirs 

within pixels. If a pixel contains more than one reservoir (which is very likely in coarser resolution), we merged 30 

their surface areas and capacities and treated them as one reservoir. Consequently, the overall physical properties 

of reservoirs should not be overly different when moving from finer to coarser resolutions and thus their impact 

of flow estimates can be considered to be small. 

For the drainage network maps, we made use of the existing 30 arc-minute and 5 arc-minute maps from 

Sutanudjaja et al. (2018), and the 30 arc-second one from the HydroSHEDS (Lehner et al., 2008). Note that the 35 

MERIT Hydro, which we used as the source of DEM, provides a drainage/river network at 3 arc-second resolution 

only and, therefore, cannot be used for this study.   
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A2. Appendix B 

Appendix B provides additional plots and analyses of model results. 

In Figure B1, the improvement of KGE values per stations are mapped. To that end, it was assessed whether the 

KGE value for the 1k_1k run was higher than for either the 10k_10k run or the 50k_50k run, or higher for both 

runs, or not. Results indicate that KGE values improve at large, with only around 7 % of the stations showing no 5 

improvement at all when refining model resolution.  

 

Figure B1: Map of stations where the 1k run showed improvement with respect  to only the 10k run, only the 50k run, 

both runs, or none of the runs. 

  10 



 20 

Figure B2 until Figure B4 provide scatter plots of R2 and RRMSE values obtained by evaluating various model 

variables with observational datasets at the water province level. While panel A compares the impact of different 

model resolutions (1 km, 10 km, 50 km), panels B and C compare the impact of different forcing resolutions: B) 

1 km model resolution with 1 km forcing resolution against 1 km model resolution and 10 km and 50 km forcing 

resolution, respectively; C) 10 km model resolution with 10 km forcing resolution against 10 km model resolution 5 

and 50 km forcing resolution, 

 

Figure B2: Scatterplot of coefficient of determination (R2) values obtained in evaluation of simulated upper soil 

moisture with ESA-CCI data for: A) comparing different model resolutions; B) comparing different forcing resolutions 

for 1k runs; C) comparing different forcing resolutions for 10k. 10 
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Figure B3: Scatterplot of RRMSE values obtained in evaluation of simulated total evaporation with GLEAM data for: 

A) comparing different model resolutions; B) comparing different forcing resolutions for 1k runs; C) comparing 

different forcing resolutions for 10k runs. 
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Figure B4: Scatterplot of RRMSE values obtained in evaluation of simulated terrestrial water storage anomaly with 

GRACE/GRACE-FO data for: A) comparing different model resolutions; B) comparing different forcing resolutions 

for 1k runs; C) comparing different forcing resolutions for 10k runs. 

 5 
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Figure B5 depicts the categorization of each water province conditional on their R2 and RRMSE values. Four 

categories were defined: with low and high R2 values and low and high RRMSE values. The median R2 

respectively RRMSE value was used to define ‘low’ and ‘high’ values. It is shown that there is not really a 

consistent spatial patterns where which category dominates. Additionally, this figure shows those provinces for 

which we analysed the impact of removing snow cover in the evaluation of TWS anomalies in section 4.1. 5 

 

Figure B5: Categorization of water provinces according to their R2 and RRMSE values. Grey hatching refers to water 

provinces for which snow cover correction of TWS anomaly were effective (see section 3.4). 

 

 10 

  



 24 

References 

Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data set: catchment attributes and 

meteorology for large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293–5313, https://doi.org/10.5194/hess-21-

5293-2017, 2017. 

Aerts, J. P. M., Hut, R. W., van de Giesen, N. C., Drost, N., van Verseveld, W. J., Weerts, A. H., and Hazenberg, 5 

P.: Large-sample assessment of spatial scaling effects of the distributed wflow_sbm hydrological model shows 

that finer spatial resolution does not necessarily lead to better streamflow estimates, Hydrol. Earth Syst. Sci. 

Discuss., 1–28, https://doi.org/10.5194/hess-2021-605, 2021. 

Alfieri, L., Bisselink, B., Dottori, F., Naumann, G., de Roo, A., Salamon, P., Wyser, K., and Feyen, L.: Global 

projections of river flood risk in a warmer world, Earths Future, 5, 171–182, 10 

https://doi.org/10.1002/2016EF000485, 2017. 

Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evaporation–Guidelines for computing crop water 

requirements–FAO Irrigation and drainage paper 56, Food Agric. Organ. U. N. Rome, 300, 1998. 

Altenau, E. H., Pavelsky, T. M., Bates, P. D., and Neal, J. C.: The effects of spatial resolution and dimensionality 

on modeling regional-scale hydraulics in a multichannel river, Water Resour. Res., 53, 1683–1701, 15 

https://doi.org/10.1002/2016WR019396, 2017. 

Balland, V. and Arp, P. A.: Modeling soil thermal conductivities over a wide range of conditions, J. Environ. Eng. 

Sci., 4, 549–558, https://doi.org/10.1139/s05-007, 2005. 

Balland, V., Pollacco, J. A. P., and Arp, P. A.: Modeling soil hydraulic properties for a wide range of soil 

conditions, Ecol. Model., 219, 300–316, https://doi.org/10.1016/j.ecolmodel.2008.07.009, 2008. 20 

Batjes, N. H.: ISRIC-WISE derived soil properties on a 5 by 5 arc-minutes global grid (ver. 1.2), ISRIC, 

Wageningen, 2012. 

Beck, H. E., Wood, E. F., McVicar, T. R., Zambrano-Bigiarini, M., Alvarez-Garreton, C., Baez-Villanueva, O. 

M., Sheffield, J., and Karger, D. N.: Bias Correction of Global High-Resolution Precipitation Climatologies Using 

Streamflow Observations from 9372 Catchments, J. Clim., 33, 1299–1315, https://doi.org/10.1175/JCLI-D-19-25 

0332.1, 2020. 

van Beek, L. P. H.: Forcing PCR-GLOBWB with CRU data, 2008. 

van Beek, L. P. H. and Bierkens, M. F. P.: The Global Hydrological Model PCR-GLOBWB: Conceptualization, 

Parameterization and Verification, Deparment of Physical Geography, Utrecht University, Utrecht, 2008. 

van Beek, L. P. H., Wada, Y., and Bierkens, M. F. P.: Global monthly water stress: 1. Water balance and water 30 

availability, Water Resour. Res., 47, https://doi.org/10.1029/2010WR009791, 2011. 

Beven, K.: Facets of uncertainty: epistemic uncertainty, non-stationarity, likelihood, hypothesis testing, and 

communication, Hydrol. Sci. J., 61, 1652–1665, https://doi.org/10.1080/02626667.2015.1031761, 2016. 

Beven, K., Cloke, H., Pappenberger, F., Lamb, R., and Hunter, N.: Hyperresolution information and 

hyperresolution ignorance in modelling the hydrology of the land surface, Sci. China Earth Sci., 58, 25–35, 35 

https://doi.org/10.1007/s11430-014-5003-4, 2015. 

Beven, K., Lane, S., Page, T., Kretzschmar, A., Hankin, B., Smith, P., and Chappell, N.: On (in)validating 

environmental models. 2. Implementation of a Turing-like test to modelling hydrological processes, Hydrol. 

Process., 36, e14703, https://doi.org/10.1002/hyp.14703, 2022. 

Beven, K. J.: On hypothesis testing in hydrology: Why falsification of models is still a really good idea, WIREs 40 

Water, 5, e1278, https://doi.org/10.1002/wat2.1278, 2018. 



 25 

Beven, K. J. and Cloke, H. L.: Comment on “Hyperresolution global land surface modeling: Meeting a grand 

challenge for monitoring Earth’s terrestrial water” by Eric F. Wood et al., Water Resour. Res., 48, 

https://doi.org/10.1029/2011WR010982, 2012. 

Biemans, H., Hutjes, R. W. A., Kabat, P., Strengers, B. J., Gerten, D., and Rost, S.: Effects of Precipitation 

Uncertainty on Discharge Calculations for Main River Basins, J. Hydrometeorol., 10, 1011–1025, 5 

https://doi.org/10.1175/2008JHM1067.1, 2009. 

Bierkens, M. F. P.: Global hydrology 2015: State, trends, and directions: Global Hydrology 2015, Water Resour. 

Res., 51, 4923–4947, https://doi.org/10.1002/2015WR017173, 2015. 

Bierkens, M. F. P., Bell, V. A., Burek, P., Chaney, N., Condon, L. E., David, C. H., de Roo, A., Döll, P., Drost, 

N., Famiglietti, J. S., Flörke, M., Gochis, D. J., Houser, P., Hut, R., Keune, J., Kollet, S., Maxwell, R. M., Reager, 10 

J. T., Samaniego, L., Sudicky, E., Sutanudjaja, E. H., van de Giesen, N., Winsemius, H., and Wood, E. F.: Hyper-

resolution global hydrological modelling: what is next?: “Everywhere and locally relevant,” Hydrol. Process., 29, 

310–320, https://doi.org/10.1002/hyp.10391, 2015. 

Chaney, N. W., Metcalfe, P., and Wood, E. F.: HydroBlocks: a field-scale resolving land surface model for 

application over continental extents, Hydrol. Process., 30, 3543–3559, https://doi.org/10.1002/hyp.10891, 2016. 15 

Clark, M. P., Bierkens, M. F. P., Samaniego, L., Woods, R. A., Uijlenhoet, R., Bennett, K. E., Pauwels, V. R. N., 

Cai, X., Wood, A. W., and Peters-Lidard, C. D.: The evolution of process-based hydrologic models: historical 

challenges and the collective quest for physical realism, Hydrol. Earth Syst. Sci., 21, 3427–3440, 

https://doi.org/10.5194/hess-21-3427-2017, 2017. 

Condon, L. E., Kollet, S., Bierkens, M. F. P., Fogg, G. E., Maxwell, R. M., Hill, M. C., Fransen, H.-J. H., Verhoef, 20 

A., Van Loon, A. F., Sulis, M., and Abesser, C.: Global Groundwater Modeling and Monitoring: Opportunities 

and Challenges, Water Resour. Res., 57, e2020WR029500, https://doi.org/10.1029/2020WR029500, 2021. 

Dorigo, W., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L., Chung, D., Ertl, M., Forkel, M., 

Gruber, A., Haas, E., Hamer, P. D., Hirschi, M., Ikonen, J., de Jeu, R., Kidd, R., Lahoz, W., Liu, Y. Y., Miralles, 

D., Mistelbauer, T., Nicolai-Shaw, N., Parinussa, R., Pratola, C., Reimer, C., van der Schalie, R., Seneviratne, S. 25 

I., Smolander, T., and Lecomte, P.: ESA CCI Soil Moisture for improved Earth system understanding: State-of-

the art and future directions, Remote Sens. Environ., 203, 185–215, https://doi.org/10.1016/j.rse.2017.07.001, 

2017. 

Dottori, F., Szewczyk, W., Ciscar, J.-C., Zhao, F., Alfieri, L., Hirabayashi, Y., Bianchi, A., Mongelli, I., Frieler, 

K., Betts, R. A., and Feyen, L.: Increased human and economic losses from river flooding with anthropogenic 30 

warming, Nat. Clim. Change, https://doi.org/10.1038/s41558-018-0257-z, 2018. 

FAO: Digital Soil Map of the World (DSMW), Rome, Italy, 2007. 

Gesch, D. B., Verdin, K. L., and Greenlee, S. K.: New land surface digital elevation model covers the Earth, Eos 

Trans. Am. Geophys. Union, 80, 69–70, https://doi.org/10.1029/99EO00050, 1999. 

Gleeson, T., Moosdorf, N., Hartmann, J., and van Beek, L. P. H.: A glimpse beneath earth’s surface: GLobal 35 

HYdrogeology MaPS (GLHYMPS) of permeability and porosity, Geophys. Res. Lett., 41, 3891–3898, 

https://doi.org/10.1002/2014GL059856, 2014. 

Gleeson, T., Wagener, T., Döll, P., Zipper, S. C., West, C., Wada, Y., Taylor, R., Scanlon, B., Rosolem, R., 

Rahman, S., Oshinlaja, N., Maxwell, R., Lo, M.-H., Kim, H., Hill, M., Hartmann, A., Fogg, G., Famiglietti, J. S., 

Ducharne, A., de Graaf, I., Cuthbert, M., Condon, L., Bresciani, E., and Bierkens, M. F. P.: GMD perspective: 40 

The quest to improve the evaluation of groundwater representation in continental- to global-scale models, Geosci. 

Model Dev., 14, 7545–7571, https://doi.org/10.5194/gmd-14-7545-2021, 2021. 

Gonzalez Miralles, D., Holmes, T. R. H., De Jeu, R. A. M., Gash, J. H., Meesters, A., and Dolman, A. J.: Global 

land-surface evaporation estimated from satellite-based observations, Hydrol. Earth Syst. Sci., 453–469, 

https://doi.org/10.5194/hess-15-453-2011, 2011. 45 



 26 

Gruber, A., Scanlon, T., van der Schalie, R., Wagner, W., and Dorigo, W.: Evolution of the ESA CCI Soil 

Moisture climate data records and their underlying merging methodology, Earth Syst. Sci. Data, 11, 717–739, 

https://doi.org/10.5194/essd-11-717-2019, 2019. 

Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of the mean squared error and NSE 

performance criteria: Implications for improving hydrological modelling, J. Hydrol., 377, 80–91, 5 

https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009. 

Hagemann, S.: An improved land surface parameter dataset for global and regional climate models, Max-Planck-

Institut für Meteorologie, Hamburg, 2002. 

Hagemann, S. and Gates, L. D.: Improving a subgrid runoff parameterization scheme for climate models by the 

use of high resolution data derived from satellite observations, Clim. Dyn., 21, 349–359, 2003. 10 

Hagemann, S., Botzet, M., Dümenil, L., and Machenhauer, B.: Derivation of global GCM boundary conditions 

from 1 km land use satellite data, Max-Planck-Institut für Meteorologie, Hamburg, 1999. 

Hamon, W. R.: Computation of direct runoff amounts from storm rainfall, Int. Assoc. Sci. Hydrol. Publ., 63, 52–

62, 1963. 

Hengl, T., Jesus, J. M. de, Heuvelink, G. B. M., Gonzalez, M. R., Kilibarda, M., Blagotić, A., Shangguan, W., 15 

Wright, M. N., Geng, X., Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A., Batjes, N. H., 

Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., and Kempen, B.: SoilGrids250m: Global gridded soil 

information based on machine learning, PLOS ONE, 12, e0169748, 

https://doi.org/10.1371/journal.pone.0169748, 2017. 

Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., Kim, H., and Kanae, 20 

S.: Global flood risk under climate change, Nat. Clim. Change, 3, 816–821, https://doi.org/10.1038/nclimate1911, 

2013. 

Hoch, J. M.: pcrglobwb_utils, , https://doi.org/10.5281/zenodo.5725659, 2021. 

Hofste, R. W., Kuzma, S., Walker, S., Sutanudjaja, E. H., Bierkens, M. F. P., Kuijper, M. J. M., Sanchez, M. F., 

Van Beek, L. P. H., Wada, Y., Rodriguez, S. G., and Reig, P.: Aqueduct 3.0: Updated decision-relevant global 25 

water risk indicators, World Resources Institute, Washington, D.C., 2019. 

Hut, R. W., van de Giesen, N. C., and Drost, N.: Comment on “Most computational hydrology is not reproducible, 

so is it really science?” by Christopher Hutton et al.: Let hydrologists learn the latest computer science by working 

with Research Software Engineers (RSEs) and not reinvent the waterwheel ourselves, Water Resour. Res., 53, 

4524–4526, https://doi.org/10.1002/2017WR020665, 2017. 30 

de Jong, K., Panja, D., van Kreveld, M., and Karssenberg, D.: An environmental modelling framework based on 

asynchronous many-tasks: Scalability and usability, Environ. Model. Softw., 139, 104998, 

https://doi.org/10.1016/j.envsoft.2021.104998, 2021. 

de Jong, K., Panja, D., Karssenberg, D., and van Kreveld, M.: Scalability and composability of flow accumulation 

algorithms based on asynchronous many-tasks, Comput. Geosci., 162, 105083, 35 

https://doi.org/10.1016/j.cageo.2022.105083, 2022. 

Kew, S. F., Philip, S. Y., Hauser, M., Hobbins, M., Wanders, N., van Oldenborgh, G. J., van der Wiel, K., 

Veldkamp, T. I. E., Kimutai, J., Funk, C., and Otto, F. E. L.: Impact of precipitation and increasing temperatures 

on drought trends in eastern Africa, Earth Syst. Dyn., 12, 17–35, https://doi.org/10.5194/esd-12-17-2021, 2021. 

Knoben, W. J., Freer, J. E., and Woods, R. A.: Inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–40 

Gupta efficiency scores, Hydrol. Earth Syst. Sci., 23, 4323–4331, https://doi.org/10.5194/hess-23-4323-2019, 

2019. 

Kollet, S. J. and Maxwell, R. M.: Integrated surface–groundwater flow modeling: A free-surface overland flow 

boundary condition in a parallel groundwater flow model, Adv. Water Resour., 29, 945–958, 

https://doi.org/10.1016/j.advwatres.2005.08.006, 2006. 45 



 27 

Kollet, S. J., Maxwell, R. M., Woodward, C. S., Smith, S., Vanderborght, J., Vereecken, H., and Simmer, C.: 

Proof of concept of regional scale hydrologic simulations at hydrologic resolution utilizing massively parallel 

computer resources, Water Resour. Res., 46, https://doi.org/10.1029/2009WR008730, 2010. 

Kornfeld, R. P., Arnold, B. W., Gross, M. A., Dahya, N. T., Klipstein, W. M., Gath, P. F., and Bettadpur, S.: 

GRACE-FO: The Gravity Recovery and Climate Experiment Follow-On Mission, J. Spacecr. Rockets, 56, 931–5 

951, https://doi.org/10.2514/1.A34326, 2019. 

Kraijenhoff Van de Leur, D.: A study of non-steady groundwater flow with special reference to a reservoir 

coefficient, Ing., 70, B87–B94, 1958. 

Lehner, B. and Döll, P.: Development and validation of a global database of lakes, reservoirs and wetlands, J. 

Hydrol., 296, 1–22, https://doi.org/10.1016/j.jhydrol.2004.03.028, 2004. 10 

Lehner, B., Verdin, K., and Jarvis, A.: New Global Hydrography Derived From Spaceborne Elevation Data, Eos 

Trans. Am. Geophys. Union, 89, 93–94, https://doi.org/10.1029/2008EO100001, 2008. 

Lehner, B., Liermann, C. R., Revenga, C., Vörösmarty, C., Fekete, B., Crouzet, P., Döll, P., Endejan, M., Frenken, 

K., Magome, J., Nilsson, C., Robertson, J. C., Rödel, R., Sindorf, N., and Wisser, D.: High-resolution mapping of 

the world’s reservoirs and dams for sustainable river-flow management, Front. Ecol. Environ., 9, 494–502, 15 

https://doi.org/10.1890/100125, 2011. 

Loveland, T. R., Reed, B. C., Brown, J. F., Ohlen, D. O., Zhu, Z., Yang, L., and Merchant, J. W.: Development 

of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data, Int. J. Remote Sens., 

21, 1303–1330, https://doi.org/10.1080/014311600210191, 2000. 

Martens, B., Gonzalez Miralles, D., Lievens, H., Van Der Schalie, R., De Jeu, R. A., Fernández-Prieto, D., Beck, 20 

H. E., Dorigo, W., and Verhoest, N.: GLEAM v3: Satellite-based land evaporation and root-zone soil moisture, 

Geosci. Model Dev., 10, 1903–1925, https://doi.org/10.5194/gmd-10-1903-2017, 2017. 

Maxwell, R. M., Condon, L. E., and Kollet, S. J.: A high-resolution simulation of groundwater and surface water 

over most of the continental US with the integrated hydrologic model ParFlow v3, Geosci. Model Dev., 8, 923–

937, https://doi.org/10.5194/gmd-8-923-2015, 2015. 25 

Melsen, L. A., Teuling, A. J., Torfs, P. J. J. F., Uijlenhoet, R., Mizukami, N., and Clark, M. P.: HESS Opinions: 

The need for process-based evaluation of large-domain hyper-resolution models, Hydrol. Earth Syst. Sci., 20, 

1069–1079, https://doi.org/10.5194/hess-20-1069-2016, 2016. 

Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, 

M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., 30 

Buontempo, C., and Thépaut, J.-N.: ERA5-Land: a state-of-the-art global reanalysis dataset for land applications, 

Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, 2021. 

Newman, A. J., Clark, M. P., Sampson, K., Wood, A., Hay, L. E., Bock, A., Viger, R. J., Blodgett, D., Brekke, 

L., Arnold, J. R., Hopson, T., and Duan, Q.: Development of a large-sample watershed-scale hydrometeorological 

data set for the contiguous USA: data set characteristics and assessment of regional variability in hydrologic model 35 

performance, Hydrol. Earth Syst. Sci., 19, 209–223, https://doi.org/10.5194/hess-19-209-2015, 2015. 

Olson, J.: Global ecosystem framework: Definitions. Internal report., USGS EROS Data Center, Sioux Falls, SD, 

1994a. 

Olson, J.: Global ecosystem framework: Translation strategy. Internal report., USGS EROS Data Center, Sioux 

Falls, SD, 1994b. 40 

O’Neill, M. M. F., Tijerina, D. T., Condon, L. E., and Maxwell, R. M.: Assessment of the ParFlow–CLM CONUS 

1.0 integrated hydrologic model: evaluation of hyper-resolution water balance components across the contiguous 

United States, Geosci. Model Dev., 14, 7223–7254, https://doi.org/10.5194/gmd-14-7223-2021, 2021. 

Philip, S., Sparrow, S., Kew, S. F., van der Wiel, K., Wanders, N., Singh, R., Hassan, A., Mohammed, K., Javid, 

H., Haustein, K., Otto, F. E. L., Hirpa, F., Rimi, R. H., Islam, A. K. M. S., Wallom, D. C. H., and van Oldenborgh, 45 



 28 

G. J.: Attributing the 2017 Bangladesh floods from meteorological and hydrological perspectives, Hydrol. Earth 

Syst. Sci., 23, 1409–1429, https://doi.org/10.5194/hess-23-1409-2019, 2019. 

Portmann, F. T., Siebert, S., and Döll, P.: MIRCA2000—Global monthly irrigated and rainfed crop areas around 

the year 2000: A new high-resolution data set for agricultural and hydrological modeling, Glob. Biogeochem. 

Cycles, 24, https://doi.org/10.1029/2008GB003435, 2010. 5 

Samaniego, L., Kumar, R., and Attinger, S.: Multiscale parameter regionalization of a grid-based hydrologic 

model at the mesoscale, Water Resour. Res., 46, https://doi.org/10.1029/2008WR007327, 2010. 

Samaniego, L., Kumar, R., Thober, S., Rakovec, O., Zink, M., Wanders, N., Eisner, S., Müller Schmied, H., 

Sutanudjaja, E. H., Warrach-Sagi, K., and Attinger, S.: Toward seamless hydrologic predictions across spatial 

scales, Hydrol. Earth Syst. Sci., 21, 4323–4346, https://doi.org/10.5194/hess-21-4323-2017, 2017. 10 

Samaniego, L., Thober, S., Kumar, R., Wanders, N., Rakovec, O., Pan, M., Zink, M., Sheffield, J., Wood, E. F., 

and Marx, A.: Anthropogenic warming exacerbates European soil moisture droughts, Nat. Clim. Change, 8, 421–

426, https://doi.org/10.1038/s41558-018-0138-5, 2018. 

Schellekens, J., Verseveld, W. van, Visser, M., Winsemius, H. C., Bouaziz, L., tanjaeuser, sandercdevries, 

cthiange, hboisgon, DanielTollenaar, Baart, F., Pieter9011, Pronk, M., arthur-lutz, ctenvelden, Imme1992, 15 

Eilander, D., and Jansen, M.: openstreams/wflow: Bug fixes and updates for release 2020.1.2, , 

https://doi.org/10.5281/zenodo.4291730, 2020. 

Shaw, J., Kesserwani, G., Neal, J., Bates, P., and Sharifian, M. K.: LISFLOOD-FP 8.0: the new discontinuous 

Galerkin shallow-water solver for multi-core CPUs and GPUs, Geosci. Model Dev., 14, 3577–3602, 

https://doi.org/10.5194/gmd-14-3577-2021, 2021. 20 

Siebert, S. and Döll, P.: Quantifying blue and green virtual water contents in global crop production as well as 

potential production losses without irrigation, J. Hydrol., 384, 198–217, 

https://doi.org/10.1016/j.jhydrol.2009.07.031, 2010. 

Straatsma, M., Droogers, P., Hunink, J., Berendrecht, W., Buitink, J., Buytaert, W., Karssenberg, D., Schmitz, O., 

Sutanudjaja, E. H., and van Beek, L. P. H.: Global to regional scale evaluation of adaptation measures to reduce 25 

the future water gap, Environ. Model. Softw., 124, 104578, https://doi.org/10.1016/j.envsoft.2019.104578, 2020. 

Sutanudjaja, E. H., Beek, L. P. H. van, Jong, S. M. de, Geer, F. C. van, and Bierkens, M. F. P.: Large-scale 

groundwater modeling using global datasets: a test case for the Rhine-Meuse basin, Hydrol. Earth Syst. Sci., 15, 

2913–2935, https://doi.org/10.5194/hess-15-2913-2011, 2011. 

Sutanudjaja, E. H., van Beek, R., Wanders, N., Wada, Y., Bosmans, J. H. C., Drost, N., van der Ent, R. J., de 30 

Graaf, I. E. M., Hoch, J. M., de Jong, K., Karssenberg, D., López López, P., Peßenteiner, S., Schmitz, O., 

Straatsma, M. W., Vannametee, E., Wisser, D., and Bierkens, M. F. P.: PCR-GLOBWB 2: a 5 arcmin global 

hydrological and water resources model, Geosci. Model Dev., 11, 2429–2453, https://doi.org/10.5194/gmd-11-

2429-2018, 2018. 

Teluguntla, P., Thenkabail, P., Xiong, J., Gumma, M., Giri, C., Milesi, C., Ozdogan, M., Congalton, R., Tilton, 35 

J., Sankey, T., Massey, R., Phalke, A., and Yadav, K.: NASA Making Earth System Data Records for Use in 

Research Environments (MEaSUREs) Global Food Security Support Analysis Data (GFSAD) Crop Mask 2010 

Global 1 km V001, NASA EOSDIS, Sioux Falls, SD, 2016. 

Thober, S., Cuntz, M., Kelbling, M., Kumar, R., Mai, J., and Samaniego, L.: The multiscale routing model mRM 

v1.0: simple river routing at resolutions from 1 to 50 km, Geosci. Model Dev., 12, 2501–2521, 40 

https://doi.org/10.5194/gmd-12-2501-2019, 2019. 

Todini, E.: The ARNO rainfall—runoff model, J. Hydrol., 175, 339–382, 1996. 

Towner, J., Cloke, H. L., Zsoter, E., Flamig, Z., Hoch, J. M., Bazo, J., Coughlan de Perez, E., and Stephens, E. 

M.: Assessing the performance of global hydrological models  for capturing peak river flows in the Amazon basin, 

Hydrol Earth Syst Sci, 23, 3057–3080, https://doi.org/10.5194/hess-23-3057-2019, 2019. 45 



 29 

Vergopolan, N., Chaney, N. W., Beck, H. E., Pan, M., Sheffield, J., Chan, S., and Wood, E. F.: Combining hyper-

resolution land surface modeling with SMAP brightness temperatures to obtain 30-m soil moisture estimates, 

Remote Sens. Environ., 242, 111740, https://doi.org/10.1016/j.rse.2020.111740, 2020. 

Vergopolan, N., Chaney, N. W., Pan, M., Sheffield, J., Beck, H. E., Ferguson, C. R., Torres-Rojas, L., Sadri, S., 

and Wood, E. F.: SMAP-HydroBlocks, a 30-m satellite-based soil moisture dataset for the conterminous US, Sci. 5 

Data, 8, 264, https://doi.org/10.1038/s41597-021-01050-2, 2021. 

Verkaik, J., Hughes, J. D., van Walsum, P. E. V., Oude Essink, G. H. P., Lin, H. X., and Bierkens, M. F. P.: 

Distributed memory parallel groundwater modeling for the Netherlands Hydrological Instrument, Environ. 

Model. Softw., 143, 105092, https://doi.org/10.1016/j.envsoft.2021.105092, 2021. 

Verkaik, J., Sutanudjaja, E. H., Oude Essink, G. H. P., Lin, H. X., and Bierkens, M. F. P.: GLOBGM v1.0: a 10 

parallel implementation of a 30 arcsec PCR-GLOBWB-MODFLOW global-scale groundwater model, Geosci. 

Model Dev. Discuss., 1–27, https://doi.org/10.5194/gmd-2022-226, 2022. 

Ward, P. J., Jongman, B., Salamon, P., Simpson, A., Bates, P., De Groeve, T., Muis, S., de Perez, E. C., Rudari, 

R., Trigg, M. A., and Winsemius, H. C.: Usefulness and limitations of global flood risk models, Nat. Clim. 

Change, 5, 712–715, https://doi.org/10.1038/nclimate2742, 2015. 15 

Ward, P. J., Winsemius, H. C., Kuzma, S., Bierkens, M. F. P., Bouwman, A., Moel, H. D., Loaiza, A. D., 

Englhardt, J., Erkens, G., Gebremedhin, E. T., Iceland, C., Kooi, H., Ligtvoet, W., Muis, S., Scussolini, P., 

Sutanudjaja, E. H., Beek, R. V., Bemmel, B. V., Huijstee, J. V., Vatvani, D., Verlaan, M., Tiggeloven, T., and 

Luo, T.: Aqueduct Floods Methodology, World Resources Institute, Washington, D.C., 2020a. 

Ward, P. J., de Ruiter, M. C., Mård, J., Schröter, K., Van Loon, A., Veldkamp, T., von Uexkull, N., Wanders, N., 20 

AghaKouchak, A., Arnbjerg-Nielsen, K., Capewell, L., Carmen Llasat, M., Day, R., Dewals, B., Di Baldassarre, 

G., Huning, L. S., Kreibich, H., Mazzoleni, M., Savelli, E., Teutschbein, C., van den Berg, H., van der Heijden, 

A., Vincken, J. M. R., Waterloo, M. J., and Wens, M.: The need to integrate flood and drought disaster risk 

reduction strategies, Water Secur., 11, 100070, https://doi.org/10.1016/j.wasec.2020.100070, 2020b. 

water2invest web service: http://w2i.geo.uu.nl/, last access: 15 October 2021. 25 

van der Wiel, K., Wanders, N., Selten, F. M., and Bierkens, M. F. P.: Added Value of Large Ensemble Simulations 

for Assessing Extreme River Discharge in a 2 °C Warmer World, Geophys. Res. Lett., 46, 2093–2102, 

https://doi.org/10.1029/2019GL081967, 2019. 

Winsemius, H. C., Aerts, J. C. J. H., van Beek, L. P. H., Bierkens, M. F. P., Bouwman, A., Jongman, B., Kwadijk, 

J. C. J., Ligtvoet, W., Lucas, P. L., van Vuuren, D. P., and Ward, P. J.: Global drivers of future river flood risk, 30 

Nat. Clim. Change, 6, 381–385, https://doi.org/10.1038/nclimate2893, 2016. 

Wood, E. F., Roundy, J. K., Troy, T. J., van Beek, L. P. H., Bierkens, M. F. P., Blyth, E., de Roo, A., Döll, P., Ek, 

M., Famiglietti, J., Gochis, D., van de Giesen, N., Houser, P., Jaffé, P. R., Kollet, S., Lehner, B., Lettenmaier, D. 

P., Peters-Lidard, C., Sivapalan, M., Sheffield, J., Wade, A., and Whitehead, P.: Hyperresolution global land 

surface modeling: Meeting a grand challenge for monitoring Earth’s terrestrial water, Water Resour. Res., 47, 35 

https://doi.org/10.1029/2010WR010090, 2011. 

Aqueduct Global Flood Analyzer: http://floods.wri.org/#/, last access: 15 October 2021. 

WWF: WWF Water Risk Filter Methodology Documentation, World Wide Fund for Nature (WWF), Berlin, 

German, 2022. 

Yamazaki, D., Ikeshima, D., Sosa, J., Bates, P. D., Allen, G. H., and Pavelsky, T. M.: MERIT Hydro: A High-40 

Resolution Global Hydrography Map Based on Latest Topography Dataset, Water Resour. Res., 55, 5053–5073, 

https://doi.org/10.1029/2019WR024873, 2019. 

 



 30 

 


	1. Introduction
	2. Methods, data, and study area
	2.1. Study area and input data
	2.2. Model evaluation
	2.2.1. Simulated discharge
	2.2.2. Upper soil moisture
	2.2.3. Total evaporation
	2.2.4. Terrestrial water storage anomaly


	3. Results
	3.1. Simulated discharge
	3.2. Upper soil moisture
	3.3. Total evaporation
	3.4. Terrestrial water storage anomalies

	4. Discussion
	4.1. Model parameterization
	4.2. Scale commensurability of simulated and observed data
	4.3. Computing and data storage demand

	5. Conclusion and recommendations
	A. Appendices
	A1. Appendix A
	Meteorological forcing
	Land surface: soil, and cover, and topography
	Groundwater
	Surface water routing: lakes, reservoirs and drainage/river network

	A2. Appendix B


