
We thank three reviewers for their careful consideration of our manuscript and their positive 

7comments. Our point-to-point responses to individual comments are shown below in black, and 

reviewer comments are written in red.  

REVIEWER 1: 

Overall this is a useful addition to the literature on fire emissions of VOCs in the western US. After 

addressing my comments, it should be published: 

Major comments: 

Lines 31-33: Why is the underestimation likely due to DM underestimates and not other causes?  

Biomass burning emissions are estimated as the product of the emission factor and the dry matter 

consumed (DM). When dividing the emission amounts by the corresponding emission factors used 

in inventories, we can estimate the effective DM across inventories in the region/season, even if 

in top-down (FRP-based) inventories DM is not explicitly calculated. Our analysis ruled out the 

major potential cause from emission factors/emission ratios (Section 6), since the model ERs agree 

with the constraints provided by WE-CAN and FIREX-AQ observations in the west. The other 

analyses looking at the fire detection and emission injection height (Section 5) also cannot explain 

the consistent negative model bias across trace gases. In addition, our calculated effective DM 

burned per area in the inventories indeed is too low, when compared to limited field estimates for 

this region (i.e., 19–28 Mg ha-1 vs 32~44 Mg ha-1; Section 3). All this evidence points to the DM 

underestimation being very likely the main reason for model low biases in trace gases.  

Nevertheless, we agree that there may still be other contributions to the negative model bias. For 

example, smaller fires in the region that may not be captured in the global emission inventories. 

Additionally, Eulerian models such as GEOS-Chem are known to have trouble predicting sub-grid 

features like concentrated fire plumes as the fire emissions will be diluted within the coarse model 

grid (~25km2 in this study). Therefore, we further compared the model outputs with the longer-

term ground measurements across the western US, as the comparison should be less sensitive to 

such issues when compared to the aircraft measurements that primarily targeted fire smoke. We 

found that the model biases occur not only in the grids of fresh and aged plumes the aircraft 

sampled, but also in the widespread ground sites in the west in 2018 summer. In addition, tripling 

BB emissions generally improves model performance for ground sites as well. This analysis 

further supports that the DM is likely the dominant issue. We will further clarify our conclusions 

in the revision whenever possible.  

206 - 224: Ideally all inventories will be used with the same vertical injection scheme no matter 

what the baseline in GEOS-Chem is. Can you clarify that you used the same across all three or 

four - either by putting all into the boundary layer or using the GFAS or QFED default schemes 

for all of them? Although the baseline in GEOS-Chem may use different approaches, that’s just 

because different researchers have used them for different purposes, not because that is a 

scientifically appropriate approach. Furthermore, these default schemes have changed over time 

and used to all emit into the boundary layer with the option to turn on the Fisher et al. (2014) 



scheme for all/any of them. It should not make much of a difference as you show later in the 

manuscript, but it would be better to ne consistent. 

Also the diurnal representation should really be standardized across the inventories no matter what 

is in the baseline GEOS-Chem - otherwise that’s another variable that’s not consistent across 

datasets, but which could be. It would likely make sense to apply the WRAP diurnal cycle to GFED 

for consistency sake. 

For injection height, we totally agree with the reviewer’s comment that ideally all base simulations 

(Inventory experiments in Table 2) should use the same injection scheme. But instead, we kept the 

default injection scheme settings in inventory experiments, and designed another set of 

experiments using GFAS and varying only the injection schemes. We did not pursue the set of 

experiments with same injection but varying emissions as the reviewer suggested, because we did 

not see large impacts of these injection assumptions on the simulated vertical distribution of trace 

gases. As the reviewer pointed out, it should not make much of a difference. Nevertheless, with 

the existing simulations we have (Table 2), we are able to shed some light on and confirm this too. 

Figs. X1 and X2 compare GFED and GFAS when both use surface injection and then QFED and 

GFAS when both use PBL injection. They show that the model is indeed not sensitive to the 

injection schemes as examined by the campaign averaged vertical profiles at least for the western 

US. The comparison of simulations with the same injection but various inventories further supports 

the conclusion (Figs. X1 and X2). As pointed out in the manuscript, we do think the injection 

scheme could still affect the model performance at the surface or for long-range transport and this 

would require further investigation.  

Regarding diurnal representation, plume-targeting aircraft campaigns like WE-CAN and FIREX-

AQ are not designed to resolve the diurnal pattern of fire emissions and they only sampled several 

hours for each flight. That was never the intention of our analysis. Instead, we focused on the size 

of the fire emissions in the west, which represents the first-order question to resolve. A recent 

model evaluation found that the model showed no-to-little sensitivity to diurnal representation at 

a campaign average for both WE-CAN and FIREX-AQ, at least for the western US plumes (Tang 

et al., 2022). Thus, we did not expect that diurnal representation would affect the afternoon vertical 

profiles in this work. However, as pointed out by the reviewer and many other studies, we agree 

that the diurnal representation can affect the model performance for surface simulations. For 

complete transparency of this analysis, we added the information on the diurnal representation 

used in all our simulations in Table 2. 



 

Figure X1. Median vertical profiles of observed VOC mixing ratios in the western US during WE-CAN. GEOS-Chem simulations 

driven by GFED4s and GFASv1.2 emissions, but using the same surface injection scheme are compared to observations. Model 

results are sampled along the flight tracks at the time of the flights; and observations are regridded to model resolution. Profiles are 

binned to the nearest 30 hPa. Horizontal bars show the 25th-75th percentile range of measurements in each vertical bin. The number 

of observations in each bin is given on the right side of each panel. Results are filtered to include only data where the number of 

datapoints for the pressure bin is larger than 10. 

 

 



 

Figure X2. Median vertical profiles of observed VOC mixing ratios in the western US during WE-CAN. GEOS-Chem simulations 

driven by QFED2.4 and GFASv1.2 but using the same PBL injection scheme are compared to observations. Model results are 

sampled along the flight tracks at the time of the flights; and observations are regridded to model resolution. Profiles are binned to 

the nearest 30 hPa. Horizontal bars show the 25th-75th percentile range of measurements in each vertical bin. The number of 

observations in each bin is given on the right side of each panel. Results are filtered to include only data where the number of 

datapoints for the pressure bin is larger than 10. 

Line 288-289: How does this plot show that regionally averaged ERs make up the majority of 

disagreement and not DM burned? The back of the envelope calculation that you discuss seems to 

indicate a large DM underestimate. 

These are two different conclusions that do not conflict with each other. Figure 2, referred by the 

reviewer, compares the emission estimates among 3 inventories, while the back of the envelope 

calculation (plus the rest of model: observation comparisons) compares simulated trace gas 

concentrations driven by different BB emission inventories against observations. The difference 

in  total fire VOC emissions across 3 inventories is smaller than the discrepancy between model 

and observation (i.e., < 40% vs 300-500%). 

The regionally averaged ERs relative to CO are a function of assigned ERs for specific biome and 

vegetation classifications, both of which we cannot distinguish in the analysis of Figure 2. 

Regionally averaged ERs are calculated from the regression of daily mean VOC and CO BB 



emission fluxes at each grid cell for the region from inventories. Figure X3a, using the same data 

from Figure 2, shows the regionally averaged ERs in three inventories follow the same trend of 

BB emission estimates for different VOCs (r = 0.8). Figure X3a further plots emissions against the 

regionally averaged ERs for all VOCs in inventories, and the slopes, once account for unit converts, 

are effectively the dry matter burned in the inventories. High correlations between them suggest 

that the discrepancy across inventories is due to the regionally averaged ERs, reflecting both 

vegetation classifications and assigned ERs.  

The above calculation  suggests that the effective DM burned differs by 40% across three emission 

inventories. Again, even though DM does not drive the discrepancy in speciated emissions across 

inventories, we note that it can explain largely the model’s low biases when compared to field 

observations (also see the above response) 

We further clarified this point by adding Fig. X3 into the supplement.  

  

Figure X3. (a) VOC BB emission estimates and regionally averaged emission ratios relative to CO across three BB emission 

inventories in the western US in 2018 summer. Different symbols represent data from different inventories. (b) The scatterplots of 

emission estimates and regionally averaged emission ratios across three BB emission inventories using the same data from Panel 

a) and Figure 2. 

Minor comments 

Lines 57-58 - please add a citation. 

The added references are provided below. 

Both EF and DM burned are subject to large uncertainties (Akagi et al., 2011; Andreae, 2019; 

Carter et al., 2020) 

Line 70: the comma before “even though” should be a semicolon 

Edited. 

Line 92: missing a semicolon between “estimates” and “thus” 



Edited. 

Line 99: I’m not sure that I agree with the parenthetical “(more accurate)” here. Perhaps the top-

down estimates match observations better in some regions, but it may be “correct” for the wrong 

reasons, such as how QFED scales up emissions to match AOD, which itself may be biased high 

for other reasons, such as optical property uncertainties. 

Thanks for pointing it out. We softened the language and deleted the parentheses in the revision. 

Figure S7: I’m fairly sure that with GFED4s, GEOS-Chem does include EFs for lumped alkanes 

and also alkenes per the van Der Werf spreadsheet that helps us calculate them. Please confirm. 

Yes, GFED4 indeed includes emission fluxes of lumped alkanes and alkenes as the model input 

for BB emissions. The reason for not including lumped alkanes and alkenes is that there are likely 

other model errors for these VOCs that skewed the correlation between these simulated VOCs and 

CO mixing ratios (R2 below our arbitrary threshold 0.4) in these emission transects which are 

supposed to be mostly affected by fire smoke. See Figures X4 (and X5) for examples. For such 

cases, the derived slopes cannot represent the actual emission ratios in the model and thus they are 

not included in the analysis. Granted, should we use a more relaxed threshold or be pickier on data 

selection and do that on a case-by-case basis, we would be able to examine these species' ER. Take 

lumped alkenes as an example. Removing the ‘outliers’ (top left) results in an ER of 1.07 ppb/ppm 

for lumped alkanes (Fig. X4), which is consistent with the values in Fig. S3. However, we chose 

a more standardized approach and applied it to all species/simulations in this analysis.   

To avoid confusion, we added this information in the captions of Figures 7 and S8, and it now 

reads:  

Figure 7. Summary of biomass burning VOC emission ratios for western US wildfires observed on 

the C-130 during WE-CAN and the DC-8 during FIREX-AQ. Also shown are the emission ratios 

in simulations driven by three different BB emission inventories. Model results are sampled along 

the flight tracks at the time of flights every 1 minute; and observations (and model outputs) are 

regridded to model resolution (5 minutes and 0.25° × 0.3125°). Emission ratios are calculated 

from the reduced major axis regression (RMA) of VOC and CO, with error bars representing the 

95 % confidence interval from the bootstrapping resampling of the regression. Values of zero 

indicate the species were either not included in the BB emission inventory in the standard GEOS-

Chem or the ER calculation fails to reach the statistical threshold (R2 < 0.4) in the RMA regression. 



 
Figure X4. Modelled biomass burning VOC emission ratios from 31 wildfire emission transects on the C-130 during 

WE-CAN. The simulation is driven by GFED4 as the biomass burning emission input. Model results are sampled 

along the flight tracks at the time of flights every 1 minute; and observations (and model outputs) are regridded to 

model resolution (5 minutes and 0.25° × 0.3125°). Lines represent the best fit of the data using the reduced axis 

regression, with the regression parameters given in the equations. 

Line 324: “being” should be “is” 

Edited 

Line 363: should be “Campaigns targeting plumes…” And adding “like WE-CAN” would also be 

helpful context here. 

Edited 

Line 392: please don’t use “efficient” twice in one sentence. 

Edited. We changed the “efficient vertical mixing” into the “strong vertical mixing”. 

Figure 7: I’m fairly sure that GFED has EFs for acetaldehyde and xylenes. Please check and add. 

See the response to the previous question. Yes, GFED indeed has EFs for acetaldehyde and xylenes. 

As explained in the previous comment, other model errors likely blur the ER calculations for 

acetaldehyde and xylenes thus we do not attempt to constrain their ERs. For the sake of complete 

transparency of this analysis, we included these scatter plots as Fig. X5 here. Secondary production 

of acetaldehyde, the reaction rate of OH and xylenes, and anthropogenic emission biases are all 

potential ways to affect simulated correlations in those fire source locations.  



 

Figure X5. Modelled biomass burning VOC emission ratios from 31 wildfire emission transects on the C-130 during 

WE-CAN. The simulation is driven by GFED4 as the biomass burning emission input. Model results are sampled 

along the flight tracks at the time of flights every 1 minute; Lines represent the best fit of the data using the reduced 

axis regression, with the regression parameters given in the equations. 

REVIEWER 2 

In this manuscript, the authors evaluated model predictions of volatile organic compound 

emissions from wildfires in the western United States. They performed GEOS-Chem simulations 

using different inventories and compared predicted VOC concentrations with those measured in 2 

recent field campaigns, WE-CAN and FIREX-AQ. They found that the model systemically 

underpredicted concentrations regardless of the inventory used, and tripling one inventory can 

reconcile the model-measurement difference. There are more intricate differences when comparing 

individual VOC species, and the authors examined those in detail as well and proposed potential 

reasons. The manuscript is well written and easy to follow, and the results are significant and 

insightful. I recommend the manuscript be published. My comments are mostly suggestions and 

not required changes for publication. 

In Line 146, the authors mentioned that xylenes in PTR could potentially be overestimated due to 

fragmentation in the mass spectrometer. I think this issue is very likely and should be explored 

further. The authors indicated that they would explore the measurement issue in Sect 4, but this 

issue was not specifically looked at in Sect 4. I wonder if the abundance of oxygenated aromatic 

compounds from BB emissions could factor into the overestimation of xylenes. 

We very much appreciate the reviewer's positive feedback and recognizing the importance of our 

work! It is true that we did not specifically look at the fragmentation issue. We admit that the PTR 

issue can factor into the high bias of xylenes. Also, the campaign-average abundance of xylenes is 

typically lower than PTR’s detection limit. Thus, we used TOGA-measured data whenever it is 

available in Sect. 4. We further clarified the data usage in Sect. 2.1. 

In Lines 355-360, the authors investigated why oxygenated compounds like formaldehyde, acetic 

acid are underestimated, even more so than other VOCs. While I agree that secondary in-plume 



production is very likely, I wonder if there could be other factors that cannot be ruled out. For 

example, these are all water soluble compounds. Could the wet deposition be overestimated in the 

model? Also, could there be production of these secondary species from other non-BB species? 

As mentioned earlier, this is more a suggestion for a deeper investigation, and I am just curious. 

We agree that there may be other factors that contribute to the low bias of secondary VOCs. 

However, as the analyses show in the manuscript, the combination of model underestimation of 

BB emissions and missing secondary production is likely the main reason. A recent box modeling 

study also found secondary production of OVOCs is likely missing in fire smoke environments, 

due to the insufficient VOCs represented in the model (Wolfe et al., 2022). We further clarified it 

in the revisions.  

We also acknowledge that we cannot fully rule out the impact of numerical diffusion in Eulerian 

models such as GEOS-Chem. It is also possible that errors in the wet deposition may contribute, 

but previous evaluations of the model do not reveal significant errors in the wet deposition 

processes (i.e., Luo et al., 2020; Shah et al., 2020). Such errors, if they exist, would affect all water-

soluble trace gases and aerosol in a somewhat consistent way. In addition, the western US in the 

summer is typically under very dry conditions (which is partially why wildfires could be 

significant), thus large-scale wet precipitation is rare in the region during the fire season.  

There is also possibility that these secondary compounds are from photochemical production in 

non-fire conditions, which indeed may be related to the other processes such as those the reviewer 

pointed out. But the model low bias in no/low BB environments is far smaller than in the BB 

affected conditions (Figures 5 and S10). For example, we showed that modeled formaldehyde is 

biased low by up to 0.5 ppb above 750 hPa in the low/no smoke environments during WE-CAN 

(Fig. 5). Correcting such model bias is not enough to close the model: observation gap thus we 

conclude those biases should all due to biomass burning related processes.  

I noticed that there is always a jump in concentrations at two heights (530 hPa and 650 hPa) in the 

measured data. For some species, the model can reproduce this trend, but not always. Does this 

have to do with the injection heights? I am wondering if this will help diagnose the underestimation 

as well. 

Those were the pressure-altitudes where the airplane typically sampled the dense smoke. The 

model injection height is unlikely the reason why the model can reproduce the trend for some 

species but not others. This is because for the specific simulation, the model uses the same injection 

scheme for all simulated species. Figure S6 suggested that the model can get those enhancements 

for all species, but to a lesser extent for the short-lived compounds such as formaldehyde, 

acetaldehyde, and xylenes. We also found the emitting fire emissions at the surface typically show 

less enhancements in the 530 hPa compared to using the injection schemes with specific 

representations of plume heights. We commented on this detail in the revision.  

Line 421-425: I do not fully understand this. How would aromatic hydrocarbon/hydrocarbon 

relationship help diagnose the OH issue? Is this based on looking at the ratio of two hydrocarbons 

with different reactivities to look at OH exposure (i.e. hydrocarbon clock)? If not, can the 

hydrocarbon clock be used to assess OH exposure? 



Yes, the benzene/toluene diagnosis is based on the hydrocarbon photochemical clock. The 

photochemical and transport processes (mainly via OH oxidation in this case) controls the slope 

here. Thus, the reproduction of slopes suggests that the model can reproduce the OH exposure as 

these slopes in models can agree with 10% of observations for both WE-CAN and FIREX-AQ 

campaigns.  

Minor comments: 

Line 106: I cannot tell if it should be “though” or “through”. Both could potentially make sense. 

Thanks for pointing it out. We clarified it as:  

Another recent study by Bela et al. (2022) found that the daily mean emission estimates from seven 

existing inventories for a case study of a western US wildfire varied by a factor of 83, despite 

bracketing the observed BB CO fluxes. 

Line 318: typo in xylene 

Edited. 

Figure 1: it may be useful to indicate the ground site locations in the biomass burning panel too to 

give an idea of how far these ground sites are from the wildfires 

Thanks for pointing it out. The spatial ground sites were provided in anthropogenic emission panel 

to make the BB emission map less busy.  

Figure 2: for the species plotted with no bars, they are presumably not considered by each 

inventory? Might be helpful to indicate with n/a. 

Yes. The species plotted with no bars were not considered in each inventory. We clarified that in 

the revised caption of Figure 2. 

REVIEWER 3 

This is a reviewer comment who due to technical issues was uploaded by the editor: 

This is a nice paper that addresses a topic of great interest to atmospheric chemistry community. 

The authors use two aircraft campaigns, ground-based measurements and a nested model with 

three emission inventories to examine the biomass burning emissions in western US. They find a 

large underestimate of VOCs by current biomass burning emission inventories, which may have a 

large impact on ozone and aerosol air quality. The paper is well written and suited for ACP. I only 

have a few comments: 

1. Dry Matter (DM) vs. Emission ratios. The authors argue that “the regionally averaged ERs 

dominate disagreement in emission estimates for most VOCs across the three inventories”. 

Looking at Figure 2, the difference in emission ratios seem to be small for some species. On the 

other hand, the authors say in Line 293 “these inventories agree on the amount of effective DM 

burned within 40 %”. It is unclear how much DM can account for the difference. It might be useful 

to add a plot for DM from different emission inventories. 



Our results suggested that the discrepancy of emission estimates in three inventories follows the 

same pattern as the discrepancy of emission ratios across different trace gases (See Fig. X3). We 

also found that the calculated DM burned in the western US (calculated by dividing the emission 

amounts by emission factors) is 61±6 Tg for GFED4, 47±5 Tg for GFAS, and 67±7 Tg for QFED 

in 2018. Thus, these three inventories’ calculated DM burned can agree within 40 %. If DM burned 

is the driving factor, the emissions should consistently follow the discrepancy pattern of DM 

burned for all trace gases, which is not the case in this analysis. Thus, we concluded that the 

regionally averaged ERs dominate disagreement in emission estimates for most VOCs across the 

three inventories. Please also see our response to Reviewer 1 for a related question.  

2. Figure 4 vs. Figure 6. In Figure 4, the authors attribute the underestimate of OVOCs in their 

model to large secondary sources of OVOCs in biomass burning plumes that are missing in the 

model. However, it is shown in Figure 6 that observed OVOCs vs. CO slopes are well reproduced 

by their model. Are the authors assuming that the transects sampled here in Figure 6 have no 

secondary production of OVOCs? Some clarification is needed to reconcile Figures 4 and 6. Also 

it would be good to indicate the ages of those transected plumes. 

Figure 6 only plots the data in near the fire sources (<2 hour physical ages), thus the regression 

slopes can be considered as emission ratios with minimal secondary production of OVOCs and 

such slightly aged ERs are thought to be more relevant to CTM applications (Lonsdale et al., 2020). 

Figure 4 plotted the entire campaign dataset. Following the reviewer’s suggestion, we make the 

following editions in the main texts. 

Original text: The 31 fresh BB emission transects identified in WE-CAN and the plume samples 

with physical age < 1 h in FIREX-AQ are used to calculate ERs. 

Edited text: In order to calculate ERs, plume samples with physical ages less than 2 hours in the 

WE-CAN campaign and less than 1 hour in the FIREX-AQ campaign are used, which are deemed 

to be relatively fresh, with minimal or no secondary production. 

3. It might be useful to point out the photochemical lifetimes of VOCs in the model. This will help 

to understand the impact of 3xGFAS in Figures 4 and 9.  

We do not see evidence of tripling the biomass burning (BB) emission significantly affecting the 

VOC photochemical lifetime in the model. As the photochemical lifetime is the inverse of the 

product of reaction rate constant and OH concentration (tau = 1 / (k*OH), thus affecting OH 

concentration would affect the VOC lifetime. Based on the reviewer’s suggestion, we first 

investigated how 3xGFAS would affect the modelled VOC lifetimes near the fire sources, as such 

an impact, if it exists, would be more evident in the source regions. We found that ERs between 

GFAS and 3xGFAS can agree within 20 %, indicating 3xGFAS doesn’t change much of VOC 

lifetimes in the source region (Fig. X6). Additionally, we also found that both GFAS and 3xGFAS 

simulations can reproduce the same level of OH exposure in the WE-CAN and FIREX-AQ by 

reproducing the hydrocarbon: hydrocarbon relationship in the entire campaign datasets (Fig. X7).  

 



Overall, we think that the 3xGFAS is still an overall small perturbation to the model 

photochemistry. Indeed, here the 3xGFAS only changed the fire VOC (and CO) emissions, which 

are still not the dominant sources in the western US during summer even in the active fire year. 

 
Figure X6. Biomass burning VOC emission ratios from 31 wildfire emission transects sampled on the C-130 during WE-CAN 

(black). Also shown are the corresponding GEOS-Chem + GFAS simulations (blue) and GEOS-Chem + 3xGFAS simulations 

(grey). Model results are sampled along the flight tracks at the time of flights every 1 minute; and observations (and model outputs) 

are regridded to model resolution (5 minutes and 0.25° × 0.3125°). Lines represent the best fit of the data using the reduced major 

axis regression, with the regression parameters given in the equations. 

  
Figure X7. Relationship between benzene and toluene in the western US during WE-CAN (left) and FIREX-AQ (right). Data are 

plotted on a log-log scale, with observations in black, GEOS-Chem + GFAS simulations in blue, and GEOS-Chem + 3xGFAS 

simulations in gray.  Model results are sampled along the flight tracks at the time of flights; and both the observations and the 

model outputs are regridded to model resolution (5 min and 0.25° × 0.3125°). The regression parameters shown represent the best 

fit of the data using the reduced major axis regression, corresponding to the relationship between log10(benzene) and log10(toluene). 

The regression parameters are derived when both benzene and toluene are above the LoD of 30 ppt. 

 



4. What is the difference between QFED and GFAS despite that they both use FRP? This may help 

the reader to better understand the paper. Why are there missing VOC species in some inventories 

in Figures 2 and 7? 

Despite the utilization of the same FRP product from MODIS (i.e., MOD/MYD14), there are 

notable differences in the input data used to drive biomass burning (BB) emissions in QFED and 

GFAS. These differences include the utilization of varying land cover products, source of emission 

factor, treatment of clouds-polluted observational gaps, and the treatment of the emission 

coefficient relating the FRP to the amount of dry mass consumed. 

For instance, QFED employs three biome groups to represent all global biomass: tropical forest, 

extratropical forest, and savanna/grass, while GFAS includes an additional category of peat. Also, 

the fuel distributions are distinct, as different products are applied. Furthermore, the emission 

factors (EFs) in QFED are primarily sourced from (Andreae and Merlet, 2001), whereas GFAS 

has incorporated updates from literature through 2009. Besides, different assumptions are made to 

fill the observation gaps created by clouds. QFED employs a sequential approach to tune the gaps 

based on MODIS aerosol optical thickness (AOT) and GFAS utilizes a Kalman filter and a system 

model that assumes persistence of FRP. Lastly, QFED and GFAS employ different methods to 

estimate the emission coefficient. QFED derives the coefficient by comparison of MODIS and 

GEOS aerosol optical depth (AOD), while GFAS calculates the coefficient via regression between 

FRP dry matter and combustion rate of GFED v3.1 in eight biome types. All these eventually lead 

to the differences of emission estimates between QFED and GFAS.  

We have briefly included related information whenever possible to provide more context to help 

readers to understand Figures 2 and 7. 

Regarding why there are missing VOC species in some inventories, please see the response to 

Reviewer 2. In short, these VOC species are either not included in certain inventories (Fig. 2), or 

are excluded from the analysis due to their poor correlations with CO in the model that don’t meet 

our statistical threshold (Fig. 7). To make it clearer to readers, we followed the reviewer’s 

suggestion and edited the corresponding captions of Figs. 2 and 7. Similar edits are also applied to 

supplement figures.  
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