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Abstract

As the resolution of global Earth system models increases, regional scale evaluation is
becoming ever more important. This study presents a framework for quantifying
precipitation distributions at regional scales and applies it to evaluate CMIP 5 and 6
models. We employ the IPCC ARG6 climate reference regions over land and propose
refinements to the oceanic regions based on the homogeneity of precipitation distribution
characteristics. The homogeneous regions are identified as heavy, moderate, and light
precipitating areas by K-means clustering of IMERG precipitation frequency and amount
distributions. With the global domain partitioned into 62 regions, including 46 land and 16
ocean regions, we apply 10 established precipitation distribution metrics. The collection
includes metrics focused on the maximum peak, lower 10th percentile, and upper 90th
percentile in precipitation amount and frequency distributions, the similarity between
observed and modeled frequency distributions, an unevenness measure based on
cumulative amount, average total intensity on all days with precipitation, and number of
precipitating days each year. We apply our framework to 25 CMIP5 and 41 CMIP6
models, and 6 observation-based products of daily precipitation. Our results indicate that
many CMIP 5 and 6 models substantially overestimate the observed light precipitation
amount and frequency as well as the number of precipitating days, especially over mid-
latitude regions outside of some land regions in the Americas and Eurasia. Improvement
from CMIP 5 to 6 is shown in some regions, especially in mid-latitude regions, but it is not

evident globally, and over the tropics most metrics point toward degradation.
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1. Introduction
Precipitation is a fundamental characteristic of the Earth’s hydrological cycle and one that
can have large impacts on human activity. The impact of precipitation depends on its
intensity and frequency characteristics (e.g., Trenberth et al. 2003; Sun et al. 2006;
Trenberth and Zhang 2018). Even with the same amount of precipitation, more intense
and less frequent rainfall is more likely to lead to extreme precipitation events such as
floods and drought compared to less intense and more frequent rainfall. While mean
precipitation has improved in Earth system models, the precipitation distributions continue
to have biases (e.g., Dai 2006; Fiedler et al. 2020), which limits the utility of these
simulations, especially at the level of accuracy that is increasingly demanded in order to

anticipate and adapt to changes in precipitation due to global warming.

Multi-model intercomparison with a well-established diagnosis framework facilitates
identifying common model biases and sometimes yields insights into how to improve
models. The Coupled Model Intercomparison Project (CMIP; Meehl et al. 2000, 2005,
2007; Taylor et al. 2012; Eyring et al. 2016) is a well-established experimental protocol to
intercompare state-of-the-art Earth system models, and the number of models and
realizations participating in CMIP has been growing through several phases from 1
(Meehl et al. 2000) to 6 (Eyring et al. 2016). Given the increasing number of models,
developed at higher resolution and with increased complexity, modelers and analysts
could benefit from capabilities that help synthesize the consistency between observed
and simulated precipitation. As discussed in previous studies (e.g., Abramowitz 2012),

our reference to model benchmarking implies model evaluation with community-
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established reference data sets, performance tests (metrics), variables, and spatial and
temporal resolutions. The U.S. Department of Energy (DOE) envisioned a framework for
both baseline and exploratory precipitation benchmarks (U.S. DOE. 2020) as summarized
by Pendergrass et al. (2020). While the exploratory benchmarks focus on process-
oriented and phenomena-based metrics at a variety of spatiotemporal scales (Leung et
al. 2022), the baseline benchmarks target well-established measures such as mean state,
the seasonal and diurnal cycles, variability across timescales, intensity/frequency
distributions, extremes, and drought (e.g., Gleckler et al. 2008; Covey et al. 2016; Wehner
et al. 2020; Ahn et al. 2022). The current study builds on the baseline benchmarks by
proposing a framework for benchmarking simulated precipitation distributions against
multiple observations using well-established metrics and reference regions. To ensure
consistent application of this framework, the metrics used herein are implemented and
made available as part of the widely-used Program for Climate Model Diagnosis and

Intercomparison (PCMDI) metrics package.

Diagnosing precipitation distributions and formulating metrics that extract critical
information from precipitation distributions have been addressed in many previous
studies. Pendergrass and Deser (2017) proposed several precipitation distribution
metrics based on frequency and amount distribution curves. The precipitation frequency
distribution quantifies how often rain occurs at different rain rates, whereas the
precipitation amount distribution quantifies how much rain falls at different rain rates.
Based on the distribution curves, Pendergrass and Deser (2017) extracted rain frequency

peak and amount peak where the maximum non-zero rain frequency and amount occur,
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respectively. Pendergrass and Knutti (2018) introduced a metric that measures the
unevenness of daily precipitation based on the cumulative amount curve. Their
unevenness metric is defined as the number of wettest days that constitute half of the
annual precipitation. In the median of station observations equatorward of 50° latitude,
half of the annual precipitation falls in only about the heaviest 12 days, and generally
models underestimate the observed unevenness (Pendergrass and Knutti 2018). In
addition, several metrics have been developed to distill important precipitation
characteristics, such as the fraction of precipitating days and simple daily intensity index
(SDIl, Zhang et al. 2011). In this study we implement all these well-established metrics

and several other complementary metrics into our framework.

Many studies have analyzed the precipitation distributions over large domains (e.g., Dai
2006; Pendergrass and Hartmann 2014; Ma et al. 2022). Often, these domains comprise
both heavily precipitating and dry regions. Given the emphasis on regional scale analysis
continues to grow as models’ horizontal resolution increases, interpretation of domain-
averaged distributions could be simplified by defining regions that are not overly complex
or heterogeneous in terms of their precipitation distribution characteristics. Iturbide et al.
(2020) has identified climate reference regions that have been adopted in the sixth
assessment report (AR6) of the Intergovernmental Panel on Climate Change (IPCC). Our
framework is based on these IPCC ARG reference regions for objective examination of
precipitation distributions over land. Over the ocean we have revised some of the regions
of Iturbide et al. (2020) to better isolate homogeneous precipitation distribution

characteristics.
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In this study, we propose a modified IPCC ARG6 reference regions and a framework for
regional scale quantification of simulated precipitation distributions, which is implemented
into the PCMDI metrics package to enable researchers to readily use the metric collection
in a common framework. The remainder of the paper is organized as follows: Sections 2
and 3 describe the data and analysis methods. Section 4 presents results including the
application and modification of IPCC ARG climate reference regions, evaluation of CMIP
5 and 6 models with multiple observations, and their improvement across generations.
Sections 5 and 6 discuss and summarize the main accomplishments and findings from

this study.

2. Data
2.1. Observational data
For reference data, we use six global daily precipitation products first made available as
part of the Frequent Rainfall Observations on GridS (FROGS) database (Roca et al.,
2019) and then further aligned with CMIP output via the data specifications of the
Observations for Model Intercomparison Project (Obs4MIPs, Waliser et al. 2020). These
include five satellite-based products and a recent atmospheric reanalysis product. The
satellite-based precipitation products include the Integrated Multi-satellitE Retrievals for
GPM version 6 final run product (Huffman et al. 2020; hereafter IMERG), the Tropical
Rainfall Measuring Mission Multi-satellite Precipitation Analysis 3B42 version 7 product

(Huffman et al. 2007; hereafter TRMM), the bias-corrected Climate Prediction Center
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Morphing technique product (Xie et al. 2017; hereafter CMORPH), the Global
Precipitation Climatology Project 1DD version 1.3 (Huffman et al. 2001; hereafter GPCP),
and Precipitation Estimation from Remotely Sensed Information using Artificial Neural
Networks (Ashouri et al. 2015; hereafter PERSIANN). The reanalysis product included
for context is the European Centre for Medium-Range Weather Forecasts (ECMWF)’s
fifth generation of atmospheric reanalysis (Hersbach et al. 2020; hereafter ERAS). Table
1 summarizes the observational datasets with the data source, coverage of domain and
period, resolution of horizontal space and time frequency, and references. We use the
data periods available via FROGS and Obs4MIPs as follows: 2001-2020 for IMERG,
1998-2018 for TRMM, 1998-2012 for CMORPH, 1997-2020 for GPCP, 1984-2018 for

PERSIANN, and 1979-2018 for ERAS.

2.2. CMIP model simulations
We analyze daily precipitation from all realizations of AMIP simulations available from
CMIP5 (Taylor et al. 2012) and CMIP6 (Eyring et al. 2016). We have chosen to
concentrate our analysis on AMIP simulations rather than the coupled Historical
simulations because the simulated precipitation in the latter is strongly influenced by
biases in the modeled sea surface temperature, complicating any interpretation regarding
the underlying causes of the precipitation errors. Table 2 lists the participating models,
the number of realizations, and the horizontal resolution in each modeling institute. We
evaluate the most recent 20 years (1985-2004) that both CMIP 5 and 6 models have in

common for a fair comparison with satellite-based observations.
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3. Methods
In our framework we apply 10 metrics that characterize different and complementary
aspects of the intensity distribution of precipitation at regional scales. Table 3 summarizes
the metrics including their definition, purpose, and references. The computation of the
metrics has been implemented and applied in the PCMDI metrics package (PMP;

Gleckler et al. 2008, 2016).

3.1. Frequency and amount distributions
Following Pendergrass and Hartmann (2014) and Pendergrass and Deser (2017), we use
logarithmically-spaced bins of daily precipitation to calculate both the precipitation
frequency and amount distributions. Each bin is 7% wider than the previous one, and the
smallest non-zero bin is centered at 0.03 mm/day. The frequency distribution is the
number of days in each bin normalized by the total number of days, and the amount
distribution is the sum of accumulated precipitation in each bin normalized by the total
number of days. Based on these distributions (Fig. 1a), we identify the rain rate where the
maximum peak of the distribution appears (Amount/Frequency Peak, Pendergrass and
Deser 2017; also called mode, Kooperman et al., 2016) and formulate several
complementary metrics that measure the fraction of the distribution lower 10 percentile
(P10) and upper 90 percentile (P90). The precipitation bins less than 0.1 mm/day are
considered dry for the purpose of these calculations. The threshold rain rates for 10th and
90th percentiles are defined from the amount distribution as determined from

observations. Here we use IMERG as the default reference observational dataset. The
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final frequency related metric we employ is the Perkins score, which measures the
similarity between observed and modeled frequency distributions (Perkins et al. 2007).
With the sum of a frequency distribution across all bins being unity, the Perkins score is
defined as the sum of minimum values between observed and modeled frequency across
all bins: Perkins Score = Y.} minimum(Z,, Z,,) where n is the number of bins, Z, and Z,,
are the frequency in a given bin for observation and model, respectively. The Perkins

score is a unitless scalar varying from 0 (low similarity) to 1 (high similarity).

3.2.  Cumulative fraction of annual precipitation amount
Following Pendergrass and Knutti (2018), we calculate the cumulative sum of daily
precipitation each year sorted in descending order (i.e., wettest to driest) and normalized
by the total precipitation for that year. From the distribution for each individual year (see
Fig. 1b), we obtain the metrics gauging the number of wettest days for half of annual
precipitation (Unevenness, Pendergrass and Knutti 2018) and the fraction of the number
of precipitating (>=1mm/day) days (FracPRdays). To facilitate comparison against longer-
established analyses (e.g., ETCCDI, Zhang et al., 2011), we include the daily
precipitation intensity, calculated by dividing the annual total precipitation by the number
of precipitating days (SDII, Zhang et al. 2011). To obtain values of these metrics over
multiple years, we take the median across years following Pendergrass and Knutti (2018;

for unevenness).

3.3. Reference regions
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We use the spatial homogeneity of precipitation characteristics as a basis for defining
regions, as in previous studies (e.g., Swenson and Grotjahn 2019). In addition to
providing more physically-based results, this also simplifies interpretation with robust
diagnostics when we average a distribution characteristic across the region. We use K-
means clustering (MacQueen 1967) with the concatenated frequency and amount
distributions of IMERG over the global domain to identify homogeneous regions for
precipitation distributions. K-means clustering is an unsupervised machine learning
algorithm that separates characteristics of a dataset into a given number of clusters
without explicitly provided criteria. This method has been widely used because it is faster
and simpler than other methods. Here, we use 3 clusters to define heavy, moderate and
light precipitation regions. Figure 2 shows the spatial pattern of IMERG precipitation mean
state and clustering results defining heavy (blue), moderate (green), and light (orange)
precipitation regions. The spatial pattern of these clustering regions resembles the pattern
of the mean state of precipitation, providing a sanity check indicating that the cluster-
based regions are physically reasonable. Note that the clustering result with frequency
and amount distributions is not significantly altered if we incorporate cumulative amount
fraction. However, the inclusion of the cumulative amount fraction to the clustering yields
a slightly noisier pattern, and thus we have chosen to use the clustering result only with

frequency and amount distributions.

In support of the ARG, the IPCC proposed a set of climate reference regions (lturbide et
al. 2020). These regions were defined based on geographical and political boundaries

and the climatic consistency of temperature and precipitation in current climate and
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climate change projections. When defining regions, the land regions use both information
from current climate and climate change projections, while the ocean regions use only
the information from climate change projections. In other words, the climatic consistency
of precipitation in the current climate is not explicitly represented in the definition of the
oceanic regions. Figure 3a shows the IPCC ARG climate reference regions superimposed
on our precipitation clustering regions shown in Fig. 2b. The land regions correspond
reasonably well to the clustering regions, but some ocean regions are too broad, including
both heavy and light precipitating regions (Fig. 3a). In this study, the ocean regions are
modified based on the clustering regions, while the land regions remain the same as in

the ARG (Fig. 3b).

In the Pacific Ocean region, the original IPCC ARG regions consist of equatorial Pacific
Ocean (EPO), northern Pacific Ocean (NPO), and southern Pacific Ocean (SPO). Each
of these regions includes areas of both heavy and light precipitation. EPO includes the
Intertropical Convergence Zone (ITCZ), the South Pacific Convergence Zone (SPCZ),
and also the dry southeast Pacific region. The NPO region includes the north Pacific storm
track and the dry northeast Pacific. The SPO region includes the southern part of SPCZ
and the dry southeast area of the Pacific. In our modified IPCC ARG regions, the Pacific
Ocean region is divided into four heavy precipitating regions (NPO, NWPO, PITCZ, and
SWPO) and two light and moderate precipitating regions (NEPO and SEPO). Similarly,
in the Atlantic Ocean region, the original IPCC ARG6 regions consist of the equatorial
Atlantic Ocean (EAO), northern Atlantic Ocean (NAO), and southern Atlantic Ocean

(SAO), with each including both heavy and light precipitating regions. Our modified

10
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Atlantic Ocean region consists of two heavy precipitating regions (NAO and AITCZ) and
two light and moderate precipitating regions (NEAO and SAO). The Indian Ocean (l1O)
region is not modified as the original IPCC ARG climate reference region separates well
the heavy precipitating equatorial 10 (EIO) region from the moderate and light
precipitating southern 10 (SIO) region. The Southern Ocean (SOOQ) is modified to mainly
include the heavy precipitation region around the Antarctic. The original IPCC AR6
climate reference regions consist of 58 regions including 12 oceanic regions and 46 land
regions, while our modification consists of 62 regions including 16 oceanic regions and
the same land regions as the original (see Table 4). Note that the Caribbean (CAR), the

Mediterranean (MED), and Southeast Asia (SEA) are not counted for the oceanic regions.

3.4. Evaluating model performance
We use two simple measures to compare the collection of CMIP 5 and 6 model
simulations with the five satellite-based observational products (IMERG, TRMM,
CMORPH, GPCP, and PERSIANN). One gauges how many models within the multi-
model ensemble fall within the observational range between the minimum and maximum
observed values for each metric and each region. Another is how many models
underestimate or overestimate all observations, i.e., are outside the bounds spanned by
the minimum and maximum values across the five satellite-based products. To quantify
the dominance of underestimation versus overestimation of the multi-model ensemble
with a single number, we use the following measure formulation: (nO — nU)/nT where nO
is the number of overestimating models, nU is the number of underestimating models,

and nT is the total number of models. Thus, positive values represent overestimation, and
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negative values represent underestimation. If models are mostly within the observational
range or widely distributed from underestimation to overestimation, the quantification

value would approach zero.

Many metrics that can be used to characterize precipitation, including those used here,
are sensitive to the spatial and temporal resolutions at which the model and observational
data are analyzed (e.g., Pendergrass and Knutti 2018, Chen and Dai 2019). As in many
previous studies the diagnosis of precipitation in CMIP 5 and 6 models (e.g., Fiedler et al.
2020; Tang et al. 2021; Ahn et al. 2022), to ensure appropriate comparisons, we conduct
all analyses at a common horizontal grid of 2x2 degrees with a conservative regridding
method. For models with multiple ensemble members, we first compute the metrics for

all available realizations and then average the results across the realizations.

4. Results
4.1. Homogeneity within reference regions
For the regional scale analysis, we employ the IPCC ARG6 climate reference regions
(Iturbide et al. 2020) while we revise the region dividings over the oceans based on
clustered precipitation characteristics as described in section 3.3. To quantitatively
evaluate the homogeneity of precipitating distributions in the reference regions, we use
three homogeneity metrics: the Perkins score (Perkins et al. 2007), Kolmogorov—Smirnov
test (K-S test, Chakravart et al. 1967), and Anderson-Darling test (A-D test, Stephens

1974). The three metrics measure the similarity between the regionally-averaged and
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individual grid cell frequency distributions within the region. The Perkins score measures
the overall similarity between two frequency distributions, which is one of our distribution
performance metrics described in Section 3.1. The K-S and A-D tests focus more on the
similarity in the center and the side of the frequency distribution, respectively. The three
homogeneity metrics could complement each other as their main focuses are on different

aspects of frequency distributions.

In the original IPCC ARG reference regions, the oceanic regions show relatively low
homogeneity of precipitating characteristics compared to land regions (Fig. 4). The Pacific
and Atlantic Ocean regions show much lower homogeneity than the Indian Ocean,
especially in EPO and EAO regions. In the modified oceanic regions, the homogeneities
show an overall improvement with the three homogeneity metrics. In particular, the
homogeneity over the heavy precipitating regions where the homogeneity was lower (e.g.,
Pacific and Atlantic ITCZ and mid-latitude storm track regions) are largely improved. The
clustering regions shown here are obtained based on IMERG precipitation. However,
since different satellite-based products show substantial discrepancies in precipitation
distributions, it is important to assess whether the improved homogeneity in the modified
regions is similarly improved across other different datasets. Figure 5 shows the
homogeneity of precipitation distribution characteristics for different observational
datasets using the Perkins score. Although the region modifications we have made are
based on the clustering regions of IMERG precipitation, Fig. 5 suggests that the
improvement of the homogeneity over the modified regions is consistent across different

observational datasets. We further tested the homogeneity for different seasons (see Fig.
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S1 in the supplement material). The homogeneity is overall improved in the modified
regions across the seasons even though we defined the reference regions based on

annual data.

4.2. Regional evaluation of model simulations against multiple observations
The precipitation distribution metrics used in this study are mainly calculated from three
curves: amount distribution, frequency distribution, and cumulative amount fraction
curves. Figure 6 shows these curves for three selected regions based on the clustered
precipitating characteristics (NWPO, which is a heavy precipitation dominated ocean
region; SEPO, a light precipitation dominated ocean region; and ENA, a heavy
precipitation dominated land region). The heavy and light precipitating regions are well
distinguished by their overlaid distribution curves. The amount distribution has a
distinctive peak in the heavy precipitating region (Figs. 6a and 6g), while it is flatter in the
light precipitating region (Fig. 6d). The frequency distribution is more centered on the
heavier precipitation side in the heavy precipitating region (Figs. 6b, 6h) than in the light
precipitating region (Fig 6e). The cumulative fraction increases more steeply in the light
precipitating region (Fig. 6f) than in the heavy precipitating region (Figs. 6¢ and 6i),
indicating there are fewer precipitating days in the light precipitating region. NWPO and
SEPO were commonly averaged for representing the tropical ocean region in many
studies, but these different characteristics in the precipitation distributions demonstrate
the additional information available via a regional scale analysis. Although satellite-based
observations are less reliable over the light precipitating ocean regions (e.g., SEPO), the

differences between heavy and light precipitation regions are well distinguishable.
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In the precipitation frequency distribution, many models show a bimodal distribution in the
heavy precipitating tropical ocean region (Fig. 6b) but not in the light precipitating
subtropical ocean region (Fig. 6e) or the heavy precipitating mid-latitude land region (Fig.
6h). The bimodal frequency distribution is a commonly found in models and is seemingly
independent of resolution (e.g., Lin et al. 2013; Kooperman et al. 2018; Chen et al. 2021,
Ma et al. 2022; Martinez-Villalobos et al. 2022; Ahn et al. 2023). Ma et al. (2022)
compared the frequency distributions in AMIP and HighResMIP (High Resolution Model
Intercomparison Project, Haarsma et al. 2016) from CMIP6 and DYAMOND (DYnamics
of the Atmospheric general circulation Modeled On Non-hydrostatic Domains, Satoh et
al. 2019; Stevens et al. 2019) models, where they showed that the bimodal frequency
distribution appears in many AMIP (~100km), HighResMIP (~50km), and even
DYAMOND (~4km) models. Ahn et al. (2023) further compared between DYAMOND
model simulations with and without a convective parameterization and showed that most
DYAMOND model simulations exhibiting the bimodal distribution use a convective
parameterization. ERA5 reanalysis also shows a bimodal frequency distribution (Fig. 6b),
which is not surprising considering that the reproduced precipitation in ERA5 heavily
depends on the model, thus exhibits this common model behavior. Because of the heavy
reliance on model physics to generate its precipitation (as opposed to fields like wind, for
which observations are directly assimilated), in this study we do not include ERA5

precipitation among the observational products used for model evaluation.
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Based on the precipitation amount, frequency, and cumulative amount fraction curves,
we calculate 10 metrics (Amount peak, Amount P10, Amount P90, Frequency peak,
Frequency P10, Frequency P90, Unevenness, FracPRdays, SDII, and Perkins score) as
described in Section 3. Figure 7 shows the metrics with the modified IPCC ARG climate
reference regions for satellite-based observations (black), ERA5 (gray), CMIP5 (blue),
and CMIP6 (red) models. The metric values vary widely across regions, especially in
Amount peak, Frequency peak, Unevenness, FracPRdays, and SDII, demonstrating the
additional detail provided by regional-scale precipitation-distribution metrics. In terms of
the metrics based on the amount distribution (Fig. 7a-c), many models tend to simulate
an Amount peak that is too light, an Amount P10 that is too high, and an Amount P90 that
is too low compared to the observations, moreso in oceanic regions (regions 47-62) than
in land regions. Similarly for the metrics based on the frequency distribution (Fig. 7d-f),
many models show light Frequency peaks, overestimated Frequency P10, and
underestimated Frequency P90 compared to observations. The similarity between
frequency distribution curves (i.e., Perkins score) is higher in land regions than in ocean
regions. Also, many models overestimate Unevenness and FracPRdays and
underestimate SDII. These results indicate that overall, models simulate more frequent
weak precipitation and less heavy precipitation compared to the observations, consistent
with many previous studies (e.g., Dai 2006; Pendergrass and Hartmann 2014; Trenberth

et al. 2017; Chen et al. 2021; Ma et al. 2022).

As expected from previous work, observations disagree substantially in some regions

(e.g., polar and high latitude regions) and/or for some metrics (e.g., Amount P90,

16



365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

Frequency P90). In some cases the observational spread is much larger than that of the
models. We examine the observational discrepancy or spread by the ratio between the
standard deviation of the five satellite-based observations (IMERG, TRMM, CMORPH,
GPCP, PERSIANN) and the standard deviation of all CMIP 5 and 6 models (Fig. 8). The
standard deviation of observations is much larger near polar regions and high latitude
regions compared to the models’ standard deviation for most metrics, as expected from
the orbital configurations of the most relevant satellite constellations for precipitation
(which exclude high latitudes). The Amount P90 and Frequency P90 metrics show the
largest observational discrepancy among the metrics, with standard deviations of 1.5 to
3 times larger over some high latitude regions and about 3-8 times larger over polar
regions in observations compared to the models. On the other hand, Unevenness,
FracPRdays, and Amount P10 show the least observational discrepancy — the models’
standard deviation is about 2-8 times larger than for observations over some tropical and
subtropical regions; nonetheless, the standard deviation among observations is larger
over most of the high latitude and polar regions. Model evaluation in the regions with large
disagreement among observational products remains a challenge. Note that the standard
deviation of five observations would be sensitive as there are outlier observations for
some regions and metrics (e.g., many ocean regions in Amount P90). Moreover,
observational uncertainties are rarely well quantified or understood, so agreements
among observational datasets may not always allow us to rule out common errors among

observations (e.g., for warm light precipitation over the subtropical ocean).
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To attempt to account for discrepancies among observational datasets in the model
evaluation framework, we use two different approaches to evaluate model performance
with multiple observations, as described in Section 3.4. The first approach is to assess
the number of models that are within the observational range. Figure 9 shows the CMIP6
model evaluation with each metric, and the regions where the standard deviation among
observations is larger than among models are stippled gray to avoid them from the model
performance evaluation. In Amount peak, some subtropical regions (e.g., ARP, EAS,
NEPO, CAU, and WSAF) show relatively good model performance (more than 70% of
models fall in the observational range), while some tropical and subtropical (e.g., PITCZ,
AITCZ, and SEPO) and polar (e.g., RAR, EAN, and WAN) regions show poor model
performance (less than 30% of models fall in observational range). For Amount P10,
many regions are poorly captured by the simulations, except for some subtropical land
regions (e.g., EAS, NCA, CAU, and WSAF). In Amount P90, most regions are uncertain
(i.e., the standard deviation among observations is larger than among models) making it
difficult to evaluate model performance, while some tropical regions near the Indo-Pacific
warmpool (EIO, SEA, NWPO, and NAU) exhibit very good model performance (more than
90% of models fall in observational range). In the Frequency metrics (peak, P10, and
P90), more regions are difficult to evaluate model performance than in Amount metrics,
while in some tropical and subtropical regions (e.g., PITCZ, SWPO, NWPO, SEA, SAO,
and NES) model performance is good. However, good model performance could
alternatively arise from a large observational range (see Fig. 7). Unevenness,
FracPRdays, SDII, and Perkins score have a smaller fraction of models within the

observational range in tropical regions than the Amount and Frequency metrics. In
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particular, fewer than 10% of CMIP6 models fall within the observational range for
Unevenness and FracPRdays over some tropical oceanic regions (e.g., PITCZ, NEPO,

SEPO, AITCZ, NEAO, SAO, and SIO).

Examining the fraction of CMIP5 models falling within the range of observations, CMIP5
models have a spatial pattern of model performance similar to that of CMIP6 models (see
Fig. S2 in supplement), and the improvement from CMIP5 to CMIP6 seems subtle. We
guantitatively assess the improvement from CMIP5 to CMIP6 by subtracting the
percentage of CMIP5 from CMIP6 models falling within the range of observations (Fig.
10). For some metrics (e.g., Amount peak, Amount and Frequency P10, and Amount and
Frequency P90) and for some tropical and subtropical regions (e.g., SEA, EAS, SAS,
ARP, and SAH), improvement is apparent. Compared to CMIP5, 5-25% more CMIP6
models fall in the observational range in these regions. However, for the other metrics
(e.g., Frequency peak, FracPRdays, SDII, Perkins score), CMIP6 models perform
somewhat worse. Over some tropical and subtropical oceanic regions (e.g., PITCZ,
NEPO, AITCZ, and NEAO), 5-25% more CMIP6 than CMIP5 models are out of the
observational range. This result is from all available CMIP5 and CMIP6 models, so it may
reflect the fact that some models are participated in only CMIP5 or CMIP6, but not both
(see Table 2). To isolate improvements that may have occurred between successive
generations of the same models, we also compared only the models that participated in
both CMIP5 and CMIP6 (see Fig. S3). Overall, the spatial characteristics of the

improvement/degradation in CMIP6 from CMIP5 is consistent, while more degradation is
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apparent when we compare this subset of models, especially over the tropical oceanic

regions (e.g., PITCZ, AITCZ, NWPO, and SEPO).

The second approach to account for discrepancies among observations in model
performance evaluation is to count the number of models that are lower or higher than all
satellite-based observations for each metric and each region. Figure 11 shows the spatial
patterns of the model performance evaluation with each metric for CMIP6 models.
Underestimation is indicated by a negative sign, while overestimation is indicated by a
positive sign via the formulation described in Section 3.4. Amount peak is overall
underestimated in most regions, indicating the amount distributions in most CMIP6
models are shifted to lighter precipitation compared to observations. In many regions,
more than 50% of the CMIP6 models underestimate Amount peak. In particular, over
many tropical and southern hemisphere ocean regions (e.g., PITCZ, AITCZ, EIO, SEPO,
SAO, and SOOQO), more than 70% of the models underestimate the Amount peak. The
underestimation of Amount peak is accompanied by overestimation of Amount P10 and
underestimation of Amount P90. More than 70% of CMIP6 models overestimate Amount
P10 in many oceanic regions; especially in the southern and northern Pacific and Atlantic,
the southern Indian Ocean, and Southern Ocean more than 90% of the models
overestimate the observed Amount P10. For Amount P90, it appears that many models
fall within the observational range; however, observational range in Amount P90 (green
boxes in Fig. 7c) is large and driven primarily by just one observational dataset (IMERG),

especially in ocean regions.
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For the frequency-based metrics (i.e., peak, P10, and P90; Figs. 11d-f), CMIP6 models
show similar bias characteristics to Amount metrics (Figs. 11a-c), although performance
is better than for Amount metrics. Over some tropical (e.g., NWPO, PITCZ, and SWPO )
and Eurasia (e.g., EEU, WSB, and ESB) regions, less than 10% of models fall outside of
the observed range. Unevenness and FracPRdays are severely overestimated in models.
More than 90% of models overestimate the observed Unevenness (Fig. 11g) and
FracPRdays (Fig. 11h) globally, especially over oceanic regions, consistent with
Pendergrass and Knutti (2018). SDII is underestimated in many regions globally,
especially in some heavily-precipitating regions (e.g., PITCZ, AITCZ, EIO, SEA, NPO,
NAO, SWPO, and SOO). For the Perkins score, model simulations have poorer
performance in the tropics than in the mid-latitudes and polar regions. Performance by
these various metrics is generally consistent with the often-blamed too-frequent light

precipitation and too rare heavy precipitation in simulations.

The characteristics of CMIP5 compared to CMIP6 simulations (Fig. S4) show little
indication of improvement. Here we quantitatively evaluate the improvement in CMIP6
from CMIP5 for each metric and region. Figure 12 shows the difference between CMIP5
and CMIP6 in terms of the percentage of models that under- or over-estimate each metric.
In mid-latitudes, there appears to have been an improvement in performance, however in
the tropics, there appears to be more degradation. Over some heavily-precipitating
tropical regions (e.g., PITCZ, AITCZ, EIO, and NWPO), 10-25% more models in CMIP6
than in CMIP5 overestimate Amount P10, Unevenness, and FracPRdays and

underestimate/underperform on Amount peak, SDII, and Perkins score. This indicates
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that CMIP6 models simulate more frequent light precipitation and less frequent heavy
precipitation over the heavily-precipitating tropical regions. Over some mid-latitude land
regions (e.g., EAS, ESB, RFE, and ENA), on the other hand, 5-20% more models in
CMIP6 than in CMIP5 simulate precipitation distributions close to observations (i.e., less
light precipitation and more heavy precipitation). To evaluate the improvement between
model generation, we also compare only the models that participated in both CMIP5 and
CMIP6 (Fig. S5) rather than all available CMIP5 and CMIP6 models. For the subset of
models participating in both generations, the improvement characteristics are similar for
all models, although more degradation is exhibited over some tropical oceanic regions
(e.g., PITCZ, NWPO, and SWPO). This also indicates that some models newly

participating in CMIP6, and not in the CMIP5, have higher than average performance.

4.3. Correlation between metrics
Each precipitation distribution metric implemented in this study is chosen to target
different aspects of the distribution of precipitation. To the extent that precipitation
probability distributions are governed by a small number of key parameters (as argued by
Martinez-Villalobos and Neelin 2019), we should expect additional metrics to be highly
correlated. Figure 13 shows the global weighted average of correlation coefficients
between the precipitation distribution metrics across CMIP5 and CMIP6 models. Higher
correlation coefficients are found to be between Amount P90 and Frequency P90 (0.98)
and between Amount P10 and Frequency P10 (0.67). This is expected because the
amount and frequency distributions differ only by a factor of the precipitation rate (e.g.,

Pendergrass and Hartmann 2014). Another higher correlation coefficient is between
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Unevenness and FracPRdays (0.77), indicating that the number of the heaviest
precipitating days for half of annual precipitation and the total number of annual
precipitating days are related. Amount and Frequency peak metrics are negatively
correlated to P10 metrics and positively correlated to P90 metrics, but the correlation
coefficients are not very high (lower than 0.62). This is because the peak metrics focus
on typical precipitation, rather than the light and heavy ends of the distribution that are
the focus of P10 and P90 metrics. SDII is more negatively correlated with Amount P10 (-
0.67) and positively correlated with Amount peak (0.61) and less so with Amount P90
(0.48), implying that SDII is mainly influenced by weak precipitation amounts rather than
heavy precipitation amounts. The Perkins score shows relatively high negative correlation
with Unevenness (-0.62), FracPRdays (-0.59), and Amount P10 (-0.59). This indicates
that the discrepancy between the observed and modeled frequency distributions is partly
associated with the overestimated light precipitation in models. The correlation
coefficients between the metrics other than those discussed above are lower than 0.6.
While there is some redundant information within the collection of metrics included in our
framework, we retain all metrics so that others can select an appropriate subset for their
own application. This also preserves the ability to readily identify outlier behavior of an

individual model across a wide range of regions and statistics.

4.4. Influence of spatial resolution on metrics
Many metrics for the precipitation distribution are sensitive to the spatial resolution of
the underlying data (e.g., Pendergrass and Knutti 2018; Chen and Dai 2019). Figure 14

shows how our results (which are all based on data at 2° resolution) are impacted if we
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calculate the metrics from data coarsened to 4° grid instead. As expected, there is clearly
some sensitivity to the spatial scale at which our precipitation distribution metrics are
computed, but the correlation among datasets (both models and observations) between
the two resolutions is very high, indicating that evaluations at either resolution should be
consistent. At the coarser resolution, Amount peak and SDII are consistently smaller (as
expected); Amount P10 and Frequency P10 tend to be smaller as well. Meanwhile,
Unevenness and FracPRdays are consistently large (as expected); Amount P90,
Frequency P90, and Perkins score are generally larger as well. Chen and Dai (2019)
discussed a grid aggregation effect that is associated with the increased probability of
precipitation as the horizontal resolution becomes coarser. This effect is clearly evident
with increased Unevenness (Fig. 14g), FracPRdays (Fig. 14h), and decreased SDII (Fig.
14i) in coarser resolution. However, despite these differences, the relative model
performance is not very sensitive to the spatial scale at which we apply our analysis. The
correlation coefficients between results based on all data interpolated to 2° or 4°
horizontal resolutions are above 0.9 for all of our distribution metrics. Conclusions on

model performance are relatively insensitive to the target resolution.

5. Discussion
Analyzing the distribution of precipitation intensity lags behind temperature and even
mean precipitation. Challenges include choosing appropriate metrics and analysis
resolution to characterize this highly non-gaussian variable and interpreting model skills

in the face of substantial observational uncertainty. Comparing results derived at 2° and
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4° horizontal resolution for CMIP class models, we find that the quantitative changes in
assessed performance are highly consistent across models and consequently have little
impact on our conclusions. More work is needed to determine how suitable this collection
of metrics may be for evaluating models with substantially higher resolutions (e.g.,
HighResMIP, Haarsma et al. 2016). We note that more complex measures have been
designed to be scale independent (e.g., Martinez-Villalobos and Neelin 2019; Martinez-
Villalobos et al. 2022), and these may become increasingly important with continued

interest in models developed at substantially higher resolution.

Several recent studies suggest that the IMERG represents a substantial advancement
over TRMM and likely the others (e.g., Wei et al. 2017; Khodadoust Siuki et al. 2017,
Zhang et al. 2018), thus we rely on IMERG as the default in much of our analysis.
However, we do not entirely discount the other products because the discrepancy
between them provides a measure of uncertainty in the satellite-based estimates of
precipitation. Our use of the minimum to maximum range of multiple observational
products is indicative of their discrepancy, but not their uncertainty, and thus is a limitation

of the current work and challenge that we hope will be addressed in the future.

The common model biases identified in this study are mainly associated with the
overestimated light precipitation and underestimated heavy precipitation. These biases
persist from deficiencies identified in earlier generation models (e.g., Dai 2006), and as
shown in this study there has been little improvement. One reason may be that these key

characteristics of precipitation are not commonly considered in the model development
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process. Enabling modelers to more readily objectively evaluate simulated precipitation
distributions could perhaps serve as a guide to improvement. The current study aims to
provide a framework for objective evaluation of simulated precipitation distributions at

regional scales.

Imperfect convective parameterizations are a possible cause of the common model
biases in precipitation distributions (e.g., Lin et al. 2013; Kooperman et al. 2018; Ahn et
al. 2018; Chen and Dai 2019; Chen et al. 2021; Martinez-Villalobos et al. 2022). Many
convective parameterizations tend to produce too frequent and light precipitation, the so-
called “drizzling” bias (e.g., Dai 2006; Trenberth et al. 2017; Chen et al. 2021; Ma et al.
2022), and it is likely due to a fact that the parameterized convection is more readily
triggered than that in the nature (e.g., Lin et al. 2013; Chen et al. 2021). As model
horizontal resolution increases, grid-scale precipitation processes can lead to resolving
convective precipitation, as in so-called cloud resolving, storm resolving, or convective
permitting models. Ma et al. (2022) compare several storm resolving models in
DYAMOND to recent CMIP6 models with a convective parameterization and observe that
the simulated precipitation distributions are more realistic in the storm resolving models.
However, some of the storm resolving models still suffer from precipitation distribution
errors, including bimodality in the frequency distribution. Further studies are needed to

better understand the precipitation distribution biases in models.

6. Conclusion
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We introduce a framework for regional scale evaluation of simulated precipitation
distributions with 62 climate reference regions and 10 precipitation distribution metrics
and apply it to evaluate the two most recent generations of climate model intercomparison

simulations (i.e., CMIP5 and CMIP6).

To facilitate the regional scale for evaluation, regions where precipitation characteristics
are relatively homogenous are identified. Our reference regions consist of existing IPCC
ARG6 climate reference regions, with additional subdivisions based on homogeneity
analysis performed on precipitation distributions within each region. Our precipitation
clustering analysis reveals that the IPCC ARG land regions are reasonably homogeneous
in precipitation character, while some ocean regions are relatively inhomogeneous,
including large portions of both heavy and light precipitating areas. To define more
homogeneous regions for the analysis of precipitation distributions, we have modified
some ocean regions to better fit the clustering results. Although the clustering regions are
obtained based on the IMERG annual precipitation, the improved homogeneity is fairly
consistent across different datasets (TRMM, CMORPH, GPCP, PERSIANN, and ERAS5)
and seasons (MAM, JJA, SON, and DJF). Use of these more homogeneous regions
enables us to extract more robust quantitative information from the distributions in each

region.

To form the basis for evaluation within each region, we use a set of metrics that are well-

established and easy to interpret, aiming to extract key characteristics from the

distributions of precipitation frequency, amount, and cumulative fraction of precipitation
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amount. We include the precipitation rate at the peak of the amount and frequency
distributions (Kooperman et al., 2016; Pendergrass and Deser, 2017) and define several
complementary metrics to measure the frequency and amount of precipitation under the
10th percentile (P10) and over the 90th percentile (P90). The distribution peak metrics
assess whether the center of each distribution is shifted toward light or heavy
precipitation, while the P10 and P90 metrics quantify the fraction of light and heavy
precipitation in the distributions. The Perkins score is included to measure the similarity
between the observed and modeled frequency distributions. Also, based on the
cumulative fraction of precipitation amount, we implement the unevenness metric
counting the number of wettest days for half of the annual precipitation (Pendergrass and
Knutti 2018), the fraction of annual precipitating days above 1 mm/day, and the simple

daily intensity index (Zhang et al. 2011).

We apply the framework of regional scale precipitation distribution benchmarking to all
available realizations of 25 CMIP5 and 41 CMIP6 models and 5 satellite-based
precipitation products (IMERG, TRMM, CMORPH, GPCP, PERSIANN). The
observational discrepancy is substantially larger compared to the models’ spread for
some regions, especially for mid-latitude and polar regions and for some metrics such as
Amount P90 and Frequency P90. We use two approaches to account for observational
discrepancy in the model evaluation. One is based on the number of models within the
observational range, and another is the number of models below/above all observations.
In this way, we can draw some conclusions on the overall performance in the CMIP

ensemble even in the presence of observations that may substantially disagree in certain

28



639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

regions. Many CMIP5 and CMIP6 models underestimate the Amount and Frequency
peaks and overestimate Amount and Frequency P10 compared to observations,
especially in many mid-latitude regions where more than 50% of the models are out of
the observational range. This indicates that models produce too frequent light
precipitation, a bias that is also revealed by the overestimated FracPRdays and the
underestimated SDIIl. Unevenness is the metric that models simulate the worst — in many
regions more than 70-90% of the models are out of the observational range. Clear
changes in performance between CMIP5 and CMIP6 are limited. Considering all metrics,
the CMIP6 models show improvement in some mid-latitude regions, but in a few tropical

regions the CMIP6 models actually show performance degradation.

The framework presented in this study is intended to be a useful resource for model
evaluation analysts and developers working towards improved performance for a wide
range of precipitation characteristics. Basing the regions in part on homogeneous
precipitation characteristics can facilitate identification of the processes responsible for
model errors as heavy precipitating regions are generally dominated by convective
precipitation, while the moderate and light precipitation regions are mainly governed by
stratiform precipitation processes. Although the framework presented herein has been
demonstrated with regional scale evaluation benchmarking, it can be applicable for

benchmarking at larger scales and homogeneous precipitation regions.
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Code Availability
The benchmarking framework for precipitation distributions established in this study is
available via the PCMDI Metrics Package (PMP,

https://qithub.com/PCMDI/pcmdi_metrics, DOI: 10.5281/zeno0do.7231033). This

framework provides three tiers of area averaged outputs for i) large scale domain (Tropics
and Extratropics with separated land and ocean) commonly used in the PMP, ii) large
scale domain with clustered precipitation characteristics (Tropics and Extratropics with
separated land and ocean, and separated heavy, moderate, and light precipitation

regions), and iii) modified IPCC ARG regions shown in this paper.

Data Availability

All of the data used in this study are publicly available. The satellite-based precipitation
products used in this study (IMERG, TRMM, CMORPH, GPCP, and PERSIANN) and
ERA5 precipitation product are available on the Obs4MIPs at https://esaf-

node.lInl.gov/projects/obs4mips/. The CMIP data is available on the ESGF at https://esqf-

node.llnl.gov/projects/esaf-linl. The statistics generated from this benchmarking

framework and the interactive plots with access to the underlying diagnostics were made
available on the PCMDI Simulation Summaries at

https://pcmdi.linl.gov/research/metrics/precip/.
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Tables

Table 1. Satellite-based and reanalysis precipitation products used in this study.

Coverage Resolution Refere
Product Data source . . Horizont | Freque
Domain Period nce
al ncy
Global,
NASA Integrated Multi- while 2000.6- 30 Huffma
IMERG satellitE Retrievals for GPM beyond X 0.1° . n et al.
version 6 final run product 60°NS is present minutes (2020)
incomplete
NASA Tropical Rainfall
Measuring Mission Multi- 1998.1- Huffma
TRMM satellite Precipitation 50°S-50°N 2019 '12 0.25° 3hours | netal.
Analysis 3B42 version 7 ' (2007)
product
NOAA Bias-corrected 1998.1- 30 Xie et
CMORPH | Climate Prediction Center 60°S-60°N X 0.073° . al.
Morphing technigue product present minutes (2017)
Global,
NASA Global Precipitation while 1996.10- Huffma
GPCP Climatology Project 1DD beyond ) 1° 1 day netal.
version 1.3 40°NS is present (2001)
incomplete
UC-IRVINE/CHRS
Precipitation Estimation from :
Remotely Sensed 1983.1- Ashouri
PERSIANN ; ) e 60°S-60°N 0.25° 1 day etal.
Information using Artificial present (2015)
Neural Networks-Climate
Data Record
Hersba
ECMWEF Integrated 1950.1- o
ERAS Forecasting System Cy41r2 Global present 025 1 hour c(gg;g)l )
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Table 2. CMIP5 and CMIP6 models used in this study and their horizontal resolution. The
number in parentheses indicates the number of realizations used for each model. Note
that the horizontal resolution information is obtained from the number of grids, and it may
vary slightly if the grid interval is not linear.

CMIP5 CMIP6
Institute Horizor_1ta| Horizor_1ta|
Name resolution Name resolution
[lon x lat °] [lon x lat °]
CSIRO/BOM, ACCESS1-0 (1) 1.875x1.241 | ACCESS-CM2 (7) 1.875x 1.25
Australia ACCESS1-3 (2) 1.875x1.241 | ACCESS-ESM1-5 (10) 1.875x1.241
, BCC-CSM1-1 (3) 1.875 x 1.241 | BCC-CSM2-MR (3) 1.125 x 1.125
BCC. China  Mgcccsmi-i-M ) 1.125x 1.125 | BCC-ESM1 (3) 2.812 x 2.812
BNU, China BNU-ESM (1) 2.812 x2.812 N/A
CAMS, China N/A CAMS-CSM1-0 (3)
CCCma, N/A CanESMS (7) 2.812 x 2.812
Canada
CESM2 (10) 1.25 x 0.938
CESM2-FV2 (3) 2.5x1.875
NCAR, USA CCSM4 (6) 1.25 x 0.938 CESM2-WACCM (3) 1.25 x 0.938
g)ESMZ-WACCM-FVZ 25x1.875
CMCC-CM2-HR4 (1) 1.25 x 0.938
CMCC, ltaly CMCC-CM (3) 0.75x0.75 | CMCC-CM2-SR5 (1) 1.25 x 0.938
CNRM- CNRM-CM6-1 (1) 1.406 x 1.406
CERFACS, N/A CNRM-CM6-1-HR (1) 0.5x0.5
France CNRM-ESM2-1 (1) 1.406 x 1.406
CSIRO-
QCCCE, CSIRO-Mk3-6-0 (10) 1.875 x 1.875 N/A
Australia
DOE, USA N/A E3SM-1-0 (3) 1.0x 1.0
EC-Earth- EC-Earth3 (6) 0.703 x 0.703
Consortium, EC-Earth3-AerChem (1 0.703 x 0.703
European EC-Earth (1) 1125x 1125 =2 o e s ®) 1)
Community EC-Earth3-Veg (3) 0.703 x 0.703
IAP- FGOALS-g2 (1) 2.812x 3.0
gﬁﬁg HU, FGOALS-s2 (3) 2812 x 1.667 | TCOALSTL(3) 1.0x1.0
GFDL-CM3 (5) 25x2.0 GFDL-CM4 (1) 1.0x1.0
SgﬁA GFDL, I"GFDL-HIRAM-C180 (2) | 0.625x0.5 | GFDL-ESM4 (1) 1.0x 1.0
GFDL-HIRAM-C360 (1) | 0.312x0.25
NASA GISS, N/A
USA GISS-E2-R (2) 25x2.0
HadGEM3-GC31-LL (5) 1.875x1.25
MOHC, UK HadGEM2-A (1) 1.875x1.241 | HadGEM3-GC31-MM (4) | 0.833 x 0.556
UKESM1-0-LL (1) 1.875x1.25
IITM, India N/A ITM-ESM (1) 1.875x 1.915
. INM-CM4-8 (1) 2.0x15
INM, Russia INMCM4 (1) 20x15
INM-CM5-0 (1) 20x 15
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954
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IPSL-CM5A-LR (6) 3.75 x 1.875
IPSL, France | IPSL-CM5A-MR (3) 25x1.259 | IPSL-CMBA-LR (22) 2.5 % 1.259
IPSL-CM5B-LR (1) 3.75 x 1.875
NIMS/KMA, N/A KACE-1-0-G (1) 1.875x 1.25
Korea
MIROCS (10) 1.406 x 1.406
g/l;;g]c, MIROCS (2) 1.406 x 1.406
MIROC-ES2L (3) 2.812 x 2.812
- MPI-ESM-1-2-HAM (3) 1.875x 1.875
Gorman MPI-ESM-MR (3) 1.875x 1.875 | MPI-ESM1-2-HR (3) 0.938 x 0.938
y MPI-ESM1-2-LR (3) 1.875 x 1.875
MRI-AGCM3-2H (1) 0.562 X 0.562
MRI, Japan MRI-AAGCM3-2S (1) 0.188 x 0.188 | MRI-ESM2-0 (3) 1.125x 1.125
MRI-CGCM3 (3) 1.125x 1.125
NorCPM1 (10) 25x1.875
NCC, Norway N/A NorESM2-LM (2) 2.5x 1.875
SNU, Korea N/A SAMO-UNICON (1) 1.25 x 0.938
AS-RCEC, N/A TaiESM1 (1) 1.25 x 0.938
Taiwan
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Table 3. Precipitation distribution metrics implemented in this study.

bins

Metric [unit] Definition Objectives Reference
Amount peak Rain rate where the maximum | Characterize typical daily | Pendergrass
[mm/day] rain amount occurs precipitation amount and Deser

(2017)
Amount P10 Fraction of rain amount in Measure the rain amount
[fraction] lower 10 percentile of OBS from light rainfall
amount
Amount P90 Fraction of rain amount in Measure the rain amount
[fraction] upper 90 percentile of OBS from heavy rainfall
amount
Frequency peak Rain rate where the maximum | Characterize typical daily | Pendergrass
[mm/day] nonzero rain frequency precipitation frequency and Deser
occurs (2017)
Frequency P10 Fraction of rain frequency in Measure the frequency
[fraction] lower 10 percentile of OBS of light rainfall
amount
Frequency P90 Fraction of rain frequency in Measure the frequency
[fraction] upper 90 percentile of OBS of heavy rainfall
amount
Unevenness Number of wettest days for Measure uneven Pendergrass
[days] that constitute half of annual characteristic of daily and Knutti
precipitation precipitation (2018)
FracPRdays Number of precipitating days | Measure fraction of Updated from
[fraction] (>=1mm/day) divided by total | precipitating days a year Zhang et al.
days a year (2011)
SDII Annual total precipitation Measure daily Zhang et al.
[mm/day] divided by the number of precipitation intensity (2011)
precipitating days
(>=1mm/day)
Perkins score Sum of minimum values Measure similarity Perkins et al.
[unitless between 0-1] between two PDFs across all | between two PDFs (2007)
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Table 4. List of climate reference regions used in this study. The new ocean regions
defined in this study are highlighted in bold.

1 |GIC |Greenland/Iceland 22 |WAF |Western-Africa 43 |SAU |S.Australia

2 |NWN |N.W.North-America 23 |CAF |Central-Africa 44 INZ New-Zealand

3 |NEN |N.E.North-America 24 INEAF |N.Eastern-Africa 45 |EAN |E.Antarctica

4 |WNA |W.North-America 25 |SEAF |S.Eastern-Africa 46 WAN |W.Antarctica

5 |CNA |C.North-America 26 WSAF |W.Southern-Africa 47 |ARO |Arctic-Ocean

6 |ENA |E.North-America 27 [ESAF |E.Southern-Africa 48 |ARS |Arabian-Sea

7 |NCA |N.Central-America 28 MDG |Madagascar 49 BOB |Bay-of-Bengal

8 |SCA |S.Central-America 29 |RAR |Russian-Arctic 50 |EIO  |Equatorial-Indian-Ocean

9 |CAR |Caribbean 30 |WSB |w.Siberia 51(SIO |S.Indian-Ocean

10 INWS |N.W.South-America 31 |ESB |E.Siberia 52 [INPO |N.Pacific-Ocean
NWP

11 |[NSA |N.South-America 32 |RFE |Russian-Far-East 530 N.W.Pacific-Ocean

12 INES |N.E.South-America 33 |WCA |w.C.Asia 54 INEPO |N.E.Pacific-Ocean

13 [SAM |South-American-Monsoon ||34 |[ECA |E.C.Asia 55 [PITCZ |Pacific-ITCZ

14 |SWS |S.W.South-America 35[TIB  |Tibetan-Plateau 56 [SWPO|S.W.Pacific-Ocean

15 |SES |[S.E.South-America 36 [EAS |E.Asia 57 [SEPO |S.E.Pacific-Ocean

16 |SSA |S.South-America 37 |ARP |Arabian-Peninsula 58 [NAO |N.Atlantic-Ocean

17 INEU |N.Europe 38 |[SAS |S.Asia 59 INEAO |N.E.Atlantic-Ocean

18 |WCE |west&Central-Europe 39 |SEA |S.E.Asia 60 |[AITCZ |Atlantic-ITCZ

19 [EEU |E.Europe 40 INAU |N.Australia 61 [SAO |S.Atlantic-Ocean

20 [MED |Mediterranean 41 |CAU [C.Australia 62 [SOO |Southern-Ocean

21 |SAH |Sahara 42 |EAU |E.Australia
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Figures

a) Amount or Frequency distribution b) Fraction of cumulative distribution
near 1______________________
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Figure 1. Schematics for precipitation distribution metrics. a) Amount or Frequency
distribution as a function of rain rate. Peak metric gauges the rain rate where the
maximum distribution occurs. P10 and P90 metrics respectively measure the fraction of
the distribution lower 10 percentile and upper 90 percentile. Perkins score is another
metric based on the frequency distribution to quantify the similarity between observed
and modeled distribution. b) Fraction of cumulative distribution as a function of number of
wettest days. Unevenness gauges the number of wettest days for half of annual
precipitation. FracPRdays measures the fraction of the number of precipitating
(21mm/day) days a year. SDII is designed to measure daily precipitation intensity by
annual total precipitation divided by FracPRdays.
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Figure 2. Spatial patterns of IMERG precipitation a) mean state and b) clustering for
heavy, moderate, and light precipitating regions by K-means clustering with amount and
frequency distributions. Precipitation ¢) amount and d) frequency distributions as a
function of rain rate. Different colors indicate different clustering regions as the same
with b). Thin and thick curves respectively indicate distributions at each grid and the
cluster average.
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Figure 3. a) IPCC ARG climate reference regions and b) modified IPCC ARG climate
reference regions superimposed on the precipitation distributions clustering map shown
in Fig. 2b. Land regions are the same between a) and b), while some ocean regions are
modified.
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Figure 4. Homogeneity estimated by a) Perkins score, b) K-S test, and c) A-D test
between the region averaged and each grid’s frequency distributions of IMERG
precipitation for the IPCC ARG climate reference regions (upper) and the modified
ocean regions (bottom). Darker color indicates higher homogeneity across all panels.
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Figure 5. As in Fig. 4, but for different observational datasets with Perkins score.

10



1086
1087
1088
1089

1090
1091

1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107

- a) Amount distribution (NWPO)

e d) Amount distribution (SEPO)

- g) Amount distribution (ENA)

== IMERG - IMERG == |IMERG
o~ == TRMM iy == TRMM — = TRMM
T 0.4 —== cMORPH T 04 ~#— CMORPH T 0.4 —=— CMORPH
g -4 GPCP g —— GPCP ;~ —+— GPCP
° 0.3 —a— PERSIANN o 0.3 —e— PERSIANN © 0.3 =—e— PERSIANN
£ e w- ERAS e e «~ ERAS g w~ ERAS
£ —— CMIP5 £ —— CMIPS £ —— CMIPS
= 0.24 — cmre o 0.2 = CMIPE 02 ~—— CMIPE
|~ c =
= = =]
o o ©
£ 01 £ 01 £ 01
< < <
0.0 . . 0.0 2 0.0 = .
107t 10° 10t 102 10~ 10° 10t 102 107 10° 10! 10?
Precipitation [mm day~!] Precipitation [mm day~*] Precipitation [mm day~*]
b) Frequency distribution (NWPO) 5 e) Frequency distribution (SEPO) h) Frequency distribution (ENA)
0.05 .05 0.05
—a— IMERG e IMERG - IMERG
—_ e TRMM —_ —_— TRMM —_ e TRMM
§ 0.04 1 ~w— CMORPH 5 0.04+ ~m— CMORPH § 0.04 —w— CMORPH
'8 —4— GPCP ﬁ —— GPCP 5 —— GPCP
® —e— PERSIANN | & —a— PERSIANN | & —a— PERSIANN
= 0.03 1 o ERAS = 0.03 4 -4 o ERAS = 0.03 1 o~ ERAS
> e CMIPS. > e CMIPS > e CMIPS
g 0.02 1 y. \ e CMIPE 2 0.02 4 4 % ] 2 0.02 e CMIPE
[ o \ v
3 3 3
o o o
9 0.01 9 0.01 & 9 0.01
w w w
0.00 + T T . 0.00 4 T T 7 0.00 4 T T T
1071 10° 10! 102 107 100 10? 102 107 10° 10! 10?
Precipitation [mm day™'] Precipitation [mm day~'] Precipitation [mm day™]
c) Cumulative fraction (NWPO) f) Cumulative fraction (SEPO) i) Cumulative fraction (ENA)
1.0 7 = 1.0 7 — 1.0
g - P . —e— IMERG
v TRMM
0.8 0.8 0.8 == CMORPH
-t GPCP
— — —_— e PERSIANN
5 0.6 —e— IMERG 5 06 —e— IMERG 5 06 o ERAS
'*3 - =—te= TRMM 8 —t— TRMM ‘3 - w— CMIP5
Il =@~ CMORPH o ~a= CMORPH o w—— CMIP6
&£ 04 o GPCP = 04 —— GPCP = 04
== PERSIANN —a— PERSIANN
0.2 o=:ERAS 0.2 o= ERAS 0.2
s CMIP5 w— CMIPS
s CMIP6 w—— CMIPE&
0.0 T T T T T 0.0 T T T T T 0.0 T T T T T
50 100 150 200 250 300 50 100 150 200 250 300 50 100 150 200 250 300

Number of wettest days in year

Number of wettest days in year

Number of wettest days in year

Figure 6. Precipitation amount (upper), frequency (middle), and cumulative (bottom)
distributions for a-c) NWPO, b-f) SEPO, and g-j) ENA. Black, gray, blue, and red curves
indicate the satellite-based observations, reanalysis, CMIP5 models, and CMIP6
modes, respectively. Thin and thick curves for CMIP models respectively indicate
distributions for each model and multi-model average. Gray dotted lines in the
cumulative distributions indicate a fraction of 0.5. Note: all model output and
observations were conservatively regridded to 2° in the first step of analysis.
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Figure 7. Precipitation distribution metrics for a) Amount peak, b) Amount P10, c)
Amount P90, d) Frequency peak, e) Frequency P10, f) Frequency P90, g) Unevenness,
h) FracPRdays, i) SDII, and j) Perkins score over the modified IPCC ARG regions.
Black, gray, blue, and red markers indicate the satellite-based observations, reanalysis,
CMIP5 models, and CMIP6 modes, respectively. Thin and thick vertical marks for CMIP
models respectively indicate distributions for each model and multi-model average.
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Figure 7. (continued)
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Figure 9. Percentage of CMIP6 models within range of the observational products for a)
Amount peak, b) Amount P10, c) Amount P90, d) Frequency peak, e) Frequency P10, f)
Frequency P90, g) Unevenness, h) FracPRdays, i) SDII, and j) Perkins score over the
modified IPCC ARG regions. The observational range is between the minimum and
maximum values of five satellite-based products. Regions where the observational
spread is larger than model spread shown in Fig. 8 are stippled gray.
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Figure 10. Improvement from CMIP 5 to 6 as identified by the percentage of models in
each multi-model ensemble that are within the observational min-to-max range. The
improvement is calculated by the CMIP6 percentage minus the CMIP5 percentage, so
that positive and negative values respectively indicate improvement and deterioration in
CMIP6. Regions where the observational spread is larger than model spread are
stippled gray.
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Figure 11. Percentage of CMIP6 models underestimating or overestimating
observations for a) Amount peak, b) Amount P10, ¢c) Amount P90, d) Frequency peak,
e) Frequency P10, f) Frequency P90, g) Unevenness, h) FracPRdays, i) SDII, and j)
Perkins score over the modified IPCC ARG regions. The criteria for underestimation and
overestimation are respectively defined by minimum and maximum values of satellite-
based observations shown in Fig. 7. Positive and negative values respectively represent
overestimation and underestimation by a formulation of (nO — nU)/nT where nO,nU,nT
are respectively the number of overestimated models, underestimated models, and total
models.
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Figure 12. Improvement from CMIP 5 to 6 in the percentage of underestimated or
overestimated models. The improvement is calculated by the absolute value of CMIP5
percentage minus the absolute value of CMIP6 percentage, so that positive and
negative values respectively indicate improvement and deterioration in CMIP6.
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Figure 13. Correlation between precipitation distribution metrics across CMIP 5 and 6

model performances. The correlation coefficients are calculated for the modified IPCC

ARG regions and then area-weighted averaged globally.
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Figure 14. Scatterplot between 2° and 4° interpolated horizontal resolutions in

evaluating precipitation distribution metrics for a) Amount peak, b) Amount P10, c)
Amount P90, d) Frequency peak, e) Frequency P10, f) Frequency P90, g) Unevenness,
h) FracPRdays, i) SDII, and j) Perkins score. The metric values are calculated for the
modified IPCC ARG regions and then weighted averaged globally. Black, gray, blue, and
red marks indicate the satellite-based observations, reanalysis, CMIP5 models, and

CMIP6 modes, respectively. The number in the upper right of each panel is the

correlation coefficient between the metric values in 2° and 4° resolutions across all

observations

and models.



1249
1250

21



