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Abstract 1 

As the resolution of global Earth system models increases, regional scale evaluation is 2 

becoming ever more important. This study presents a framework for quantifying 3 

precipitation distributions at regional scales and applies it to evaluate CMIP 5 and 6 4 

models. We employ the IPCC AR6 climate reference regions over land and propose 5 

refinements to the oceanic regions based on the homogeneity of precipitation distribution 6 

characteristics. The homogeneous regions are identified as heavy, moderate, and light 7 

precipitating areas by K-means clustering of IMERG precipitation frequency and amount 8 

distributions. With the global domain partitioned into 62 regions, including 46 land and 16 9 

ocean regions, we apply 10 established precipitation distribution metrics. The collection 10 

includes metrics focused on the maximum peak, lower 10th percentile, and upper 90th 11 

percentile in precipitation amount and frequency distributions, the similarity between 12 

observed and modeled frequency distributions, an unevenness measure based on 13 

cumulative amount, average total intensity on all days with precipitation, and number of 14 

precipitating days each year. We apply our framework to 25 CMIP5 and 41 CMIP6 15 

models, and 6 observation-based products of daily precipitation. Our results indicate that 16 

many CMIP 5 and 6 models substantially overestimate the observed light precipitation 17 

amount and frequency as well as the number of precipitating days, especially over mid-18 

latitude regions outside of some land regions in the Americas and Eurasia. Improvement 19 

from CMIP 5 to 6 is shown in some regions, especially in mid-latitude regions, but it is not 20 

evident globally, and over the tropics most metrics point toward degradation. 21 
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1. Introduction 22 

Precipitation is a fundamental characteristic of the Earth’s hydrological cycle and one that 23 

can have large impacts on human activity. The impact of precipitation depends on its 24 

intensity and frequency characteristics (e.g., Trenberth et al. 2003; Sun et al. 2006; 25 

Trenberth and Zhang 2018). Even with the same amount of precipitation, more intense 26 

and less frequent rainfall is more likely to lead to extreme precipitation events such as 27 

floods and drought compared to less intense and more frequent rainfall. While mean 28 

precipitation has improved in Earth system models, the precipitation distributions continue 29 

to have biases (e.g., Dai 2006; Fiedler et al. 2020), which limits the utility of these 30 

simulations, especially at the level of accuracy that is increasingly demanded in order to 31 

anticipate and adapt to changes in precipitation due to global warming. 32 

  33 

Multi-model intercomparison with a well-established diagnosis framework facilitates 34 

identifying common model biases and sometimes yields insights into how to improve 35 

models. The Coupled Model Intercomparison Project (CMIP; Meehl et al. 2000, 2005, 36 

2007; Taylor et al. 2012; Eyring et al. 2016) is a well-established experimental protocol to 37 

intercompare state-of-the-art Earth system models, and the number of models and 38 

realizations participating in CMIP has been growing through several phases from 1 39 

(Meehl et al. 2000) to 6 (Eyring et al. 2016). Given the increasing number of models, 40 

developed at higher resolution and with increased complexity, modelers and analysts 41 

could benefit from capabilities that help synthesize the consistency between observed 42 

and simulated precipitation. As discussed in previous studies (e.g., Abramowitz 2012), 43 

our reference to model benchmarking implies model evaluation with community-44 
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established reference data sets, performance tests (metrics), variables, and spatial and 45 

temporal resolutions. The U.S. Department of Energy (DOE) envisioned a framework for 46 

both baseline and exploratory precipitation benchmarks (U.S. DOE. 2020) as summarized 47 

by Pendergrass et al. (2020). While the exploratory benchmarks focus on process-48 

oriented and phenomena-based metrics at a variety of spatiotemporal scales (Leung et 49 

al. 2022), the baseline benchmarks target well-established measures such as mean state, 50 

the seasonal and diurnal cycles, variability across timescales, intensity/frequency 51 

distributions, extremes, and drought (e.g., Gleckler et al. 2008; Covey et al. 2016; Wehner 52 

et al. 2020; Ahn et al. 2022). The current study builds on the baseline benchmarks by 53 

proposing a framework for benchmarking simulated precipitation distributions against 54 

multiple observations using well-established metrics and reference regions. To ensure 55 

consistent application of this framework, the metrics used herein are implemented and 56 

made available as part of the widely-used Program for Climate Model Diagnosis and 57 

Intercomparison (PCMDI) metrics package.  58 

 59 

Diagnosing precipitation distributions and formulating metrics that extract critical 60 

information from precipitation distributions have been addressed in many previous 61 

studies. Pendergrass and Deser (2017) proposed several precipitation distribution 62 

metrics based on frequency and amount distribution curves. The precipitation frequency 63 

distribution quantifies how often rain occurs at different rain rates, whereas the 64 

precipitation amount distribution quantifies how much rain falls at different rain rates. 65 

Based on the distribution curves, Pendergrass and Deser (2017) extracted rain frequency 66 

peak and amount peak where the maximum non-zero rain frequency and amount occur, 67 
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respectively. Pendergrass and Knutti (2018) introduced a metric that measures the 68 

unevenness of daily precipitation based on the cumulative amount curve. Their 69 

unevenness metric is defined as the number of wettest days that constitute half of the 70 

annual precipitation. In the median of station observations equatorward of 50° latitude, 71 

half of the annual precipitation falls in only about the heaviest 12 days, and generally 72 

models underestimate the observed unevenness (Pendergrass and Knutti 2018). In 73 

addition, several metrics have been developed to distill important precipitation 74 

characteristics, such as the fraction of precipitating days and simple daily intensity index 75 

(SDII, Zhang et al. 2011). In this study we implement all these well-established metrics 76 

and several other complementary metrics into our framework. 77 

 78 

Many studies have analyzed the precipitation distributions over large domains (e.g., Dai 79 

2006; Pendergrass and Hartmann 2014; Ma et al. 2022). Often, these domains comprise 80 

both heavily precipitating and dry regions. Given the emphasis on regional scale analysis 81 

continues to grow as models’ horizontal resolution increases, interpretation of domain-82 

averaged distributions could be simplified by defining regions that are not overly complex 83 

or heterogeneous in terms of their precipitation distribution characteristics. Iturbide et al. 84 

(2020) has identified climate reference regions that have been adopted in the sixth 85 

assessment report (AR6) of the Intergovernmental Panel on Climate Change (IPCC). Our 86 

framework is based on these IPCC AR6 reference regions for objective examination of 87 

precipitation distributions over land. Over the ocean we have revised some of the regions 88 

of Iturbide et al. (2020) to better isolate homogeneous precipitation distribution 89 

characteristics. 90 
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 91 

In this study, we propose a modified IPCC AR6 reference regions and a framework for 92 

regional scale quantification of simulated precipitation distributions, which is implemented 93 

into the PCMDI metrics package to enable researchers to readily use the metric collection 94 

in a common framework. The remainder of the paper is organized as follows: Sections 2 95 

and 3 describe the data and analysis methods. Section 4 presents results including the 96 

application and modification of IPCC AR6 climate reference regions, evaluation of CMIP 97 

5 and 6 models with multiple observations, and their improvement across generations. 98 

Sections 5 and 6 discuss and summarize the main accomplishments and findings from 99 

this study.   100 

 101 

 102 

2. Data 103 

2.1. Observational data 104 

For reference data, we use six global daily precipitation products first made available as 105 

part of the Frequent Rainfall Observations on GridS (FROGS) database (Roca et al., 106 

2019) and then further aligned with CMIP output via the data specifications of the 107 

Observations for Model Intercomparison Project (Obs4MIPs, Waliser et al. 2020). These 108 

include five satellite-based products and a recent atmospheric reanalysis product. The 109 

satellite-based precipitation products include the Integrated Multi-satellitE Retrievals for 110 

GPM version 6 final run product (Huffman et al. 2020; hereafter IMERG), the Tropical 111 

Rainfall Measuring Mission Multi-satellite Precipitation Analysis 3B42 version 7 product 112 

(Huffman et al. 2007; hereafter TRMM), the bias-corrected Climate Prediction Center 113 
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Morphing technique product (Xie et al. 2017; hereafter CMORPH), the Global 114 

Precipitation Climatology Project 1DD version 1.3 (Huffman et al. 2001; hereafter GPCP), 115 

and Precipitation Estimation from Remotely Sensed Information using Artificial Neural 116 

Networks (Ashouri et al. 2015; hereafter PERSIANN). The reanalysis product included 117 

for context is the European Centre for Medium-Range Weather Forecasts (ECMWF)’s 118 

fifth generation of atmospheric reanalysis (Hersbach et al. 2020; hereafter ERA5). Table 119 

1 summarizes the observational datasets with the data source, coverage of domain and 120 

period, resolution of horizontal space and time frequency, and references. We use the 121 

data periods available via FROGS and Obs4MIPs as follows: 2001-2020 for IMERG, 122 

1998-2018 for TRMM, 1998-2012 for CMORPH, 1997-2020 for GPCP, 1984-2018 for 123 

PERSIANN, and 1979-2018 for ERA5. 124 

 125 

2.2. CMIP model simulations 126 

We analyze daily precipitation from all realizations of AMIP simulations available from   127 

CMIP5 (Taylor et al. 2012) and CMIP6 (Eyring et al. 2016). We have chosen to 128 

concentrate our analysis on AMIP simulations rather than the coupled Historical 129 

simulations because the simulated precipitation in the latter is strongly influenced by 130 

biases in the modeled sea surface temperature, complicating any interpretation regarding 131 

the underlying causes of the precipitation errors. Table 2 lists the participating models, 132 

the number of realizations, and the horizontal resolution in each modeling institute. We 133 

evaluate the most recent 20 years (1985-2004) that both CMIP 5 and 6 models have in 134 

common for a fair comparison with satellite-based observations. 135 

 136 
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 137 

3. Methods 138 

In our framework we apply 10 metrics that characterize different and complementary 139 

aspects of the intensity distribution of precipitation at regional scales. Table 3 summarizes 140 

the metrics including their definition, purpose, and references. The computation of the 141 

metrics has been implemented and applied in the PCMDI metrics package (PMP; 142 

Gleckler et al. 2008, 2016).  143 

 144 

3.1. Frequency and amount distributions  145 

Following Pendergrass and Hartmann (2014) and Pendergrass and Deser (2017), we use 146 

logarithmically-spaced bins of daily precipitation to calculate both the precipitation 147 

frequency and amount distributions. Each bin is 7% wider than the previous one, and the 148 

smallest non-zero bin is centered at 0.03 mm/day. The frequency distribution is the 149 

number of days in each bin normalized by the total number of days, and the amount 150 

distribution is the sum of accumulated precipitation in each bin normalized by the total 151 

number of days. Based on these distributions (Fig. 1a), we identify the rain rate where the 152 

maximum peak of the distribution appears (Amount/Frequency Peak, Pendergrass and 153 

Deser 2017; also called mode, Kooperman et al., 2016) and formulate several 154 

complementary metrics that measure the fraction of the distribution lower 10 percentile 155 

(P10) and upper 90 percentile (P90). The precipitation bins less than 0.1 mm/day are 156 

considered dry for the purpose of these calculations. The threshold rain rates for 10th and 157 

90th percentiles are defined from the amount distribution as determined from 158 

observations. Here we use IMERG as the default reference observational dataset. The 159 
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final frequency related metric we employ is the Perkins score, which measures the 160 

similarity between observed and modeled frequency distributions (Perkins et al. 2007). 161 

With the sum of a frequency distribution across all bins being unity, the Perkins score is 162 

defined as the sum of minimum values between observed and modeled frequency across 163 

all bins: 𝑃𝑒𝑟𝑘𝑖𝑛𝑠 𝑆𝑐𝑜𝑟𝑒 = ∑ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚(𝑍𝑜 , 𝑍𝑚)𝑛
1  where 𝑛 is the number of bins, 𝑍𝑜 and 𝑍𝑚 164 

are the frequency in a given bin for observation and model, respectively. The Perkins 165 

score is a unitless scalar varying from 0 (low similarity) to 1 (high similarity). 166 

 167 

3.2. Cumulative fraction of annual precipitation amount  168 

Following Pendergrass and Knutti (2018), we calculate the cumulative sum of daily 169 

precipitation each year sorted in descending order (i.e., wettest to driest) and normalized 170 

by the total precipitation for that year. From the distribution for each individual year (see 171 

Fig. 1b), we obtain the metrics gauging the number of wettest days for half of annual 172 

precipitation (Unevenness, Pendergrass and Knutti 2018) and the fraction of the number 173 

of precipitating (>=1mm/day) days (FracPRdays). To facilitate comparison against longer-174 

established analyses (e.g., ETCCDI, Zhang et al., 2011),  we include the daily 175 

precipitation intensity, calculated by dividing the annual total precipitation by the number 176 

of precipitating days (SDII, Zhang et al. 2011). To obtain values of these metrics over 177 

multiple years, we take the median across years following Pendergrass and Knutti (2018; 178 

for unevenness). 179 

 180 

3.3. Reference regions  181 
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We use the spatial homogeneity of precipitation characteristics as a basis for defining 182 

regions, as in previous studies (e.g., Swenson and Grotjahn 2019). In addition to 183 

providing more physically-based results, this also simplifies interpretation with robust 184 

diagnostics when we average a distribution characteristic across the region. We use K-185 

means clustering (MacQueen 1967) with the concatenated frequency and amount 186 

distributions of IMERG over the global domain to identify homogeneous regions for 187 

precipitation distributions. K-means clustering is an unsupervised machine learning 188 

algorithm that separates characteristics of a dataset into a given number of clusters 189 

without explicitly provided criteria. This method has been widely used because it is faster 190 

and simpler than other methods. Here, we use 3 clusters to define heavy, moderate and 191 

light precipitation regions. Figure 2 shows the spatial pattern of IMERG precipitation mean 192 

state and clustering results defining heavy (blue), moderate (green), and light (orange) 193 

precipitation regions. The spatial pattern of these clustering regions resembles the pattern 194 

of the mean state of precipitation, providing a sanity check indicating that the cluster-195 

based regions are physically reasonable. Note that the clustering result with frequency 196 

and amount distributions is not significantly altered if we incorporate cumulative amount 197 

fraction. However, the inclusion of the cumulative amount fraction to the clustering yields 198 

a slightly noisier pattern, and thus we have chosen to use the clustering result only with 199 

frequency and amount distributions. 200 

 201 

In support of the AR6, the IPCC proposed a set of climate reference regions (Iturbide et 202 

al. 2020). These regions were defined based on geographical and political boundaries 203 

and the climatic consistency of temperature and precipitation in current climate and 204 
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climate change projections. When defining regions, the land regions use both information 205 

from current climate and climate change projections, while the ocean regions use only 206 

the information from climate change projections. In other words, the climatic consistency 207 

of precipitation in the current climate is not explicitly represented in the definition of the 208 

oceanic regions. Figure 3a shows the IPCC AR6 climate reference regions superimposed 209 

on our precipitation clustering regions shown in Fig. 2b. The land regions correspond 210 

reasonably well to the clustering regions, but some ocean regions are too broad, including 211 

both heavy and light precipitating regions (Fig. 3a). In this study, the ocean regions are 212 

modified based on the clustering regions, while the land regions remain the same as in 213 

the AR6 (Fig. 3b). 214 

 215 

In the Pacific Ocean region, the original IPCC AR6 regions consist of equatorial Pacific 216 

Ocean (EPO), northern Pacific Ocean (NPO), and southern Pacific Ocean (SPO). Each 217 

of these regions includes areas of both heavy and light precipitation. EPO includes the 218 

Intertropical Convergence Zone (ITCZ), the South Pacific Convergence Zone (SPCZ), 219 

and also the dry southeast Pacific region. The NPO region includes the north Pacific storm 220 

track and the dry northeast Pacific. The SPO region includes the southern part of SPCZ 221 

and the dry southeast area of the Pacific. In our modified IPCC AR6 regions, the Pacific 222 

Ocean region is divided into four heavy precipitating regions (NPO, NWPO, PITCZ, and 223 

SWPO) and two light and moderate precipitating regions (NEPO and SEPO). Similarly, 224 

in the Atlantic Ocean region, the original IPCC AR6 regions consist of the equatorial 225 

Atlantic Ocean (EAO), northern Atlantic Ocean (NAO), and southern Atlantic Ocean 226 

(SAO), with each including both heavy and light precipitating regions. Our modified 227 
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Atlantic Ocean region consists of two heavy precipitating regions (NAO and AITCZ) and 228 

two light and moderate precipitating regions (NEAO and SAO). The Indian Ocean (IO) 229 

region is not modified as the original IPCC AR6 climate reference region separates well 230 

the heavy precipitating equatorial IO (EIO) region from the moderate and light 231 

precipitating southern IO (SIO) region. The Southern Ocean (SOO) is modified to mainly 232 

include the heavy precipitation region around the Antarctic. The original IPCC AR6 233 

climate reference regions consist of 58 regions including 12 oceanic regions and 46 land 234 

regions, while our modification consists of 62 regions including 16 oceanic regions and 235 

the same land regions as the original (see Table 4). Note that the Caribbean (CAR), the 236 

Mediterranean (MED), and Southeast Asia (SEA) are not counted for the oceanic regions.  237 

 238 

3.4. Evaluating model performance 239 

We use two simple measures to compare the collection of CMIP 5 and 6 model 240 

simulations with the five satellite-based observational products (IMERG, TRMM, 241 

CMORPH, GPCP, and PERSIANN). One gauges how many models within the multi-242 

model ensemble fall within the observational range between the minimum and maximum 243 

observed values for each metric and each region. Another is how many models 244 

underestimate or overestimate all observations, i.e., are outside the bounds spanned by 245 

the minimum and maximum values across the five satellite-based products. To quantify 246 

the dominance of underestimation versus overestimation of the multi-model ensemble 247 

with a single number, we use the following measure formulation: (𝑛𝑂 − 𝑛𝑈)/𝑛𝑇 where 𝑛𝑂 248 

is the number of overestimating models, 𝑛𝑈 is the number of underestimating models, 249 

and 𝑛𝑇 is the total number of models. Thus, positive values represent overestimation, and 250 
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negative values represent underestimation. If models are mostly within the observational 251 

range or widely distributed from underestimation to overestimation, the quantification 252 

value would approach zero.  253 

 254 

Many metrics that can be used to characterize precipitation, including those used here, 255 

are sensitive to the spatial and temporal resolutions at which the model and observational 256 

data are analyzed (e.g., Pendergrass and Knutti 2018, Chen and Dai 2019). As in many 257 

previous studies the diagnosis of precipitation in CMIP 5 and 6 models (e.g., Fiedler et al. 258 

2020; Tang et al. 2021; Ahn et al. 2022), to ensure appropriate comparisons, we conduct 259 

all analyses at a common horizontal grid of 2x2 degrees with a conservative regridding 260 

method. For models with multiple ensemble members, we first compute the metrics for 261 

all available realizations and then average the results across the realizations. 262 

 263 

 264 

4. Results 265 

4.1. Homogeneity within reference regions  266 

For the regional scale analysis, we employ the IPCC AR6 climate reference regions 267 

(Iturbide et al. 2020) while we revise the region dividings over the oceans based on 268 

clustered precipitation characteristics as described in section 3.3. To quantitatively 269 

evaluate the homogeneity of precipitating distributions in the reference regions, we use 270 

three homogeneity metrics: the Perkins score (Perkins et al. 2007), Kolmogorov–Smirnov 271 

test (K-S test, Chakravart et al. 1967), and Anderson-Darling test (A-D test, Stephens 272 

1974). The three metrics measure the similarity between the regionally-averaged and 273 
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individual grid cell frequency distributions within the region. The Perkins score measures 274 

the overall similarity between two frequency distributions, which is one of our distribution 275 

performance metrics described in Section 3.1. The K-S and A-D tests focus more on the 276 

similarity in the center and the side of the frequency distribution, respectively. The three 277 

homogeneity metrics could complement each other as their main focuses are on different 278 

aspects of frequency distributions.  279 

 280 

In the original IPCC AR6 reference regions, the oceanic regions show relatively low 281 

homogeneity of precipitating characteristics compared to land regions (Fig. 4). The Pacific 282 

and Atlantic Ocean regions show much lower homogeneity than the Indian Ocean, 283 

especially in EPO and EAO regions. In the modified oceanic regions, the homogeneities 284 

show an overall improvement with the three homogeneity metrics. In particular, the 285 

homogeneity over the heavy precipitating regions where the homogeneity was lower (e.g., 286 

Pacific and Atlantic ITCZ and mid-latitude storm track regions) are largely improved. The 287 

clustering regions shown here are obtained based on IMERG precipitation. However, 288 

since different satellite-based products show substantial discrepancies in precipitation 289 

distributions, it is important to assess whether the improved homogeneity in the modified 290 

regions is similarly improved across other different datasets. Figure 5 shows the 291 

homogeneity of precipitation distribution characteristics for different observational 292 

datasets using the Perkins score. Although the region modifications we have made are 293 

based on the clustering regions of IMERG precipitation, Fig. 5 suggests that the 294 

improvement of the homogeneity over the modified regions is consistent across different 295 

observational datasets. We further tested the homogeneity for different seasons (see Fig. 296 
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S1 in the supplement material). The homogeneity is overall improved in the modified 297 

regions across the seasons even though we defined the reference regions based on 298 

annual data. 299 

 300 

4.2. Regional evaluation of model simulations against multiple observations  301 

The precipitation distribution metrics used in this study are mainly calculated  from three 302 

curves: amount distribution, frequency distribution, and cumulative amount fraction 303 

curves. Figure 6 shows these curves for three selected regions based on the clustered 304 

precipitating characteristics (NWPO, which is a heavy precipitation dominated ocean 305 

region; SEPO, a light precipitation dominated ocean region; and ENA, a heavy 306 

precipitation dominated land region). The heavy and light precipitating regions are well 307 

distinguished by their overlaid distribution curves. The amount distribution has a 308 

distinctive peak in the heavy precipitating region (Figs. 6a and 6g), while it is flatter in the 309 

light precipitating region (Fig. 6d). The frequency distribution is more centered on the 310 

heavier precipitation side in the heavy precipitating region (Figs. 6b, 6h) than in the light 311 

precipitating region (Fig 6e). The cumulative fraction increases more steeply in the light 312 

precipitating region (Fig. 6f) than in the heavy precipitating region (Figs. 6c and 6i), 313 

indicating there are fewer precipitating days in the light precipitating region. NWPO and 314 

SEPO were commonly averaged for representing the tropical ocean region in many 315 

studies, but these different characteristics in the precipitation distributions demonstrate 316 

the additional information available via a regional scale analysis. Although satellite-based 317 

observations are less reliable over the light precipitating ocean regions (e.g., SEPO), the 318 

differences between heavy and light precipitation regions are well distinguishable. 319 
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 320 

In the precipitation frequency distribution, many models show a bimodal distribution in the 321 

heavy precipitating tropical ocean region (Fig. 6b) but not in the light precipitating 322 

subtropical ocean region (Fig. 6e) or the heavy precipitating mid-latitude land region (Fig. 323 

6h). The bimodal frequency distribution is a commonly found in models and is seemingly 324 

independent of resolution (e.g., Lin et al. 2013; Kooperman et al. 2018; Chen et al. 2021; 325 

Ma et al. 2022; Martinez-Villalobos et al. 2022; Ahn et al. 2023). Ma et al. (2022) 326 

compared the frequency distributions in AMIP and HighResMIP (High Resolution Model 327 

Intercomparison Project, Haarsma et al. 2016) from CMIP6 and DYAMOND (DYnamics 328 

of the Atmospheric general circulation Modeled On Non-hydrostatic Domains, Satoh et 329 

al. 2019; Stevens et al. 2019) models, where they showed that the bimodal frequency 330 

distribution appears in many AMIP (~100km), HighResMIP (~50km), and even 331 

DYAMOND (~4km) models. Ahn et al. (2023) further compared between DYAMOND 332 

model simulations with and without a convective parameterization and showed that most 333 

DYAMOND model simulations exhibiting the bimodal distribution use a convective 334 

parameterization. ERA5 reanalysis also shows a bimodal frequency distribution (Fig. 6b), 335 

which is not surprising considering that the reproduced precipitation in ERA5 heavily 336 

depends on the model, thus exhibits this common model behavior. Because of the heavy 337 

reliance on model physics to generate its precipitation (as opposed to fields like wind, for 338 

which observations are directly assimilated), in this study we do not include ERA5 339 

precipitation among the observational products used for model evaluation. 340 

 341 
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Based on the precipitation amount, frequency, and cumulative amount fraction curves, 342 

we calculate 10 metrics (Amount peak, Amount P10, Amount P90, Frequency peak, 343 

Frequency P10, Frequency P90, Unevenness, FracPRdays, SDII, and Perkins score) as 344 

described in Section 3. Figure 7 shows the metrics with the modified IPCC AR6 climate 345 

reference regions for satellite-based observations (black), ERA5 (gray), CMIP5 (blue), 346 

and CMIP6 (red) models. The metric values vary widely across regions, especially in 347 

Amount peak, Frequency peak, Unevenness, FracPRdays, and SDII, demonstrating  the 348 

additional detail provided by regional-scale precipitation-distribution metrics. In terms of 349 

the metrics based on the amount distribution (Fig. 7a-c), many models tend to simulate 350 

an Amount peak that is too light, an Amount P10 that is too high, and an Amount P90 that 351 

is too low compared to the observations, moreso in oceanic regions (regions 47-62) than 352 

in land regions. Similarly for the metrics based on the frequency distribution (Fig. 7d-f), 353 

many models show light Frequency peaks, overestimated Frequency P10, and 354 

underestimated Frequency P90 compared to observations. The similarity between 355 

frequency distribution curves (i.e., Perkins score) is higher in land regions than in ocean 356 

regions. Also, many models overestimate Unevenness and FracPRdays and 357 

underestimate SDII. These results indicate that overall, models simulate more frequent 358 

weak precipitation and less heavy precipitation compared to the observations, consistent 359 

with many previous studies (e.g., Dai 2006; Pendergrass and Hartmann 2014; Trenberth 360 

et al. 2017; Chen et al. 2021; Ma et al. 2022).  361 

 362 

As expected from previous work, observations disagree substantially in some regions 363 

(e.g., polar and high latitude regions) and/or for some metrics (e.g., Amount P90, 364 
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Frequency P90). In some cases the observational spread is much larger than that of the 365 

models. We examine the observational discrepancy or spread by the ratio between the 366 

standard deviation of the five satellite-based observations (IMERG, TRMM, CMORPH, 367 

GPCP, PERSIANN) and the standard deviation of all CMIP 5 and 6 models (Fig. 8). The 368 

standard deviation of observations is much larger near polar regions and high latitude 369 

regions compared to the models’ standard deviation for most metrics, as expected from 370 

the orbital configurations of the most relevant satellite constellations for precipitation 371 

(which exclude high latitudes). The Amount P90 and Frequency P90 metrics show the 372 

largest observational discrepancy among the metrics, with standard deviations of 1.5 to 373 

3 times larger over some high latitude regions and about 3-8 times larger over polar 374 

regions in observations compared to the models. On the other hand, Unevenness, 375 

FracPRdays, and Amount P10 show the least observational discrepancy – the models’ 376 

standard deviation is about 2-8 times larger than for observations over some tropical and 377 

subtropical regions; nonetheless, the standard deviation among observations is larger 378 

over most of the high latitude and polar regions. Model evaluation in the regions with large 379 

disagreement among observational products remains a challenge. Note that the standard 380 

deviation of five observations would be sensitive as there are outlier observations for 381 

some regions and metrics (e.g., many ocean regions in Amount P90). Moreover, 382 

observational uncertainties are rarely well quantified or understood, so agreements 383 

among observational datasets may not always allow us to rule out common errors among 384 

observations (e.g., for warm light precipitation over the subtropical ocean).   385 

 386 
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To attempt to account for discrepancies among observational datasets in the model 387 

evaluation framework, we use two different approaches to evaluate model performance 388 

with multiple observations, as described in Section 3.4. The first approach is to assess 389 

the number of models that are within the observational range. Figure 9 shows the CMIP6 390 

model evaluation with each metric, and the regions where the standard deviation among 391 

observations is larger than among models are stippled gray to avoid them from the model 392 

performance evaluation. In Amount peak, some subtropical regions (e.g., ARP, EAS, 393 

NEPO, CAU, and WSAF) show relatively good model performance (more than 70% of 394 

models fall in the observational range), while some tropical and subtropical (e.g., PITCZ, 395 

AITCZ, and SEPO) and polar (e.g., RAR, EAN, and WAN) regions show poor model 396 

performance (less than 30% of models fall in observational range). For Amount P10, 397 

many regions are poorly captured by the simulations, except for some subtropical land 398 

regions (e.g., EAS, NCA, CAU, and WSAF). In Amount P90, most regions are uncertain 399 

(i.e., the standard deviation among observations is larger than among models) making it 400 

difficult to evaluate model performance, while some tropical regions near the Indo-Pacific 401 

warmpool (EIO, SEA, NWPO, and NAU) exhibit very good model performance (more than 402 

90% of models fall in observational range). In the Frequency metrics (peak, P10, and 403 

P90), more regions are difficult to evaluate model performance than in Amount metrics, 404 

while in some tropical and subtropical regions (e.g., PITCZ, SWPO, NWPO, SEA, SAO, 405 

and NES) model performance is good. However, good model performance could 406 

alternatively arise from a large observational range (see Fig. 7). Unevenness, 407 

FracPRdays, SDII, and Perkins score have a smaller fraction of models within the 408 

observational range in tropical regions than the Amount and Frequency metrics. In 409 
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particular, fewer than 10% of CMIP6 models fall within the observational range for 410 

Unevenness and FracPRdays over some tropical oceanic regions (e.g., PITCZ, NEPO, 411 

SEPO, AITCZ, NEAO, SAO, and SIO).  412 

 413 

Examining the fraction of CMIP5 models falling within the range of observations, CMIP5 414 

models have a spatial pattern of model performance similar to that of CMIP6 models (see 415 

Fig. S2 in supplement), and the improvement from CMIP5 to CMIP6 seems subtle. We 416 

quantitatively assess the improvement from CMIP5 to CMIP6 by subtracting the 417 

percentage of CMIP5 from CMIP6 models falling within the range of observations (Fig. 418 

10). For some metrics (e.g., Amount peak, Amount and Frequency P10, and Amount and 419 

Frequency P90) and for some tropical and subtropical regions  (e.g., SEA, EAS, SAS, 420 

ARP, and SAH), improvement is apparent. Compared to CMIP5, 5-25% more CMIP6 421 

models fall in the observational range in these regions. However, for the other metrics 422 

(e.g., Frequency peak, FracPRdays, SDII, Perkins score), CMIP6 models perform 423 

somewhat worse. Over some tropical and subtropical oceanic regions (e.g., PITCZ, 424 

NEPO, AITCZ, and NEAO), 5-25% more CMIP6 than CMIP5 models are out of the 425 

observational range. This result is from all available CMIP5 and CMIP6 models, so it may 426 

reflect the fact that some models are participated in only CMIP5 or CMIP6, but not both 427 

(see Table 2). To isolate improvements that may have occurred between successive 428 

generations of the same models, we also compared only the models that participated in 429 

both CMIP5 and CMIP6 (see Fig. S3). Overall, the spatial characteristics of the 430 

improvement/degradation in CMIP6 from CMIP5 is consistent, while more degradation is 431 
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apparent when we compare this subset of models, especially over the tropical oceanic 432 

regions (e.g., PITCZ, AITCZ, NWPO, and SEPO).  433 

 434 

The second approach to account for discrepancies among observations in model 435 

performance evaluation is to count the number of models that are lower or higher than all 436 

satellite-based observations for each metric and each region. Figure 11 shows the spatial 437 

patterns of the model performance evaluation with each metric for CMIP6 models. 438 

Underestimation is indicated by a negative sign, while overestimation is indicated by a 439 

positive sign via the formulation described in Section 3.4. Amount peak is overall 440 

underestimated in most regions, indicating the amount distributions in most CMIP6 441 

models are shifted to lighter precipitation compared to observations. In many regions, 442 

more than 50% of the CMIP6 models underestimate Amount peak. In particular, over 443 

many tropical and southern hemisphere ocean regions (e.g., PITCZ, AITCZ, EIO, SEPO, 444 

SAO, and SOO), more than 70% of the models underestimate the Amount peak. The 445 

underestimation of Amount peak is accompanied by overestimation of Amount P10 and 446 

underestimation of Amount P90. More than 70% of CMIP6 models overestimate Amount 447 

P10 in many oceanic regions; especially in the southern and northern Pacific and Atlantic, 448 

the southern Indian Ocean, and Southern Ocean more than 90% of the models 449 

overestimate the observed Amount P10. For Amount P90, it appears that many models 450 

fall within the observational range; however, observational range in Amount P90 (green 451 

boxes in Fig. 7c) is large and driven primarily by just one observational dataset (IMERG), 452 

especially in ocean regions. 453 

 454 
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For the frequency-based metrics (i.e., peak, P10, and P90; Figs. 11d-f), CMIP6 models 455 

show similar bias characteristics to Amount metrics (Figs. 11a-c), although performance 456 

is better than for Amount metrics. Over some tropical (e.g., NWPO, PITCZ, and SWPO ) 457 

and Eurasia (e.g., EEU, WSB, and ESB) regions, less than 10% of models fall outside of 458 

the observed range. Unevenness and FracPRdays are severely overestimated in models. 459 

More than 90% of models overestimate the observed Unevenness (Fig. 11g) and 460 

FracPRdays (Fig. 11h) globally, especially over oceanic regions, consistent with 461 

Pendergrass and Knutti (2018). SDII is underestimated in many regions globally, 462 

especially in some heavily-precipitating regions (e.g., PITCZ, AITCZ, EIO, SEA, NPO, 463 

NAO, SWPO, and SOO). For the Perkins score, model simulations have poorer 464 

performance in the tropics than in the mid-latitudes and polar regions. Performance by 465 

these various metrics is generally consistent with the often-blamed too-frequent light 466 

precipitation and too rare heavy precipitation in simulations. 467 

 468 

The characteristics of CMIP5 compared to CMIP6 simulations (Fig. S4) show little 469 

indication of improvement. Here we quantitatively evaluate the improvement in CMIP6 470 

from CMIP5 for each metric and region. Figure 12 shows the difference between CMIP5 471 

and CMIP6 in terms of the percentage of models that under- or over-estimate each metric. 472 

In mid-latitudes, there appears to have been an improvement in performance, however in 473 

the tropics, there appears to be more degradation. Over some heavily-precipitating 474 

tropical regions (e.g., PITCZ, AITCZ, EIO, and NWPO), 10-25% more models in CMIP6 475 

than in CMIP5 overestimate Amount P10, Unevenness, and FracPRdays and 476 

underestimate/underperform on Amount peak, SDII, and Perkins score. This indicates 477 
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that CMIP6 models simulate more frequent light precipitation and less frequent heavy 478 

precipitation over the heavily-precipitating tropical regions. Over some mid-latitude land 479 

regions (e.g., EAS, ESB, RFE, and ENA), on the other hand, 5-20% more models in 480 

CMIP6 than in CMIP5 simulate precipitation distributions close to observations (i.e., less 481 

light precipitation and more heavy precipitation). To evaluate the improvement between 482 

model generation, we also compare only the models that participated in both CMIP5 and 483 

CMIP6 (Fig. S5) rather than all available CMIP5 and CMIP6 models. For the subset of 484 

models participating in both generations, the improvement characteristics are similar for 485 

all models, although more degradation is exhibited over some tropical oceanic regions 486 

(e.g., PITCZ, NWPO, and SWPO). This also indicates that some models newly 487 

participating in CMIP6, and not in the CMIP5, have higher than average performance. 488 

 489 

4.3. Correlation between metrics 490 

Each precipitation distribution metric implemented in this study is chosen to target 491 

different aspects of the distribution of precipitation. To the extent that precipitation 492 

probability distributions are governed by a small number of key parameters (as argued by 493 

Martinez-Villalobos and Neelin 2019), we should expect additional metrics to be highly 494 

correlated. Figure 13 shows the global weighted average of correlation coefficients 495 

between the precipitation distribution metrics across CMIP5 and CMIP6 models. Higher 496 

correlation coefficients are found to be between Amount P90 and Frequency P90 (0.98) 497 

and between Amount P10 and Frequency P10 (0.67). This is expected because the 498 

amount and frequency distributions differ only by a factor of the precipitation rate (e.g., 499 

Pendergrass and Hartmann 2014). Another higher correlation coefficient is between 500 
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Unevenness and FracPRdays (0.77), indicating that the number of the heaviest 501 

precipitating days for half of annual precipitation and the total number of annual 502 

precipitating days are related. Amount and Frequency peak metrics are negatively 503 

correlated to P10 metrics and positively correlated to P90 metrics, but the correlation 504 

coefficients are not very high (lower than 0.62). This is because the peak metrics focus 505 

on typical precipitation, rather than the light and heavy ends of the distribution that are 506 

the focus of P10 and P90 metrics. SDII is more negatively correlated with Amount P10 (-507 

0.67) and positively correlated with Amount peak (0.61) and less so with Amount P90 508 

(0.48), implying that SDII is mainly influenced by weak precipitation amounts rather than 509 

heavy precipitation amounts. The Perkins score shows relatively high negative correlation 510 

with Unevenness (-0.62), FracPRdays (-0.59), and Amount P10 (-0.59). This indicates 511 

that the discrepancy between the observed and modeled frequency distributions is partly 512 

associated with the overestimated light precipitation in models. The correlation 513 

coefficients between the metrics other than those discussed above are lower than 0.6. 514 

While there is some redundant information within the collection of metrics included in our 515 

framework, we retain all metrics so that others can select an appropriate subset for their 516 

own application. This also preserves the ability to readily identify outlier behavior of an 517 

individual model across a wide range of regions and statistics. 518 

 519 

4.4. Influence of spatial resolution on metrics 520 

Many metrics for the precipitation distribution are sensitive to the spatial resolution  of 521 

the underlying data (e.g., Pendergrass and Knutti 2018; Chen and Dai 2019). Figure 14 522 

shows how our results (which are all based on data at 2° resolution) are impacted if we 523 
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calculate the metrics from data coarsened to 4° grid instead. As expected, there is clearly 524 

some sensitivity to the spatial scale at which our precipitation distribution metrics are 525 

computed, but the correlation among datasets (both models and observations) between 526 

the two resolutions is very high, indicating that evaluations at either resolution should be 527 

consistent. At the coarser resolution, Amount peak and SDII are consistently smaller (as 528 

expected); Amount P10 and Frequency P10 tend to be smaller as well. Meanwhile, 529 

Unevenness and FracPRdays are consistently large (as expected); Amount P90, 530 

Frequency P90, and Perkins score are generally larger as well. Chen and Dai (2019) 531 

discussed a grid aggregation effect that is associated with the increased probability of 532 

precipitation as the horizontal resolution becomes coarser. This effect is clearly evident 533 

with increased Unevenness (Fig. 14g), FracPRdays (Fig. 14h), and decreased SDII (Fig. 534 

14i) in coarser resolution. However, despite these differences, the relative model 535 

performance is not very sensitive to the spatial scale at which we apply our analysis. The 536 

correlation coefficients between results based on all data interpolated to 2° or 4° 537 

horizontal resolutions are above 0.9 for all of our distribution metrics. Conclusions on 538 

model performance are relatively insensitive to the target resolution.   539 

 540 

 541 

5. Discussion 542 

Analyzing the distribution of precipitation intensity lags behind temperature and even 543 

mean precipitation. Challenges include choosing appropriate metrics and analysis 544 

resolution to characterize this highly non-gaussian variable and interpreting model skills 545 

in the face of substantial observational uncertainty. Comparing results derived at 2o and 546 
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4o horizontal resolution for CMIP class models, we find that the quantitative changes in 547 

assessed performance are highly consistent across models and consequently have little 548 

impact on our conclusions. More work is needed to determine how suitable this collection 549 

of metrics may be for evaluating models with substantially higher resolutions (e.g., 550 

HighResMIP, Haarsma et al. 2016). We note that more complex measures have been 551 

designed to be scale independent (e.g., Martinez-Villalobos and Neelin 2019; Martinez-552 

Villalobos et al. 2022), and these may become increasingly important with continued 553 

interest in models developed at substantially higher resolution.  554 

 555 

Several recent studies suggest that the IMERG represents a substantial advancement 556 

over TRMM and likely the others (e.g., Wei et al. 2017; Khodadoust Siuki et al. 2017; 557 

Zhang et al. 2018), thus we rely on IMERG as the default in much of our analysis. 558 

However, we do not entirely discount the other products because the discrepancy 559 

between them provides a measure of uncertainty in the satellite-based estimates of 560 

precipitation. Our use of the minimum to maximum range of multiple observational 561 

products is indicative of their discrepancy, but not their uncertainty, and thus is a limitation 562 

of the current work and challenge that we hope will be addressed in the future.  563 

 564 

The common model biases identified in this study are mainly associated with the 565 

overestimated light precipitation and underestimated heavy precipitation. These biases 566 

persist from deficiencies identified in earlier generation models (e.g., Dai 2006), and as 567 

shown in this study there has been little improvement. One reason may be that these key 568 

characteristics of precipitation are not commonly considered in the model development 569 



 

26 

process. Enabling modelers to more readily objectively evaluate simulated precipitation 570 

distributions could perhaps serve as a guide to improvement. The current study aims to 571 

provide a framework for objective evaluation of simulated precipitation distributions at 572 

regional scales. 573 

 574 

Imperfect convective parameterizations are a possible cause of the common model 575 

biases in precipitation distributions (e.g., Lin et al. 2013; Kooperman et al. 2018; Ahn et 576 

al. 2018; Chen and Dai 2019; Chen et al. 2021; Martinez-Villalobos et al. 2022). Many 577 

convective parameterizations tend to produce too frequent and light precipitation, the so-578 

called “drizzling” bias (e.g., Dai 2006; Trenberth et al. 2017; Chen et al. 2021; Ma et al. 579 

2022), and it is likely due to a fact that the parameterized convection is more readily 580 

triggered than that in the nature (e.g., Lin et al. 2013; Chen et al. 2021). As model 581 

horizontal resolution increases, grid-scale precipitation processes can lead to resolving 582 

convective precipitation, as in so-called cloud resolving, storm resolving, or convective 583 

permitting models. Ma et al. (2022) compare several storm resolving models in 584 

DYAMOND to recent CMIP6 models with a convective parameterization and observe that 585 

the simulated precipitation distributions are more realistic in the storm resolving models. 586 

However, some of the storm resolving models still suffer from precipitation distribution 587 

errors, including bimodality in the frequency distribution. Further studies are needed to 588 

better understand the precipitation distribution biases in models. 589 

 590 

 591 

6. Conclusion 592 
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We introduce a framework for regional scale evaluation of simulated precipitation 593 

distributions with 62 climate reference regions and 10 precipitation distribution metrics 594 

and apply it to evaluate the two most recent generations of climate model intercomparison 595 

simulations (i.e., CMIP5 and CMIP6).  596 

 597 

To facilitate the regional scale for evaluation, regions where precipitation characteristics 598 

are relatively homogenous are identified. Our reference regions consist of existing IPCC 599 

AR6 climate reference regions, with additional subdivisions based on homogeneity 600 

analysis performed on precipitation distributions within each region. Our precipitation 601 

clustering analysis reveals that the IPCC AR6 land regions are reasonably homogeneous 602 

in precipitation character, while some ocean regions are relatively inhomogeneous, 603 

including large portions of both heavy and light precipitating areas. To define more 604 

homogeneous regions for the analysis of precipitation distributions, we have modified 605 

some ocean regions to better fit the clustering results. Although the clustering regions are 606 

obtained based on the IMERG annual precipitation, the improved homogeneity is fairly 607 

consistent across different datasets (TRMM, CMORPH, GPCP, PERSIANN, and ERA5) 608 

and seasons (MAM, JJA, SON, and DJF). Use of these more homogeneous regions 609 

enables us to extract more robust quantitative information from the distributions in each 610 

region. 611 

 612 

To form the basis for evaluation within each region, we use a set of metrics that are well-613 

established and easy to interpret, aiming to extract key characteristics from the 614 

distributions of precipitation frequency, amount, and cumulative fraction of precipitation 615 
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amount. We include the precipitation rate at the peak of the amount and frequency 616 

distributions (Kooperman et al., 2016; Pendergrass and Deser, 2017) and define several 617 

complementary metrics to measure the frequency and amount of precipitation under the 618 

10th percentile (P10) and over the 90th percentile (P90). The distribution peak metrics 619 

assess whether the center of each distribution is shifted toward light or heavy 620 

precipitation, while the P10 and P90 metrics quantify the fraction of light and heavy 621 

precipitation in the distributions. The Perkins score is included to measure the similarity 622 

between the observed and modeled frequency distributions. Also, based on the 623 

cumulative fraction of precipitation amount, we implement the unevenness metric 624 

counting the number of wettest days for half of the annual precipitation (Pendergrass and 625 

Knutti 2018), the fraction of annual precipitating days above 1 mm/day, and the simple 626 

daily intensity index (Zhang et al. 2011). 627 

 628 

We apply the framework of regional scale precipitation distribution benchmarking to all 629 

available realizations of 25 CMIP5 and 41 CMIP6 models and 5 satellite-based 630 

precipitation products (IMERG, TRMM, CMORPH, GPCP, PERSIANN). The 631 

observational discrepancy is substantially larger compared to the models’ spread for 632 

some regions, especially for mid-latitude and polar regions and for some metrics such as 633 

Amount P90 and Frequency P90. We use two approaches to account for observational 634 

discrepancy in the model evaluation. One is based on the number of models within the 635 

observational range, and another is the number of models below/above all observations. 636 

In this way, we can draw some conclusions on the overall performance in the CMIP 637 

ensemble even in the presence of observations that may substantially disagree in certain 638 
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regions. Many CMIP5 and CMIP6 models underestimate the Amount and Frequency 639 

peaks and overestimate Amount and Frequency P10 compared to observations, 640 

especially in many mid-latitude regions where more than 50% of the models are out of 641 

the observational range. This indicates that models produce too frequent light 642 

precipitation, a bias that is also revealed by the overestimated FracPRdays and the 643 

underestimated SDII. Unevenness is the metric that models simulate the worst – in many 644 

regions more than 70-90% of the models are out of the observational range. Clear 645 

changes in performance between CMIP5 and CMIP6 are limited. Considering all metrics, 646 

the CMIP6 models show improvement in some mid-latitude regions, but in a few tropical 647 

regions the CMIP6 models actually show performance degradation.  648 

 649 

The framework presented in this study is intended to be a useful resource for model 650 

evaluation analysts and developers working towards improved performance for a wide 651 

range of precipitation characteristics. Basing the regions in part on homogeneous 652 

precipitation characteristics can facilitate identification of the processes responsible for 653 

model errors as heavy precipitating regions are generally dominated by convective 654 

precipitation, while the moderate and light precipitation regions are mainly governed by 655 

stratiform precipitation processes. Although the framework presented herein has been 656 

demonstrated with regional scale evaluation benchmarking, it can be applicable for 657 

benchmarking at larger scales and homogeneous precipitation regions. 658 

 659 
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Code Availability 660 

The benchmarking framework for precipitation distributions established in this study is 661 

available via the PCMDI Metrics Package (PMP, 662 

https://github.com/PCMDI/pcmdi_metrics, DOI: 10.5281/zenodo.7231033). This 663 

framework provides three tiers of area averaged outputs for i) large scale domain (Tropics 664 

and Extratropics with separated land and ocean) commonly used in the PMP, ii) large 665 

scale domain with clustered precipitation characteristics (Tropics and Extratropics with 666 

separated land and ocean, and separated heavy, moderate, and light precipitation 667 

regions), and iii) modified IPCC AR6 regions shown in this paper. 668 

 669 

 670 

Data Availability 671 

All of the data used in this study are publicly available. The satellite-based precipitation 672 

products used in this study (IMERG, TRMM, CMORPH, GPCP, and PERSIANN) and 673 

ERA5 precipitation product are available on the Obs4MIPs at https://esgf-674 

node.llnl.gov/projects/obs4mips/. The CMIP data is available on the ESGF at https://esgf-675 

node.llnl.gov/projects/esgf-llnl. The statistics generated from this benchmarking 676 

framework and the interactive plots with access to the underlying diagnostics were made 677 

available on the PCMDI Simulation Summaries at 678 

https://pcmdi.llnl.gov/research/metrics/precip/. 679 

 680 

 681 

Author contribution 682 

https://github.com/PCMDI/pcmdi_metrics
https://github.com/PCMDI/pcmdi_metrics
https://github.com/PCMDI/pcmdi_metrics
https://doi.org/10.5281/zenodo.7231033
https://esgf-node.llnl.gov/projects/obs4mips/
https://esgf-node.llnl.gov/projects/obs4mips/
https://esgf-node.llnl.gov/projects/esgf-llnl
https://esgf-node.llnl.gov/projects/esgf-llnl
https://pcmdi.llnl.gov/research/metrics/precip/


 

31 

PG and AP designed the initial idea of the precipitation benchmarking framework. MA, 683 

PU, PG, and JL advanced the idea and developed the framework. MA performed 684 

analysis. MA, JL, and AO implemented the framework code into the PCMDI metrics 685 

package. MA prepared the manuscript with contributions from all co-authors. 686 

 687 

 688 

Competing interests 689 

The authors declare that they have no conflict of interest. 690 

 691 

 692 

Disclaimer 693 

This document was prepared as an account of work sponsored by an agency of the U.S. 694 

government. Neither the U.S. government nor Lawrence Livermore National Security, 695 

LLC, nor any of their employees makes any warranty, expressed or implied, or assumes 696 

any legal liability or responsibility for the accuracy, completeness, or usefulness of any 697 

information, apparatus, product, or process disclosed, or represents that its use would 698 

not infringe privately owned rights. Reference herein to any specific commercial product, 699 

process, or service by trade name, trademark, manufacturer, or otherwise does not 700 

necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. 701 

government or Lawrence Livermore National Security, LLC. The views and opinions of 702 

authors expressed herein do not necessarily state or reflect those of the U.S. government 703 

or Lawrence Livermore National Security, LLC, and shall not be used for advertising or 704 

product endorsement purposes. 705 



 

32 

 706 

 707 

Acknowledgements 708 

This work was performed under the auspices of the U.S. Department of Energy by 709 

Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The 710 

efforts of the authors were supported by the Regional and Global Model Analysis (RGMA) 711 

program of the United States Department of Energy's Office of Science, including under 712 

Award Number DE-SC0022070 and National Science Foundation (NSF) IA 1947282. 713 

This work was also partially supported by the National Center for Atmospheric Research 714 

(NCAR), which is a major facility sponsored by the NSF under Cooperative Agreement 715 

No. 1852977. We acknowledge the World Climate Research Programme’s Working 716 

Group on Coupled Modeling, which is responsible for CMIP, and we thank the climate 717 

modeling groups for producing and making available their model output, the Earth System 718 

Grid Federation (ESGF) for archiving the output and providing access, and the multiple 719 

funding agencies who support CMIP and ESGF. The U.S. Department of Energy’s 720 

Program for Climate Model Diagnosis and Intercomparison (PCMDI) provides 721 

coordinating support and led development of software infrastructure for CMIP.  722 

 723 



 

33 

References 724 

Abramowitz, G. (2012). Towards a public, standardized, diagnostic benchmarking 725 

system for land surface models. Geoscientific Model Development, 5(3), 819–726 

827. https://doi.org/10.5194/gmd-5-819-2012. 727 

Ahn, M., and I. Kang, 2018: A practical approach to scale-adaptive deep convection 728 

in a GCM by controlling the cumulus base mass flux. npj Clim. Atmos. Sci., 1, 729 

13, https://doi.org/10.1038/s41612-018-0021-0. 730 

Ahn, M.-S., P. A. Ullrich, J. Lee, P. J. Gleckler, H.-Y. Ma, C. R. Terai, P. A. 731 

Bogenschutz, and A. C. Ordonez, 2023: Bimodality in Simulated Precipitation 732 

Frequency Distributions and Its Relationship with Convective Parameterizations. 733 

npj Climate and Atmospheric Science, submitted. 734 

Ahn, M.-S., P. J. Gleckler, J. Lee, A. G. Pendergrass, and C. Jakob, 2022: 735 

Benchmarking Simulated Precipitation Variability Amplitude across Time 736 

Scales. J. Clim., 35, 3173–3196, https://doi.org/10.1175/JCLI-D-21-0542.1. 737 

Ashouri, H., K. L. Hsu, S. Sorooshian, D. K. Braithwaite, K. R. Knapp, L. D. Cecil, B. 738 

R. Nelson, and O. P. Prat, 2015: PERSIANN-CDR: Daily precipitation climate 739 

data record from multisatellite observations for hydrological and climate studies. 740 

Bull. Am. Meteorol. Soc., 96, 69–83, https://doi.org/10.1175/BAMS-D-13-741 

00068.1. 742 



 

34 

Chakravarti, I. M., R. G. Laha, and J. Roy, 1967: Handbook of Methods of Applied 743 

Statistics, Volume I: Techniques of Computation, Descriptive Methods, and 744 

Statistical Inference. John Wiley Sons, 392–394. 745 

Chen, D., and A. Dai, 2019: Precipitation Characteristics in the Community 746 

Atmosphere Model and Their Dependence on Model Physics and Resolution. J. 747 

Adv. Model. Earth Syst., 11, 2352–2374, 748 

https://doi.org/10.1029/2018MS001536. 749 

Chen, D., A. Dai, and A. Hall, 2021: The Convective‐To‐Total Precipitation Ratio and 750 

the “Drizzling” Bias in Climate Models. J. Geophys. Res. Atmos., 126, 1–17, 751 

https://doi.org/10.1029/2020JD034198.  752 

Covey, C., Gleckler, P. J., Doutriaux, C., Williams, D. N., Dai, A., Fasullo, J., 753 

Trenberth, K., & Berg, A. (2016). Metrics for the Diurnal Cycle of Precipitation: 754 

Toward Routine Benchmarks for Climate Models. Journal of Climate, 29(12), 755 

4461–4471. https://doi.org/10.1175/JCLI-D-15-0664.1 756 

Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. 757 

Clim., 19, 4605–4630, https://doi.org/10.1175/JCLI3884.1. 758 

Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. 759 

Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 760 

(CMIP6) experimental design and organization. Geosci. Model Dev., 9, 1937–761 

1958, https://doi.org/10.5194/gmd-9-1937-2016. 762 



 

35 

Fiedler, S., and Coauthors, 2020: Simulated Tropical Precipitation Assessed across 763 

Three Major Phases of the Coupled Model Intercomparison Project (CMIP). 764 

Mon. Weather Rev., 148, 3653–3680, https://doi.org/10.1175/MWR-D-19-765 

0404.1. 766 

Gleckler, P., C. Doutriaux, P. Durack, K. Taylor, Y. Zhang, D. Williams, E. Mason, 767 

and J. Servonnat, 2016: A More Powerful Reality Test for Climate Models. Eos 768 

(Washington. DC)., 97, 20–24, https://doi.org/10.1029/2016EO051663. 769 

Gleckler, P. J., K. E. Taylor, and C. Doutriaux, 2008: Performance metrics for climate 770 

models. J. Geophys. Res. Atmos., 113, 1–20, 771 

https://doi.org/10.1029/2007JD008972. 772 

Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Q. J. R. Meteorol. 773 

Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803. 774 

Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis 775 

(TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at 776 

Fine Scales. J. Hydrometeorol., 8, 38–55, https://doi.org/10.1175/JHM560.1. 777 

Huffman, G. J., and Coauthors, 2020: Integrated Multi-satellite Retrievals for the 778 

Global Precipitation Measurement (GPM) Mission (IMERG). Advances in Global 779 

Change Research, Vol. 67 of, 343–353. 780 

Huffman, G. J., R. F. Adler, M. M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. 781 

McGavock, and J. Susskind, 2001: Global Precipitation at One-Degree Daily 782 



 

36 

Resolution from Multisatellite Observations. J. Hydrometeorol., 2, 36–50, 783 

https://doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2. 784 

Iturbide, M., and Coauthors, 2020: An update of IPCC climate reference regions for 785 

subcontinental analysis of climate model data: definition and aggregated 786 

datasets. Earth Syst. Sci. Data, 12, 2959–2970, https://doi.org/10.5194/essd-12-787 

2959-2020. 788 

Khodadoust Siuki, S., B. Saghafian, and S. Moazami, 2017: Comprehensive 789 

evaluation of 3-hourly TRMM and half-hourly GPM-IMERG satellite precipitation 790 

products. Int. J. Remote Sens., 38, 558–571, 791 

https://doi.org/10.1080/01431161.2016.1268735. 792 

Kim, S., A. Sharma, C. Wasko, and R. Nathan, 2022: Linking Total Precipitable Water 793 

to Precipitation Extremes Globally. Earth’s Futur., 10, 794 

https://doi.org/10.1029/2021EF002473. 795 

Kooperman, G. J., M. S. Pritchard, M. A. Burt, M. D. Branson, and D. A. Randall, 796 

2016: Robust effects of cloud superparameterization on simulated daily rainfall 797 

intensity statistics across multiple versions of the Community Earth System 798 

Model. J. Adv. Model. Earth Syst., 8, 140–165, 799 

https://doi.org/10.1002/2015MS000574. 800 

Kooperman, G. J., M. S. Pritchard, T. A. O’Brien, and B. W. Timmermans, 2018: 801 

Rainfall From Resolved Rather Than Parameterized Processes Better 802 

Represents the Present‐Day and Climate Change Response of Moderate Rates 803 



 

37 

in the Community Atmosphere Model. J. Adv. Model. Earth Syst., 10, 971–988, 804 

https://doi.org/10.1002/2017MS001188.  805 

Leung, L. R., and Coauthors, 2022: Exploratory Precipitation Metrics: Spatiotemporal 806 

Characteristics, Process-Oriented, and Phenomena-Based. J. Clim., 35, 3659–807 

3686, https://doi.org/10.1175/JCLI-D-21-0590.1. 808 

Lin, Y., M. Zhao, Y. Ming, J.-C. Golaz, L. J. Donner, S. A. Klein, V. Ramaswamy, and 809 

S. Xie, 2013: Precipitation Partitioning, Tropical Clouds, and Intraseasonal 810 

Variability in GFDL AM2. J. Clim., 26, 5453–5466, https://doi.org/10.1175/JCLI-811 

D-12-00442.1. 812 

Ma, H., S. A. Klein, J. Lee, M. Ahn, C. Tao, and P. J. Gleckler, 2022: Superior Daily 813 

and Sub-Daily Precipitation Statistics for Intense and Long-Lived Storms in 814 

Global Storm-Resolving Models. Geophys. Res. Lett., 49, 815 

https://doi.org/10.1029/2021GL096759.  816 

MacQueen, J. B., 1967: Some methods for classification and analysis of multivariate 817 

observations. Berkeley Symp. Math. Stat. Probab., VOL. 5.1, 281–297. 818 

Martinez-Villalobos, C., and J. D. Neelin, 2019: Why Do Precipitation Intensities Tend 819 

to Follow Gamma Distributions? J. Atmos. Sci., 76, 3611–3631, 820 

https://doi.org/10.1175/JAS-D-18-0343.1. 821 

Martinez-Villalobos, C., J. D. Neelin, and A. G. Pendergrass, 2022: Metrics for 822 

Evaluating CMIP6 Representation of Daily Precipitation Probability Distributions. 823 

J. Clim., 1–79, https://doi.org/10.1175/JCLI-D-21-0617.1. 824 



 

38 

Meehl, G. A., C. Covey, B. McAvaney, M. Latif, and R. J. Stouffer, 2005: Overview 825 

of the Coupled Model Intercomparison Project. Bull. Am. Meteorol. Soc., 86, 89–826 

96, https://doi.org/10.1175/BAMS-86-1-89. 827 

Meehl, G. A., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. F. B. Mitchell, R. J. 828 

Stouffer, and K. E. Taylor, 2007: THE WCRP CMIP3 Multimodel Dataset: A New 829 

Era in Climate Change Research. Bull. Am. Meteorol. Soc., 88, 1383–1394, 830 

https://doi.org/10.1175/BAMS-88-9-1383. 831 

Meehl, G. A., G. J. Boer, C. Covey, M. Latif, and R. J. Stouffer, 2000: The Coupled 832 

Model Intercomparison Project (CMIP). Bull. Am. Meteorol. Soc., 81, 313–318, 833 

https://doi.org/10.1175/1520-0477(2000)081<0313:TCMIPC>2.3.CO;2. 834 

Pendergrass, A. G., and C. Deser, 2017: Climatological Characteristics of Typical 835 

Daily Precipitation. J. Clim., 30, 5985–6003, https://doi.org/10.1175/JCLI-D-16-836 

0684.1.  837 

Pendergrass, A. G., and D. L. Hartmann, 2014: Two Modes of Change of the 838 

Distribution of Rain*. J. Clim., 27, 8357–8371, https://doi.org/10.1175/JCLI-D-839 

14-00182.1.  840 

Pendergrass, A. G., and R. Knutti, 2018: The Uneven Nature of Daily Precipitation 841 

and Its Change. Geophys. Res. Lett., 45, 11,980-11,988, 842 

https://doi.org/10.1029/2018GL080298. 843 



 

39 

Pendergrass, A. G., P. J. Gleckler, L. R. Leung, and C. Jakob, 2020: Benchmarking 844 

Simulated Precipitation in Earth System Models. Bull. Am. Meteorol. Soc., 101, 845 

E814–E816, https://doi.org/10.1175/BAMS-D-19-0318.1.  846 

Perkins, S. E., A. J. Pitman, N. J. Holbrook, and J. McAneney, 2007: Evaluation of 847 

the AR4 Climate Models’ Simulated Daily Maximum Temperature, Minimum 848 

Temperature, and Precipitation over Australia Using Probability Density 849 

Functions. J. Clim., 20, 4356–4376, https://doi.org/10.1175/JCLI4253.1.  850 

Roca, R., L. V. Alexander, G. Potter, M. Bador, R. Jucá, S. Contractor, M. G. 851 

Bosilovich, and S. Cloché, 2019: FROGS: a daily 1° × 1° gridded precipitation 852 

database of rain gauge, satellite and reanalysis products. Earth Syst. Sci. Data, 853 

11, 1017–1035, https://doi.org/10.5194/essd-11-1017-2019. 854 

Stephens, M. A., 1974: EDF Statistics for Goodness of Fit and Some Comparisons. 855 

J. Am. Stat. Assoc., 69, 730–737, https://doi.org/10.2307/2286009. 856 

Sun, Y., S. Solomon, A. Dai, and R. W. Portmann, 2006: How Often Does It Rain? J. 857 

Clim., 19, 916–934, https://doi.org/10.1175/JCLI3672.1. 858 

Sun, Y., S. Solomon, A. Dai, and R. W. Portmann, 2007: How Often Will It Rain? J. 859 

Clim., 20, 4801–4818, https://doi.org/10.1175/JCLI4263.1. 860 

Swenson, L. M., and R. Grotjahn, 2019: Using Self-Organizing Maps to Identify 861 

Coherent CONUS Precipitation Regions. J. Clim., 32, 7747–7761, 862 

https://doi.org/10.1175/JCLI-D-19-0352.1. 863 



 

40 

Tang, S., P. Gleckler, S. Xie, J. Lee, M.-S. Ahn, C. Covey, and C. Zhang, 2021: 864 

Evaluating Diurnal and Semi-Diurnal Cycle of Precipitation in CMIP6 Models 865 

Using Satellite- and Ground-Based Observations. J. Clim., 1–56, 866 

https://doi.org/10.1175/JCLI-D-20-0639.1. 867 

Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the 868 

experiment design. Bull. Amer. Meteor. Soc., 93, 485–498, 869 

https://doi.org/10.1175/BAMS-D-11-00094.1. 870 

Trenberth, K. E., A. Dai, R. M. Rasmussen, and D. B. Parsons, 2003: The Changing 871 

Character of Precipitation. Bull. Am. Meteorol. Soc., 84, 1205–1218, 872 

https://doi.org/10.1175/BAMS-84-9-1205. 873 

Trenberth, K. E., and Y. Zhang, 2018: How Often Does It Really Rain? Bull. Am. 874 

Meteorol. Soc., 99, 289–298, https://doi.org/10.1175/BAMS-D-17-0107.1. 875 

Trenberth, K. E., Y. Zhang, and M. Gehne, 2017: Intermittency in Precipitation: 876 

Duration, Frequency, Intensity, and Amounts Using Hourly Data. J. 877 

Hydrometeorol., 18, 1393–1412, https://doi.org/10.1175/JHM-D-16-0263.1. 878 

U.S. DOE. 2020. Benchmarking Simulated Precipitation in Earth System Models 879 

Workshop Report, DOE/SC-0203, U.S. Department of Energy Office of Science, 880 

Biological and Environmental Research (BER) Program. Germantown, 881 

Maryland, USA. 882 

https://doi.org/10.1175/BAMS-D-11-00094.1
https://doi.org/10.1175/BAMS-D-11-00094.1


 

41 

Waliser, D., and Coauthors, 2020: Observations for Model Intercomparison Project 883 

(Obs4MIPs): status for CMIP6. Geosci. Model Dev., 13, 2945–2958, 884 

https://doi.org/10.5194/gmd-13-2945-2020. 885 

Wehner, M., P. Gleckler, J. Lee, 2020: Characterization of long period return values 886 

of extreme daily temperature and precipitation in the CMIP6 models: Part 1, 887 

model evaluation. Weather and Climate Extremes, 30, 100283, doi: 888 

10.1016/j.wace.2020.100283. 889 

Wei, G., H. Lü, W. T. Crow, Y. Zhu, J. Wang, and J. Su, 2017: Evaluation of Satellite-890 

Based Precipitation Products from IMERG V04A and V03D, CMORPH and 891 

TMPA with Gauged Rainfall in Three Climatologic Zones in China. Remote 892 

Sens., 10, 30, https://doi.org/10.3390/rs10010030. 893 

Xie, P., R. Joyce, S. Wu, S. H. Yoo, Y. Yarosh, F. Sun, and R. Lin, 2017: 894 

Reprocessed, bias-corrected CMORPH global high-resolution precipitation 895 

estimates from 1998. J. Hydrometeorol., 18, 1617–1641, 896 

https://doi.org/10.1175/JHM-D-16-0168.1. 897 

Zhang, C., X. Chen, H. Shao, S. Chen, T. Liu, C. Chen, Q. Ding, and H. Du, 2018: 898 

Evaluation and intercomparison of high-resolution satellite precipitation 899 

estimates-GPM, TRMM, and CMORPH in the Tianshan Mountain Area. Remote 900 

Sens., 10, https://doi.org/10.3390/rs10101543. 901 

Zhang, X., L. Alexander, G. C. Hegerl, P. Jones, A. K. Tank, T. C. Peterson, B. 902 

Trewin, and F. W. Zwiers, 2011: Indices for monitoring changes in extremes 903 



 

42 

based on daily temperature and precipitation data. Wiley Interdiscip. Rev. Clim. 904 

Chang., 2, 851–870, https://doi.org/10.1002/wcc.147.  905 



 

1 

Tables 906 

 907 

 908 

 909 

Table 1. Satellite-based and reanalysis precipitation products used in this study. 910 

 911 

Product  Data source 
Coverage Resolution 

Refere
nce Domain  Period 

Horizont
al 

Freque
ncy  

IMERG 
NASA Integrated Multi-
satellitE Retrievals for GPM 
version 6 final run product 

Global, 
while 

beyond 
60°NS is 

incomplete  

2000.6-
present 

0.1° 
30 

minutes 

Huffma
n et al. 
(2020) 

TRMM 

NASA Tropical Rainfall 
Measuring Mission Multi-
satellite Precipitation 
Analysis 3B42 version 7 
product 

50°S-50°N 
1998.1-
2019.12 

0.25° 3 hours 
Huffma
n et al. 
(2007) 

CMORPH 
NOAA Bias-corrected 
Climate Prediction Center 
Morphing technique product  

60°S-60°N 
1998.1-
present 

0.073° 
30 

minutes 

Xie et 
al. 

(2017) 

GPCP 
NASA Global Precipitation 
Climatology Project 1DD 
version 1.3 

Global, 
while 

beyond 
40°NS is 

incomplete  

1996.10-
present 

1° 1 day 
Huffma
n et al. 
(2001) 

PERSIANN 

UC-IRVINE/CHRS 
Precipitation Estimation from 
Remotely Sensed 
Information using Artificial 
Neural Networks-Climate 
Data Record 

60°S-60°N  
1983.1-
present 

0.25° 1 day 
Ashouri 

et al. 
(2015) 

ERA5 
ECMWF Integrated 
Forecasting System Cy41r2 

Global 
1950.1–
present 

 0.25° 1 hour 
Hersba
ch et al. 
(2020) 
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 925 

Table 2. CMIP5 and CMIP6 models used in this study and their horizontal resolution. The 926 

number in parentheses indicates the number of realizations used for each model. Note 927 

that the horizontal resolution information is obtained from the number of grids, and it may 928 

vary slightly if the grid interval is not linear. 929 

 930 

Institute 

CMIP5 CMIP6 

Name 
Horizontal 
resolution 
[lon x lat °] 

Name 
Horizontal 
resolution 
[lon x lat °] 

CSIRO/BOM, 
Australia 

ACCESS1-0 (1) 1.875 x 1.241 ACCESS-CM2 (7) 1.875 x 1.25 

ACCESS1-3 (2) 1.875 x 1.241 ACCESS-ESM1-5 (10) 1.875 x 1.241 

BCC, China 
BCC-CSM1-1 (3) 1.875 x 1.241 BCC-CSM2-MR (3) 1.125 x 1.125 

BCC-CSM1-1-M (3) 1.125 x 1.125 BCC-ESM1 (3) 2.812 x 2.812 

BNU, China BNU-ESM (1) 2.812 x 2.812 N/A 

CAMS, China N/A CAMS-CSM1-0 (3)  

CCCma, 
Canada 

N/A CanESM5 (7) 2.812 x 2.812 

NCAR, USA CCSM4 (6) 1.25 x 0.938 

CESM2 (10) 1.25 x 0.938 

CESM2-FV2 (3) 2.5 x 1.875 

CESM2-WACCM (3) 1.25 x 0.938 

CESM2-WACCM-FV2 
(3) 

2.5 x 1.875 

 
CMCC, Italy 

 
CMCC-CM (3) 

 
0.75 x 0.75 

CMCC-CM2-HR4 (1) 1.25 x 0.938 

CMCC-CM2-SR5 (1) 1.25 x 0.938 

CNRM-
CERFACS, 
France 

N/A 

CNRM-CM6-1 (1) 1.406 x 1.406 

CNRM-CM6-1-HR (1) 0.5 x 0.5 

CNRM-ESM2-1 (1) 1.406 x 1.406 

CSIRO-
QCCCE, 
Australia 

CSIRO-Mk3-6-0 (10) 1.875 x 1.875 N/A 

DOE, USA N/A E3SM-1-0 (3) 1.0 x 1.0 

EC-Earth-
Consortium, 
European 
Community 

EC-Earth (1) 1.125 x 1.125 

EC-Earth3 (6) 0.703 x 0.703 

EC-Earth3-AerChem (1) 0.703 x 0.703 

EC-Earth3-CC (5)  

EC-Earth3-Veg (3) 0.703 x 0.703 

IAP-
CAS/THU, 
China 

FGOALS-g2 (1) 2.812 x 3.0 
FGOALS-f3-L (3) 1.0 x 1.0 

FGOALS-s2 (3) 2.812 x 1.667 

NOAA GFDL, 
USA 

GFDL-CM3 (5) 2.5 x 2.0 GFDL-CM4 (1) 1.0 x 1.0 

GFDL-HIRAM-C180 (2) 0.625 x 0.5 GFDL-ESM4 (1) 1.0 x 1.0 

GFDL-HIRAM-C360 (1) 0.312 x 0.25   

NASA GISS, 
USA 

 
GISS-E2-R (2) 

 
2.5 x 2.0 

N/A 

MOHC, UK HadGEM2-A (1) 1.875 x 1.241 
HadGEM3-GC31-LL (5) 1.875 x 1.25 

HadGEM3-GC31-MM (4) 0.833 x 0.556 

UKESM1-0-LL (1) 1.875 x 1.25 

IITM, India N/A IITM-ESM (1) 1.875 x 1.915 

INM, Russia INMCM4 (1) 2.0 x 1.5 
INM-CM4-8 (1) 2.0 x 1.5 

INM-CM5-0 (1) 2.0 x 1.5 
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IPSL, France  

IPSL-CM5A-LR (6) 3.75 x 1.875 

IPSL-CM6A-LR (22) 2.5 x 1.259 IPSL-CM5A-MR (3) 2.5 x 1.259 

IPSL-CM5B-LR (1) 3.75 x 1.875 

NIMS/KMA, 
Korea 

N/A KACE-1-0-G (1) 1.875 x 1.25 

MIROC, 
Japan 

MIROC5 (2) 1.406 x 1.406 

MIROC6 (10) 1.406 x 1.406 

MIROC-ES2L (3) 2.812 x 2.812 

MPI-M, 
Germany 

MPI-ESM-MR (3) 1.875 x 1.875 
MPI-ESM-1-2-HAM (3) 1.875 x 1.875 

MPI-ESM1-2-HR (3) 0.938 x 0.938 

MPI-ESM1-2-LR (3) 1.875 x 1.875 

MRI, Japan 

MRI-AGCM3-2H (1) 0.562 x 0.562 

MRI-ESM2-0 (3) 1.125 x 1.125 MRI-AGCM3-2S (1) 0.188 x 0.188 

MRI-CGCM3 (3) 1.125 x 1.125 

NCC, Norway N/A 
NorCPM1 (10) 2.5 x 1.875 

NorESM2-LM (2) 2.5 x 1.875 

SNU, Korea N/A SAM0-UNICON (1) 1.25 x 0.938 

AS-RCEC, 
Taiwan 

N/A TaiESM1 (1) 1.25 x 0.938 
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Table 3. Precipitation distribution metrics implemented in this study. 957 

 958 

Metric [unit] Definition Objectives Reference 

Amount peak 
[mm/day] 

Rain rate where the maximum 
rain amount occurs 

Characterize typical daily 
precipitation amount 

Pendergrass 
and Deser 
(2017) 

Amount P10  
[fraction] 

Fraction of rain amount in 
lower 10 percentile of OBS 
amount 

Measure the rain amount 
from light rainfall 

 

Amount P90  
[fraction] 

Fraction of rain amount in 
upper 90 percentile of OBS 
amount 

Measure the rain amount 
from heavy rainfall 

 

Frequency peak 
[mm/day] 

Rain rate where the maximum 
nonzero rain frequency 
occurs 

Characterize typical daily 
precipitation frequency 

Pendergrass 
and Deser 
(2017) 

Frequency P10  
[fraction] 

Fraction of rain frequency in 
lower 10 percentile of OBS 
amount 

Measure the frequency 
of light rainfall 

 

Frequency P90  
[fraction] 

Fraction of rain frequency in 
upper 90 percentile of OBS 
amount 

Measure the frequency 
of heavy rainfall 

 

Unevenness 
[days] 

Number of wettest days for 
that constitute half of annual 
precipitation 

Measure uneven 
characteristic of daily 
precipitation 

Pendergrass 
and Knutti 
(2018) 

FracPRdays 
[fraction] 

Number of precipitating days 
(>=1mm/day) divided by total 
days a year 

Measure fraction of 
precipitating days a year  

Updated from 
Zhang et al. 
(2011) 

SDII 
[mm/day] 

Annual total precipitation 
divided by the number of 
precipitating days 
(>=1mm/day) 

Measure daily 
precipitation intensity 

Zhang et al. 
(2011) 

Perkins score 
[unitless between 0-1] 

Sum of minimum values 
between two PDFs across all 
bins 

Measure similarity 
between two PDFs 

Perkins et al. 
(2007) 
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 965 

Table 4. List of climate reference regions used in this study. The new ocean regions 966 

defined in this study are highlighted in bold. 967 

 968 

1 GIC Greenland/Iceland   22 WAF Western-Africa   43 SAU S.Australia 

2 NWN N.W.North-America   23 CAF Central-Africa   44 NZ New-Zealand 

3 NEN N.E.North-America   24 NEAF N.Eastern-Africa   45 EAN E.Antarctica 

4 WNA W.North-America   25 SEAF S.Eastern-Africa   46 WAN W.Antarctica 

5 CNA C.North-America   26 WSAF W.Southern-Africa   47 ARO Arctic-Ocean 

6 ENA E.North-America   27 ESAF E.Southern-Africa   48 ARS Arabian-Sea 

7 NCA N.Central-America   28 MDG Madagascar   49 BOB Bay-of-Bengal 

8 SCA S.Central-America   29 RAR Russian-Arctic   50 EIO Equatorial-Indian-Ocean 

9 CAR Caribbean   30 WSB W.Siberia   51 SIO S.Indian-Ocean 

10 NWS N.W.South-America   31 ESB E.Siberia   52 NPO N.Pacific-Ocean 

11 NSA N.South-America   32 RFE Russian-Far-East   53 

NWP

O N.W.Pacific-Ocean 

12 NES N.E.South-America   33 WCA W.C.Asia   54 NEPO N.E.Pacific-Ocean 

13 SAM South-American-Monsoon   34 ECA E.C.Asia   55 PITCZ Pacific-ITCZ 

14 SWS S.W.South-America   35 TIB Tibetan-Plateau   56 SWPO S.W.Pacific-Ocean 

15 SES S.E.South-America   36 EAS E.Asia   57 SEPO S.E.Pacific-Ocean 

16 SSA S.South-America   37 ARP Arabian-Peninsula   58 NAO N.Atlantic-Ocean 

17 NEU N.Europe   38 SAS S.Asia   59 NEAO N.E.Atlantic-Ocean 

18 WCE West&Central-Europe   39 SEA S.E.Asia   60 AITCZ Atlantic-ITCZ 

19 EEU E.Europe   40 NAU N.Australia   61 SAO S.Atlantic-Ocean 

20 MED Mediterranean   41 CAU C.Australia   62 SOO Southern-Ocean 

21 SAH Sahara   42 EAU E.Australia         

969 
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Figures 970 

 971 

 972 

 973 

 974 

 975 

 976 

 977 

 978 

Figure 1. Schematics for precipitation distribution metrics. a) Amount or Frequency 979 

distribution as a function of rain rate. Peak metric gauges the rain rate where the 980 

maximum distribution occurs. P10 and P90 metrics respectively measure the fraction of 981 

the distribution lower 10 percentile and upper 90 percentile. Perkins score is another 982 

metric based on the frequency distribution to quantify the similarity between observed 983 

and modeled distribution. b) Fraction of cumulative distribution as a function of number of 984 

wettest days. Unevenness gauges the number of wettest days for half of annual 985 

precipitation. FracPRdays measures the fraction of the number of precipitating 986 

(≥1mm/day) days a year. SDII is designed to measure daily precipitation intensity by 987 

annual total precipitation divided by FracPRdays. 988 
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 1001 

 1002 

 1003 

 1004 

 1005 

 1006 

Figure 2. Spatial patterns of IMERG precipitation a) mean state and b) clustering for 1007 

heavy, moderate, and light precipitating regions by K-means clustering with amount and 1008 

frequency distributions. Precipitation c) amount and d) frequency distributions as a 1009 

function of rain rate. Different colors indicate different clustering regions as the same 1010 

with b). Thin and thick curves respectively indicate distributions at each grid and the 1011 

cluster average. 1012 
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 1017 

 1018 

 1019 

 1020 

 1021 
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 1024 

 1025 

 1026 

 1027 

 1028 

 1029 

Figure 3. a) IPCC AR6 climate reference regions and b) modified IPCC AR6 climate 1030 

reference regions superimposed on the precipitation distributions clustering map shown 1031 

in Fig. 2b. Land regions are the same between a) and b), while some ocean regions are 1032 

modified. 1033 
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 1043 

 1044 
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 1046 

 1047 

 1048 

Figure 4. Homogeneity estimated by a) Perkins score, b) K-S test, and c) A-D test 1049 

between the region averaged and each grid’s fre uency distributions of IMERG 1050 

precipitation for the IPCC AR6 climate reference regions (upper) and the modified 1051 

ocean regions (bottom). Darker color indicates higher homogeneity across all panels. 1052 
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 1076 

Figure 5. As in Fig. 4, but for different observational datasets with Perkins score. 1077 
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 1087 
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 1090 

 1091 

Figure 6. Precipitation amount (upper), frequency (middle), and cumulative (bottom) 1092 

distributions for a-c) NWPO, b-f) SEPO, and g-j) ENA. Black, gray, blue, and red curves 1093 

indicate the satellite-based observations, reanalysis, CMIP5 models, and CMIP6 1094 

modes, respectively. Thin and thick curves for CMIP models respectively indicate 1095 

distributions for each model and multi-model average. Gray dotted lines in the 1096 

cumulative distributions indicate a fraction of 0.5. Note: all model output and 1097 

observations were conservatively regridded to 2° in the first step of analysis. 1098 
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Figure 7. Precipitation distribution metrics for a) Amount peak, b) Amount P10, c) 1113 

Amount P90, d) Frequency peak, e) Frequency P10, f) Frequency P90, g) Unevenness, 1114 

h) FracPRdays, i) SDII, and j) Perkins score over the modified IPCC AR6 regions. 1115 

Black, gray, blue, and red markers indicate the satellite-based observations, reanalysis, 1116 

CMIP5 models, and CMIP6 modes, respectively. Thin and thick vertical marks for CMIP 1117 

models respectively indicate distributions for each model and multi-model average. 1118 
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Open circle mark for CMIP models indicates the multi-model median. Green shade 1119 

represents the range between the minimum and maximum values of satellite-based 1120 

observations. Blue and red shades respectively represent the range between 25th and 1121 

75th model values for CMIP 5 and 6 models. Y-axis labels are shaded with the three 1122 

colors as the same in Fig. 2b, indicating dominant precipitating characteristics. Note that 1123 

regions 1-46 are land and land-ocean mixed regions, and 47-62 are ocean regions. 1124 
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 1127 

 1128 

Figure 7. (continued) 1129 
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 1132 

 1133 

 1134 

Figure 8. Observational discrepancies relative to spread in the multi-model ensemble for 1135 

a) Amount peak, b) Amount P10, c) Amount P90, d) Frequency peak, e) Frequency 1136 

P10, f) Frequency P90, g) Unevenness, h) FracPRdays, i) SDII, and j) Perkins score 1137 

over the modified IPCC AR6 regions. The observational discrepancy is calculated by 1138 

the standard deviation of satellite-based observations divided by the standard deviation 1139 

of CMIP 5 and 6 models for each metric and region.  1140 
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 1152 

Figure 9. Percentage of CMIP6 models within range of the observational products for a) 1153 

Amount peak, b) Amount P10, c) Amount P90, d) Frequency peak, e) Frequency P10, f) 1154 

Frequency P90, g) Unevenness, h) FracPRdays, i) SDII, and j) Perkins score over the 1155 

modified IPCC AR6 regions. The observational range is between the minimum and 1156 

maximum values of five satellite-based products. Regions where the observational 1157 

spread is larger than model spread shown in Fig. 8 are stippled gray. 1158 
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 1171 

Figure 10. Improvement from CMIP 5 to 6 as identified by the percentage of models in 1172 

each multi-model ensemble that are within the observational min-to-max range. The 1173 

improvement is calculated by the CMIP6 percentage minus the CMIP5 percentage, so 1174 

that positive and negative values respectively indicate improvement and deterioration in 1175 

CMIP6. Regions where the observational spread is larger than model spread are 1176 

stippled gray. 1177 
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 1190 

Figure 11. Percentage of CMIP6 models underestimating or overestimating 1191 

observations for a) Amount peak, b) Amount P10, c) Amount P90, d) Frequency peak, 1192 

e) Frequency P10, f) Frequency P90, g) Unevenness, h) FracPRdays, i) SDII, and j) 1193 

Perkins score over the modified IPCC AR6 regions. The criteria for underestimation and 1194 

overestimation are respectively defined by minimum and maximum values of satellite-1195 

based observations shown in Fig. 7. Positive and negative values respectively represent 1196 

overestimation and underestimation by a formulation of (𝑛𝑂 − 𝑛𝑈)/𝑛𝑇 where 𝑛𝑂, 𝑛𝑈, 𝑛𝑇 1197 

are respectively the number of overestimated models, underestimated models, and total 1198 

models. 1199 
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 1208 

Figure 12. Improvement from CMIP 5 to 6 in the percentage of underestimated or 1209 

overestimated models. The improvement is calculated by the absolute value of CMIP5 1210 

percentage minus the absolute value of CMIP6 percentage, so that positive and 1211 

negative values respectively indicate improvement and deterioration in CMIP6. 1212 
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 1226 

Figure 13. Correlation between precipitation distribution metrics across CMIP 5 and 6 1227 

model performances. The correlation coefficients are calculated for the modified IPCC 1228 

AR6 regions and then area-weighted averaged globally. 1229 
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 1239 

Figure 14. Scatterplot between 2° and 4° interpolated horizontal resolutions in 1240 

evaluating precipitation distribution metrics for a) Amount peak, b) Amount P10, c) 1241 

Amount P90, d) Frequency peak, e) Frequency P10, f) Frequency P90, g) Unevenness, 1242 

h) FracPRdays, i) SDII, and j) Perkins score. The metric values are calculated for the 1243 

modified IPCC AR6 regions and then weighted averaged globally. Black, gray, blue, and 1244 

red marks indicate the satellite-based observations, reanalysis, CMIP5 models, and 1245 

CMIP6 modes, respectively. The number in the upper right of each panel is the 1246 

correlation coefficient between the metric values in 2° and 4° resolutions across all 1247 

observations and models. 1248 
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