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Abstract Earth’s biogeochemical cycles are intimately tied to the biotic and abiotic processing of organic matter
(OM). Spatial and temporal variation in OM chemistry is often studied using direct infusion, high resolution Fourier
transform mass spectrometry (HRMSFTMS). An increasingly common approach is to use ecological metrics (e.g.,
within-sample diversity) to summarize high-dimensional HRMSFTMS data, notably Fourier transform ion cyclotron
resonance MS (FTICR MS). However, problems can arise when HRMSFTMS peak intensity data are used in a way
that is analogous to abundances in ecological analyses (e.g., species abundance distributions). Using peak intensity
data in this way requires the assumption that intensities act as direct proxies for concentrations,—vﬂa-ieh—is—e#eﬂ

¢ Hcrc we show that comparisons of the same peak across samples
(within-peak) may carry 1nf0rmat10n regarding variation in relative concentration, but comparing different peaks
(between-peak) within or between samples does not. We further developed a simulation model to study the

quantltative 1mpllcations of using peak intensities to compute CC()lO;!,lCdl metrics that rcly on 1ni0rmanon about both
within-peak and between peak 5 the SCntr g 3
stadiedshifts in 5 2 = 5 ¢ > sy >
tratt-values-relative abundance. We ahewfound that despite ﬂ%epeer—hﬂkaae&bekween nalyucal llmltallons of
linking concentration andto intensity, the ecological metrics often perform well in terms of providing robust
qualitative inferences and sometimes quantitatively-accurate estimates of diversity and trait-valses-molecular
characteristics. We conclude with recommendations for usingrobust use of peak intensities-in-an-informed-and
robust-way for natural organic matter studies. A primary recommendation is the use and extension of the simulation
model to provide objective;guantitative guidance on the degree to which conceptual and quantitative inferences can
be made fora glven ana1y51s ofa given dataset. Wﬁhen%—ebjeeﬂ%%d-&neﬁe@e&pehev@%Bioad use peak

o s-of riousthis approach can
help ensure rigorous scientific outcomes from the use of FTMS peak intensities in enwronmental applications.

&

1 Introduction

Organic matter (OM) plays a central role in Earth’s biogeochemical cycles, and is both a resource for and product of
metabolism. The detailed chemistry of OM (e.g., nominal oxidation state) can modulate and reflect biogeochemical
rates and fluxes within and across ecosystems (e.g., LaRowe and Van Cappellen, 2011; Boye et al., 2017;
Garayburu-Caruso et al., 2020), yet our understanding of this complexity is limited by our analytical abilities to
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view it (Steen et al., 2020; Hedges et al., 2000; Hawkes and Kew, 2020a). Given the importance of OM chemistry to
biogeochemical cycling, there is a need to understand how and why that chemistry varies through space and time.
To help meet this need, there has been growing interest in using concepts and methods from ecology to study the
chemogeography and chemodiversity of OM in a variety of ecosystems (e.g., Kujawinski et al., 2009; Kellerman et
al., 2014; Tanentzap et al., 2019; Danczak et al., 2021). This is a promising approach as there are many conceptual
parallels between the chemical species that comprise OM and the biological species that comprise ecological
communities (Danczak et al., 2020).

The most fundamental ecological data type is the species-by-site matrix. This matrix indicates how many individuals
of each species occur in each sampled community. Ecologists use species-by-site matrices to ask myriad questions
related to biological diversity. Two common analyses are known as a-diversity and B-diversity, and-there-arecach
with numerous metrics-for-each (Whittaker, 1972; Anderson et al., 2011). a-diversity measures the diversity within a
given community. B-diversity has been variously defined, but essentially measures variation in composition across
communities. Both a-diversity and B-diversity can be quantified using presence-absence data or they can include
estimates of each species’ relative abundance within and between communities (Fig. 1).

The chemistry of OM is commonly studied using high resolution mass-speetrometry (HRMS)-techniques(e.g-

Hawkes-and Kew;2020b)-Speetfiealby-Fourier transform mass spectrometry (FTMS) techniques are-predominantly
usedtes(e.g., Hawkes and Kew, 2020b), such as Orbitrap or Ion Cyclotron Resonance (ICR) MS, via direct

infusion of samples. At present, the highest resolution approach for untargeted analysis of OM is via a 21 Tesla
FTICR MS (Marshall et al., 1998; Shaw et al., 2016; Smith et al., 2018; Bahureksa et al., 2021). The output data
produced is a spectrum containing peaks represented by a signal intensity (Fig. 2 y-axis) and a mass-to-charge ratio
(m/z) (Fig. 2 x-axis), which is equivalent to the mass for singly charged ions as routinely detected in natural organic

matter (NOM) measurements. In turn, regardless of the type of MS instrument used, the MS data inherently lead to
an OM peak-by-sample data matrix, akin to an ecological species-by-site data matrix. The high resolution data from
MS often results in a large matrix, wherein a single sample may contain thousands to tens of thousands of peaks. To
take advantage of these rich data, HRMSFTMS data have been analyzed using the same a-diversity and p-diversity
metrics that are commonly used by ecologists to study biological diversity (e.g., Kellerman et al., 2014). Fhis-isSuch
analyses are exciting, as i#t-alewsthey enable the same conceptual questions and quantitative frameworks to be
applied to biological (e.g., microbial communities) and chemical (i.e., OM) components that directly interact with
each other within ecosystems (Lucas et al., 2016; Osterholz et al., 2016; Li et al., 2018; Tanentzap et al., 2019;
Danczak et al., 2020, 2021).

The use of ecological metrics with MS data is particularly common with FTMS datasets; and eentainsthere is great
potential to continue leveraging concepts from ecology in high-resolution OM analyses. However—when-Care is
required, however, in using FTMS peak intensity data are-used-in-the-estimations-ofto estimate a-diversity, B-
diversity, and related ecological analyses (e.g., ‘species’ abundance distributions); petential problems-ecan-arise-At
therootof). Key to these problemsties-ecological analyses is the assumption that within complex NOM samples.
differences in peak intensity are proportional to differences in concentrations of the associated molecules.
Ceonseguently;-the-Studies using FTMS often avoid using peak intensities due to uncertainties in whether it is valid
to assume proportionality between peak intensities and concentrations within and across NOM samples (Kujawinski

2002). These qtudlcs may bn, dmcardmg useful information thou;,h it is unclear what blases and uncertamtles are
introduced 5 3 A S S

extenttowhichsuch-sitwations-oxistis-ikewisceunelearinto ccolovical memcq when using FTMS peak intensities.

To help advance the-robust use of FTMS datasets thathas-been-emerging-in-environmental seiencestudies-over-the
Jfai;t—tew—éc—eaéeqfor NOM qtudlcq we review the theoretical reasons why between-peak intensities demay not

reflect true concentrations, provide empirical suppert-for-our-assertions;

uﬁeevaluatlon of this theorv and invoke in silico studiessimulation to quantify the associated impacts on ecological
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analyses;-provide-. While theory and empirical analyses demonstrate disconnects between peak intensities and
concentrations in FTMS data, the simulations show that ecological metrics are often still robust. We end with

practical recommendations; and propose a path forward thatmay-eventually-enabledmproved-usagefor increasing
robust use of FTMS peak intensities for guantificationNOM studies.

2 Theoretical LimitationsFoundations,
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Fe-address-Here we provide a review of the theoretical foundations behind why assuming proportionality between
peak intensities and concentrations in FTMS eannotbe-tused-to-infer between-peak-ehangescan be challenging. This
section will be of most value to FTMS data users that are not formally trained in eoneentrationwereview-eritical
theoretical-coneepts-about-mass spectrometry-, and serves as a review of mass spectrometry principles (see also
Kujawinski, 2002; Urban, 2016; Bahureksa et al., 2021). We focus on FTMS (i.e., FTICR and Orbitrap), but many
of the principles and-Himitations—especially-ionization-and-ion-transmission—are applicable across all MS
platforms. ka-this-seetionweWe highlight three main-mass-speetrometry-considerations: ionization, ion transfer, and
ion signal detection in the context of a-generalized-commercial EFTICR-mass-speetrometer—Theoretical imitations
have-two-mainF TMS instruments. These considerations have practical implications tied to within-peak and between-
peak comparisons (Fig. 2). Here, we define ‘within-peak-cemparisonpeak’ as comparing peak intensities of the same
feature (i.c., m/z or molecular formula) across different sample spectra (i-e-within-twe-er-mere-and ‘between-peak’
as comparing peak intensities across different features. As discussed below, within-peak comparisons can be robust
under certain situations, but there are limitations with between-peak comparisons that may be unavoidable. The
following discussion is not an exhaustive treatment of all decisions associated with a complete FTMS experiment
and we do not deeply address factors such as sample speetra);-whereas-between-peak-comparison-oceurs-between
differentieatures- Gz ormeleclarformulast-acrossthesame-speetras

TFhefirst implication-is-that+f preparation, choice of ionization mode, and instrument parameters-are-kept-eonsistent;

be&ween—peﬂéb&we%%mﬂpi&bmse&e%—b&agmheaﬂ%méma%b&méetemaﬂabl& pcc1ﬁc paramctc

optimization. These topics have been discussed in a recent review (Bahureksa et al., 2021).

2.1 Ionization BiasesEfficiency and Isomers
Electrospray ionization (ESI}L the most eemmeﬁyuasedcommon techmque for generatmg ions from NOM

{M:FGI-} W&ﬁméﬁh&mmﬁ&e%ﬁﬁeleﬂeyeﬁ, Lhe peak mlensny for any given melecule
dependsmolecular mass (or molecular formula) will depend on itsboth concentration and ionization efficiency, the
latter of which is dependent on structure pKa and the other molecules in the sample mat-r—ne&nd—eempesmeﬁ—(Kruve
etal., 2014) i urs-whenm a a

Impertantlyin-these-highly-complexIn NOM samples, one detected mass or peak eommenlty-combines signals from
multiple different-isomers;i-e- which all have the same molecular formula but with-a-different struetare—While
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thestructures. The different struetural-featuresstructures impact the-ionization efficiency-efa-given-molecule-the
recorded-speetrum-shows-the superposition-of these-isomers—Fo, but FTMS data contains no information about this

structural variation. Unfortunately, to date, no liquid chromatography (Kim et al., 2019; Han et al., 2021) or ion
moblhty separatlon (Tose etal., 2018; Leyva et al., 2020) techmque has ye_tdemonstrated sufficient resolutlon for

structural variation among isomers within complex NOM samples. Unknown variation in structure can, therefore,
lead to unknown variation in peak intensities. This challenge can be compounded by ionization suppression that
occurs when the ionization efficiency of one type of molecule (i.e., peak) is altered by the presence of other types of
molecules (Ruddy et al., 2018). Tonization suppression can be mitigated by online separation whereby non-targeted
LC-MS approaches may yield more quantitative data (Kruve, 2020), but matrix effects remain a significant issue
even for LC-MS (Trufelli et al., 2011). In NOM samples with thousands of types of orgamc molecules the
molecular formula-alonebut-wemusta aware-ofun ring subtleties-thatm . q
efinteractions likely have complex influences over realized ionization efficiencies. Whlle it is pomble to control for
some of these challenges (e.g., using consistent sample concentrations and preparations), many additional factors
(e.g. molecular formula-and-structures, pKas, and interactions among molecules in NOM samples) cannot yet be

accounted for. Interpretation of peak intensities within-samplessuch-as-the presence-ofisomersas proxies for

concentrations in FTMS datastreams may, therefore, be prone to uncertainty.

2.2 Ton transmission_and collection

In FTMS, packets of ions are accumulated-and-—-ceeled” in a trap prior to their transmission to the analyzer cell (Fig.
3 Panel A section d; Senko et al., 1997; Makarov et al., 2006). The duration of time in which ions are accumulated is
often varied to yield an optimal ion population for the analyzer cell;which-has-a-finitecharge-capaeity.. The
duration of this event has-been-directly-observed-to-can change the relative ien-pepulationsabundance, and thus
observed peak intensities of different ions (Cao et al., 2016). Thus,when-balaneing Increases in the need-for
eontroHedtrue abundance of other ions can decrease the measured peak intensity of a given ion due to a dilution
effect resulting from a finite number of ions that can fit within the ion pepulations—eritical-for-a-highreselution;
highfidelity measurement —and-minimaltrap. Additional challenges arise due to variation in ten-the speed at which
different ions move from the accumulation trap and into the analysis cell. Smaller ions move more quickly and
therefore reach the analysis cell sooner than larger ions. Variation in the accumulation time;-there-is-a-risk-of further

biasingthe relative-fon-intensities across samples and FTMS instruments, combined with among-ion variation in
transmission speed, can introduce additional uncertainty in the relationship between peak intensities and true

concentrations.
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ana a ¥ a As discussed above, different organic
compounds ionize with different efficiencies. In theory, this may lead to variation in observed peak intensities even
when all organic compounds have the same true concentration. To evaluate this theoretical expectation, we analyzed
several different types of organic compounds in different conditions via FTICR-MS. We selected chemical standards
which are natural products with molecular formula and chemistries typical of compounds commonly observed in
organic matter, and were amenable to negative mode ESI analysis. First, we analyzed three separate dilution ladders

of individual pure compounds dissolved in pure methanol. These standards were analyzed at higher concentrations
than typically observed for NOM because they were single compounds rather than formula-summed features (with
multiple isomers) within a NOM spectrum; higher concentrations were required to compensate for lower isomeric
diversity. These three compounds gave rise to different peak intensities under otherwise identical conditions (Fig.

4A). Trehalose, for example, had much lower peak intensity than sinapic acid at the same actual concentration. The

difference in signal intensity was also apparent amongst compounds that ionize well under negative mode ESI; for
example, two different structures containing the same number of carboxylic acid units exhibited differences in signal
intensity. We also observed differences in peak intensities amongst structural isomers (i.e., same molecular formula
and mass) (Fig 4B). Each peak observed via direct infusion FTICR-MS may be several isomers. These isomers may

be observable through chromatographic separation (Kim et al., 2019), ion mobility separations (Leyva et al., 2019),

or by statistical inference of tandem mass spectrometry (Zark et al., 2017). but not via direct infusion FTICR-MS.
We note that absolute differences in signal intensity may be smaller between molecules at lower concentrations, but

this does not necessarily mean that low intensity signals consistently indicate low concentrations and this does not

aid in quantitatively interpreting higher intensity signals. In summary, differences in peak intensities across organic
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compounds do not necessarily equate to differences in concentration, unless assessed via a calibration curve for each
compound.

3.2 Comparison of peak intensities in in real world samples

Routine NOM samples contain a diverse range of thousands of molecules of unknown structures and relative
concentratlons#uﬁhermof%sample& and often contain “inerganie’l norgamc 1nterferences such as salts. Reuﬂﬁely

depend—mg—eﬁ—t-hesorbem—er—resmSamplc clczm up that focuscs on pre- conccntratlon and dcsaltmg is imperfect

(Raeke et al., 2016; Li et al., 20175- , but is commonly
used to minimize inorganic interferences. Interactions among molecules remains a challenge, however, as discussed
above. The collection of molecules in a sample is referred to here as the ‘matrix.” To explore matrix effects and

Fo-explore-the-impaets-of matrix-effeets (Fig4C-E),0n peak intensities, we prepared solutions of six different pure
compounds at a fixed concentration (+60ppb100 ppb) in three different solvent systems - pure methanol, methanol
cluted from-elution-off-of a BondElut SPE cartridge, and methanol from elution off of a BondElut SPE cartridge
which had been loaded with artificial river water (ARW). Additionally, we added a complex mixture -that is often
used as a NOM standard, Suwannee River Fulvic Acid (SRFA), at six different concentrations, to each sample.
Again-samplesSamples were analyzed independently but contemporaneously on the same instrument to mirror a
real study.

In methanol--only solvent, with no additien-efadded SRFA, the six compounds —as-expeeted—yieldyielded different
signalpeak intensities (Fig. 4C), furtherconfirming-what-was-previously-ebserved:-which is consistent with results
from the previous subsection. As the concentration of SRFA iswas 1ncreased to 2 ppm, the relatlve 51gnal 1ntensrty
inereasesincreased for some of th
meleeu%ar—term&da—a%—tehes&spﬂeed—m—thc six compounds1 but deereasesdccrcascd for others Above 2 ppm of SRFA,
hewever—a}l-srgﬂalspeak intensities for oufrefereﬁeeall six compounds arewere substantlally decreased;-rrost-tikely

. Use of an ‘impure’ methanol solvent, i.e., the eluent from a SPE blank (Flg 4D) or from an SPE of artificial river
water (Fig. 4E), resultsresulted in se-further
decreases in peak intensities. In both cases, the maximum srgﬁai eak intensity rs«aﬂlrywas ~20% of what was seen in
pure methanol (F ig. 4C) méeaﬂng—ehakand some of the leaeha{%owesrduaatsalt&ﬁerw%l’—&pre&ee%wnpaeted

yielel-ing—peer—ersm compounds were no onger observed Addltlon of SRFA to these samp]es with ‘impure’

solvents, again, de

sgenerally. decreased Deak intensities.

Cumulatively:-Combining the empirical evideneeresults from this subsection and instramentaithe previous
subsection with instrument theory demenstrate-thatitis-not-pessible—with-discussed above suggests significant

uncertainty in relationships between true concentrations and peak intensities from direct infusion measurements-of

ea-l—rbr—at—reﬁFTICR MS. Calrbratlon curves wr-l-l—ﬁar—l—du%te—uﬁkﬂewncan be used in the slmplest ot situations, but may
be challenging when there are structural isomers and sample-to-sample variation in matrix composition;-ané
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. Modeling of
constramed systems may, however, howu er, allow for impreved;-data-driven and mechamstlc bdseekmﬁehme-}edﬁmgdata

normalization strategies for enhanced use of peak intensity data.

4 Conceptual implications for use of ecological metrics

The preceding sections haveshown-both-theoretically-and-empirically-that there-areindicate challenges towhen using
HRMSFTMS peak intensities as prox1es for relative changes in concentrations of organic molecules. The
implication is that 2 e s-ofsome ecologically-inspired analyses (e.g., Fig. H-thatare-orare-not
appropriate]l) may be Lhdllengmg to use with HRMSFTMS peak intensity data. To understand what-may-or-may

netwhich analyses could be a-valid-analysisitis-eritical- teimpacted, we differentiate analyses into two classes: those
based on within-peak intensity comparisons and those based on between-peak intensity comparisons (Fig. 2). As

noted above, within-peak is based on comparing the same feature (m/z or molecular formula) across spectra/samples,
whereas between-peak compares different features (m/z or molecular formulas) across and within spectra/samples.

Aﬂaiysech poslt that analysg,s usmg FTMS between peak intensity comparisons arecould have the mestlikely-to
5 sreatest uncertainty. Consider an ecological setting in which a

researcher aims to quantify within- sdmplc d1\ ersity (a-diversity) and among-sample diversity (B-diversity) (Fig. 1)
of tree communities (Fig. 5, left- side). The researcher will likely set up a plot of a given size and then directly count
the number of each tree species in each plot—Fhis-generates, thus generating the species-by-site matrix filled with
directly observed abundance counts for each species. Insuch-a-situation;theThe ability of the researcher to observe
individuals of each species does not vary appreciably across species because each tree is not moving and our ability
to see ita static object is not influenced by environmental factors. fa-turaThus, the number of individuals observed
for a given tree species is quantitatively comparable to the number of individuals observed for all other tree species
in the plot. The assumption that differences in observed abundances carry robust information about differences in
actual abundances is thus supported-, in this example. In turn, it is valid to use relative abundances to compute o-
diversity such as via Shannon evenness (Elliott et al., 1997; Mouillot and Leprétre, 1999; Redowan, 2015).
Furthermore, because the ability to observe each tree species is the same across communities—a-tu, it is valid to
use relative abundances to compute p-diversity (e.g., via Bray-Curtis; Anderson et al., 2011) or conduct any-other
ecological analysisanalyses that usesuse abundance data (e.g., species abundance distributions McGill et al., 2007).

We contrast this tree community example with another ecological setting. Consider a researcher studying bird
communities (Fig. 5, right side) that estimated species abundances solely based on the number of times an observer
hears the call of a given species. In this case, those species that call more frequently and/or more loudly ¢will be
more likely to be heardy;, and thus an observer will be-inferred-te-haveinfer a higher abundance even if all species in
the community have the same abundance. That is, such a method generates data that may indicate which species are
present, but the “call counts’ do not carry reliable information regarding absolute or between-species relative
abundances. Follow-on analyses of a-diversity and p-diversity should, therefore, be limited to approaches that use
presence/absence data, and species abundance distributions cannot be quantified.

If we continue with the bird community example and assume that the detectability of a given bird species is
consistent across sampled locations (or times};, then it would be appropriate to examine variation in within-species
call counts. This within-species analysis is directly analogous to the HRMSFTMS within-peak time series analysis
in Merder et al. (2021), discussed below. However, if call counts of a given species are suppressed by the presence/
or abundance of other species, then call counts of a given species demay not indicate an-inereasechanges in its
abundance. FhisThe call count example is directly analogous to influences of the ©MNOM matrix: if the
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presence/abundance of a given organic molecule modifies the ionization of other molecules, then within-peak
changes in intensity demay not indicate changes in theireoneentrations-concentration. In turn, analyses based on
within-peak intensity comparisons are-net-abways-vakdcould lead to error and uncertainty in values of computed
ecological metrics, especially if there are significant cross-sample changes in the ©MNOM matrix.

Unfertunatelyas-demonstratedAs described in the previous sections, HRMS-data-alien-with-the bird community
examples-and-neverreflect-the tree-community-example—The-the unique chemistry of every molecule fundamentatly
results-in-differentin a NOM sample can influence ionization properties for other molecules: in the sample. Thus,
FTMS data align with the bird community example rather than the tree community example, with the differing
physics of each molecule stronghy-influenecesinfluencing between-peak differences in peak intensity. Fhose
moleeulesMolecules that more readily ionize mere-easily-resultinwill produce higher peak intensities, which is akin
to bird species that-ecal-mere-frequentlywith noisier or more leudby-resulting-in-a-numerous calls producing a larger
number of “call counts—Ja-turn that do not accurately represent the underlying population distribution. Similarly,
between-peak differences in 1nten51ty as observed via FTMS cannot be directly used asa proxy to indicate between-
peak differences in concentration. 5 S

In contrast to between-peak comparisons, within-peak comparisons examine changes in_the relative intensity of a
single peak across samples. Such within-peak comparisons may be repeated independently for each peak of interest
in a given dataset. For example, Merder et al. (2021) quantified temporal dynamics of individual HRMSFTMS
peaks and then binned peaks into different groups with characteristic temporal fluctuations. In those analyses, peak
intensities were not compared between peaks. Instead, the temporal dynamics of each peak was compared to
temporal dynamics of other peaks. The underlying assumption of this type of analysis is that a between-sample
increase in the intensity of a given peak can be used as a robust proxy of a between-sample increase in concentration
of that peak. Materials presented in the previous sections indicate that this assumption can be met in some instances
when using HRMSFTMS data. However, great care is required with strong attention paid to assumptions of analysis
methods. For example, using Pearson correlation makes the assumption that concentration of a given peak is a linear
function of changes in its peak intensity. We showed above (Fig. 4) that this assumption is not always valid, even in
ideal conditions. Using a Spearman correlation avoids this assumption because it is based on ranks. That is, using
Spearman correlations (e.g., Kellerman et al., 2014) makesmake the more realistic assumption (for EFICR
MSFTMS data) that an increase in concentration of a given peak is reflected as an increase in its peak intensity;
without assuming any statistical or mathematical form of that relationship.

5 Quantitative

5 Ecological metrics using peak intensities are often robust

The previous sections shew-that-highlight challenges in connecting between-peak changes in peak intensity do-net
aeeuratelyrefleetto between-peak changes in abundance (Fig. 4). Fhis-violates-afundamentalThese challenges
violate an assumption of abundance based ecolog1cal analyses proxies effor abundance (e g peak intensity) st

b anetshould be used
&t—a%l—m—eeelegrea-l—aﬂa-lyses—proportlonal to truc abundanccs However th mapae&s—af—wel-&tme—m&a%umpﬂen—ha%

quantitative impacts of this situation likely vary

across ecological metrics and with study details. There may be certain metrics or situations in which robust

inferences can be made despite poor linkages between peak intensities and true abundances. These cases are

important to understand, especially given the growing number of publications thatuseusing peak intensities to
compute abundance-based ecological metrics-over-the-lastcouple-decad
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prOVIde an-initial evaluationguidance on best practices for using FTMS peak intensities with ccologlcal metrics, we
developed an in silico simulation model-+that. This model generates synthetic data, introduces speeifiekinds-oferror
commenly found-with HRMS-datasets(diseussed-abeve-in-detaily;errors that degrade the linkage between peak
intensity and true abundance, and computes within-sample (e.g., Shannon diversity) and between-sample (e.g.,
Bray-Curtis) ecological metrics (Fig. 6). FhisThe model allows fereemparisenus to probe how the introduction of
each typc of error 1mpact< thc rclanonshm between true va-l—uea—ea‘—t-hc—met-ﬁea—and the-values-observed after-each-type
atasetsvalues. To generate synthetic data, we
randomly assigned abundances to elther 100 or 1000 peaks Abundances were sampled with replacement from a
Gaussian distribution that varied in mean and standard deviation across synthetic samples and across simulation

iterations. Abundances were drawn twice to generate two independent samples per simulation, and the simulation
was run 100 times for each number-of-peaks (100 or 1000 peaks per sample; referred to below as ‘peak richness’).
Thereasonforvariationin-We varied the Gaussian distributions was-to generate synthetic samples that
variedvarying in composition within and across simulations to ensure that the ecological metrics (see below) would
vary across simulations. This step was necessary to evaluate how-biases-in-the-metries-variedmetric performance
across a broad range of metric values.

We simulated two types of error;-and which can both-ean be representative of variation in ionization efficiency. The
goal was to generate synthetic data that mimicked our empirical and theoretical observations that indicate noise in
the sense-thatrelationships between observed peak intensities did-netrefleetand true abundances. For each type of
error and within each iteration of the simulation, the error was introduced 100 times (i.e., 100 error iterations were
nested within each sample-generation iteration). The first type of error was designed to diminish the between-peak
relationship between observed peak intensity and true abundance. ForTo introduce this error, we multiplied the true
abundance of each peak by a random number drawn from a uniform distribution ranging from 0 to 100. The
inclusion of 0 indicates situations in which a given peak (i.e.. ion) does not ionize well enough to be observed. The

results should not be sensitive to the selected range, but as a sensitivity analysis, we also used a distribution of errors

ranging from 0 to 8. Our empirical data suggest that this narrower range is appropriate (Fig. 4B), but simulation

results were not affected by the selected error range (Supplementary Figs. S3-S8). For each peak we multiplied the
same random error teby its abundance in each of the two synthetic samples within each iteration. FheThis error-
modified abundance of each peak in each synthetic sample was considered to be the observed peak intensity. We
recognize that randomized errors do not perfectly reflect real-world variation in ionization efficiency. However,

because the true impacts of matrix effects and individual molecular chemistries in complex mixtures are currently

not known, the errors introduced in the model are simply used to diminish the relationship between observed peak
intensities and true abundances.

As-expeeted—introdueinglntroducing error resulted in a relatively weak relationship between observed peak intensity
and true abundance; (median R” = ~0.5: see black line in Figure 7), with the amount of error increasing with true

abundance (Fig. SHS1). This relationship additionally supports our inclusion of error into the model as a means to
simulate relatively weak relationships between observed peak intensity and a-medianR*-of~0-5(see-blackline-in
Figure-7)-true abundance. Between-peak differences in observed intensity were also weakly related to between-peak
differences in true abundance (Fig. 8A), with a median R? of ~0.5 (see blue line in Figure 7). Because the same
peak-level error-factor was used across both synthetic samples within a given simulation iteration, the within-peak

between-sample differences in observed intensity were relatively strongly correlated to within-peak between-sample
differences in true abundance (Fig. 8B8C), with a median R? of ~0.75 (see the gray line in Figure 7). As seen in
Figure 8C, the differences collapse when near zero. This phenomenon can be explained by the fact that when two

samples have essentially the same peak intensity for a given peak, introducing the same error to that peak in both
samples has little influence on the between-sample difference in peak intensity.

10
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The second type of error we introduced represents situations in which there-is~variation-in-ionization efficiency
varies across molecules — as in the first type of error — but-thatienization-efficieney-also-variesas well as across

samples. Molecules may varyexhibit variations in-their ionization efﬁc1ency across samples due to changes in the
composmon of orgamc moleculcs and/or changes in 1norgamc solutes. -85 > ¢

the matrix (see above). To account for these effects, we multiplied the true abundance of each peak by a random

number drawn from a uniform distribution ranging from 0 to 100-; for sensitivity analysis, we also used an error

distribution ranging from 0 to 8, which did not have meaningful influences on the results. For each iteration of the
simulation-this-was-dene, we introduced errors independently for beththe two synthetic samples. In this way, the
simulated ionization efficiency for a given peak in a given synthetic sample was independent of its ionization
efficiency in the other synthetic sample. Ia-turn-theThe error-modified abundance of each peak in each synthetic

sample was considered to be the observed peak intensity.

We observed a relatively large influence efon observed peak intensities when allowing ionization efficiency to vary
randemly-across samples. That is, the within-peak between-sample differences in observed intensity were relatively

weakly correlated to within-peak between-sample differences in true abundance (Fig. 8B8C), with a median R?of

~0.5 (see the red line in Figure 7). Comparing-thisCompared to the same relationship that emerged under the first
type of error-shews, our results show a much weaker relationship between peak intensity and true abundance when
ionization efficiency varies between samples (compare the gray and red lines in Figure 7). This result is expected, as
variationvariations in ionization efficiency-wil add random noise to the within-peak between-sample differences in
observed peak intensity. We note that the variation in ionization efficiency is independent between peaks for both
the first and second types of error. The between-peak relationship summarized in Figure 7 (blue line) is, therefore,
equivalent for both types of error, which is alse-shewnfurther supported by the strong similarity between
FigureFigures 8A and 8€8B.

To examine influences-ofhow both types of error eninfluence ecological metrics, we used the initial true abundances
and the error-modified abundances (i.e., observed peak intensity values) to calculate true and ‘observed’ values of
within-sample Shannon diversity and between-sample Bray-Curtis. We also assigned aan arbitrary trait value to each
peak and calculated true and observed sample-level mean trait values; the mean values for each sample were
weighted by true abundance (true mean) or observed peak intensity (observed mean). Fo-evaluate-biasesThis
analysis is analogous to the approach commonly used in ecological studies for computing community-level
abundance-weighted trait values, such as plant leaf area index or animal body size (Muscarella and uneertainty
introduced-by-beth-typesUriarte, 2016). This approach is also commonly used with FTMS data, such as sample-level
peak-intensity-weighted values of errer-wehydrogen-to-carbon ratios and molecular weight (Roth et al., 2019; Wen
etal., 2021). We regressed observed values for each-metrieShannon diversity, Bray-Curtis, and mean traits against
their true values—Fhis-was-dene, and performed this process independently for each level of peak richness-te

Relating ‘observed’ values of each metric to their true values revealed that the patterns observed in peak-intensity-
based ecological metrics are actually likely to be qualitatively robust;-even-thoueh despite the existence of
quantitative biases de-exist-(Figs. 9-11). All three ecological metrics showed monotonic relationships between
observed and true values. Uncertainty was lower when samples had 1000 peaks, relative to samples with 100 peaks;
in Figures 9-11 all A/B and C/D panels have 100 and 1000 peaks, respectively. MenotonieWe observed monotonic
relationships and lower uncertainty with more peaks-were-found for both within-sample and between-sample error;
in Figures 9-11 all A/C and B/D panels have within-sample and between-sample errors, respectively. For Shannon
diversity, observed values were consistently lower than true values, but all observed vs. true relationships were
linear (Fig. 9). For Bray-Curtis, inclusion of between-sample error resulted in an overestimation of values and non-
linear (but monotonic) relationships between observed and true values (Fig. 10). For mean trait values, the-observed
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values-had-uneertainty but there-werewe found no systematic quantitative biases, and the relationships between
observed and true values were consistently linear (Fig. 11). Furthermore,the

The variation in observed values explained by true values (v1a a linear model) increases rapidly with the number of
peaks sh as : and sharply asymptotes beyond
~500-1000 peaks per sample (Fig. S2). Sample-to-sample changes in the Va]ue of ecological metrics can, therefore

be interpreted with increasing confidence as the number of peaks increases. Qualitative gradients are, therefore

more robust with more peaks. The absolute magnitude of some ecological metrics, however, are shifted away from

their true magnitude even when there are large numbers of peaks (e.g., Fig. 10D). Quantitative comparisons from

one dataset to another may, therefore, require further simulation-based evaluation. We further caution that the
number of peaks needed to reach the asymptote, thereby minimizing error, is likely dataset dependent, and 500-1000
peaks should not be taken as a general rule- for real-world datasets. We encourage researchers to complete such
simulations using the numbers of peaks present across their own real-world datasets to better understand their ability
to make statistical and conceptual inferences.

6 Conclusions and Recommendations

There is mcreasmg mterest in using ecologlcal metrics with FTMS data to study erganie-matterNOM chemistry
s It is vital that this growmg body of work be based on rigorous
s0. This requires deep

use of the data
understanding of the metrics-themselves+full, awareness of the data | hmltatlonseﬁhe@%da&freﬂmass
speetrometers, and careful use of the metrics informed by the data limitations. We suggest that studies/publications
thatuse using FTMS peak intensities need to include material that directly discusses the data limitations, what peak
intensities do and do not represent (e.g., tree-like vs. bird-like data; Fig. 5), and how knowledge of those limitations
was used to select specific metrics.

We have provided both strene-theoretical reasoning and empirical observations showing that peak intensities do not
direetlynecessarily map to concentrations of the associated organic molecules within NOM-like complex mixtures of
organic molecules. This is particularly true for between-peak comparisons-ef-intensity, and statistical post-hoc
normalizations of peak intensity data do not solve this preblem-That-is;-there-are-no-situations-that-we-are-aware-of

mwvhieh hallenge We caution against using between- peak dlfferences in 1nten51ty md*eat%betweeﬂ—peak
A Sfrom

FTMS data eaﬂﬁe{—beuﬁed-to make direct mferences related to between -peak variationdifferences in abundance or
concentration. This means-that HRMS-data-are-unlikely-to-provide-informativehas implications for some ecological
analyses based directly on variation in species abundances. In particular, estimation of ‘species abundance
distributions’ isare likely to be invalidproblematic. Analyses that bin peaks into high and low abundance groups
based on between-peak differences in concentration are;tikewisealmost-eertainly-invalid: also likely to be
problematic. We did not directly evaluate these types of analyses:-hewever, and we suggest that future work should
expand upon the ecological metrics examined here via simulation.

While eertain-there are challenges and limitations in the use of ecological analyses-of HRMSmetrics with FTMS
data-are-tikely-to-be-invalid, we foundshow that there is a tangible path forward. In particular, our simulation model
revealed good performance of some common memes—"lihese wloglcal metrlcs wereoriginally-designed-to-use
someof a-diversity, p-
dlversny, and functlonal trait Mes—afe—méely—te—wewée%#&hd-emwe—p&&ems#hwevalues We infer that
conceptual and mechanistic inferences are likely to be valid when based on analyses such as comparing peak-
intensity-based ecological metrics across experimental treatments or variation along environmental gradients. The
performance of intensity-weighted mean trait values was particularly good in terms of both qualitative and

quantitative aspects. We emphasize that we studied a small set of metrics (Shannen-diversity, Bray-Curtisand
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intensity-weighted-trait-values)-and our inferences only extend to these metrics. Fortunately, it is-relatively

straightforward to extend the simulation model to additional metrics (e.g., Hill numbers; Hill, 1973) and analyses
(e.g., species abundance distributions; McGill et al., 2007)-ard-we). We suggest that users of &uehmwm
to-use-additionalFTMS data do this before applying abundance-based ecological metrics/analyses-tes
simulation-models-before-applying- to real-world datasets. This will provide objective g,uldance on how to use (dnd
whether to aseertain-i-theseavoid) specific metrics hold-given-the known biases-in-these-analyses-and-metriesfor
specific FTMS datasets.

To enable robust use of HRMSFTMS peak intensity data in future studies, we recommend use-of and further
development of the simulation model developed here. The simulation model is the only tool we are aware of that can
provide objective guidance-on-whatanalyses-arenotvalidand-thelevelevaluations of uncertainty and potential
biases associated with valid-analyses—ttshould-using FTMS peak intensities to compute ecological metrics. The
model should not be taken as a static or mature tool, however. The-model should-be-expanded-inanumberofways

by-ineludingWe encourage future work to expand it to include additional ecological metrics/analyses, situations with

more than two- samples, sample-sitaations-to-sample variation in peak richness, links between peak richness and
peak intensity, other ways of modeling error, and measured levels of error between concentrations and peak
intensities. ThisThese evaluations are outside of the scope of this work, but will be straightforward to include in

future versions of the simulation model. Such additions will allow each study to customize the model for their
specific application. It should be possible to include the number of samples, the number of peaks in each sample, the
peak intensity distributions, number of replicates, and the specific ecological analyses that will be applied. In turn,
simulation model outcomes can provide objective guidance tailored to each study. One may think of the resulting
guidance as akin to a power analysis whereby the simulation can indicate what can and cannot be inferred from a
given dataset. For example, the model indicates that observed Bray-Curtis values have little to no correspondence to
true values when Bray-Curtis is below ~0.2 (Fig. 10B, D). Bray-Curtis near and below ~0.2 are commonly observed
in HRMSFTMS studies (e.g., Hawkes et al., 2016; Derrien et al., 2018; Bao et al., 2018), and this disconnect
between observations and truth is maintained even with 1000 peaks per sample (Fig. 10D). In turn, HRMSFTMS
studies that observe Bray-Curtis below ~0.2 may not be able to use those observations to make valid conceptual
inferences. However, quantitative guidance must be developed for each study and we recommend that a version of
the simulation model should be used by all-future studies using peak intensities to conduct ecological analyses of
HRMSFTMS data. It may be that in time we understand the general rules well enough to leave the 51mulat10n
behind, but for now, fa 5 astirk ¢ ahyses . aHy—s

suggest its use is warranted to ensure robust inferences.

In addition to further use and development of the simulation model, we recommend translation of other modeling
approaches for use with HRMSFTMS data. Two potential approaches are based in machine leammg and
h1erarch1cal modelmg Machme learmng could be used + > ochsysters st

eeuldto model the instrument response for a diverse chemical space in typical environmental samples to learn how

measured signal intensities may relate to startingtrue concentrations. Even if such a model does not yield high-
accuracy results, it may nonetheless help understand error—”blases— and prowdc 1ddmonal nuldanu for robust use of
peak intensity data.
apphea&en%ﬂ%ﬂmﬁy&temﬂuld—b&ww Potentlally in concert with machlne learnmg, hlerarchlcal modeling
could be translated from its application in ecological analyses (Iknayan et al., 2014) for use with HRMSFTMS. This
approach has been used to model sources of error that lead to variation in detectability across biological species,

such as variation in species visibility (e.g., Dorazio and Royle, 2005). In turn, data can essentially be corrected by
accounting for the modeled sources of error (Roth et al., 2018), even revealing ‘hidden diversity” (Richter et al.,
2021). There are likely direct analogs to FTMS data in terms of variation among molecules in detectability due to

variation in ionization and molecular interactions discussed in previous sections. Machine learning could be used to
understand sources of error and, in turn, inform hierarchical models aimed at improving the mapping between peak
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intensity and concentration. If successful, this Would increase the quality of information prov1ded by peak intensities
in both existing and future datasets;

In summary, HRMSFTMS has many strengths and weaknesses just like any analytical platform. Other types of
compositional data also contain biases and uncertainties, such as the lack of true quantitation in sequence-based
microbiome data (Gloor et al., 2017). Careful use of FTMS peak intensity data informed by objective, model-based
guidance can overcome some of its weaknesses. Despite-peakintensitiesnotWe encourage further development of
the model presented here and inclusion of additional methods developed to address issues that arise in similar data

types (e.g., Gloor et al., 2017; Hardwick et al., 2018; Vieira-Silva et al., 2019). While these are important directions,
we emphasize that despite peak intensities not necessarily reflecting concentrations, ecological metrics overall
appear to perform well. This is likely due to the law of large numbers as HRMSFTMS, especially FTICR MS,

datasets often contain 1000 or more peaks per sample. Our simulation results indicate that large numbers of
identified peaks allow ecological metrics to essentially track towards their true valuevalues. We are encouraged by
this outcome and look forward to further applications of ecological metrics, concepts, and theory to erganie
matterNOM chemistry.

7 Code Availability: R code for running the simulation models is available on GitHub:
https://github.com/stegen/Peak Intensity Sims. Python code used to process the empirical data and to generate the

associated figures will be available upon publication.

8 Data Availability: Raw and processed data will be made publicly available upon manuscript acceptance.
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Figure 1. Ecological concepts of a-diversity and B-diversity. Each gray box represents a sample of an ecological community
or collection of organic molecules (i.e., an OM assemblage). Symbols represent individual organisms or molecules. Different
biological or molecular species are represented by a combination of shape and color. (Top) Each sample has one biological
species (red circles) or one chemical species (red bar), and the species are the same within and between the samples. This
reflects minimal a-diversity because there is a single species. This also reflects minimal B-diversity because there is no
difference in which species are present in each sample. (Bottom) Each sample has five species (biological or chemical)
represented by different colors and symbols. There are no shared species between samples. This reflects maximum o-diversity
because every individual is a different species within each sample, and maximum B-diversity because there are no species
shared between samples. In real ecological and OM samples, a-diversity and B-diversity fall between these extremes.
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Figure 2. Summary of within-peak and between-peak comparisons of peak intensity. Two idealized mass spectra (i.e.,
from two samples) are shown with each peak defined by a mass-to-charge ratio (m/z) and represented by a different color. The
intensity of each peak in each sample is represented by the height of each colored bar. Within-peak comparisons of intensity
are based on comparing intensities at the same m/z across two or more samples. Between-peak comparisons of intensity are
based on comparing intensities at two or more m/z values. Between-peak comparisons can be done within a sample (as shown)
or between samples (not shown).
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Figure 3. Illustrative example of a generic FTICR mass spectrometer (panel A), showing common and key biases
between FTICR signal intensity and m/z of ions (B-E). Panel A shows the major elements of a generic FTICR mass
spectrometer (based loosely on a Bruker solariX FTICR MS geometry). Panel A elements include; a - atmospheric pressure
ionization source (i.e. ESI source), b - source ion optics (i.e. dual ion funnels), ¢ - mass selecting quadrupole, d - collision cell,
e - transfer multipoles to ICR cell, f- ICR cell. Dashed line indicates the magnetic field. Note: diagram is deliberately
simplified and not to scale. Panel B) demonstrates the time-of-flight bias along the transfer multipoles (e) in the ‘flight tube’,
from the collision cell (d) to the ICR cell (f). Lower m/z ions travel faster, as indicated by the smaller icons reaching the ICR
cell first. Ions are shaded to aid visualization. Panel C) visualizes the effect of a variable excitation radii for ions of different
masses, as may happen with a CHIRP excitation pulse. Lower m/z ions are closer to the detection electrodes (shaded in gray)
and therefore will induce a larger image current. Note also the ion populations have been adjusted from B) to indicate biases
from the time-of-flight effect. Panel D) shows the time-domain recorded signal intensity against time, with the ions having an
initial intensity roughly proportional to the number of ions in that cloud. However, as time progresses the less abundant ion
clouds lose coherence and destabilize more rapidly, resulting in an attenuation of their signal. Note that the real signal would
follow a damped sinusoidal function; here an absolute value approximation is shown for simplicity. Panel E) shows the mass
spectrum post-Fourier transform, demonstrating that the impact is not only on intensity (peak height), but also resolution (peak
width). In all cases, effects are deliberately exaggerated and not-to-scale to aid interpretation.
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Figure 4 - A) Barplot visualization of the relationship between signal intensity (relative intensity) and concentration of analyte
for three chemically distinct molecules analyzed contemporaneously but independently in pure methanol solvent. Relative
intensity indicates data were scaled to the largest signal in any replicate from the associated series of spectra. Replicates are
combined to show their mean and 95% confidence interval. B) As with A), but for three structural isomers of chlorogenic acid.
C-E) Compounds spiked into three different solvent matrices (methanol, BondElut methanol, and BondElut artificial river
water (ARW)) at a fixed concentration (+00ppb100 ppb), but with addition of SRFA at varying concentrations from 0 to
40ppm40 ppm. In all cases, [M-H]- ion only is shown, but other ions (i.e. [M+Cl]-) were detected. 95% confidence intervals

represent the results of triplicate measurements. Intensities have been scaled per plot for A and B, and are on the same scale
for C-E).
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Figure 5. Graphical summary of how HRMSETMS peak intensity data are often treated (left), which is distinct from
the reality of those data (right). When surveying the number of individuals of each species within a tree community, there is
good confidence that the measured abundances are close to real abundances. This is because there is relatively little variation
across species in the ability to detect individuals. HRMSFTMS peak intensity data are often used as though they are like tree-
community data. However, HRMSFTMS data are more like bird-community data. That is, the ability to detect different
species varies due to intrinsic factors (e.g., activity patterns, how loud and often birds call, etc.) and extrinsic factors (e.g.,
habitat structural complexity, predator-induced behavioral changes, etc.). Similarly, the intrinsic physics of a given molecule
will impact its ability to ionize and thus its observed peak intensity, and in environmental samples there are thousands of
molecular species that impact the ionization ‘behavior’ of each other. HRMSFTMS data being more bird-like than tree-like
needs to be accounted for when performing ecological analyses using HRMSFTMS data.
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Figure 6. Flow diagram for the in silico simulation model. The model was used to evaluate how ecological metrics are
impacted by variation in ionization across organic molecules (i.e., peaks). The true peak intensities are what is expected if
intensity is linearly to concentration, and all peaks fall along the same linear function. Variation in ionization adds error
around this idealized linear relationship. The error is modeled in two ways: the error applied to a given peak is either the same
between samples (i.e., there are no variable matrix effects on ionization) or varies randomly between samples (i.e., there are
variable matrix effects on ionization). In the lower tables the proportional error applied to each peak is provided
parenthetically. The tables are for demonstration and show only three peaks per sample. The number of peaks per sample was
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Figure 7. Variation in observed intensity explained by true abundance. Kernel density functions are shown for different
relationships and types of error. Density functions were fit using R? values collated from across simulation iterations. Higher
R? values indicate a stronger link (i.e., lower uncertainty) between observed intensities and true abundances. Black is for the
relationship shown in Figure S1. Blue is for between-peak within-sample differences (example relationships shown in Figures
8A,EB). Gray is for within-peak between-sample differences when the same peak-level error was used for both synthetic
samples within a given simulation iteration (example relationship shown in Figure 8B8C). Red is for within-peak between-
sample differences when different peak-level error was used across the synthetic samples within a given simulation iteration
(example relationship shown in Figure 8D). While there are central tendencies in all four distributions, there is also significant
variation in the degree to which observed intensities reflect true abundances.
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Figure 8. Observed differences in peak intensity as a function of true differences in peak intensity across both within-
peak and between-peak comparisons and across both kinds of error. (A) Between-peak differences with the same error
applied to a given peak between samples. — e S = ek e - -
samples—C(B) Between-peak differences with different errors applied to a given peak between samples. (C) Within-peak
differences with the same error applied to a given peak between samples. (D) Within-peak differences with different errors
applied to a given peak between samples. On all panels the red line represents the linear regression model, and the associated
R? value is provided.
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Figure 9. Shannon ¢-diversity that includes simulated error regressed against true Shannon, across different scenarios.
(A) The same error applied to a given peak between samples, and 100 peaks per sample. (B) Different errors applied to a given
peak between samples, and 100 peaks per sample. (C) The same error applied to a given peak between samples, and 1000
peaks per sample. (D) Different errors applied to a given peak between samples, and 1000 peaks per sample. On all panels the
red line represents the one-to-one line and the dashed line is a spline fit to the data. All data are from the simulation model.
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Figure 10. Bray-Curtis dissimilarity as a measure of B-diversity that includes simulated error regressed against true
Bray-Curtis, across different scenarios. (A) The same error applied to a given peak between samples, and 100 peaks per
sample. (B) Different errors applied to a given peak between samples, and 100 peaks per sample. (C) The same error applied
to a given peak between samples, and 1000 peaks per sample. (D) Different errors applied to a given peak between samples,
and 1000 peaks per sample. On all panels the red line represents the one-to-one line and the dashed line is a spline fit to the

data. All data are from the simulation model.
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Figure 11. Mean peak-intensity-weighted trait values that include simulated error regressed against true mean peak-
intensity-weighted trait values, across different scenarios. (A) The same error applied to a given peak between samples,
and 100 peaks per sample. (B) Different errors applied to a given peak between samples, and 100 peaks per sample. (C) The
same error applied to a given peak between samples, and 1000 peaks per sample. (D) Different errors applied to a given peak
between samples, and 1000 peaks per sample. On all panels the red line represents the one-to-one line and the dashed line is a

spline fit to the data. All data are from the simulation model.
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