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Abstract Earth’s biogeochemical cycles are intimately tied to the biotic and abiotic processing of organic matter 15 
(OM). Spatial and temporal variation in OM chemistry is often studied using direct infusion, high resolution Fourier 16 
transform mass spectrometry (HRMSFTMS). An increasingly common approach is to use ecological metrics (e.g., 17 
within-sample diversity) to summarize high-dimensional HRMSFTMS data, notably Fourier transform ion cyclotron 18 
resonance MS (FTICR MS). However, problems can arise when HRMSFTMS peak intensity data are used in a way 19 
that is analogous to abundances in ecological analyses (e.g., species abundance distributions). Using peak intensity 20 
data in this way requires the assumption that intensities act as direct proxies for concentrations, which is often 21 
invalid. Here we discuss theoretical expectations and provide empirical evidence why concentrations do not map to 22 
HRMS peak intensities. The theory and data. Here we show that comparisons of the same peak across samples 23 
(within-peak) may carry information regarding variation in relative concentration, but comparing different peaks 24 
(between-peak) within or between samples does not. We further developed a simulation model to study the 25 
quantitative implications of using peak intensities to compute ecological metrics that rely on information about both 26 
within-peak and between-peak errors that decouple concentration from intensity. These implications are 27 
studiedshifts in terms of commonly used ecological metrics that quantify different aspects of diversity and functional 28 
trait values.relative abundance. We showfound that despite the poor linkages betweenanalytical limitations of 29 
linking concentration andto intensity, the ecological metrics often perform well in terms of providing robust 30 
qualitative inferences and sometimes quantitatively-accurate estimates of diversity and trait values.molecular 31 
characteristics. We conclude with recommendations for usingrobust use of peak intensities in an informed and 32 
robust way for natural organic matter studies. A primary recommendation is the use and extension of the simulation 33 
model to provide objective, quantitative guidance on the degree to which conceptual and quantitative inferences can 34 
be made for a given analysis of a given dataset. Without objective guidance, researchers thatBroad use peak 35 
intensities are doing so with unknown levels of uncertainty and bias, potentially leading to spuriousthis approach can 36 
help ensure rigorous scientific outcomes from the use of FTMS peak intensities in environmental applications. 37 

1 Introduction 38 

Organic matter (OM) plays a central role in Earth’s biogeochemical cycles, and is both a resource for and product of 39 
metabolism. The detailed chemistry of OM (e.g., nominal oxidation state) can modulate and reflect biogeochemical 40 
rates and fluxes within and across ecosystems (e.g., LaRowe and Van Cappellen, 2011; Boye et al., 2017; 41 
Garayburu-Caruso et al., 2020), yet our understanding of this complexity is limited by our analytical abilities to 42 
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view it (Steen et al., 2020; Hedges et al., 2000; Hawkes and Kew, 2020a). Given the importance of OM chemistry to 43 
biogeochemical cycling, there is a need to understand how and why that chemistry varies through space and time. 44 
To help meet this need, there has been growing interest in using concepts and methods from ecology to study the 45 
chemogeography and chemodiversity of OM in a variety of ecosystems (e.g., Kujawinski et al., 2009; Kellerman et 46 
al., 2014; Tanentzap et al., 2019; Danczak et al., 2021). This is a promising approach as there are many conceptual 47 
parallels between the chemical species that comprise OM and the biological species that comprise ecological 48 
communities (Danczak et al., 2020). 49 
 50 
The most fundamental ecological data type is the species-by-site matrix. This matrix indicates how many individuals 51 
of each species occur in each sampled community. Ecologists use species-by-site matrices to ask myriad questions 52 
related to biological diversity. Two common analyses are known as α-diversity and β-diversity, and there areeach 53 
with numerous metrics for each (Whittaker, 1972; Anderson et al., 2011). α-diversity measures the diversity within a 54 
given community. β-diversity has been variously defined, but essentially measures variation in composition across 55 
communities. Both α-diversity and β-diversity can be quantified using presence-absence data or they can include 56 
estimates of each species’ relative abundance within and between communities (Fig. 1). 57 

 58 
The chemistry of OM is commonly studied using high resolution mass spectrometry (HRMS) techniques (e.g., 59 
Hawkes and Kew, 2020b). Specifically, Fourier transform mass spectrometry (FTMS) techniques are predominantly 60 
used, i.e.,(e.g., Hawkes and Kew, 2020b), such as Orbitrap or Ion Cyclotron Resonance (ICR) MS, via direct 61 
infusion of samples. At present, the highest resolution approach for untargeted analysis of OM is via a 21 Tesla 62 
FTICR MS (Marshall et al., 1998; Shaw et al., 2016; Smith et al., 2018; Bahureksa et al., 2021). The output data 63 
produced is a spectrum containing peaks represented by a signal intensity (Fig. 2 y-axis) and a mass-to-charge ratio 64 
(m/z) (Fig. 2 x-axis), which is equivalent to the mass for singly charged ions as routinely detected in natural organic 65 
matter (NOM) measurements. In turn, regardless of the type of MS instrument used, the MS data inherently lead to 66 
an OM peak-by-sample data matrix, akin to an ecological species-by-site data matrix. The high resolution data from 67 
MS often results in a large matrix, wherein a single sample may contain thousands to tens of thousands of peaks. To 68 
take advantage of these rich data, HRMSFTMS data have been analyzed using the same α-diversity and β-diversity 69 
metrics that are commonly used by ecologists to study biological diversity (e.g., Kellerman et al., 2014). This isSuch 70 
analyses are exciting, as it allowsthey enable the same conceptual questions and quantitative frameworks to be 71 
applied to biological (e.g., microbial communities) and chemical (i.e., OM) components that directly interact with 72 
each other within ecosystems (Lucas et al., 2016; Osterholz et al., 2016; Li et al., 2018; Tanentzap et al., 2019; 73 
Danczak et al., 2020, 2021). 74 
 75 
The use of ecological metrics with MS data is particularly common with FTMS datasets, and containsthere is great 76 
potential to continue leveraging concepts from ecology in high-resolution OM analyses. However, when Care is 77 
required, however, in using FTMS peak intensity data are used in the estimations ofto estimate α-diversity, β-78 
diversity, and related ecological analyses (e.g., ‘species’ abundance distributions), potential problems can arise. At 79 
the root of ). Key to these problems lies ecological analyses is the assumption that within complex NOM samples, 80 
differences in peak intensity are proportional to differences in concentrations of the associated molecules. 81 
Consequently, the Studies using FTMS often avoid using peak intensities due to uncertainties in whether it is valid 82 
to assume proportionality between peak intensities and concentrations within and across NOM samples (Kujawinski, 83 
2002). These studies may be discarding useful information, though it is unclear what biases and uncertainties are 84 
introduced by relying on this assumption are unclear. In certain situations, however, peak intensity-based ecological 85 
analyses of MS data can provide valid information—even when the underlying assumption is invalid—and the 86 
extent to which such situations exist is likewise unclear.into ecological metrics when using FTMS peak intensities. 87 
To help advance the robust use of FTMS datasets that has been emerging in environmental science studies over the 88 
last few decadesfor NOM studies, we review the theoretical reasons why between-peak intensities domay not 89 
correspond to differences in concentrationreflect true concentrations, provide empirical support for our assertions, 90 
use evaluation of this theory, and invoke in silico studiessimulation to quantify the associated impacts on ecological 91 
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analyses, provide . While theory and empirical analyses demonstrate disconnects between peak intensities and 92 
concentrations in FTMS data, the simulations show that ecological metrics are often still robust. We end with 93 
practical recommendations, and propose a path forward that may eventually enable improved usagefor increasing 94 
robust use of FTMS peak intensities for quantificationNOM studies.  95 

2 Theoretical LimitationsFoundations 96 

To address Here we provide a review of the theoretical foundations behind why assuming proportionality between 97 
peak intensities and concentrations in FTMS cannot be used to infer between-peak changescan be challenging. This 98 
section will be of most value to FTMS data users that are not formally trained in concentration, we review critical 99 
theoretical concepts about mass spectrometry., and serves as a review of mass spectrometry principles (see also 100 
Kujawinski, 2002; Urban, 2016; Bahureksa et al., 2021). We focus on FTMS (i.e., FTICR and Orbitrap), but many 101 
of the principles and limitations—especially ionization and ion transmission—are applicable across all MS 102 
platforms. In this section, weWe highlight three main mass spectrometry considerations: ionization, ion transfer, and 103 
ion signal detection in the context of a generalized commercial FTICR mass spectrometer. Theoretical limitations 104 
have two mainFTMS instruments. These considerations have practical implications tied to within-peak and between-105 
peak comparisons (Fig. 2). Here, we define ‘within-peak comparisonpeak’ as comparing peak intensities of the same 106 
feature (i.e., m/z or molecular formula) across different sample spectra (i.e., within two or more and ‘between-peak’ 107 
as comparing peak intensities across different features. As discussed below, within-peak comparisons can be robust 108 
under certain situations, but there are limitations with between-peak comparisons that may be unavoidable. The 109 
following discussion is not an exhaustive treatment of all decisions associated with a complete FTMS experiment, 110 
and we do not deeply address factors such as sample spectra), whereas between-peak comparison occurs between 111 
different features (m/z or molecular formulas) across the same spectra.  112 
 113 
The first implication is that if preparation, choice of ionization mode, and instrument parameters are kept consistent, 114 
within-peak/between-sample biases are minimized, though between-peak/within-sample biases are inherently 115 
unavoidable. The second implication is that because of inherent sample and matrix variation and subsequent effects, 116 
between-peak/between-sample biases can be significant and may be indeterminable. specific parameter 117 
optimization. These topics have been discussed in a recent review (Bahureksa et al., 2021). 118 

2.1 Ionization BiasesEfficiency and Isomers 119 
Electrospray ionization (ESI),) is the most commonly usedcommon technique for generating ions from NOM 120 
samples, is a ‘soft’ ionization technique that predominantly yields intact molecular ions. Generally,. When using ESI 121 
of NOM samples produces protonated or deprotonated ion types (positive or negative polarity, respectively), which 122 
can only be formed if some pre-existing basic or acidic functionality is available in the molecule to support this. ESI 123 
also commonly produces adduct ions, such as sodium adducts [M+Na]+ in positive mode and chloride adducts 124 
[M+Cl]- in negative mode. The ionization efficiency of , the peak intensity for any given molecule 125 
dependsmolecular mass (or molecular formula) will depend on itsboth concentration and ionization efficiency, the 126 
latter of which is dependent on structure, pKa, and the other molecules in the sample matrix and composition (Kruve 127 
et al., 2014). Ionization suppression occurs when multiple species are present in a sample, and the ionization 128 
efficiency of one analyte is altered by the presence of another (Ruddy et al., 2018). These issues all confound when 129 
dealing with complex samples with unknown compositions. While users can apply controls to account for some 130 
matrix differences (concentration, solvent, pH), the unknown (and unknowable) differences in molecular 131 
composition of complex mixtures cannot be accounted for, and therefore comparison of peak intensities in different 132 
samples is prone to uncertainty.  133 
 134 
Importantly, in these highly complexIn NOM samples, one detected mass or peak commonly combines signals from 135 
multiple different isomers, i.e.,  which all have the same molecular formula but with a different structure. While 136 
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thestructures. The different structural featuresstructures impact the ionization efficiency of a given molecule, the 137 
recorded spectrum shows the superposition of these isomers. To, but FTMS data contains no information about this 138 
structural variation. Unfortunately, to date, no liquid chromatography (Kim et al., 2019; Han et al., 2021) or ion 139 
mobility separation (Tose et al., 2018; Leyva et al., 2020) technique has yet demonstrated sufficient resolution for 140 
the most complex of samples (such as NOM), instead yielding broad distributions in these orthogonal dimensions. 141 
Therefore, not only must we apply extreme caution in inferring chemical properties from to completely infer 142 
structural variation among isomers within complex NOM samples. Unknown variation in structure can, therefore, 143 
lead to unknown variation in peak intensities. This challenge can be compounded by ionization suppression that 144 
occurs when the ionization efficiency of one type of molecule (i.e., peak) is altered by the presence of other types of 145 
molecules (Ruddy et al., 2018). Ionization suppression can be mitigated by online separation whereby non-targeted 146 
LC-MS approaches may yield more quantitative data (Kruve, 2020), but matrix effects remain a significant issue 147 
even for LC-MS (Trufelli et al., 2011). In NOM samples with thousands of types of organic molecules, the 148 
molecular formula alone, but we must also be aware of underlying subtleties that may distort comparisons 149 
ofinteractions likely have complex influences over realized ionization efficiencies. While it is possible to control for 150 
some of these challenges (e.g., using consistent sample concentrations and preparations), many additional factors 151 
(e.g. molecular formula and structures, pKas, and interactions among molecules in NOM samples) cannot yet be 152 
accounted for. Interpretation of peak intensities within samples such as the presence of isomersas proxies for 153 
concentrations in FTMS datastreams may, therefore, be prone to uncertainty.  154 

2.2 Ion transmission and collection 155 
Before ions can be detected in the (ion) trap, they must be transmitted from the instrument source to the trap. Ion 156 
transmission, including ion accumulation, is not unbiased. Ions are manipulated through the instrument ion optics, 157 
across differential pressure regimes, using radiofrequency (RF) and direct current (DC) potentials to guide, focus, 158 
and accumulate the ions. The specific values of these parameters have effects on the mass ranges transmitted. 159 
Further, the specific timings, geometries, and vacuum regimes all have effects upon ion transmission efficiency and 160 
biases. For this reason, quantitative comparison of intensities across widely differing m/z is not directly possible. 161 
 162 
In FTMS, packets of ions are accumulated and ‘cooled’ in a trap prior to their transmission to the analyzer cell (Fig. 163 
3 Panel A section d; Senko et al., 1997; Makarov et al., 2006). The duration of time in which ions are accumulated is 164 
often varied to yield an optimal ion population for the analyzer cell, which has a finite charge capacity.. The 165 
duration of this event has been directly observed to can change the relative ion populationsabundance, and thus 166 
observed peak intensities of different ions (Cao et al., 2016). Thus, when balancing Increases in the need for 167 
controlledtrue abundance of other ions can decrease the measured peak intensity of a given ion due to a dilution 168 
effect resulting from a finite number of ions that can fit within the ion populations - critical for a high resolution, 169 
high fidelity measurement - and minimaltrap. Additional challenges arise due to variation in ion the speed at which 170 
different ions move from the accumulation trap and into the analysis cell. Smaller ions move more quickly and 171 
therefore reach the analysis cell sooner than larger ions. Variation in the accumulation time, there is a risk of further 172 
biasing the relative ion intensities across samples and FTMS instruments, combined with among-ion variation in 173 
transmission speed, can introduce additional uncertainty in the relationship between peak intensities and true 174 
concentrations.  175 
 176 
Finally, time-of-flight biases come into play in FTICR MS. Ions are transmitted from the ion accumulation trap to 177 
the ICR cell along one or more transfer multipoles (Fig. 3 Panel A section e). The distance between ion 178 
accumulation trap and ICR cell may be quite long, e.g., 2.4 meters on a 21 Tesla instrument (Shaw et al., 2016), and 179 
therefore the time required for ions to travel this distance (the ‘time-of-flight’, a millisecond or longer) may cause 180 
dispersion in the ion packet (Fig. 3 Panel B). While the packet of ions may leave the accumulation trap 181 
simultaneously, because smaller ions travel faster the packet arrives at the analyzer cell as a dispersed distribution of 182 
ions. Therefore, only a subset of this population, with regards m/z-range and ion energies, is optimally trapped in the 183 
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ICR cell. Thus, these biases in ion transmission do not allow for quantitative comparison of peak intensities between 184 
ions with differing m/z ratios. 185 

2.3 Ion signal detection 186 
To directly use FTMS peak intensities quantitatively, we must first understand how those intensities arise and the 187 
biases which can affect them. In ion trapping measurements, such as FTICR and Orbitrap MS, the motion of ions 188 
within a static magnetic (ICR) or electric (Orbitrap) field induces an image current upon The final step in data 189 
collection via FTMS is signal detection electrodes. The frequency of this motion is proportional to the mass-to-190 
charge ratio (m/z) of the ion, while the. The intensity of the signal is proportional to the abundance of thea given ion 191 
in the trapanalysis cell, the proximity of the ionions to the electrodedetector (Kaiser et al., 2013), and the ion charge 192 
state of the ion (Wörner et al., 2020). Thus, at a first approximation, the signal intensity between Similar to 193 
molecular interactions impacting ionization efficiencies, different m/z ions could be compared provided they are 194 
excited to the same radius (ICR) and have the same charge state (Fig. 3 Panels B, C). However, these provisions are 195 
not always met. Ions with very close frequencies, which are not fully resolved, may types of ions can interact to 196 
affect each other’s signal intensity, and the. The Fourier transform does not allow forapplied to the data also 197 
complicates extremely accurate relative quantification of ion abundance between peaks (Makarov et al., 2019). With 198 
FTICR, most commercial (e.g., Bruker) instruments use a CHIRP, or frequency-swept, excitation pulse which does 199 
not excite all ions to exactly the same radii (Kaiser et al., 2013). In addition, while most ions in NOM mass spectra 200 
are singly charged, some mass spectra contain multiply charged interferences (Smith et al., 2018; Patriarca and 201 
Hawkes, 2021). Still, in both instrument types, signal intensities may be used to describe the ion populations 202 
quantitatively provided that the charge states are the same, a flat-excitation profile is used (or the ions are 203 
sufficiently close in frequency space such that they are excited to the same radii), and the user clearly understands 204 
that the ion population in the trap may not accurately reflect the molecular composition of the sample. 205 
 206 
Within a well-designed experiment and a constrained sample set, many of these points may be mitigated. However, 207 
objectively proving the degree of mitigation is non-trivial, and there remains great These challenges at the detection 208 
stage can add more uncertainty aboutto the relationship between peak intensity and molecular concentrations, 209 
particularly for complex matrices such as NOM. Furthermore, as shown in a recent interlaboratory study (Hawkes et 210 
al., 2020), measuring the same samples with different instrumentation can lead to differing results, thus further 211 
highlighting potential pitfalls in quantitative analysis of these dataNOM samples. 212 
 213 
3 Empirical LimitationsEvaluations 214 
Despite the aforementioned fundamental and  215 
In this section, we move beyond theoretical limitations and uncertainties in using peak intensity data, it is still 216 
helpfulconsiderations to demonstrate these limitations with empirical evaluations of the real-world empirical 217 
measurements. In this section, we demonstrate, with ideal and non-ideal samples, the non-quantitative nature of 218 
these measurements.relationships between peak intensities and concentrations. Similar to above, this section will be 219 
of primary value to those without formal training as mass spectrometrists, but who use FTMS data to study NOM.  220 

3.1 Direct comparison of signalpeak intensities in idealized samples is problematic  221 
In the ideal case, samples are analyzed with identical matrices, equivalent concentrations for each compound, and 222 
free from competitive ionization/ionization suppression (Ruddy et al., 2018). However, even in this ideal case, 223 
different molecules ionize with different efficiencies, and thus their signal intensities are not equal. To demonstrate 224 
the non-equal response for various analytes in various conditions, we acquired a series of contemporaneous mass 225 
spectra of several compounds in different conditions. First, in Fig 4A, we prepared three dilution ladders of three 226 
pure compounds - analyzed separately - in pure methanol. Clearly, these three molecules yield starkly different 227 
signal intensities for otherwise identical conditions, and thus directly comparing their intensities would not be a 228 
valid means to infer their relative concentrations in solution. At an extreme, trehalose, a carbohydrate, yields nearly 229 
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as little signal at 500ppb as sinapic acid does at 200ppb. Even between the two structures containing a carboxylic 230 
acid moiety - a typical indicator of good negative mode ESI response - there is a significant difference in signal 231 
intensity. Thus, directly comparing the signal intensities of different ions - even in idealized situations - cannot be 232 
used as a proxy for concentration or abundance determination absent a calibration curve.  233 
 234 
Subsequently, we highlight the challenge of comparing ions of the same exact mass. Here, in Fig 4B, we again 235 
prepared dilution ladders of three pure compounds in methanol, however these are all structural isomers with the 236 
same molecular formula and thus exact mass. Again, a stark difference in signal intensity is observed, even between 237 
nominally similar structures. This issue is particularly troubling for direct infusion measurements of complex 238 
mixtures, where we do not, and cannot, know the structural identity of individual peaks, and instead are limited to 239 
molecular formulas. Thus, if we compare peaks with the same exact mass, same molecular formula, between 240 
different samples, we cannot be sure that they are the same molecule, and thus again comparing their signal 241 
intensities as a proxy for abundance is problematic. Additionally, structural isomers can have vastly different 242 
ecological/biogeochemical function, and therefore this consideration is important to note for subsequent 243 
interpretations of NOM samples. Further complicating this issue is the known fact that in highly complex mixtures 244 
like organic matter, most - or all - peaks are actually the superposition of multiple different isomeric compounds. 245 
Demonstrated by chromatography (Kim et al., 2019) or ion mobility separations (Leyva et al., 2019), or by statistical 246 
inference of tandem mass spectrometry (Zark et al., 2017), each peak may be several isomers of various relative 247 
intensities. Thus, even if the same isomers were present across samples, it cannot be known that their relative 248 
abundances are the same - and again, it is problematic to directly compare the intensities of signal corresponding to 249 
nominally the same molecular formula across different mass spectra.  250 
 251 
One caveat with the above experiments, of course, is that it is a direct infusion measurement. The chemicals used 252 
were nominally pure, but any trace impurity - either from their production and isolation, or from sample preparation 253 
- may impact the measured signal intensity. Which leads us to the next point - matrix effects are intrinsically 254 
challenging to control for, and have significant impacts on mass spectra.  255 

3.2 Matrix effects substantially impact signal intensities in complex mixtures 256 
Of course, analyses are often performed on complex mixtures, containingAs discussed above, different organic 257 
compounds ionize with different efficiencies. In theory, this may lead to variation in observed peak intensities even 258 
when all organic compounds have the same true concentration. To evaluate this theoretical expectation, we analyzed 259 
several different types of organic compounds in different conditions via FTICR-MS. We selected chemical standards 260 
which are natural products with molecular formula and chemistries typical of compounds commonly observed in 261 
organic matter, and were amenable to negative mode ESI analysis. First, we analyzed three separate dilution ladders 262 
of individual pure compounds dissolved in pure methanol. These standards were analyzed at higher concentrations 263 
than typically observed for NOM because they were single compounds rather than formula-summed features (with 264 
multiple isomers) within a NOM spectrum; higher concentrations were required to compensate for lower isomeric 265 
diversity. These three compounds gave rise to different peak intensities under otherwise identical conditions (Fig. 266 
4A). Trehalose, for example, had much lower peak intensity than sinapic acid at the same actual concentration. The 267 
difference in signal intensity was also apparent amongst compounds that ionize well under negative mode ESI; for 268 
example, two different structures containing the same number of carboxylic acid units exhibited differences in signal 269 
intensity. We also observed differences in peak intensities amongst structural isomers (i.e., same molecular formula 270 
and mass) (Fig 4B). Each peak observed via direct infusion FTICR-MS may be several isomers. These isomers may 271 
be observable through chromatographic separation (Kim et al., 2019), ion mobility separations (Leyva et al., 2019), 272 
or by statistical inference of tandem mass spectrometry (Zark et al., 2017), but not via direct infusion FTICR-MS. 273 
We note that absolute differences in signal intensity may be smaller between molecules at lower concentrations, but 274 
this does not necessarily mean that low intensity signals consistently indicate low concentrations and this does not 275 
aid in quantitatively interpreting higher intensity signals. In summary, differences in peak intensities across organic 276 
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compounds do not necessarily equate to differences in concentration, unless assessed via a calibration curve for each 277 
compound. 278 

3.2 Comparison of peak intensities in in real world samples 279 
Routine NOM samples contain a diverse range of thousands of molecules of unknown structures and relative 280 
concentrations. Furthermore, samples  and often contain ‘inorganic’inorganic interferences, such as salts. Routinely, 281 
scientists will desalt samples with solid phase extraction, but such processes can leach impurities into the sample, 282 
don’t necessarily remove all interferences, and can remove select pools of NOM due to their functionalities, 283 
depending on the sorbent or resinSample clean up that focuses on pre-concentration and desalting is imperfect 284 
(Raeke et al., 2016; Li et al., 2017). As such, real world non-ideal samples contain a multitude of ), but is commonly 285 
used to minimize inorganic interferences. Interactions among molecules remains a challenge, however, as discussed 286 
above. The collection of molecules in a sample is referred to here as the ‘matrix.’ To explore matrix effects and 287 
sources for ionization suppression, or adduct formation, which yield spectra that are even more challenging to 288 
quantitatively interpret.  289 
 290 
To explore the impacts of matrix effects (Fig. 4C-E),on peak intensities, we prepared solutions of six different pure 291 
compounds at a fixed concentration (100ppb100 ppb) in three different solvent systems - pure methanol, methanol 292 
eluted from elution off of a BondElut SPE cartridge, and methanol from elution off of a BondElut SPE cartridge 293 
which had been loaded with artificial river water (ARW). Additionally, we added a complex mixture -that is often 294 
used as a NOM standard, Suwannee River Fulvic Acid (SRFA), at six different concentrations, to each sample. 295 
Again, samplesSamples were analyzed independently but contemporaneously on the same instrument to mirror a 296 
real study.  297 
 298 
In methanol -only solvent, with no addition ofadded SRFA, the six compounds - as expected - yieldyielded different 299 
signalpeak intensities (Fig. 4C), further confirming what was previously observed.which is consistent with results 300 
from the previous subsection. As the concentration of SRFA iswas increased to 2 ppm, the relative signal intensity 301 
increasesincreased for some of these analytes - possibly as a function of endogenous molecules with the same 302 
molecular formula as those spiked in -the six compounds, but decreasesdecreased for others. Above 2 ppm of SRFA, 303 
however, all signalspeak intensities for our referenceall six compounds arewere substantially decreased, most likely 304 
as a result of competitive ionization effects of the addition of the complex mixture.  305 
 306 
. Use of an ‘impure’ methanol solvent, i.e., the eluent from a SPE blank (Fig. 4D) or from an SPE of artificial river 307 
water (Fig. 4E), resultsresulted in even more ionization suppression and differential signal response.further 308 
decreases in peak intensities. In both cases, the maximum signalpeak intensity is only was ~20% of what was seen in 309 
pure methanol (Fig. 4C), indicating that and some of the leachate or residual salts from the SPE protocol impacted 310 
sensitivity. Further, here only two analytes (aesculin and chlorogenic acid) ionize well at all, with the other 4 311 
yielding poor orsix compounds were no signal.longer observed. Addition of SRFA to these samples with ‘impure’ 312 
solvents, again, decreases signal intensity, though at 40 ppm SRFA some minor features increase, likely due to 313 
endogenous features with the same molecular formula as our standardsgenerally, decreased peak intensities.  314 
 315 
Cumulatively, Combining the empirical evidenceresults from this subsection and instrumentalthe previous 316 
subsection with instrument theory demonstrate that it is not possible - with discussed above suggests significant 317 
uncertainty in relationships between true concentrations and peak intensities from direct infusion measurements of 318 
complex mixtures - to directly compare signal intensities as a proxy for molecular abundance between different 319 
peaks within a spectrum, or between the same peak across spectra, even in idealized cases. Strategies to use 320 
calibrationFTICR-MS. Calibration curves will fail due to unknowncan be used in the simplest of situations, but may 321 
be challenging when there are structural isomers and sample-to-sample variation in matrix composition, and 322 
established normalization techniques cannot factor in the large range of sources of experimental variation. That said, 323 
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there may be cases where a high-level comparison of trends can yield valid semi-quantitative comparisons between 324 
spectra, relying on a statistical aggregation of individually unreliable trends. Additionally, modeling. Modeling of 325 
constrained systems may, however, allow for improved, data-driven and mechanistic based machine-learning data 326 
normalization strategies for enhanced use of peak intensity data.  327 
 328 
4 Conceptual implications for use of ecological metrics 329 
 330 
The preceding sections have shown both theoretically and empirically that there areindicate challenges towhen using 331 
HRMSFTMS peak intensities as proxies for relative changes in concentrations of organic molecules. The 332 
implication is that there may be specific kinds ofsome ecologically-inspired analyses (e.g., Fig. 1) that are or are not 333 
appropriate1) may be challenging to use with HRMSFTMS peak intensity data. To understand what may or may 334 
notwhich analyses could be a valid analysis, it is critical toimpacted, we differentiate analyses into two classes: those 335 
based on within-peak intensity comparisons and those based on between-peak intensity comparisons (Fig. 2). As 336 
noted above, within-peak is based on comparing the same feature (m/z or molecular formula) across spectra/samples, 337 
whereas between-peak compares different features (m/z or molecular formulas) across and within spectra/samples. 338 
 339 
AnalysesWe posit that analyses using FTMS between-peak intensity comparisons arecould have the most likely to 340 
be problematic. To help clarify why this is, considergreatest uncertainty. Consider an ecological setting in which a 341 
researcher aims to quantify within-sample diversity (α-diversity) and among-sample diversity (β-diversity) (Fig. 1) 342 
of tree communities (Fig. 5, left- side). The researcher will likely set up a plot of a given size and then directly count 343 
the number of each tree species in each plot. This generates, thus generating the species-by-site matrix filled with 344 
directly observed abundance counts for each species. In such a situation, theThe ability of the researcher to observe 345 
individuals of each species does not vary appreciably across species because each tree is not moving and our ability 346 
to see ita static object is not influenced by environmental factors. In turnThus, the number of individuals observed 347 
for a given tree species is quantitatively comparable to the number of individuals observed for all other tree species 348 
in the plot. The assumption that differences in observed abundances carry robust information about differences in 349 
actual abundances is thus supported., in this example. In turn, it is valid to use relative abundances to compute α-350 
diversity such as via Shannon evenness (Elliott et al., 1997; Mouillot and Leprêtre, 1999; Redowan, 2015). 351 
Furthermore, because the ability to observe each tree species is the same across communities. In turn, it is valid to 352 
use relative abundances to compute β-diversity (e.g., via Bray-Curtis; Anderson et al., 2011) or conduct any other 353 
ecological analysisanalyses that usesuse abundance data (e.g., species abundance distributions McGill et al., 2007). 354 
 355 
 356 
We contrast this tree community example with another ecological setting. Consider a researcher studying bird 357 
communities (Fig. 5, right side) that estimated species abundances solely based on the number of times an observer 358 
hears the call of a given species. In this case, those species that call more frequently and/or more loudly (will be 359 
more likely to be heard),, and thus an observer will be inferred to haveinfer a higher abundance even if all species in 360 
the community have the same abundance. That is, such a method generates data that may indicate which species are 361 
present, but the ‘call counts’ do not carry reliable information regarding absolute or between-species relative 362 
abundances. Follow-on analyses of α-diversity and β-diversity should, therefore, be limited to approaches that use 363 
presence/absence data, and species abundance distributions cannot be quantified.  364 
 365 
If we continue with the bird community example and assume that the detectability of a given bird species is 366 
consistent across sampled locations (or times),, then it would be appropriate to examine variation in within-species 367 
call counts. This within-species analysis is directly analogous to the HRMSFTMS within-peak time series analysis 368 
in Merder et al. (2021), discussed below. However, if call counts of a given species are suppressed by the presence/ 369 
or abundance of other species, then call counts of a given species domay not indicate an increasechanges in its 370 
abundance. ThisThe call count example is directly analogous to influences of the OMNOM matrix: if the 371 
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presence/abundance of a given organic molecule modifies the ionization of other molecules, then within-peak 372 
changes in intensity domay not indicate changes in their concentrations.concentration. In turn, analyses based on 373 
within-peak intensity comparisons are not always validcould lead to error and uncertainty in values of computed 374 
ecological metrics, especially if there are significant cross-sample changes in the OMNOM matrix. 375 
 376 
Unfortunately, as demonstratedAs described in the previous sections, HRMS data align with the bird community 377 
examples and never reflect the tree community example. The the unique chemistry of every molecule fundamentally 378 
results in differentin a NOM sample can influence ionization properties for other molecules. in the sample. Thus, 379 
FTMS data align with the bird community example rather than the tree community example, with the differing 380 
physics of each molecule strongly influencesinfluencing between-peak differences in peak intensity. Those 381 
moleculesMolecules that more readily ionize more easily result inwill produce higher peak intensities, which is akin 382 
to bird species that call more frequentlywith noisier or more loudly resulting in a numerous calls producing a larger 383 
number of ‘call counts.’ In turn that do not accurately represent the underlying population distribution. Similarly, 384 
between-peak differences in intensity as observed via FTMS cannot be directly used as a proxy to indicate between-385 
peak differences in concentration. This could invalidate the application of ecological metrics that use between-peak 386 
differences in intensity.  387 
 388 
In contrast to between-peak comparisons, within-peak comparisons examine changes in the relative intensity of a 389 
single peak across samples. Such within-peak comparisons may be repeated independently for each peak of interest 390 
in a given dataset. For example, Merder et al. (2021) quantified temporal dynamics of individual HRMSFTMS 391 
peaks and then binned peaks into different groups with characteristic temporal fluctuations. In those analyses, peak 392 
intensities were not compared between peaks. Instead, the temporal dynamics of each peak was compared to 393 
temporal dynamics of other peaks. The underlying assumption of this type of analysis is that a between-sample 394 
increase in the intensity of a given peak can be used as a robust proxy of a between-sample increase in concentration 395 
of that peak. Materials presented in the previous sections indicate that this assumption can be met in some instances 396 
when using HRMSFTMS data. However, great care is required with strong attention paid to assumptions of analysis 397 
methods. For example, using Pearson correlation makes the assumption that concentration of a given peak is a linear 398 
function of changes in its peak intensity. We showed above (Fig. 4) that this assumption is not always valid, even in 399 
ideal conditions. Using a Spearman correlation avoids this assumption because it is based on ranks. That is, using 400 
Spearman correlations (e.g., Kellerman et al., 2014) makesmake the more realistic assumption (for FTICR 401 
MSFTMS data) that an increase in concentration of a given peak is reflected as an increase in its peak intensity, 402 
without assuming any statistical or mathematical form of that relationship. 403 
 404 
5 Quantitative impacts 405 
 406 
5 Ecological metrics using peak intensities are often robust 407 
 408 
The previous sections show that highlight challenges in connecting between-peak changes in peak intensity do not 409 
accurately reflectto between-peak changes in abundance (Fig. 4). This violates a fundamentalThese challenges 410 
violate an assumption of abundance-based ecological analyses: proxies offor abundance (e.g., peak intensity) must 411 
reflect actual abundance. In turn, it is tempting to infer that mass spectrometry peak intensities cannotshould be used 412 
at all in ecological analyses.proportional to true abundances. However, the impacts of violating the assumption have 413 
not been directly quantified. This is a significant gap consideringquantitative impacts of this situation likely vary 414 
across ecological metrics and with study details. There may be certain metrics or situations in which robust 415 
inferences can be made despite poor linkages between peak intensities and true abundances. These cases are 416 
important to understand, especially given the growing number of publications that useusing peak intensities to 417 
compute abundance-based ecological metrics over the last couple decades. 418 
 419 
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Therefore, there is a need to quantitatively understand biases and uncertainties introduced in ecological metrics 420 
(e.g., ⍺ and ꞵ diversities) and/or models when peak intensity does not reflect abundance or concentration. To 421 
provide an initial evaluationguidance on best practices for using FTMS peak intensities with ecological metrics, we 422 
developed an in silico simulation model that. This model generates synthetic data, introduces specific kinds of error 423 
commonly found with HRMS datasets (discussed above in detail),errors that degrade the linkage between peak 424 
intensity and true abundance, and computes within-sample (e.g., Shannon diversity) and between-sample (e.g., 425 
Bray-Curtis) ecological metrics (Fig. 6). ThisThe model allows for comparisonus to probe how the introduction of 426 
each type of error impacts the relationship between true values of the metrics and the values observed after each type 427 
of error is introduced, which is impossible to do with non-simulated datasetsvalues. To generate synthetic data, we 428 
randomly assigned abundances to either 100 or 1000 peaks. Abundances were sampled with replacement from a 429 
Gaussian distribution that varied in mean and standard deviation across synthetic samples and across simulation 430 
iterations. Abundances were drawn twice to generate two independent samples per simulation, and the simulation 431 
was run 100 times for each number-of-peaks (100 or 1000 peaks per sample; referred to below as ‘peak richness’). 432 
The reason for variation in We varied the Gaussian distributions was to generate synthetic samples that 433 
variedvarying in composition within and across simulations to ensure that the ecological metrics (see below) would 434 
vary across simulations. This step was necessary to evaluate how biases in the metrics variedmetric performance 435 
across a broad range of metric values. 436 
 437 
We simulated two types of error, and which can both can be representative of variation in ionization efficiency. The 438 
goal was to generate synthetic data that mimicked our empirical and theoretical observations that indicate noise in 439 
the sense that relationships between observed peak intensities did not reflectand true abundances. For each type of 440 
error and within each iteration of the simulation, the error was introduced 100 times (i.e., 100 error iterations were 441 
nested within each sample-generation iteration). The first type of error was designed to diminish the between-peak 442 
relationship between observed peak intensity and true abundance. ForTo introduce this error, we multiplied the true 443 
abundance of each peak by a random number drawn from a uniform distribution ranging from 0 to 100. The 444 
inclusion of 0 indicates situations in which a given peak (i.e., ion) does not ionize well enough to be observed. The 445 
results should not be sensitive to the selected range, but as a sensitivity analysis, we also used a distribution of errors 446 
ranging from 0 to 8. Our empirical data suggest that this narrower range is appropriate (Fig. 4B), but simulation 447 
results were not affected by the selected error range (Supplementary Figs. S3-S8). For each peak we multiplied the 448 
same random error toby its abundance in each of the two synthetic samples within each iteration. TheThis error-449 
modified abundance of each peak in each synthetic sample was considered to be the observed peak intensity. We 450 
recognize that randomized errors do not perfectly reflect real-world variation in ionization efficiency. However, 451 
because the true impacts of matrix effects and individual molecular chemistries in complex mixtures are currently 452 
not known, the errors introduced in the model are simply used to diminish the relationship between observed peak 453 
intensities and true abundances.   454 
 455 
As expected, introducingIntroducing error resulted in a relatively weak relationship between observed peak intensity 456 
and true abundance, (median R2 = ~0.5; see black line in Figure 7), with the amount of error increasing with true 457 
abundance (Fig. S1)S1). This relationship additionally supports our inclusion of error into the model as a means to 458 
simulate relatively weak relationships between observed peak intensity and a median R2 of ~0.5 (see black line in 459 
Figure 7).true abundance. Between-peak differences in observed intensity were also weakly related to between-peak 460 
differences in true abundance (Fig. 8A), with a median R2 of ~0.5 (see blue line in Figure 7). Because the same 461 
peak-level error-factor was used across both synthetic samples within a given simulation iteration, the within-peak 462 
between-sample differences in observed intensity were relatively strongly correlated to within-peak between-sample 463 
differences in true abundance (Fig. 8B8C), with a median R2 of ~0.75 (see the gray line in Figure 7). As seen in 464 
Figure 8C, the differences collapse when near zero. This phenomenon can be explained by the fact that when two 465 
samples have essentially the same peak intensity for a given peak, introducing the same error to that peak in both 466 
samples has little influence on the between-sample difference in peak intensity. 467 
 468 
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The second type of error we introduced represents situations in which there is variation in ionization efficiency 469 
varies across molecules – as in the first type of error – but that ionization efficiency also variesas well as across 470 
samples. Molecules may varyexhibit variations in their ionization efficiency across samples due to changes in the 471 
composition of organic molecules and/or changes in inorganic solutes. In this case, ionization efficiency of any 472 
given molecule is due to interactions with other organic and inorganic molecules within a given sample. For this in 473 
the matrix (see above). To account for these effects, we multiplied the true abundance of each peak by a random 474 
number drawn from a uniform distribution ranging from 0 to 100.; for sensitivity analysis, we also used an error 475 
distribution ranging from 0 to 8, which did not have meaningful influences on the results. For each iteration of the 476 
simulation this was done, we introduced errors independently for boththe two synthetic samples. In this way, the 477 
simulated ionization efficiency for a given peak in a given synthetic sample was independent of its ionization 478 
efficiency in the other synthetic sample. In turn, theThe error-modified abundance of each peak in each synthetic 479 
sample was considered to be the observed peak intensity. 480 
 481 
We observed a relatively large influence ofon observed peak intensities when allowing ionization efficiency to vary 482 
randomly across samples. That is, the within-peak between-sample differences in observed intensity were relatively 483 
weakly correlated to within-peak between-sample differences in true abundance (Fig. 8B8C), with a median R2 of 484 
~0.5 (see the red line in Figure 7). Comparing thisCompared to the same relationship that emerged under the first 485 
type of error shows, our results show a much weaker relationship between peak intensity and true abundance when 486 
ionization efficiency varies between samples (compare the gray and red lines in Figure 7). This result is expected, as 487 
variationvariations in ionization efficiency will add random noise to the within-peak between-sample differences in 488 
observed peak intensity. We note that the variation in ionization efficiency is independent between peaks for both 489 
the first and second types of error. The between-peak relationship summarized in Figure 7 (blue line) is, therefore, 490 
equivalent for both types of error, which is also shownfurther supported by the strong similarity between 491 
FigureFigures 8A and 8C8B.  492 
 493 
To examine influences ofhow both types of error oninfluence ecological metrics, we used the initial true abundances 494 
and the error-modified abundances (i.e., observed peak intensity values) to calculate true and ‘observed’ values of 495 
within-sample Shannon diversity and between-sample Bray-Curtis. We also assigned aan arbitrary trait value to each 496 
peak and calculated true and observed sample-level mean trait values; the mean values for each sample were 497 
weighted by true abundance (true mean) or observed peak intensity (observed mean). To evaluate biasesThis 498 
analysis is analogous to the approach commonly used in ecological studies for computing community-level 499 
abundance-weighted trait values, such as plant leaf area index or animal body size (Muscarella and uncertainty 500 
introduced by both typesUriarte, 2016). This approach is also commonly used with FTMS data, such as sample-level 501 
peak-intensity-weighted values of error wehydrogen-to-carbon ratios and molecular weight (Roth et al., 2019; Wen 502 
et al., 2021). We regressed observed values for each metricShannon diversity, Bray-Curtis, and mean traits against 503 
their true values. This was done, and performed this process independently for each level of peak richness to 504 
evaluate how bias and uncertainty vary with the number of peaks contained within a sample. 505 
 506 
Relating ‘observed’ values of each metric to their true values revealed that the patterns observed in peak-intensity-507 
based ecological metrics are actually likely to be qualitatively robust, even though despite the existence of 508 
quantitative biases do exist (Figs. 9-11). All three ecological metrics showed monotonic relationships between 509 
observed and true values. Uncertainty was lower when samples had 1000 peaks, relative to samples with 100 peaks; 510 
in Figures 9-11 all A/B and C/D panels have 100 and 1000 peaks, respectively. MonotonicWe observed monotonic 511 
relationships and lower uncertainty with more peaks were found for both within-sample and between-sample error; 512 
in Figures 9-11 all A/C and B/D panels have within-sample and between-sample errors, respectively. For Shannon 513 
diversity, observed values were consistently lower than true values, but all observed vs. true relationships were 514 
linear (Fig. 9). For Bray-Curtis, inclusion of between-sample error resulted in an overestimation of values and non-515 
linear (but monotonic) relationships between observed and true values (Fig. 10). For mean trait values, the observed 516 
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values had uncertainty but there werewe found no systematic quantitative biases, and the relationships between 517 
observed and true values were consistently linear (Fig. 11). Furthermore, the 518 
 519 
The variation in observed values explained by true values (via a linear model) increases rapidly with the number of 520 
peaks, and sharply asymptotes beyond ~500-1000 peaks per sample (Fig. S2). We and sharply asymptotes beyond 521 
~500-1000 peaks per sample (Fig. S2). Sample-to-sample changes in the value of ecological metrics can, therefore, 522 
be interpreted with increasing confidence as the number of peaks increases. Qualitative gradients are, therefore, 523 
more robust with more peaks. The absolute magnitude of some ecological metrics, however, are shifted away from 524 
their true magnitude even when there are large numbers of peaks (e.g., Fig. 10D). Quantitative comparisons from 525 
one dataset to another may, therefore, require further simulation-based evaluation. We further caution that the 526 
number of peaks needed to reach the asymptote, thereby minimizing error, is likely dataset dependent, and 500-1000 527 
peaks should not be taken as a general rule. for real-world datasets. We encourage researchers to complete such 528 
simulations using the numbers of peaks present across their own real-world datasets to better understand their ability 529 
to make statistical and conceptual inferences.  530 

6 Conclusions and Recommendations 531 

There is increasing interest in using ecological metrics with FTMS data to study organic matterNOM chemistry 532 
across a broad range of environments and settings.. It is vital that this growing body of work be based on rigorous 533 
use of the data to develop trust in the associated conceptual and mechanistic inferences. To do so. This requires deep 534 
understanding of the metrics themselves, full, awareness of the data limitations of the OM data from mass 535 
spectrometers, and careful use of the metrics informed by the data limitations. We suggest that studies/publications 536 
that use using FTMS peak intensities need to include material that directly discusses the data limitations, what peak 537 
intensities do and do not represent (e.g., tree-like vs. bird-like data; Fig. 5), and how knowledge of those limitations 538 
was used to select specific metrics.  539 
 540 
We have provided both strong theoretical reasoning and empirical observations showing that peak intensities do not 541 
directlynecessarily map to concentrations of the associated organic molecules within NOM-like complex mixtures of 542 
organic molecules. This is particularly true for between-peak comparisons of intensity, and statistical post-hoc 543 
normalizations of peak intensity data do not solve this problem. That is, there are no situations that we are aware of 544 
in whichchallenge. We caution against using between-peak differences in intensity indicate between-peak 545 
differences in concentration. We therefore assert that between-peak differences in intensity within HRMSfrom 546 
FTMS data cannot be used to make direct inferences related to between-peak variationdifferences in abundance or 547 
concentration. This means that HRMS data are unlikely to provide informativehas implications for some ecological 548 
analyses based directly on variation in species abundances. In particular, estimation of ‘species abundance 549 
distributions’ isare likely to be invalidproblematic. Analyses that bin peaks into high and low abundance groups 550 
based on between-peak differences in concentration are, likewise, almost certainly invalid. also likely to be 551 
problematic. We did not directly evaluate these types of analyses, however, and we suggest that future work should 552 
expand upon the ecological metrics examined here via simulation. 553 
 554 
While certain there are challenges and limitations in the use of ecological analyses of HRMSmetrics with FTMS 555 
data are likely to be invalid, we foundshow that there is a tangible path forward. In particular, our simulation model 556 
revealed good performance of some common metrics. Theseecological metrics were originally designed to use 557 
relative abundances of biological species. Our simulation modeling indicated that at least someof α-diversity, β-558 
diversity, and functional trait metrics are likely to provide valid qualitative patterns. That is,values. We infer that 559 
conceptual and mechanistic inferences are likely to be valid when based on analyses such as comparing peak-560 
intensity-based ecological metrics across experimental treatments or variation along environmental gradients. The 561 
performance of intensity-weighted mean trait values was particularly good in terms of both qualitative and 562 
quantitative aspects. We emphasize that we studied a small set of metrics (Shannon diversity, Bray-Curtis, and 563 
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intensity-weighted trait values) and our inferences only extend to these metrics. Fortunately, it is relatively 564 
straightforward to extend the simulation model to additional metrics (e.g., Hill numbers; Hill, 1973) and analyses 565 
(e.g., species abundance distributions; McGill et al., 2007) and we). We suggest that users of such datasets wanting 566 
to use additionalFTMS data do this before applying abundance-based ecological metrics/analyses test them using 567 
simulation models before applying  to real-world datasets. This will provide objective guidance on how to use (and 568 
whether to ascertain if theseavoid) specific metrics hold given the known biases in these analyses and metricsfor 569 
specific FTMS datasets. 570 
 571 
To enable robust use of HRMSFTMS peak intensity data in future studies, we recommend use of and further 572 
development of the simulation model developed here. The simulation model is the only tool we are aware of that can 573 
provide objective guidance on what analyses are not valid and the levelevaluations of uncertainty and potential 574 
biases associated with valid analyses. It should using FTMS peak intensities to compute ecological metrics. The 575 
model should not be taken as a static or mature tool, however. The model should be expanded in a number of ways 576 
by includingWe encourage future work to expand it to include additional ecological metrics/analyses, situations with 577 
more than two- samples, sample situations-to-sample variation in peak richness, links between peak richness and 578 
peak intensity, other ways of modeling error, and measured levels of error between concentrations and peak 579 
intensities. ThisThese evaluations are outside of the scope of this work, but will be straightforward to include in 580 
future versions of the simulation model. Such additions will allow each study to customize the model for their 581 
specific application. It should be possible to include the number of samples, the number of peaks in each sample, the 582 
peak intensity distributions, number of replicates, and the specific ecological analyses that will be applied. In turn, 583 
simulation model outcomes can provide objective guidance tailored to each study. One may think of the resulting 584 
guidance as akin to a power analysis whereby the simulation can indicate what can and cannot be inferred from a 585 
given dataset. For example, the model indicates that observed Bray-Curtis values have little to no correspondence to 586 
true values when Bray-Curtis is below ~0.2 (Fig. 10B, D). Bray-Curtis near and below ~0.2 are commonly observed 587 
in HRMSFTMS studies (e.g., Hawkes et al., 2016; Derrien et al., 2018; Bao et al., 2018), and this disconnect 588 
between observations and truth is maintained even with 1000 peaks per sample (Fig. 10D). In turn, HRMSFTMS 589 
studies that observe Bray-Curtis below ~0.2 may not be able to use those observations to make valid conceptual 590 
inferences. However, quantitative guidance must be developed for each study and we recommend that a version of 591 
the simulation model should be used by all future studies using peak intensities to conduct ecological analyses of 592 
HRMSFTMS data. It may be that in time we understand the general rules well enough to leave the simulation 593 
behind, but for now, failing to use it (or a similar tool) leaves analyses open to criticism and potentially spuriouswe 594 
suggest its use is warranted to ensure robust inferences. 595 
 596 
In addition to further use and development of the simulation model, we recommend translation of other modeling 597 
approaches for use with HRMSFTMS data. Two potential approaches are based in machine learning and 598 
hierarchical modeling. Machine learning could be used within very tightly controlled systems to understand the 599 
magnitude and nature of non-quantitative biases that disconnect peak intensity from concentration. In this case, one 600 
couldto model the instrument response for a diverse chemical space in typical environmental samples to learn how 601 
measured signal intensities may relate to startingtrue concentrations. Even if such a model does not yield high-602 
accuracy results, it may nonetheless help understand error, /biases, and provide additional guidance for robust use of 603 
peak intensity data. Furthermore, such a model would be constrained to the system it was built around, and 604 
application outwith this system could be wrong. Potentially in concert with machine learning, hierarchical modeling 605 
could be translated from its application in ecological analyses (Iknayan et al., 2014) for use with HRMSFTMS. This 606 
approach has been used to model sources of error that lead to variation in detectability across biological species, 607 
such as variation in species visibility (e.g., Dorazio and Royle, 2005). In turn, data can essentially be corrected by 608 
accounting for the modeled sources of error (Roth et al., 2018), even revealing ‘hidden diversity’ (Richter et al., 609 
2021). There are likely direct analogs to FTMS data in terms of variation among molecules in detectability due to 610 
variation in ionization and molecular interactions discussed in previous sections. Machine learning could be used to 611 
understand sources of error and, in turn, inform hierarchical models aimed at improving the mapping between peak 612 
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intensity and concentration. If successful, this would increase the quality of information provided by peak intensities 613 
in both existing and future datasets, thereby enabling more robust conceptual and mechanistic inferences. 614 
 615 
In summary, HRMSFTMS has many strengths and weaknesses just like any analytical platform. Other types of 616 
compositional data also contain biases and uncertainties, such as the lack of true quantitation in sequence-based 617 
microbiome data (Gloor et al., 2017). Careful use of FTMS peak intensity data informed by objective, model-based 618 
guidance can overcome some of its weaknesses. Despite peak intensities notWe encourage further development of 619 
the model presented here and inclusion of additional methods developed to address issues that arise in similar data 620 
types (e.g., Gloor et al., 2017; Hardwick et al., 2018; Vieira-Silva et al., 2019). While these are important directions, 621 
we emphasize that despite peak intensities not necessarily reflecting concentrations, ecological metrics overall 622 
appear to perform well. This is likely due to the law of large numbers as HRMSFTMS, especially FTICR MS, 623 
datasets often contain 1000 or more peaks per sample. Our simulation results indicate that large numbers of 624 
identified peaks allow ecological metrics to essentially track towards their true valuevalues. We are encouraged by 625 
this outcome and look forward to further applications of ecological metrics, concepts, and theory to organic 626 
matterNOM chemistry. 627 

7 Code Availability: R code for running the simulation models is available on GitHub: 628 
https://github.com/stegen/Peak_Intensity_Sims. Python code used to process the empirical data and to generate the 629 
associated figures will be available upon publication. 630 
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Figure 1. Ecological concepts of α-diversity and ꞵ-diversity. Each gray box represents a sample of an ecological community 
or collection of organic molecules (i.e., an OM assemblage). Symbols represent individual organisms or molecules. Different 
biological or molecular species are represented by a combination of shape and color. (Top) Each sample has one biological 
species (red circles) or one chemical species (red bar), and the species are the same within and between the samples. This 
reflects minimal α-diversity because there is a single species. This also reflects minimal ꞵ-diversity because there is no 
difference in which species are present in each sample. (Bottom) Each sample has five species (biological or chemical) 
represented by different colors and symbols. There are no shared species between samples. This reflects maximum α-diversity 
because every individual is a different species within each sample, and maximum ꞵ-diversity because there are no species 
shared between samples. In real ecological and OM samples, α-diversity and ꞵ-diversity fall between these extremes. 
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Figure 2. Summary of within-peak and between-peak comparisons of peak intensity. Two idealized mass spectra (i.e., 
from two samples) are shown with each peak defined by a mass-to-charge ratio (m/z) and represented by a different color. The 
intensity of each peak in each sample is represented by the height of each colored bar. Within-peak comparisons of intensity 
are based on comparing intensities at the same m/z across two or more samples. Between-peak comparisons of intensity are 
based on comparing intensities at two or more m/z values. Between-peak comparisons can be done within a sample (as shown) 
or between samples (not shown). 

 864 

Formatted Table



 

24 

Formatted: Header

Formatted Table



 

25 

Formatted: Header

 

Figure 3. Illustrative example of a generic FTICR mass spectrometer (panel A), showing common and key biases 
between FTICR signal intensity and m/z of ions (B-E). Panel A shows the major elements of a generic FTICR mass 
spectrometer (based loosely on a Bruker solariX FTICR MS geometry). Panel A elements include; a - atmospheric pressure 
ionization source (i.e. ESI source), b - source ion optics (i.e. dual ion funnels), c - mass selecting quadrupole, d - collision cell, 
e - transfer multipoles to ICR cell, f - ICR cell. Dashed line indicates the magnetic field. Note: diagram is deliberately 
simplified and not to scale. Panel B) demonstrates the time-of-flight bias along the transfer multipoles (e) in the ‘flight tube’, 
from the collision cell (d) to the ICR cell (f). Lower m/z ions travel faster, as indicated by the smaller icons reaching the ICR 
cell first. Ions are shaded to aid visualization. Panel C) visualizes the effect of a variable excitation radii for ions of different 
masses, as may happen with a CHIRP excitation pulse. Lower m/z ions are closer to the detection electrodes (shaded in gray) 
and therefore will induce a larger image current. Note also the ion populations have been adjusted from B) to indicate biases 
from the time-of-flight effect. Panel D) shows the time-domain recorded signal intensity against time, with the ions having an 
initial intensity roughly proportional to the number of ions in that cloud. However, as time progresses the less abundant ion 
clouds lose coherence and destabilize more rapidly, resulting in an attenuation of their signal. Note that the real signal would 
follow a damped sinusoidal function; here an absolute value approximation is shown for simplicity. Panel E) shows the mass 
spectrum post-Fourier transform, demonstrating that the impact is not only on intensity (peak height), but also resolution (peak 
width). In all cases, effects are deliberately exaggerated and not-to-scale to aid interpretation. 
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Figure 4 - A) Barplot visualization of the relationship between signal intensity (relative intensity) and concentration of analyte 
for three chemically distinct molecules analyzed contemporaneously but independently in pure methanol solvent. Relative 
intensity indicates data were scaled to the largest signal in any replicate from the associated series of spectra. Replicates are 
combined to show their mean and 95% confidence interval. B) As with A), but for three structural isomers of chlorogenic acid. 
C-E) Compounds spiked into three different solvent matrices (methanol, BondElut methanol, and BondElut artificial river 
water (ARW)) at a fixed concentration (100ppb100 ppb), but with addition of SRFA at varying concentrations from 0 to 
40ppm40 ppm. In all cases, [M-H]- ion only is shown, but other ions (i.e. [M+Cl]-) were detected. 95% confidence intervals 
represent the results of triplicate measurements. Intensities have been scaled per plot for A and B, and are on the same scale 
for C-E).  
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Figure 5. Graphical summary of how HRMSFTMS peak intensity data are often treated (left), which is distinct from 
the reality of those data (right). When surveying the number of individuals of each species within a tree community, there is 
good confidence that the measured abundances are close to real abundances. This is because there is relatively little variation 
across species in the ability to detect individuals. HRMSFTMS peak intensity data are often used as though they are like tree-
community data. However, HRMSFTMS data are more like bird-community data. That is, the ability to detect different 
species varies due to intrinsic factors (e.g., activity patterns, how loud and often birds call, etc.) and extrinsic factors (e.g., 
habitat structural complexity, predator-induced behavioral changes, etc.). Similarly, the intrinsic physics of a given molecule 
will impact its ability to ionize and thus its observed peak intensity, and in environmental samples there are thousands of 
molecular species that impact the ionization ‘behavior’ of each other. HRMSFTMS data being more bird-like than tree-like 
needs to be accounted for when performing ecological analyses using HRMSFTMS data. 
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Figure 6. Flow diagram for the in silico simulation model. The model was used to evaluate how ecological metrics are 
impacted by variation in ionization across organic molecules (i.e., peaks). The true peak intensities are what is expected if 
intensity is linearly to concentration, and all peaks fall along the same linear function. Variation in ionization adds error 
around this idealized linear relationship. The error is modeled in two ways: the error applied to a given peak is either the same 
between samples (i.e., there are no variable matrix effects on ionization) or varies randomly between samples (i.e., there are 
variable matrix effects on ionization). In the lower tables the proportional error applied to each peak is provided 
parenthetically. The tables are for demonstration and show only three peaks per sample. The number of peaks per sample was 
set to either 100 or 1000. 
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Figure 7. Variation in observed intensity explained by true abundance. Kernel density functions are shown for different 
relationships and types of error. Density functions were fit using R2 values collated from across simulation iterations. Higher 
R2 values indicate a stronger link (i.e., lower uncertainty) between observed intensities and true abundances. Black is for the 
relationship shown in Figure S1. Blue is for between-peak within-sample differences (example relationships shown in Figures 
8A,CB). Gray is for within-peak between-sample differences when the same peak-level error was used for both synthetic 
samples within a given simulation iteration (example relationship shown in Figure 8B8C). Red is for within-peak between-
sample differences when different peak-level error was used across the synthetic samples within a given simulation iteration 
(example relationship shown in Figure 8D). While there are central tendencies in all four distributions, there is also significant 
variation in the degree to which observed intensities reflect true abundances. 
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Figure 8. Observed differences in peak intensity as a function of true differences in peak intensity across both within-
peak and between-peak comparisons and across both kinds of error. (A) Between-peak differences with the same error 
applied to a given peak between samples. (B) Within-peak differences with the same error applied to a given peak between 
samples. (C(B) Between-peak differences with different errors applied to a given peak between samples. (C) Within-peak 
differences with the same error applied to a given peak between samples. (D) Within-peak differences with different errors 
applied to a given peak between samples. On all panels the red line represents the linear regression model, and the associated 
R2 value is provided. 

 873 



 

33 

Formatted: Header

Formatted Table



 

34 

Formatted: Header

 

Figure 9. Shannon α-diversity that includes simulated error regressed against true Shannon, across different scenarios. 
(A) The same error applied to a given peak between samples, and 100 peaks per sample. (B) Different errors applied to a given 
peak between samples, and 100 peaks per sample. (C) The same error applied to a given peak between samples, and 1000 
peaks per sample. (D) Different errors applied to a given peak between samples, and 1000 peaks per sample. On all panels the 
red line represents the one-to-one line and the dashed line is a spline fit to the data. All data are from the simulation model. 
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Figure 10. Bray-Curtis dissimilarity as a measure of β-diversity that includes simulated error regressed against true 
Bray-Curtis, across different scenarios. (A) The same error applied to a given peak between samples, and 100 peaks per 
sample. (B) Different errors applied to a given peak between samples, and 100 peaks per sample. (C) The same error applied 
to a given peak between samples, and 1000 peaks per sample. (D) Different errors applied to a given peak between samples, 
and 1000 peaks per sample. On all panels the red line represents the one-to-one line and the dashed line is a spline fit to the 
data. All data are from the simulation model. 
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Figure 11. Mean peak-intensity-weighted trait values that include simulated error regressed against true mean peak-
intensity-weighted trait values, across different scenarios. (A) The same error applied to a given peak between samples, 
and 100 peaks per sample. (B) Different errors applied to a given peak between samples, and 100 peaks per sample. (C) The 
same error applied to a given peak between samples, and 1000 peaks per sample. (D) Different errors applied to a given peak 
between samples, and 1000 peaks per sample. On all panels the red line represents the one-to-one line and the dashed line is a 
spline fit to the data. All data are from the simulation model. 
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