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Abstract. The adjoint assimilation method has been applied to coupled ocean and sea ice models for sensitivity studies 13 

and Arctic state estimations. However, the accuracy of the adjoint model is degraded by simplifications of the adjoint 14 

of the sea ice model, especially the adjoint sea ice rheologies. As part of ongoing developments in coupled ocean and 15 

sea ice estimation systems, we incorporate and approximate the adjoint of viscous-plastic sea ice dynamics (adjoint-16 

VP) and compare it with the adjoint of a free drift sea ice dynamic (adjoint-FD) through assimilation experiments. 17 

Using the adjoint-VP results in a further cost reduction of 7.9% in comparison to adjoint-FD, with noticeable 18 

improvements in the ocean temperature over the open water and the intermediate layers of the Arctic Ocean. Adjoint-19 

VP more efficiently adjusts the uncertain model inputs more efficiently than does adjoint-FD by involving different 20 

sea ice retreat processes. For instance, adjoint-FD melts the sea ice up to 1.0 m in the marginal seas from May to June 21 

by over-adjusting air temperature (>8 °C); adjoint-VP reproduces the sea ice retreat with smaller adjustments to the 22 

atmospheric state within their prior uncertainty range. These developments of the adjoint model here lay the foundation 23 

for further improving Arctic Ocean and sea ice estimationS by comprehensively adjusting the initial conditions, 24 

atmospheric forcings, and uncertain parameters of the model. 25 

 26 
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1 Introduction 28 

The Arctic Ocean has experienced drastic changes, including rapidly declining sea ice (Comiso et al., 2008; 29 

Kwok, 2018), increased inventory of freshwater in the western Arctic (Proshutinsky et al., 2019), enhanced warm 30 

inflows from the Pacific Ocean (Woodgate et al., 2012) and the Atlantic Ocean (Polyakov et al., 2017; Quadfasel et 31 

al., 1991), and increased ocean primary productivity (AMAP, 2021), and has been migrating to a new state over the 32 

past decades.These changes potentially impact the climate and weather of the Northern Hemisphere (Ma et al., 2022; 33 

Overland et al., 2021). 34 

In recent years, progress has been made in satellite techniques (e.g., Kaleschke et al., 2001; Spreen et al., 2008), 35 

in-situ observations (e.g., Toole et al., 2016; Morison et al., 2007; Polyakov et al., 2017; Proshutinsky et al., 2009; 36 

Schauer et al., 2008), and coupled ocean and sea ice models. However, the lack of extensive Arctic observations, 37 

especially direct observations of the state variables and fluxes through the water column, and the deficiencies in the 38 

coupled ocean and sea-ice model still obscure our understanding of the Arctic sea ice changes and extremes. Accurate 39 

predictions of sea ice are therefore limited (e.g., Yang et al., 2020). 40 

To fill the gaps, research groups have applied data assimilation techniques to ingest available observations into 41 

coupled ocean and sea ice models. The resulting reanalyses are assumed to have higer accuracy since as the 42 

development of models and data assimilation methods progress and the observation numbers increase. Most of Arctic 43 

coupled ocean and sea ice data assimilation and operational forecasting systems use statistical methods such as optimal 44 

interpolation (e.g., Lindsay and Zhang, 2006) and ensemble Kalman filters (e.g., Mu et al., 2018; Sakov et al., 2012). 45 

The advantage of these statistical methods is that they ensure a local fit to available observations (within prior 46 

uncertainties of both model and observations). However, away from the observations and for the unobserved variables, 47 

these methods rely on the inaccurate spatial covariance of model states for interpolation. In addition, these algorithms 48 

can introduce artificial sink/source terms to the numerical models, violating the model physics. 49 

Over recent decades, an adjoint method with a large assimilation window (years to decades) has been developed in 50 

the framework of Estimating the Circulation and Climate of the Ocean (ECCO, Heimbach et al., 2019; Stammer et al., 51 

2002; Wunsch and Heimbach, 2007) to create dynamically consistent ocean reanalyses. This method iteratively 52 

minimises a cost function that measures the model-data “distance” by adjusting model uncertain inputs (control 53 

variables). The use of an adjoint model (adjoint of the tangent linear approximation of the nonlinear model) as a 54 

spatiotemporal interpolator distinguishes this method from the statistical methods. In addition, the adjoint method 55 

adjusts all uncertain inputs, including initial conditions, atmospheric forcing, and model parameters, rather than only 56 

the initial conditions as in statistical-based methods. The resulting reanalysis completely follows the model governing 57 

equations without having to consider artificial source/sink terms. 58 

Despite the application of the coupled ocean and sea ice adjoint model in sensitivity studies (Heimbach et al., 2010; 59 

Kauker et al., 2009; Koldunov et al., 2013) and reanalyses (Fenty and Heimbach, 2013; Koldunov et al., 2017; Lyu et 60 

al., 2021b; Nguyen et al., 2021), we have to omit the adjoint of sea ice dynamics (Fenty et al., 2017; Nguyen et al., 61 

2021) or simplify it to the adjoint of a free-drift sea ice model (Koldunov et al., 2017; Lyu et al., 2021b) to ensure 62 

numerical stability of the adjoint model. Toyoda et al. (2019) noted that further including the adjoint of sea ice 63 

rheology results in a much weaker evolution of sensitivity to sea ice velocity by O (102) in the central Arctic Ocean 64 
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than the adjoint of free-drift sea ice dynamics. It is expected that including the adjoint of sea ice rheology could better 65 

project the model-data misfits to the control variables and potentially improve the quality of the reanalysis. 66 

In this study, we incorporate and stabilise the adjoint of a viscous-plastic sea ice dynamic (Hibler, 1979; Zhang and 67 

Hibler 1997), building on prior developments of the coupled Arctic ocean and sea ice model and assimilation system 68 

(Koldunov et al., 2017; Lyu et al., 2021b). Using the unprecedented sea ice retreat process in 2012 as an example, we 69 

evaluate the impacts of using the approximated adjoint of viscous-plastic sea ice dynamics on estimating the Arctic 70 

ocean, sea ice, and sea-ice retreat processes.  71 

The paper is organised as follows. In Section 2, we introduce the model configurations and assimilation 72 

experiments. We assess the assimilation results in terms of  the residual errors in Section 3. We examine adjustments 73 

of the control variables in Section 4 and compare the sea ice retreat process in the assimilation runs in Section 5. 74 

Section 6 summarises the results of this study and discusses the potential for a further development of global and 75 

Arctic state and parameter estimation systems. 76 

 77 

2 Model Configuration and Experiment Setups 78 

2.1 The Coupled Ocean and Sea Ice Modelling and Assimilation System 79 

The data assimilation system is based on the adjoint method in the ECCO framework, using the Massachusetts 80 

Institute of Technology ocean general circulation model (MITgcm, Marshall et al., 1997) coupled with the zero-layer 81 

dynamic-thermodynamic sea ice model of Hibler (1979). The sea ice dynamics are based on a viscous-plastic sea ice 82 

rheology and are solved using a line successive over-relaxation algorithm (Zhang and Rothrock, 2000). The 83 

thermodynamic sea ice model includes a prescribed sub-grid ice thickness distribution with 7 thickness categories. On 84 

top of the ice, a diagnostic snow model is applied which modifies the heat flux and surface albedo, as in Zhang and 85 

Rothrock (2000). The thermodynic-dynamic sea ice model simulates changes in sea ice drift (SID), sea ice 86 

concentration (SIC), and mean sea ice thickness (in volume per unit area, mean SIT hereinafter). Losch et al. (2010) 87 

reformulated the sea ice model on an Arakawa C grid to match the MITgcm oceanic grid and modified the model 88 

codes to permit efficient and accurate automatic differentiation. The adjoint of the coupled ocean and sea ice model 89 

is generated by the Transformation of Algorithms in FORTRAN (TAF, Giering and Kaminski, 1998). 90 

The pan-Arctic model covers the Arctic Ocean north of the Bering Strait and the Atlantic Ocean at 44°N 91 

(enclosed by black lines in Figure 1). In the horizontal direction, we use a curvilinear grid with a resolution of 12~15 92 

km in the Arctic Ocean and ~18 km in the North Atlantic Ocean. In the vertical direction, the system has 50 z-levels 93 

ranging from 10 m at the surface to 456 m in the deep ocean. The open boundaries are provided by a 16 km Atlantic-94 

Arctic Ocean simulation (Serra et al., 2010). At the ocean surface, we use the atmosphere state from the National 95 

Centers for Environmental Prediction reanalysis 1 (NCEP-RA1, Kalnay et al., 1996) and bulk formulae (Large and 96 

Yeager, 2004) to compute the momentum, heat, and freshwater fluxes. A virtual salt flux parameterisation simulates 97 

the dilution and salinification of rainfall, evaporation, and river runoff. River runoff is applied near the river mouth 98 

with seasonally varying discharge (Fekete et al., 2002). In addition, unresolved vertical mixing is parameterised using 99 

the K-Profile scheme of Large et al. (1994). The background coefficients of vertical diffusion and viscosity are set to 100 
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10-5m-2s-1 and 5.610-4 m-2s-1, respectively. Biharmonic viscosity with a coefficient of 2.21011 m4s-1 represents 101 

unresolved sub-grid eddy mixing. The bottom topography is derived from ETOPO2 (Smith and Sandwell, 1997).  102 

 103 
Figure 1. Map of the pan-Arctic regions showing the model domain (enclosed by the black lines) and horizontal 104 

resolutions (shading). The red rectangles show the three moorings (Ma, Mb, Md) from the Beaufort Gyre Exploration 105 

Project (BGEP). Major basins and straits are labelled as follows: Canada Basin (CB), Makarov Basin (MB), Eurasian 106 

Basin (EB), Chukchi Sea (CS), East Siberian Sea (ESS), Laptev Sea (LS), Kara Sea (KS), Barents Sea (BaS), Greenland 107 

Sea (GS), Lofoten Basin (LB), Iceland Sea (IS), Norwegian Sea (NS), Bering Strait (BS), Fram Strait (FS), Barents 108 

Sea Opening (BSO), and Canadian Arctic Archipelago (CAA). 109 

 110 

The adjoint method brings the model simulation close to available observations by iteratively adjusting control 111 

variables to minimise a quadric target function J (cost function hereinafter): 112 

J(Cini, Catm(t)) = ∑ [y(t) − E(t)x(t)]TR−2[y(t) − E(t)x(t)]T1
t=1 + Cini

T P−2Cini + ∑ 𝐶𝑎𝑡𝑚(𝑡)𝑇T1
t=0 Qa

−2𝐶𝑎𝑡𝑚(𝑡)  (1). 113 

On the right hand of Equation (1), the first term measures the model-data misfits weighted by the inverse error 114 

covariance matrices (R-2). The following section will introduce the available measurements and their uncertainties (R). 115 

y(t) and x(t) are observations and the model state at time t, respectively. E(t) maps the model state x(t) to the 116 

corresponding observations y(t). The last two terms are background terms of the initial condition (Cini) and the time-117 

varying atmospheric forcing (Catm(t)) weighted by their inverse error covariance matrices (P-2 and 𝑄𝑎
−2, respectively), 118 

which penalise their adjustments and provide complete information on the controls. Following Lyu et al. (2021b), 119 

prior uncertainties of the time-varying atmosphere state (Qa) depend on geographic locations. They are computed as 120 

the variance of the nonseasonal variability of the corresponding variables using NCEP-RA1. 121 

For simplicity and the robust performance of this coupled data assimilation system, we choose the initial 122 

conditions (Cini), including temperature, salinity, mean SIT, SIC, and daily atmosphere state on the model grid (Catm(t)), 123 

https://explore.quarkexpeditions.com/blog/canadian-arctic-archipelago-facts
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which includes 10-m wind vectors, 2-m air temperature, 2-m specific humanity, precipitation, downwelling longwave, 124 

and net shortwave radiation, as the control variables. In the future development of ocean and sea ice state estimation 125 

systems, we further include the river runoff, the open boundary conditions, and model uncertain parameters as control 126 

variables as in previous studies (e.g., Fenty and Heimbach, 2013; Liu et al., 2012). In this study, we use a one-year 127 

assimilation window covering the year 2012, resulting in a total number of 2.7108 control variables. 128 

During the optimisation process, the adjoint of the coupled ocean-ice model is used to compute the gradients of 129 

the cost function J to the control variables, and a quasi-Newton algorithm (Gilbert and Lemaréchal, 2006) is used to 130 

iteratively reduce the cost function J. The optimisation process continues until the cost function cannot be further 131 

reduced.  132 

2.2 Observations and Prior Uncertainties 133 

Both satellite and in situ measurements (Table 1) are used to constrain the model simulations. In addition, sea ice 134 

draft measurements by up-looking sonar from the Beaufort Gyre Exploration Project (BGEP, see Figure 1 for the 135 

locations) are used to independently validate the assimilation results.  136 

Prior uncertainties are detailed in our previous Arctic synthesis study (Lyu et al., 2021b). Uncertainties in 137 

temperature and salinity depend on the depth and are set to 0.6 °C and 0.3 PSU at the surface and 0.02 °C and 0.02 138 

PSU in the deep ocean; SIC uncertainties consist of representation errors (15% within 50 km from the coastlines and 139 

10% over the open water) and instrument errors. Because of higher errors in low SIC and lower errors over open water, 140 

we modify the representation uncertainties by multiplicative factors of 0.85, 1.20, 1.10, and 1.00 for the observed SIC 141 

ranges of 0.00, <15%, 15%–25%, and 0.25%, respectively. 142 

SIT errors are provided by the datasets and interpolated to our model grid. Sea level anomaly (SLA) uncertainties 143 

are set to 3.0 cm. SID uncertainties are dominated by representation errors and are set to 0.04 m/s. Sea surface 144 

temperature (SST) uncertainties are provided by the datasets. In addition, we reduce the weight of the temperature and 145 

salinity climatology (WOA18) cost components by factors of 20.0 and 10.0, respectively, to avoid overfitting to the 146 

climatology.  147 

Table 1. Assimilated measurements. 148 

Date sets Resolution Number Source 

Sea level ano

maly 

7.0 km 7.6105 Copernicus Marine Environment Monitoring Service, 

http://marine.copernicus.eu 

Sea surface te

mperature 

25.0 km 
 

2.0107 Remote Sensing System, http://www.remss.com/measurements/sea-
surface-temperature/ 

T&S profiles   5.0105 Good et al. (2013), https://www.metoffice.gov.uk/hadobs/en4/ 

Sea ice 

concentration 

25.0 km 3.6107 Kaleschke et al. (2001) and Spreen et al. (2008), SSMI (2011-2012),  

http://icdc.cen.uni-hamburg.de/1/daten/cryosphere.html 

Sea ice 

thickness 

25.0 km 8.9106 Ricker et al. (2017),  

https://spaces.awi.de/pages/viewpage.action?pageId=291898639 

Sea ice drift 62.5 km  5.8105 Lavergne et al. (2019), https://osi-saf.eumetsat.int/products/osi-405-c 

WOA18 1.0° 2.9107 Zweng et al. (2018), 

https://www.nodc.noaa.gov/OC5/woa18/woa18data.html 

2.3 Viscos-Plastic Sea Ice Dynamics and Its Adjoint 149 

In the coupled ocean and sea ice model, the following equation governs sea ice drift: 150 

https://www.metoffice.gov.uk/hadobs/en4/
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m
𝑑𝑢⃑⃑ 

𝑑𝑡
= −𝑚𝑓𝑘⃑ × 𝑢⃑ + 𝜏𝑎𝑖𝑟 + 𝜏𝑜𝑐𝑛 − ∇∅(0) + ∇ ∙ 𝜎     (2) 151 

where m is the sea ice mass and 𝑢⃑  is the sea ice motion vector; 𝜏𝑎𝑖𝑟  and 𝜏𝑜𝑐𝑛 are the wind and ocean drags, 152 

respectively; −∇∅(0) is the tilt of the sea surface; and ∇ ∙ 𝜎 is the divergence of the ice stress tensor 𝜎𝑖𝑗(i=1,2), 153 

representing the internal forces of sea ice.  154 

In the viscous-plastic rheology of Hibler (1979), the stress tensor 𝜎𝑖𝑗 is related to the sea ice strain rate (𝜖𝑖𝑗) and 155 

strength (P): 156 

𝜎𝑖𝑗 = 2𝜂(𝜖𝑖𝑗, 𝑃)𝜖𝑖𝑗 + [𝜁(𝜖𝑖𝑗 , 𝑃) − 𝜂(𝜖𝑖𝑗 , 𝑃)]𝜖𝑘𝑘𝛿𝑖𝑗 −
𝑃

2
𝛿𝑖𝑗     (3) 157 

where 𝛿𝑖𝑗 is the Kronecker delta (𝛿𝑖𝑗 = 1 if i=j, otherwise 0). 𝜂 and 𝜁 are the bulk and shear viscosities, expressed 158 

as:  159 

ζ =
𝑃

2∆𝑟𝑒𝑔
         (4) 160 

η =
𝑃

2𝑒2∆𝑟𝑒𝑔
         (5) 161 

where  162 

Δ = [(𝜖11
2 + 𝜖22

2 )(1 + 𝑒−2) + 2(1 − 𝑒−2)𝜖11𝜖22 + 4𝑒−2𝜖12
2 ]

1

2    (6) 163 

e is the ratio of normal stress to shear stress and is set to 2.0; ∆𝑟𝑒𝑔= max (∆,∆𝑚𝑖𝑛) with min equals 1.010-10. The 164 

sea ice strain rate is computed as: 165 

𝜖𝑖𝑗 =
1

2
(
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
)        (7). 166 

The sea ice strength P depends on mean SIT (H) and SIC (C): 167 

P = 𝑃∗𝐻 ∙ exp (−𝐶∗ ∙ (1 − 𝐶))      (8) 168 

P* and C* are the ice compressive strength constant and ice strength decay constant and are set to 2.75104 N m-2 169 

and -20.0, respectively. 170 

The dependence of the internal force term (∇ ∙ 𝜎) on ice velocity is strongly nonlinear, leading to an unstable 171 

adjoint of the coupled ocean-sea ice system. Therefore, previous studies (Koldunov et al., 2017; Lyu et al., 2021b) 172 

used an adjoint of a free drift sea ice model (without an adjoint of ∇ ∙ 𝜎). Toyoda et al. (2019) pointed out that the full 173 

adjoint of Equation (2) can be stabilised by eliminating the dependence of bulk and shear viscosities on the strain rate 174 

(𝜖𝑖𝑗).  175 

Following the study of Toyoda et al. (2019), we eliminate the dependence of bulk and shear viscosities on 𝜖𝑖𝑗 in 176 

the adjoint of Equation (2). In addition, we note that there are still strong sensitivities that hamper the convergence of 177 

optimization. We set the adjoint sensitivities of ice velocity to zero if the local sensitivity is 50 times larger than the 178 

global mean of their absolute values. In addition, we also modify the adjoint model in the following ways to ensure 179 

the stability of the adjoint model over a one-year assimilation window: 180 

1) Disable the K-profile mixing parameterisation scheme; 181 

2) Increase the Laplacian diffusivity of heat and salinity to 500 m2 s-1 and lateral eddy viscosity to 10,000 m2 s-182 

1; 183 
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3) Apply a spatial filter to sensitivity variables calculated in the adjoint of the thermodynamic sea ice model 184 

(see APPENDIX in Lyu et al. (2021b) for details). 185 

Since the sea ice dynamic model is solved using an iterative line successive over-relaxation solver, we note that 186 

the approximated adjoint of the viscous-plastic sea ice dynamic (adjoint-VP) requires ~1.2 times the computational 187 

cost of using the adjoint of a free-drift sea ice model (adjoint-FD).  188 

 189 

 190 

Figure 2. Sensitivities of total sea ice volume to wind vectors (in 0.1km3 (m s-1)-1, shadings represents amplitudes) 191 
using the adjoint of (a) a free-drift sea ice dynamic and (b) viscous-plastic sea ice dynamics with modifications in 192 

Section 2.3. Panels (c)-(d) show the mean SIT changes by perturbing the wind with the corresponding adjoint 193 

sensitivities multiplied by a factor of 10-8. The green lines are the sea ice extents (SIEs, 15% SIC) in January 2012.  194 

 195 

Based on adjoint-FD and adjoint-VP, we compute the sensitivities of domain-integrated sea ice volume with 196 

respect to the atmospheric forcings and the initial conditions over the period of January 1 to January 31, 2012. As 197 

reported by Toyoda et al. (2019), adjoint-FD shows much stronger sensitivities to wind than does adjoint-VP (Figure 198 

2a, b) in the central Arctic Ocean. Along the sea ice marginals (SIMs) of the Atlantic sectors, adjoint-VP reveals that 199 

the towards-ice wind anomalies increase total sea ice (Figure 2b) since they prevent ice from drifting to the warm 200 
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Atlantic water. However, adjoint-FD shows strong sensitivities along the SIMs of the Atlantic sectors, but both 201 

towards-ice and off-ice wind anomalies appear (Figure 2a), potentially resulting in ice convergence. 202 

Furthermore, we add daily wind perturbations, computed by scaling the adjoint sensitivities (Figure 2a, b) so that 203 

the maximum perturbations are 1.0 m s-1, to the 6-hourly wind from NCEP-RA1 and examine their impacts on mean 204 

SIT changes. As expected, mean SIT changes are mainly along the SIMs in the Atlantic sectors (Figure 2c, d), and 205 

wind perturbations from adjoint-FD reduces mean SIT northeast of Greenland (Figure 2c). In the central Arctic Ocean 206 

with compact ice, the internal forces ∇ ∙ 𝜎 oppose the impacts of wind perturbations. Therefore, despite the strong 207 

adjoint sensitivities to the wind in adjoint-FD, we note that the resulting wind perturbations only slightly change the 208 

mean SIT (Figure 2c), which is comparable to that in adjoint-VP (Figure 2d).  209 

In addition to overestimating the sensitivities to wind, adjoint-FD may degrade the usefulness of the adjoint 210 

sensitivities in optimisation. Therefore, we perform two assimilation experiments to comprehensively evaluate the 211 

impacts of including the approximate adjoint of sea ice rheology on ocean and sea ice estimations.  212 

3 Model-Data Misfit Reductions and Residuals  213 

3.1 Evaluation of the Optimisation 214 

In this study, we consider iteration 0 the control run. In adjoint-FD and adjoint-VP, the optimisations stall at 215 

iterations 13 and 32, and the further cost function reductions at the last two successive iterations are 0.7% and 0.2% 216 

of the total cost, respectively. After the optimisations, the total cost and norms of the gradients are reduced by 32.3% 217 

and 59.2% , respectively, in adjoint-FD and by 40.2% and 89.3%, respectively, in adjoint-VP. 218 

Table 2. Normalised costs and reductions in the two optimisation runs.  219 

Cost constituent Control run Adjoint-FD Adjoint_VP 

Normalised cost 

(%) 

Normalised cost 

(%) 

Percentage 

reduction (%) 

Normalised cost 

(%) 

Percentage 

reduction (%) 

JTotal 100 67.7 32.3 59.8 40.2 

JSLA 2.2 2.1 4.6 2.1 4.6 

JSST 25.3 15.4 39.1 12.9 49.0 

Jprofile_T 6.9 6.5 5.8 4.3 37.7 

Jprofile_S 5.8 5.9 -1.7 4.5 22.4 

JSIC 39.7 18.4 53.7 18.1 54.4 

JSIT 3.6 3.1 13.9 2.7 25.0 

JSID 4.5 4.4 2.2 4.3 4.4 

JWOA_T 6.6 6.6 0.0 6.2 6.1 

JWOA_S 5.4 5.3 1.9 4.7 13.0 

 220 

Of the individual cost constituents (Table 2), satellite-observed SST (JSST) and SIC (JSIC) contribute ~25.3% and 221 

39.7% of the total cost, respectively, which are significantly reduced after optimisation. The costs of the temperature 222 

(Jprofile_T) and salinity (Jprofile_S) profiles are also considerably reduced, especially in the adjoint-VP. The rest of the cost 223 

constituents are also slightly reduced. Overall, including the adjoint of sea ice rheology further reduces the total cost 224 

by 7.9% and the individual cost constituents, especially Jsst, Jprofile_T and Jprofile_S. Based on iterations 0, and 13 in 225 

adjoint-FD, and 32 in adjoint-VP of the optimisation, we will focus on the sea ice state and ocean temperature to 226 

evaluate the impacts of using this approximate adjoint of sea ice rheology.  227 

 228 
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3.2 Sea Ice State 229 

3.2.1 Residual Errors of SIC and SIT 230 

Satellite visual, infrared, and microwave technologies have been applied to monitor SIC with high frequencies 231 

and quality, which is of high priority in global and Arctic-focused synthesis (Chevallier et al., 2017; Uotila et al., 232 

2019). Previous studies (Fenty and Heimbach, 2013; Lyu et al., 2021a; Lyu et al., 2021b) indicated that SIC could be 233 

significantly improved by slightly adjusting the atmospheric forcings. Here, we explore the residual errors in the 234 

optimisation runs.  235 

 236 

Figure 3. Root mean square errors (RMSEs) of SIC between the satellite measurements and (a) the control run, (b) 237 
adjoint-FD, and (c) adjoint-VP averaged over 2012. Panel (d) shows the temporal variations in RMSEs normalised by 238 

prior uncertainties in the three simulations averaged over the sea ice-covered regions. 239 

 240 

The root mean square errors (RMSEs) of SIC averaged over 2012 (Figure 3a-c) and normalised by the prior 241 

errors and averaged over the model domain (Figure 3d) show the geographical distribution and temporal evolution of 242 

SIC errors, respectively. The normalised RMSEs in Figure 3d should be close to 1.0 if the optimisation found a model 243 

simulation consistent with the observations and the prior uncertainties. 244 

The control run (Figure 3a) shows pronounced RMSEs in the Beaufort Gyre (~15%), the central Eurasian Basin 245 

(15%~20%), the marginal seas (15%~20%), and SIMs of the Atlantic sector (30%-50%). The normalised RMSEs 246 

reveal that SIC errors remain small (~0.5) in the winter time (Figure 3d), indicating that the control run and the satellite 247 

SIC measurements match well, but they grow quickly from May-September when the sea ice melts (Figure 3d). 248 
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Normalised RMSEs up to 1.5 are observed in October but quickly drop in November (Figure 3d). Therefore, SIC 249 

errors are significant during the melting and refreezing periods (from May to November). 250 

Both assimilation experiments reduce the SIC errors to less than 5% in the central Arctic Ocean and 10% in the 251 

marginal seas. SIC errors of up to 20% persist in the Atlantic sector, where sea ice shows strong nonlinearity and the 252 

tangent linear model can capture only part of the sea ice changes (APPENDIX B in Lyu et al., 2021a). Normalised 253 

SIC errors from May to September are also reduced to close to 1.0 by assimilation of the daily SIC observations 254 

(Figure 3d). However, SIC errors in October remain significant (Figure 3d) since the observed sea ice recovers much 255 

faster than in the control run and the two assimilation runs (not shown here). This delayed sea ice recovery in the 256 

model may be related to model uncertain parameters, such as the threshold thickness between thin and thick ice, which 257 

determines the initial sea ice thickness formed in open water.  258 

 259 

Figure 4. Root mean square errors (RMSEs) of SIT between the satellite measurements and (a) the control run, (b) 260 
adjoint-FD, and (c) adjoint-VP averaged over 2012. Panel (d) shows the temporal variations in RMSEs normalised by 261 

prior uncertainties in the three simulations averaged over the sea ice-covered regions. 262 

 263 

The control run shows SIT errors of up to 1.0 m in regions north and south of the Fram Strait and approximately 264 

0.4~0.7 m in the Beaufort Gyre. In the Beaufort Gyre, the SIT errors are reduced to less than 0.3 m in adjoint-VP 265 

(Figure 4c) and approximately 0.3-0.5 m in adjoint-FD (Figure 4b). Similar to the SIC errors, SIT errors of up to 1.0 266 

m remain along the East Greenland Current, which seems to increase in the two assimilation experiments. The 267 

temporal evolutions of normalised RMSEs show that the SIT errors grow quickly from February to April (Figure 4d). 268 

Both assimilation experiments reduce the SIT errors, especially in adjoint-VP from January to April (Figure 4d). 269 
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However, the normalised RMSEs of SIT averaged over the model domain remain smaller than 1.0 and seem to grow 270 

during the melting season. More accurate SIT observations (e.g., half of the uncertainties) and SIT observations during 271 

the melting season are required to facilitate a significant impact on the model simulation.  272 

3.2.2 BGEP Mooring Measurements 273 

Independent sea ice draft measured by up-looking-sonar (ULS) on the BGEP moorings (Ma, Mb, and Md in 274 

Figure 1) is used to validate the simulated sea ice draft. The simulated snow depth (dsnow) and SIT (dSIT) are used to 275 

compute the sea ice draft following the methods of Tilling et al. (2018): 276 

draft =
𝜌𝑖×𝑑𝑆𝐼𝑇+𝜌𝑠×𝑑𝑠𝑛𝑜𝑤

𝜌𝑤
     (9) 277 

where i, s, and w are the densities of the sea ice, snow, and water, respectively, and are set to 910.0, 330.0, and 278 

1027.5 kg m-3 , respectively, as in our model.  279 

 280 

Figure 5. Daily time series of the sea ice draft (dotted yellow lines) and the daily standard deviation (shadings) at the 281 

mooring locations (a) Ma, (b), Mb, and (c) Md compared with the control run and the two assimilation runs (see the 282 

legend) throughout the year 2012. ULS-observed sea ice drafts are smoothed with a 5-day running average.  283 

 284 

The ULS measurements depict stronger daily to sub-monthly sea ice draft variability than do the model 285 

simulations, which may be related to ice floe motions. The control run simulates a delayed ice disappearance process 286 
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in Ma (Figure 5a) and fails to reproduce the sea ice disappearance processes in Mb (Figure 5b) and Md (Figure 5c) from 287 

August to October. After optimisation, adjoint-VP and adjoint-FD reproduce the sea ice melting and refreezing 288 

processes well, although errors of up to 0.5 m remain from January to June. Overall, the two assimilation runs 289 

reproduce the local sea ice retreat and recovery process well. 290 

 291 

3.3 Ocean Temperature 292 

Ocean temperature changes are closely related to sea ice changes. Adjoint-VP introduces more pronounced ocean 293 

temperature changes than does adjoint-FD. Here, we explore ocean temperature changes after assimilation. 294 

 295 
 296 

Figure 6. RMSEs of potential temperature (a) in the Arctic Ocean and (b) the North Atlantic Ocean in the three runs. 297 

The Arctic Ocean and the North Atlantic Ocean are separated by the black lines in the bottom subplot. 298 

 299 

In the Arctic Ocean, adjoint-FD reduces temperature errors only over the top 20 m, while adjoint-VP reduces 300 

temperature errors up to 0.4 °C over the top 1000 m (Figure 6a). In the North Atlantic Ocean, adjoint-VP results a in 301 

more pronounced RMSEs reduction up to 0.3 °C than adjoint-FD (Figure 6b).  302 

Relative temperature error reductions over the top 50 m reveal an overall improvement in temperature with 303 

occasional degradation (Figure 7a, b). Adjoint-VP results in a more significant error reduction than does adjoint-FD 304 

in the North Atlantic Ocean (Figure 7a, b). In the southern Beaufort Gyre, the Laptev and Kara seas, and north of 305 

Svalbard, both adjoint-VP and adjoint-FD increase the ocean temperature (over 50 m) since the two optimisation runs 306 

reproduce the early retreat of the sea ice well, allowing more solar heating of the open water. In the North Atlantic 307 

Ocean, adjoint-VP achieves more considerable temperature changes than does adjoint-FD both over the top 50 m 308 

(Figure 7c, d) and from 50 m-700 m (Figure 7e, f). In the Arctic Ocean, adjoint-VP further introduces negative 309 

temperature corrections between 50 and 700 m (Figure 7f), especially near the profile locations (see dots in Figure 310 

7b). 311 
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 312 

Figure 7. Relative temperature error reduction (−
|𝑇𝑜𝑝𝑡𝑖−𝑇𝑜𝑏𝑠|−|𝑇𝑐𝑡𝑟𝑙−𝑇𝑜𝑏𝑠|

|𝑇𝑐𝑡𝑟𝑙−𝑇𝑜𝑏𝑠|
× 100%) over the top 50 m at the profile 313 

locations in (a) adjoint-FD and (b) adjoint-VP. Values >100% indicate over-adjustment. Panels (c) and (d) show the 314 

temperature differences of adjoint-FD and adjoint-VP to the control run averaged over the top 50 m, respectively. 315 

Panels (e) and (f) are the same as Panels (c) and (d), but for the 50-700 m layers. 316 

 317 

In summary, adjoint-FD and adjoint-VP reproduce the SIC variations well in the Arctic Ocean, which further 318 

reduces ocean temperature errors in the top layer by improving the atmosphere-ocean heat flux. Adjoint-VP achieves 319 

more significant corrections to the ocean temperature over the open water and in the intermediate layer of the Arctic 320 

Ocean than does adjoint-FD. 321 

4 Adjustment of the Control Variables 322 

The adjoint models project the model-data misfits onto the gradient of the objective function with respect to all 323 

control variables simultaneously, which is used by the optimisation algorithm to adjust the control variables. In this 324 

section, we compare adjustments of the control variables in the adjoint-FD and adjoint-VP and evaluate contributions 325 

of individual adjustments of the control variables on the cost function reduction. We also compare the adjustments of 326 

the control variables in adjoint-FD and adjoint-VP with differences between ERA5 (Hersbach et al., 2020) and NCEP-327 

RA1 reanalyses. 328 

Among all the control variables, wind vectors and 2-m air temperature are considerably adjusted in adjoint-FD 329 

and adjoint-VP but also show significant differences. In addition, adjoint-VP induces more pronounced adjustments 330 

of the initital temperature and salinity than does adjoint-FD (not shown here). Here, we concentrate on the adjustments 331 

of wind vectors and the 2-m air temperature.  332 
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 333 

Figure 8. Root mean square (RMS) of the adjustments of the (a) wind u-component, (b) wind v-component, and (c) 2-334 

m air temperature normalised by their prior uncertainties (dimensionless) in adjoint-FD and averaged over 2012. 335 

Panels (d)-(f) are similar to (a)-(c) but for adjoint-VP. Panels (g)-(i) show the normalised RMS of differences in the 336 

(g) wind u-component, (h) wind v-component, and (i) 2-m air temperature between ERA5 and NCEP-RA1 reanalyses 337 

(normalised by prior uncertainties in assimilation experiments). Panels (j)-(l) are the area averages of the normalised 338 

RMS of adjustments (differences) of the wind u-component, wind v-component, and 2-m air temperature 339 
(dimensionless) in adjoint-FD and adjoint-VP (ERA5-NCEP). 340 

 341 

Figure 8 shows the root mean square (RMS) of the adjustments of the wind vectors and 2-m air temperature 342 

normalised by their prior uncertainties. The normalised RMS of the adjustments of the control variables should be 343 

smaller than 1.0 if the adjustments are within their prior uncertainties. Adjoint-FD slightly adjusts the wind vectors 344 

(with the normalised RMS of the adjustments being smaller than 0.4, Figure 8a, b), but the 2-m air temperature is 345 

significantly adjusted (with the normalised RMS of adjustments being greater than 1.5, Figure 8c). In adjoint-VP, 346 

the wind vectors and 2-m air temperature are slightly adjusted (Figure 8d-f) with their normalised RMS of 347 

adjustments being smaller than 0.3. In addition to the different amplitudes of the adjustments, the maximum 348 

adjustments of the wind vectors appear in June in adjoint-VP but in May in adjoint-FD (Figure 8j, k). Throughourt 349 

2012, the 2-m air temperature is adjusted more prominently in adjoint-FD than in adjoint-VP (Figure 8l). 350 
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We note that the adjustments of the three atmosphere state variables in Figure 8a-f resemble the SIC (Figure 3a) 351 

and SIT (Figure 4a) error patterns, indicating that these adjustments are mostly determined by sea ice state errors that 352 

are projected on the control variables by the adjoint models rather than the background terms (the second and third 353 

terms on the right hand side of Equation (1)). Excluding the adjoint of sea ice rheology (adjoint-FD) results in over-354 

adjustments of 2-m air temperature. With an approximated adjoint of sea ice rheology (adjoint-VP), we reduce the 355 

model-data misfits by slightly adjusting the control variables.  356 

Using the new generation ERA5 reanalysis, we further compare the ERA5-NCEP differences against the 357 

adjustments of the atmosphere state variables in terms of their spatial patterns and temporal variability. The purpose 358 

of this comparison is twofold: 1) it further justifies the rationale of the adjustment amplitudes, and 2) it examines 359 

whether the adjustments reflect the differences between the old generation NCEP-RA1 reanalysis and the new 360 

generation ERA5 reanalysis. For the wind vectors, the normalised RMS differences between the ERA5 and NCEP-361 

RA1 reanalyses (Figure 8g, h) are much larger than the wind vector adjustments in adjoint-FD (Figure 8a, b) and 362 

adjoint-VP (Figure 8d, e). For the 2-m air temperature, the normalised ERA5-NCEP differences (>1.0, Figure 8i) are 363 

much larger than the normalised adjustments in adjoint-VP (<0.3, Figure 8f) but smaller than the normalised 364 

adjustments in adjoint-FD (>1.5, Figure 8c) in the Kara Sea, the Laptev Sea, the southern Beaufort Sea, the Eurasian 365 

Basin and the Makarov Basin. It is evident that the 2-m air temperature adjustments in adjoint-FD are too large. 366 

Averaged over the model domain and throughout 2012, the ERA5-NCEP differences are much larger than the 367 

adjustments (Figure 8j-l) in the two assimilation runs. In addition, the adjustments are larger from May to August 368 

than from September to April, while the ERA5-NCEP differences are larger in the winter season than in the summer 369 

season (Figure 8j-l). The comparisons confirm that the 2-m air-temperature is over-adjusted in adjoint-FD, especially 370 

from May to July (Figure 8l). The adjustments of wind vectors and 2-m air temperature do not resemble the ERA5-371 

NCEP differences, indicating that the model-data differences cannot be fully fixed by replacing the old generation 372 

NCEP-RA1 reanalysis with the new generation ERA5 reanalysis.  373 

 374 

Table 3. Contributions of the adjustments of 2-m air temperature, wind vectors, initial temperature and salinity (Initial 375 

T&S), and the remaining control variables (including initial mean SIT and SIC, 2-m specific humanity, precipitation, 376 

downwelling longwave, and net shortwave radiation) on the total cost reduction, SIC, SST, and temperature profiles 377 

in the two optimisation runs.  378 

 Adjoint-FD (%) Adjoint-VP (%) 

 2-m air 

temperature 

Wind 

vectors 

Initial T 

& S 

Remaining 

variables 

2-m air 

temperature 

wind Initial 

T & S 

Remaining 

variables 

Jtotal 29.0 17.5 6.0 3.0 5.3 52.6 25.1 5.0 

JSIC 25.5 19.8 2.4 1.2 4.5 64.9 10.1 2.4 

JSST 41.0 8.6 10.1 5.5 8.4 47.4 29.6 6.4 

Jprof_T 3.9 4.9 4.3 4.3 4.4 40.9 182.0 7.9 

 379 

By replacing the adjusted initial temperature and salinity, wind vectors, 2-m air temperature, and the remaining 380 

control variables with NCEP-RA1 datasets, we integrate the model and estimate the contributions of these variables 381 

to the total cost reductions and individual components. Table 3 summarises contribution of individual control variables 382 

to the total cost reductions and cost components of SIC, SST, and temperature profiles. 383 
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The small contributions of the adjustments of the remaining control variables (“Remaining variables” in Table 3) 384 

to the cost function reductions in adjoint-FD and adjoint-VP highlight the importance of simultaneous adjustments of 385 

the initial temperature and salinity, wind vectors and 2-m air temperature. In adjoint-FD, the adjustments of the 2-m 386 

air temperature and wind vectors dominate the cost function reduction, especially the SIC components. In contrast, 387 

adjoint-VP relies more on the adjustments of the wind vectors and the initial temperature and salinity. Besides, the 388 

more pronounced ocean temperature improvements (see Figure 7) in adjoint-VP are mostly attributed to the 389 

adjustments in the initial temperature and salinity (Table 3).  390 

Overall, Adjoint-FD attributes more of the model-data misfits to the 2-m air temperature than does the adjoint-VP, 391 

resulting in over-adjustments of the 2-m air temperature. By using an approximated adjoint of the sea ice rheology 392 

(adjoint-VP), we reduce the model-data misfit by slightly adjusting the control variables. This leads to the conclusion 393 

that the large 2-m air temperature adjustments in adjoint-FD is likely an overcompensation for wind errors that cannot 394 

be appropriately corrected because of large errors in the respective cost function gradients. 395 

5 The Impacts on Sea Ice Retreat Processes 396 

A unique characteristic of the adjoint-based reanalysis is that its physical processes are described by the 397 

governing equations of the model, allowing us to quantify the sea ice loss and the contributions of the sea ice dynamics 398 

and sea ice-ocean-atmosphere fluxes through a closed budget analysis. In this section, we explore and compare the 399 

mean SIT changes based on the model governing equation: 400 

𝑑ℎ

𝑑𝑡
= −∇ ∙ (𝑢⃑ h) + 𝐹𝑜𝑖 + 𝐹𝑎𝑖 + 𝐹𝑟𝑒𝑠    (10). 401 

The mean SIT tendency 
𝑑ℎ

𝑑𝑡
 is dominated by the sea ice advective flux (−∇ ∙ (𝑢⃑ h)), ocean-sea ice heat flux (𝐹𝑜𝑖) 402 

at the sea ice bottom, atmosphere-sea ice flux (𝐹𝑎𝑖) at the sea ice surface, and a residual term (𝐹𝑟𝑒𝑠) including a snow 403 

flooding effect and a source term to correct negative mean SIT to zero. Foi depends on ocean temperature difference 404 

from freezing temperature (Maykut and Mcphee, 1995) and 𝐹𝑎𝑖 consists of the radiation and turbulence fluxes over 405 

the sea ice surface. The contributions of the residual terms are small and therefore we do not show them in the analysis 406 

below. 407 

Integrate the mean SIT over the Arctic Ocean (see Figure 9 for the locations), we derive Arctic sea ice volume 408 

(SIV) changes. As shown in Figure 9a, the two assimilation runs change the total Arctic SIV changes in different ways. 409 

Adjoint-VP reduces the Arctic SIV by reducing the initial Arctic SIV and changing the SIV tendency from May to 410 

August. By September, adjoint-VP simulates more sea ice than the control run. Adjoint-FD slightly increases the 411 

initial SIV, and the signals are invisible by February 2012. From May to July, adjoint-FD shows a stronger sea ice 412 

melting process than the control run and adjoint-VP. By September, adjoint-FD simulates the most SIV among the 413 

three simulations.  414 

Based on Equation (10), we further compare SIV tendencies and the budget terms in the two assimilation runs 415 

(Figure 9b). The two assimilation runs reveal that the seasonal SIV changes are dominated by Fai (magenta lines in 416 

Figure 9b). Throughout the year, the ocean melts the sea ice from the bottom (blue lines in Figure 9b) and net sea ice 417 

transport also reduces the Arctic sea ice (green lines in Figure 9b). However, we note that a much stronger sea ice loss 418 
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process occurs from May 20 to  June 15 in adjoint-FD (up to -193.0 km3 day-1) than in adjoint-VP (up to -125.0 km3 419 

day-1), which is mainly attributed to Fai anomalies (magenta lines in Figure 9b).  420 

 421 

 422 
 423 

Figure 9. (a) SIV changes in the Arctic Ocean (see the bottom left subplot in Panel (a)) from January to December 424 
2012. (b) SIV tendencies and contributions from Foi, Fai, and Fadv in adjoint-FD and adjoint-VP (see the legend). 425 

 426 

From May 20 to June 15, the Arctic Ocean observations rely most on satellite-measured SIC. Both the two 427 

optimization runs reproduce the observed sea ice extents (SIEs, 15% SIC) well on June 15 (green and red lines in 428 

Figure 10a, d), with adjoint-VP slightly better than adjoint-FD in the Barents and Kara Seas (Figure 10a, d). 429 

On May 20, adjoint-FD simulates more sea ice than does adjoint-VP (Figure 9a). From May 20 to June 15, 430 

adjoint-FD destroys the extra sea ice in the southeastern Beaufort Gyre, the Laptev Sea, the Kara Sea, and north of 431 

Svalbard and Franz-Josef-Land through a stronger surface melting Fai (Figure 10b). At the same time, Fai results in 432 

less sea ice loss (up to 0.6 m) in adjoint-FD in the central Arctic Ocean. Near the SIMs, Fadv differences determine the 433 

mean SIT differences (Figure 10a, c). In contrast, mean SIT differences from May 20 to June 15 between adjoint-VP 434 

and the control run (Figure 10d) are mostly caused by Fadv differences (Figure 10f) and Fai differences have little 435 

contribution (Figure 10e), indicating that adjoint-VP modifies the SID to improve the model simulation during this 436 

period. 437 
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 438 

Figure 10. (a) Differences in ∫
𝑑ℎ

𝑑𝑡
 integrated from May 20 to June 15 between adjoint-FD and the control run (adjoint-439 

FD minus the control run), attributed to (b) ∫𝐹𝑎𝑖and (c) ∫𝐹𝑎𝑑𝑣 differences. Panels (c)-(f) are the same as Panels (a)-440 

(c) but for adjoint-VP. The red and green lines in Panels (a) and (d) indicate the model-simulated (a for adjoint-FD; d 441 

for adjoint-VP) and satellite-observed SIEs on June 15. 442 

 443 

From May 20 to June 15, the significant sea surface melting anomalies (Figure 10b) are mainly caused by 2-m 444 

air temperature adjustments in adjoint-FD (Figure 11a). As shown, the 2-m air temperature is increased by more than 445 

8 °C in the marginal seas (prior air temperature uncertainties are ~2-5 °C) to facilitate the intense surface melting. In 446 

the central Arctic Ocean, the 2-m air temperature is reduced by -6 °C (Figure 11a), resulting in less sea ice loss up to 447 

0.6 m (Figure 10b) than in the control run. In contrast, adjoint-VP adjusts the 2-m air temperature within 3 °C in the 448 

marginal seas (Figure 10b), and the adjustments have little impact on the sea ice surface melting anomalies (Figure 449 

10e). The 2-m air temperature differences averaged from May 20 to  June 15 between the ERA5 and NCEP-RA1 450 

reanalyses are within 3 °C (Figure 11c), indicating that adjoint-FD over-adjusts the 2-m air temperature to destroy 451 
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the extra sea ice. Again, the spatial patterns 2-m air temperature adjustments in adjoint-FD and adjoint-VP don’t 452 

resemble that of ERA5-NECP differences. 453 

 454 

 455 

Figure 11. Adjustments of the 2-m air temperature averaged from May 20 to June 15, 2012, in (a) adjoint-FD and (b) 456 

adjoint-VP. Panel (c) shows the 2-m air temperature differences between the ERA5 and NCEP-RA1 reanalyses 457 

(ERA5 minus NCEP-RA1) averaged from May 20 to June 15, 2012. 458 

 459 

In summary, the two optimisation runs successfully reproduce the sea ice retreat process in 2012 by assimilating 460 

satellite and in situ measurements. However, the sea ice retreat processes differ in the two optimised simulations, 461 

especially from May to June, when Arctic Ocean observations rely mostly on satellite-measured SIC. Considering the 462 

amplitude of the 2-m air temperature adjustments, the adjustments of the control variables in adjoint-VP are more 463 

reasonable than those in adjoint-FD due to the inclusion of the approximate adjoint of sea ice rheology. 464 
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6 Conclusions 465 

The adjoint model is a powerful way to calculate the sensitivities of a target function to model variables and has 466 

been applied to coupled Arctic ocean and sea ice models for sensitivity studies (Heimbach et al., 2010; Kauker et al., 467 

2009; Koldunov et al., 2013) and state estimations (Fenty and Heimbach, 2013; Koldunov et al., 2017; Lyu et al., 468 

2021b; Nguyen et al., 2021). However, due to the persistent instability issues, the adjoint of sea ice dynamics is 469 

traditionally excluded or simplified to the adjoint of a free-drift sea ice dynamic, which potentially hampers the 470 

accuracy of the coupled ocean and sea ice estimation.  471 

Based on the study of Toyoda et al. (2019) and the coupled ocean and sea ice modelling and adjoint assimilation 472 

system (Lyu et al., 2021a), we approximate the adjoint of a viscous-plastic sea ice dynamic and test the impacts on 473 

estimating the spatiotemporal variations in the Arctic ocean and sea ice state.  474 

Two optimisations are performed, one including and one excluding the adjoint of sea ice rheology. Both 475 

assimilation exepriments reduce SIC and SIT errors and reproduce the sea ice retreat well. With the improved SIC 476 

retreat processes, adjoint-FD and adjoint-VP also show similar ocean temperature changes in the marginal seas and 477 

the southern Beaufort Gyre, as solar radiation heats the open water quickly as the sea ice retreats. With the improved 478 

adjoint of sea ice dynamics, adjoint-VP allows much stronger adjustments of the initial temperature, resulting in a 479 

more significant improvement on the temperature in the North Atlantic Ocean and the intermediate layer (50-700 m) 480 

of the Arctic Ocean.  481 

Although that adjoint-FD computes much stronger sensitivities of the cost function to the wind vectors than does 482 

adjoint-VP, we note that adjoint-FD adjusts more (less) of the 2-m air temperature (wind vectors) than does adjoint-483 

VP. It is evident that the adjoint sensitivities of wind vectors in adjoint-FD less efficiently reduce the cost function 484 

than those in adjoint-VP during the optimisation. Adjoint-FD strongly adjusts the 2-m air temperature to reduce the 485 

model-data misfits while adjoint-VP slightly adjusts all the control variables to improve the model simulation.  486 

Using sea ice budget analysis, we further examine the sea ice retreat processes in adjoint-FD and adjoint-VP. We 487 

note that adjoint-FD and adjoint-VP show different sea ice thinning processes from May 20 to June 15 and in the 488 

marginal seas. Adjoint-FD destroys the extra sea ice in the marginal seas by substantially increasing the 2-m air 489 

temperature (up to 8 °C), which is much larger than the ERA5-NCEP differences. In adjoint-VP, the sea ice thinning 490 

is moderate with more reasonable adjustments of 2-m air temperature (within 3 °C) and the size of the adjustments 491 

are much smaller than the ERA5-NCEP differences. Therefore, by including the adjoint of sea ice rheology, adjoint-492 

VP projects the model-data misfits more properly to the control variables than that in adjoint-FD.  493 

Parameter uncertainties significantly impact ocean and sea ice simulations (Lu et al., 2021; Massonnet et al., 494 

2014; Sumata et al., 2019), and a lack of direct observations of key parameters potentially results in biases in the 495 

model simulations and predictions. The development of the adjoint of the viscous-plastic sea ice dynamics further 496 

introduces three parameters, including the ice compressive strength constant (P*), ice strength decay constant (C*), 497 
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and ratio of normal stress to shear stress (e), into the adjoint model. Since it remains unclear how well the tangent 498 

linear approximation could represent the relations between the model parameters and the model state, in the future 499 

studies, we will examine the accuracy of the adjoint sensitivities with respect to the model parameters and then further 500 

improve the ocean-sea ice estimations by jointly estimating the state and parameters. 501 

7 Data availability 502 

The data used to create the plots in the paper are available at Pangaea (https://issues.pangaea.de/browse/PDI-33039). 503 
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