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Abstract. Satellite data transmission is usually limited between hundreds of kilobits-per-second (kb/s) and several megabits-

per-second (Mb/s) while the space-to-ground data volume is becoming larger as the resolution of the instruments increases

while the bandwidth remains limited, typically. The Surface Water and Ocean Topography (SWOT) altimetry mission is a

partnership between the National Aeronautics and Space Administration (NASA) and the Centre National des Études Spatiales

(CNES) which uses the innovative KaRin instrument, a Ka band (35.75 GHz) synthetic aperture radar combined with an5

interforemeter. Its launch is expected for 2022 for oceanographic and hydrological levels measurement and it will generate

7 TeraBytes-per-day, for a lifetime total of 20 PetaBytes. That is why data compression needs to be implemented at both ends

of satellite communications. This study compares the compression results obtained with 672 algorithms, mostly based on the

Huffman coding approach which constitute the state-of-the-art for scientific data manipulation, including Computational Fluid

Dynamics (CFD). We also have incorporated data preprocessing such as shuffle and bitshuffle, and a novel algorithm known10

as SL6.

1 Introduction

Satellites for Earth observations is a topic for research and development, which has been historically taken-on by academia

and institutions. More recently by private operator are working on this topics. The observation devices are based on different

technologies such as visible light collection, radar and hyperspectral imaging, interferometry. These technologies can be com-15

bined to be used together. This, in association with an increasing number of satellites in service, has led to an important rise

in the amount of data collected that has to be transmitted to the ground, which is then processed and stored in a database for

further use (Sudmanns et al. (2020)). Traditionally, satellite data transmission relies on radio-frequencies (Elsey (1968)). Data

may transit on Data Relay Satellites (DRS) like in International Telecommunication Union (2017); Radhakrishnan et al. (2016)

or can be directly sent to ground datacenters or to terminals (Fraire et al. (2019)) in unidirectional or bidirectional manners,20

depending on the application. Despite the most recent advances, the available bandwidth remains limited; indeed, lightweight

terminals only have a few hundred of kilobits-per-second (kb/s) capacity (WMO (2018)). Of course, more important commu-

nication links can reach a few Megabits-per-second (Mb/s) (under 3 GHz frequency bands) to a few hundreds of Mb/s for
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the inter-orbital datalinks (usually over 10 GHz frequency bands). In some cases, the satellite has a limited window of time to

transmit the data to the ground – i.e. where it is aligned with the reception antenna. Data compression needs to be used and25

implemented at both ends of the transmission devices (space and ground). The compression scheme is usually application and

data dependent like in Huang (2011), in observation, the biggest volume of data is transmitted from the space to the ground.

The Surface Water and Ocean Topography (SWOT) (Vaze et al. (2018)) mission is a partnership between the National Aero-

nautics and Space Administration (NASA) and the Centre National des Études Spatiales (CNES), and continues the long history

of altimetry missions with an innovative instrument known as KaRin (Fjørtoft et al. (2014)), which is a Ka band (35.75 GHz)30

synthetic aperture radar associated to an interferometer as illustrated by the Figure 1. The SWOT mission launch is foreseen for

year 2022 and addresses both oceanographic and hydrological communities. It aims at accurately measuring the water level of

the oceans, the rivers and the lakes. It is expected that the SWOT mission will generate about 20 Petabyte (PB) of data during

the mission lifetime which corresponds approximately over 7 TB-per-day. Even if the data format is not fully defined yet for

the SWOT mission, the kind of data generated by such missions is usually stored in Hierarchical Data Format 5 (HDF5) (Trott35

et al. (1996)) files. The data volume issue has been addressed by the implementation of different compression schemes (De-

varajan et al. (2019); Welton et al. (2011)) in the tools for the manipulation of the HDF5 formats of the Computational Fluid

Dynamics (CFD) General Notation System (CGNS) and benchmarked by previous works like in Delaunay et al. (2019); Di and

Cappello (2018). The most recent pone shows that the combination of shuffle preprocessing and deflate lossless compression

(level 4) provides good results. Moreover, it states that in the case of using a lossy compression, a required precision must be40

defined by the scientists as a Number of Significant Digits (NSD) for each dataset variable. Naturally, when using lossy com-

pression algorithms, the full precision of the data is not always available, which can be problematic for a scientific use of the

data. In return of the lost of precision, lossy algorithms generally have a better compression rate than the lossless ones. Since

scientific data needs to keep the original precision, lossless compression algorithms are preferable when possible. A key point

that need to be evaluated is the consistency of the compression level depending on the nature of the data and the homogeneity45

of compression time and throughput. Indeed, variability in the compression rates leads to non deterministic results when it

comes to data transfer, especially for a limited time frame.

This paper proposes to investigate different lossless compression algorithms for scientific data, – especially in CFD – that

are representative of the usual earth observation data. This article extends the work presented in Delaunay et al. (2019) by

exploring the algorithms that are traditionally used in HDF5 and by adding another one to the benchmark.50

If the compression level is an important metric, it does not provide any information on the potential benefit of on-the-fly

compression/decompression during data processing. That is why key points and the use of specific metrics for evaluating the

data compression algorithms performances will be investigated:

– compression level defined here by Cr;

– compression throughput;55

– the homogeneity of the compression regarding the fields of different types (float, integer) and nature;

– the memory usage:
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Figure 1. Illustration of the SWOT Ka-band Radar interferometer (KaRin) and nadir altimeter measurement concept and the products

generated (blue and red shapes on the ground) inspired from Vaze et al. (2018).
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– the ability to compress data on-the-fly, in other words, does it needs the storage of the full data in memory;

The major contributions of this paper are: a) the proposal of a thorough bench methodology for lossless compression algo-

rithm for scientific data; b) the proposal of metrics that goes beyond the compression rate; c) a selection of lossless compression60

algorithms suitable for advanced CFD data and d) discussion of different scenarios that can benefit from compression algo-

rithms in the domain of the earth observation.

This paper is organized in five sections. The first one is this introduction. The second one depicts the methodology followed

for this research. The third section depicts the results and focuses on the most interesting algorithms. The fourth section

discusses the way how the most efficient algorithms can be used in different environments and infrastructures, including High-65

Performance Computing (HPC) and embedded systems. Finally, the last section provides the conclusions of this research.

2 Methodology

The section describes the methodology developped in this study. It is made of four subsections: first it starts with a description

of the dataset; followed by a description of the metrics that allow us to choose the compression algorithms that perform the

best. Finally, the testbench and data management approach is explained followed by the results we have obtained.70

2.1 Dataset

The scientific community relies on CGNS which is a binary unstructured hierarchical format (Diane Poirie and et al. (1998);

Christopher Rumsey, Bruce Wedan and Poinot (2012)) implementing Advanced Data Format (ADF) (Owen and Daniel (1998))

and HDF5 (Folk et al. (2011)) to store observational data. It aims at providing a standard for recording and recovering computer

data associated to the numerical solution of the equations of fluid dynamics. It also implements shapes, up to three dimensions:75

0-D point; 1-D line; 2-D triangle and quadrangle; 3-D tetrahedron, pyramid, pentahedron, hexahedron. Due to the data volume,

not only the transmission and storage are problematic, the access and the read/write time are significant bottlenecks for both

post-processing and simulations (Soumagne et al. (2010)).

The dataset used for this study corresponds to the SWOT mission products. The SWOT mission will generate two types of

products: the high-resolution products, which are dedicated to the hydrology thematic, and the low-resolution products, which80

are mostly dedicated to the oceanography domain. Basically, L0 data contain raw telemetry; L1 Single Look complex means

that each pixel encodes its magnitude (I and Q) and therefore contains both amplitude and phase information. Each I and Q

value is encoded using 16 bits per pixel but stored in 32-bit floating point datawords. The Pixel Cloud product (L2_HR_PIXC)

contains data from the KaRin instrument configured in High Resolution (HR) mode – i.e. the HR mask is enabled; it corre-

sponds to the pixels that are detected as being over water. The "Pixel Cloud product" is organized into sub-orbit tiles for each85

swath and each pass, and this is an intermediate product between the L1 Single Look Complex products and the L2 lake/river

ones. As illustrated in Figure 1, the product granularity is 64 km× 60 km tile.

The dataset used for this study is a simulated golden dataset generated using data obtained from the SWOT mission and

although, it might not be the most recent, it is based on the one used in Delaunay et al. (2019); for better comparisons. It
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Figure 2. Illustration of the samples of the Pixel Cloud Height File (64 bits Float), the signal appears to be periodic but with quite

chaotic characteristics.
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Figure 3. Illustration of the samples of the Pixel Cloud L2H CrossTrack File (64 bits Float), the signal seems to be locally contin-

uous and periodic.

consists of four HDF5 files. Two of them contain the measurements and the two others contains synthetic generatedd data90

divided into fields as follow:

– signal 1 (s1): synthetic data that contains 106954752 samples of little-endian (LE) 32-bit floating-point (FP) (427.8 MB),

its name is : s1: signal;

– signal 3D (s3D): synthetic data, that contains 1048576 samples of LE 32-bit FP (4.2 MB), the related field is s3D:

signal;95
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Figure 4. Illustration of the samples of the swot pixel_area file (64 bits Float), the data of this file are continuous, a good compression

ratio is expected.

– 12 fields of real world measurement data, that contain 1300111 samples of LE 64-bit FP (10.4 MB), their names are

pixel_cloud: classification, coherent_power, cross_track, dheight_dphase, dlatitude_dphase,

dlongitude_dphase, height, illumination_time, incidence_angle, latitude, longitude, pixel_area;

– 7 fields of experimental data that contain 1421888 samples of LE 64-bit FP (11.4 MB), their names are SWOT_L2:

cross_track, height, illumination_time, latitude, longitude, pixel_area, range_index;100

– 9 fields of experimental data that contains 1300111 samples of LE 32-bit FP (5.2 MB), their name are pixel_cloud:

continuous_classification, num_med_looks, num_rare_looks, phase_noise_std, power_left,

power_right, sigma0, x_factor_left, x_factor_right;

– 1 field of experimental data that contains 2600222 samples in two dimension of LE 32-bit FP (10.4 Mb), its name is

pixel_cloud: ifgram.105

In order to estimate the compression performance on each type of data, every single field had been extracted and compres-

sion/decompression was performed on each of them in the testbench. The Figures 2, 3 and 4 illustrates how different the fields

are from each other (extracted from the SWOT file). Figure 2 shows a high entropy and low correlation between the samples,

while Figure 3 shows a high correlation and quite high entropy in the signal. Finally, Figure 4 shows high correlation and a low

entropy signal. Field extraction is performed using the HDFtools and generates a binary file encoded in the original format of110

the related field.

2.2 Lossless Compression Algorithms

Several compression approaches have been proposed through the past decades in the domain of earth observation and scientific

data. HDF5 data representation is widely used in the community, thus naturally came the need of compressing this file structure.
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Within years, CFD tools, that are use to produce the HDF5, have started to implement compression and decompression algo-115

rithms. Many different approaches are proposed for data compression in Jayasankar et al. (2021). Today’s state-of-the-art works

revolve around the use of Huffman, entropy encoders, artihmetic encoders, they are implemented in LZ, LZ4 etc. algorithms.

They consist of building a dictionary of redundancies in the signal, then, only the dictionary and the indexes of the words are

transmitted. By themselves, these approaches perform well, but they require the analysis of huge portions of the data before

being able to start the compression. Moreover, they are more well-suited for strings than floating-point encoded samples. For120

this reason, some works focused on using data preconditioners to reorganize the data. Shuffle, for example, analyses the entire

file or chunks of data, to reorganize the values to get consecutive similar-valued samples, this way, it permits to the encoders

compressor to perform well. Among the most recent advances, a bit-level filter was proposed in Masui (2017), initially asso-

ciated with a lossy compression algorithm (Masui et al. (2015)), it has been demonstrated that it can be efficiently combined

with lossless ones as given in Delaunay et al. (2019). Because of their impact on the compression level when combined with125

Huffman or entropy encoders; the shuffle and the bitshuffle preconditioners are implemented in the netCFD tools.

Delta coding is a basic approach that consists of encoding the derivative of the signal. This way, all the values are zero-

centered, and most of the bits of the encoded samples are set to zero. This approach is lossless on integer encoded, but lossy

when used on floating-point encoded data, even if the loss is limited. Recently, a variant inspired by delta-coding was proposed

in the domain of the HPC (Lloyd et al. (2018)) to reduce the required bandwidth for data transmission between nodes. Thanks130

to a parallel implementation, it sometimes outperforms the other approaches. But again, LZ4fast performs better in many

situations. The delta coding approach can also be combined as done in Patauner et al. (2011) where Huffman coding and

delta coding are used together. If the traditional delta coding is not really efficient for floating point coded samples, and more

generally inferior to the traditional lossless compression schemes , a more recent approach, named here SL6 (Thomine et al.

(2016, US Patent 20,190,044,532)), that consists in encoding the difference between the signal and an approximated value135

makes possible to slightly reduce the number of bits used to transmit the signal. A whole compression and decompression

framework is available for SL6 as well in hardware and software under commercial license.

To summarize, the Huffman-based entropy-encoders and arithmetic-encoders based algorithms will be compared to the

recent class of algorithms known as SL6 (Thomine et al. (2016, US Patent 20,190,044,532)). The comparison will be done on

the SWOT dataset which contains integer and floating point number. The shuffle and bitshuffle preconditioners will be used for140

the LZ family algorithms, as it has been shown in the past that they help them to compress integer and floating-point samples.

2.3 The Testbench Process

Since it provides most of today’s compression algorithms, the benchmark we developed is derived from the opensource lzbench

as it was done in Kunkel (2017). Originally, lzbench focuses on the LZ77/LZSS/LZMA compression algorithms and performs

in-memory, thus the results are independent from the disk reading and writing times. All the compression algorithms are145

compiled from sources. This way they all use the same compiler and the same options. Files are compressed and decompressed

and compared to the original ones, the time is measured using C primitives. A total of 52 LZ-family algorithms were tested,the

LZ family algorithms provided by the lzbench are: blosclz, brieflz, brotli, crush, csc, density, fastlz, gipfeli, libdeflate, lizard, LZ,
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lz4, lz4fast, lz4hc, lzf, lzfse, lzg, lzham, lzjb, lzlib, lzma, lzmat, lzo1, lzo1a, lzo1b, lzo1c, lzo1f, lzo1x, lzo1y, lzo1z, lzo2a, lzrw,

lzsse2, lzsse4, lzsse8, lzvn, memcpy, pithy, quicklz, lzfse, lzg, lzham, lzjb, lzlib, lzma, lzmat, lzo1, lzo1a, lzo1b, lzo1c, lzo1f, lzo1x,150

lzo1y, lzo1z, lzo2a, lzrw, lzsse2, lzsse4, lzsse8, lzvn, pithy, quicklz, shrinker, slz_zlib, snappy, ucl_nrv2b, ucl_nrv2d, ucl_nrv2e,

wflz, xpack, xz, yalz77, yappy, zlib, zling and zstd. The version of these algorithms are the latest available version. For each of

them, the most common variants were tested. The variants are usually identified using one or several parameters.

The SL6 algorithm is also benched, again using different parameters, originally designed for the compression of messages

between nodes of HPC clusters, its lightweight properties and low computing and memory requirements are properties that155

make it interesting for the SWOT mission. The parameters are the size of the block and the interpolation mode as explained

in Thomine et al. (2016, US Patent 20,190,044,532). Moreover, we added the shuffle and bitshuffle preconditioners. This lead

to a total of 672 different versions.

The results are compared to the in-memory data copy memcpy which provides no compression but maximum throughput –

4.2 GB/s measured160

The workstation used to execute the testbench is an Intel(R) Xeon(R) CPU E5-2620 v3 running at 2.40 GHz processor, 64 GB

of memory. Since this study aims at selecting the algorithms that could be embedded on an onboard computer for a mission, the

multicore capacities of the architecture were disabled. Other compression algorithms are excluded from this study. For example

the case of Zarr as it is designed to be directly used in Python code, and thus cannot not provide a throughput comparable to

the others. Blosc (Howison (2013)) is a compression schemes that relies on other compression codecs. It implements fast165

data accesses to exploit the processor cache and Single Instruction Multiple Data (SIMD) instruction (SSE, Altivec etc.) and

implements shuffle and bitshuffle filters. The compression itself is performed using external codecs, usually FastLZ; thus,

potentially, any compression algorithm could be used with Blosc. This is not evaluated here since it would be a step forward.

Another key point is that the algorithms we are considering here are available as C libraries or source code and thus can be

suitable both for HPC or embedded applications.170

2.4 Definition of the Metrics

To ensure a fair comparison of the different algorithms, several metrics are considered, including metrics we specifically pro-

pose in this paper. First, the ability to compress, expressed in percent, is calculated by Cr = sizeorig−sizecomp

sizeorig
∗ 100 where

sizecomp refers to the size of the file after compression and sizeorig refers to the size of the algorithm before compression.

From this measurement, one can calculate the mean (M ) and the standard deviation (σ) for a set of fields, which also al-175

lows to derivate the coefficient of variation calculated by Ĉv = σ/M . Secondly, the compression throughput Cthroughput, or

compression speed, is calculated using the size of the original data divided by time required by the algorithm to fully per-

form compression: Cthroughput = sizeorig/timecomp. This is the same approach for the decompression with Dthroughput =

sizeorig/timedecomp. Here again, the corresponding Cv can be calculated from the standard deviation σ.

As one of the targeted application is the on-board compression and data transmission, it is important to put emphasis on180

the algorithms with consistent performances, whatever the type of data. In other words, an algorithm providing extremely

different compression Cr and/or times, depending on the nature of the data, should get a lower score than an algorithm which
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has consistent results among the whole dataset. Intuitively, it means the highest throughput and the highest compression Cr

are preferable but with the lowest standard deviation for both of them. Thus, we propose the metric H-score for a given set of

data (fields) calculated on the normalized results (maximum set to 1) using the Equation 1, with, σ(Cr) the standard deviation185

of the compression rate, T the throughput and σ(T ) its the standard deviation. A graphic intuitive illustration of the variables

used in the H-score is given in Figure 5. Moreover, we defined α and β coefficients, which are set to one. They can be used to

weight either the compression Cr (α) or the throughput (β). Finally, the ρ coefficient, set to 1000, is simply used to ease the

reading of the results. A low or negative H-score means the algorithms results are heterogeneous within the selected data, on

the opposite side, a higher H-score means the algorithms results are homogeneous among the dataset while providing good190

performances.

H − score= ρ︸︷︷︸
1000

×(Cr − α︸︷︷︸
1

·σ(rate)) · (T − β︸︷︷︸
1

·σ(T )) (1)

The third metric that was considered in this paper, and proposed by Thomine, is called the tttx for transmission-throughput-

threshold and is expressed in Bytes-per-second. It is used to determine if it is worth compressing the data when a certain transfer

Cr is available for data transmission. In other words, if tttx is higher than the media throughput (or speed), then the time used195

to compress the data, to transmit and to decompress it, is lower than transmitting the original data; in other words, the higher

tttx is better. We can derive a similar metric for writing the data to a memory or to a disk. In this case, as decompression does

not need to be performed, its time is removed from the calculation; it gives ttwr which stands for writing-throughput-threshold,

also expressed in bits-per-second. tttx and ttwr are given in the Equations 2 and 3, Sizeorig refers to the original size of the

data, Sizecomp the size of the compressed data, Timecomp and Timedecomp the time required to compress and decompress it.200

tttx =
Sizeorig −Sizecomp

timecomp +Timedecomp
(2)

ttwr =
Sizeorig −Sizecomp

Timecomp
(3)

2.5 Data management205

The number of algorithms is quite important and for each algorithm, many variation are considered. For example, the impact

of the algorithms parameters (more than 17 variants for ZStd), but also, the use of preconditioning filters such as shuffle and

bitshuffle. Since the volume of data produced by our extended testbench is quite important we decided to store all the results

in a relational database we have specifically designed for the analysis of the results. This way, all the data can be extracted and

analyzed using a combination of SQL queries. In the same vein, the derivated metrics such as compression Cr, compression210

and decompression throughput, (tttx and ttwr can be calculated on-the-fly directly in the queries. Moreover, to make it easier,

we have designed a graphical user interface (Figure 7) to browse through the results, it allows an instant displaying, filtering,
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Figure 5. Illustration of the variables used to calculate the H-score; intuitively, the lower-bound of error bars made out of the standard

deviation (σ) is subtracted from the mean compression Cr and speeds for a given dataset. The result of the subtraction is multiplied.

Coefficients (α, β) are added to weight the σ values (set to 1) as given in the Equation 1.

ranking and analysis of the different metrics used. This user interface was designed for internal use only, but can be distributed

on demand.

3 Results obtained using the Testbench215

This section presents the results we have obtained with the test-bench. First, a general overview of the results is introduced;

then, we focus on the fields that appear to be difficult to compress.

3.1 General Results

As all 672 variants of the algorithms we have benchmarked cannot be presented in a concise way, we choose to focus on the

most interesting of them, based on the results obtained using the metrics defined in the previous section:220
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Figure 6. illustration of the time saved by compressing, transferring and decompressing; the calculation of the tttx is used to emphasize the

threshold from which time is saved; when it comes to data writing into a memory or to a disk, ttwr is used, the decompression time can be

omitted since it is supposed to be done at the reading process.

– lz4fast associated to shuffle, parameter 17;

– LZ4fast associated to bitshuffle, parameter 17;

– Zstd parameter 22;

– Zstd associated to shuffle, parameter 1;

– Zstd associated to bitshuffle, parameter 1;225

– LZ associated to shuffle, parameter 9;

– LZ associated to bitshuffle, parameter 9;

– SL6 with a polynomial sample estimator.

The measured time resolution on the workstation devoted to the bench is 1.7 µs ± 0.4 µs. Table 1 provides the results

for the S1 fields of the signal file. It shows a certain variability in the compression Cr (mean = 63.34 %; σ = 2.36) and a230

higher one in the compression and decompression speeds: mean= 559263973;σ = 477136146.9 for the compression and

mean=718261809 ; σ =513374554 for the decompression. One can see the standard deviation on the compression speed is

extremely high and close to the mean value.

The results obtained on the SWOT pixel_cloud file are quite different in terms of ranking, due to the nature of

the data which is slightly different. They are given in Table 2 where we can see, again, an homogeneous compression Cr235

(mean= 54.21;σ = 3.65); heterogeneous compression speed (mean= 383153349;σ = 313197839). This is the same for

the decompression speed with (mean= 652996328;σ = 509295674).
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Figure 7. screenshot of the graphical user interface designed for the analysis of the data produced by the testbench; a SQL database is used

to store the results.

The entropy level associated to the fields is higher and the fields are more complex to compress using the traditional Huffman-

based approaches. The LZ4Fast and LZ associated to the shuffle filter obtain good results, but SL6, which exploits the correla-

tion between samples scores higher in terms of throughput with a compression Cr close to the others.240

A similar behavior is observed on the SWOT L2HR file, as given in Table 3: the compression Cr are quite homogeneous

σ = 0.95 while a great variability appears in the compression and decompression speed with a σ =639050509, which is close

to the mean value 680465679 for compression speed; σ = 825523818 for a mean value of 849856905 for decompression

speed. It means that the throughput highly depends on the algorithms and on the nature of the data.

However, the ranking is different, ZStd with no filter provides the highest throughput, but lowest compression Cr. Closely245

followed by SL6 which has a higher (among the highest) compression Cr and is faster at decompressing. The other algorithms

are slightly slower as the compression Cr are similar or a few percent lower than the best ones.
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Table 1. Summary of the results obtained for the S1 signal file, original size 8388608 B.

File Par. Preproc. Cr comp. time Decomp. time Comp. speeed Decomp. speed Comp. size

(%) (ns) (ns) (Bytes/s) (Bytes/s ) (Bytes)

ZSTD 1 none 58.50 10477144 5958746 800657889 1407780765 3481550

ZSTD 1 shuffle 65.68 10155354 8260379 826028123 1015523380 2878818

ZSTD 1 bitshuffle 65.34 38472020 30087028 218044387 278811453 2907213

LZ 9 none 58.24 254577532 33740694 32951093 248619901 3503334

LZ 9 shuffle 66.84 132626450 25893111 63249887 323970650 2781908

LZ 9 bitshuffle 65.58 170177748 48532690 49293213 172844489 2887199

LZ4 0 shuffle 62.15 7712785 7685319 1087623731 1091510710 3174678

LZ4 0 bitshuffle 64.91 32678452 29960194 256701511 279991778 2943353

LZ4FAST 3 shuffle 62.10 6445824 7242951 1301401962 1158175445 3178959

LZ4FAST 3 bitshuffle 64.75 32926048 29876013 254771177 280780705 2957242

LZ4FAST 17 shuffle 62.11 6516309 7435122 1287325079 1128240801 3178408

LZ4FAST 17 bitshuffle 64.39 31675455 29930478 264829913 280269764 2987309

SL6 Poly. none 63.12 10572072 5160822 793468679 1625440288 3093395

Table 2. Summary of the results obtained for the SWOT pixel_cloud signal file, size 208017760 Bytes.

File Param. Preproc. Cr comp. time Decomp. time Comp. speeed Decomp. speed Comp. size

(%) (ns) (ns) (Bytes/s) (Bytes/s ) (Bytes)

ZSTD 1 shuffle 49.39 444398317 249599814 468088541 833405108 105280832

ZSTD 1 bitshuffle 47.15 1181907250 756880412 176001763 274835703 109940201

LZ 9 none 39.00 21218526054 845143541 9803591 246133053 126894903

LZ 9 shuffle 50.46 21854440692 654839210 9518329 317662346 103043840

LZ 9 bitshuffle 47.79 14458854352 1299657146 14386877 160055874 108602087

LZ4 0 shuffle 46.00 291760551 205508459 712974250 1012210208 112324430

LZ4 0 bitshuffle 45.97 881074723 730831535 236095480 284631615 112399104

LZ4FAST 3 shuffle 45.77 291303202 201869174 714093627 1030458271 112805305

LZ4FAST 3 bitshuffle 45.76 877821970 729865607 236970328 285008306 112832614

LZ4FAST 17 shuffle 44.83 253447978 202266864 820751310 1028432220 114772156

LZ4FAST 17 bitshuffle 44.92 837072886 729876936 248506150 285003882 114585439

SL6 - none 42.98 239367624 103952649 869030475 2001081858 118608676

Unsurprisingly, it appears the set of algorithms which shows the best performance are similar to the one presented in Delau-

nay et al. (2019) even if the method and the test-bench differs from the one presented in this paper. The rest of the article will

focus on the SWOT fields as they seem to provide the lowest compression Cr compared to the others – which compress quite250

well whatever algorithm is used.

3.1.1 Compression Cr

First of all, the unweighted average compression Cr for the fields of the SWOT file is 74.36 %, with a σ = 37.39, the details

are given in Figure 8. As LZ4 and LZ4fast are not able to compress 17 fields out of 72, they obtain the worst results with an

average compression Cr of 67.22 and 66.51 (σ = 45.81 and σ = 46.49). The median compression Cr for the SWOT file fields255
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Table 3. Summary of the results obtained for the SWOT L2HR signal file, original size 459269824 Bytes.

File Param. Preproc. Cr comp. time Decomp. time Comp. speeed Decomp. speed Comp. size

(%) (ns) (ns) (Bytes/s) (Bytes/s ) (Bytes)

ZSTD 1 none 89.44 245576988 187199279 1870166369 2453373894 48500312

ZSTD 1 shuffle 92.65 504396287 475060914 910533713 966759863 33760218

ZSTD 1 bitshuffle 92.26 1833936246 1680779517 250428457 273248109 35545956

LZ 9 none 90.51 7658339217 1170823423 59969898 392262245 43603304

LZ 9 shuffle 92.78 6934283461 1574703688 66231764 291654759 33159715

LZ 9 bitshuffle 92.46 8688358240 2503710877 52860369 183435647 34640701

LZ4 0 shuffle 91.88 461088354 457298287 996056005 1004311271 37294444

LZ4 0 bitshuffle 91.37 1717883548 1646306534 267346308 278969812 39618481

LZ4FAST 3 shuffle 91.78 453166592 463579997 1013467965 990702418 37753332

LZ4FAST 3 bitshuffle 91.27 1715480989 1649380612 267720731 278449874 40096510

LZ4FAST 17 shuffle 91.64 451584784 457452644 1017017934 1003972389 38406860

LZ4FAST 17 bitshuffle 90.75 1690834724 1648500436 271623132 278598546 42475508

SL6 -. none 92.19 254777476 173152489 1802631187 2652400937 35870622

Table 4. Average compression Cr , σ and the coefficient of variation (Ĉv) obtained on the SWOT file obtained with the most efficient

algorithms, ordered by the couple (Cr ,σ) and illustrated in Figure 8

Algorihthm Average Cr (%) σ (%) Ĉv

LZ shuffle 9 76.98 34.31 0.45

LZ bitshuffle 76.46 35.18 0.46

Zstd 22 74.83 38.05 0.51

Zstd shuffle 1 78.95 32.98 0.42

Zstd bitshuffle 1 77.12 34.06 0.46

LZ4fast shuffle 17 75.71 35.36 0.47

LZ4fast bitshuffle 17 75.42 34.80 0.46

SL6 polynomial 75.33 33.93 0.45

is between 99.1 % (SL6) and 99.9 % (Zstd with shuffle). The other approaches are consistent in term of compression Cr and

standard deviation. The best result is obtained using Zstd associated to shuffle (78.08;σ = 32.98) and SL6 (75.33;σ = 33.93).

The Figure 9 illustrates the results obtained field by field. It is clear for the reader to see that they perform almost equally in

terms of compression Cr, even if SL6 tends to have a bit more homogeneous results than the others.

3.1.2 Compression speed260

The average throughput results obtained for the SWOT file are quite heterogeneous from an algorithm to one another. They

vary from 1.7 GB/s to only a few dozen MB/s for the slowest, the median equals to 238 MB/s. They are summarized in Table 5

and displayed in Figure 10. It can be seen that the Huffman algorithms associated with shuffle and bitshuffle filters perform

quite well. For example, the LZ4Fast (parameter 17) associated with bitshuffle provides the lowest σ but is relatively slow
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Figure 8. Average compression Cr (see Table 4 for the values) for the fields comprised in the SWOT file. It is clearly visible that all the

algorithms perform well on this dataset, the lowest standard deviations are observerd for SL6 and Zstd associated to the shuffle with. The

Pithy algorithm provides good results on some fields too, unfortunately it is not able to compress some fields of the SWOT file.
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Figure 9. Matrix of the compression Cr of the fields of the SWOT file, it can be seen that the compression Cr varies in a similar manner

whichever algorithm is used, even if some are slightly better; the most interesting fields to look at are the one marked in red as they emphasize

the differences between the algorithms.
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Table 5. Average throughput (TP) (MB/s) and associated standard deviation σ obtained on the SWOT file obtained with the most efficient

algorithms, ordered by the couple (Cr ,σ), results are plotted in the Figure 10.

Algorithm Average TP (MB/s) σ Ĉv

LZ shuffle 9 212.89 249.491.17

LZ bitshuffle 9 120.24 203.091.69

Zstd 22 80.75 67.120.83

Zstd shuffle 1 833.98 344.460.41

Zstd bitshuffle 1 225.78 54.330.24

LZ4Fast shuffle 17 965.33 231.470.24

LZ4Fast bitshuffle 17 254.47 21.590.08

SL6 polynomial 1431.24 753.440.53

(254.46 MB/s). Indeed, it is outperformed by the same with the shuffle preconditioner. The SL6 algorithm is 48 % faster than265

the fastest Huffman-based, even when it is associated to shuffle and bitshuffle filters. The LZ4Fast associated to the bitshuffle

has the most homogeneous results for the SWOT dataset.

A closer look at the results obtained for the SWOT pixel_area, in Figure 11 field shows more variability in the compres-

sion throughput, depending on the algorithms. We choose to display this field in particular since it emphasizes the disparity of

the results. Here, the SL6 algorithms ranks first and second best performance (more than 2.5 GB/s for 48.3 % compression Cr270

for the first), the second has a higher compression Cr (76.5 %) for 1.75 GB/s.

Since it is a stream algorithm, the compression throughput of SL6 is constant for a given word size, moreless a few percent.

The throughput for 8-bit is the lowest 329 MB/s, while the figures on 64-bit data is 1817 MB/s, 32-bit data words lead to

1008 MB/s of throughput. This is easily understandable by the fully deterministic nature of the algorithm and the fact that the

algorithm locally compress the data using blocks of predetermined size.275

3.1.3 H-score

The H-score defined in the previous section emphasize the algorithms that provide consistent compression Cr and consistent

throughput. This is extremely important when the dataset can be heterogeneous and when the targeted application is real-

time compression on a single-core. Since SL6 provides quite high throughput with a compression Cr comparable to the other

algorithms – and for both a reasonable σ – it scores higher than the others. It is followed by LZ4Fast associated to the shuffle280

filter (parameter 17), which scores 2 % lower than the SL6 algorithm. The results are visible in Table 6 and in Figure 12.

3.2 Threshold Throughput

The results for the transmission-threshold-throughput (tttx), that was depicted in subsection 2.4 is considered in this subsection.

When it is higher than the media throughput, the time used to compress the data, to transmit and to decompress it is lower than

the time required for the transmission of the original data. This metric is highly correlated with the speed of the hardware used285
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Figure 10. Plot of the average compression throughputs for the swot fields, the standard deviation is given as error bars, on SL6 the errors

bars are quite important since we mixed words of data of different size (8, 32 and 64 bits). The errors bars for a given datasize (for example

64 bits) is constant with minimal standard deviation.
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given as labels on the top of each histogram boxes, some of the algorithms provides good results with different parameters and preprocessing

(ZStd and LZ4 Fast); the Pithy algorithm has been excluded since it is not able to compress some other fields of the file. SLx was tested with

different blocks sizes.
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Table 6. H-score calculated on all the fields of the SWOT file. Since SL6 has the highest throughput and is among the most homogeneous

results, it outperforms the others approaches.

Algorithm H-score

LZ shuffle −4.62

LZ bitshuffle −9.53

Zstd 22 0.92

Zstd shuffle 1 35.65

Zstd bitshuffle 1 11.02

LZ4Fast shuffle 17 44.92

LZ4Fast bitshuffle 17 13.96

SL6 polynomial 54.52
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Figure 12. Plot of the H-scores calculated on the results for the SWOT file.
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Figure 14. Ranking of the algorithms, tttw (y) vs. the compression Cr (x) for the SWOT L2 pixel_area.

to execute the algorithms. Here, since the hardware is the same for all of them, these calculated metrics are comparable. Of

course, the higher is better, it means that even with a extremely fast transmission channel, compressing and uncompressing

the data on-the-fly is worth it. For example, on the Figure 13, it can be seen the tttx of the SL6 algorithm (in red) is higher

than 300 MB/s which corresponds to more than 2.4 Gb/s. Transmitting on a media that has a throughput lower than 2.4 Gb/s

would benefit from compression using this algorithm. This is the combination of a good compression Cr (around 40 %) (X290

axis) and a low computation time. If now the media throughput is 120 GB/s (1 Gb/s), then using all the algorithm above this

threshold would be more efficient than transmitting the original data, it means roughly the best LZ4fast LZ4 and Zstd variants,

a few others one and SL6. As the compression time depends on the data, the, we have plotted the tttx for the pixel_area field

in Figure 14. As reminder, the pixel_area field is quite smooth which makes it easier for the algorithms like the SL6 which

performs mathematical signal processing. Here, for the SL6 algorithm, the tttx is higher than 500 MB/s which corresponds to295

more than 4 Gb/s for a compression Cr of more than 75 %.

3.3 Memory Usage

Memory usage of all tested algorithms is lower than 2 MB as well as for compression and decompression. Because of the

necessity of building a dictionary, the Huffman-based ones often reach 2 MB. Their memory usage is not deterministic and

depends on the data. The lowest is SL6 with less than 128 kB (for the 64-bit floating point) version. Most of the memory usage300
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Table 7. Average results for the fields from the SWOT file that are the most difficult to compress, the compression Cr and the standard

deviation, the compression and decompression throughput and the H-score are displayed.

Algorithm Rate σ Comp. tp σ Decomp. tp σ H-score

% % MB/s MB/s MB/s MB/s

LZ bitshuffle 9 28.46 23.27 180.41 5.68 24.35 71.17 0.19

Zstd 22 21.35 27.03 4.51 0.95 768.78 580.69 −0.18

Zstd shuffle 1 31.96 23.77 371.82 109.61 741.43 117.69 19.46

Zstd bitshuffle 1 28.63 23.51 155.22 14.21 264.38 19.56 6.54

LZ4 shuffle 25.97 24.85 604.12 158.14 1009.12 64.52 4.51

LZ4Fast shuffle 17 23.82 25.03 741.24 150.69 1028.61 50.26 −6.49

LZ4 bitshuffle 0 27.26 22.50 217.77 7.02 278.56 4.56 9.10

SL6 polynomial 24.35 15.74 540.86 127.92 1320.52 230.79 32.21

is used for the input and output buffers. Another key point is that the SL6 memory usage is constant and does not depend on

the data but only of the size of the words (8, 16, 24, 32, 64 bits), while the choice of the parameters has a limited impact on

the memory usage of less than 5 %. Alternatively, the fact the Huffman based methods have to construct a dictionary requires

memory, and makes embedded implementation bit more complex, espcially on hardware targets. This is usually cope by

working on chunks of data, in that cas, the compression level can be lower. Consequently, this feature makes the SL6 approach305

ideal for embedded systems.

3.4 Results on relatively complex fields

The entropy of most of the fields of the SWOT file is quite low, which explains the high compression Cr. We decided in this

subsection to focus on fields for which algorithms have more difficulties to compress. The average results are displayed in

Table 7. The ranking differs from Tables 5 and 6. Indeed, for example, the LZ4Fast shuffle has a low H-score because of the310

important variability in the compressionCr: some of the fields are almost not compressed while the LZ4 bitshuffle now appears

in the ranking at the third position. Figures 15 and 16 show that the compression Cr of the SL6 algorithm is comparable to the

other Huffman-based approaches associated to shuffle and bitshuffle filter. However, it shows superior performances in terms

of compression speed. The high score of SL6 is mainly due to the consistent compression Cr among the dataset associated

to one of the best throughput (3rd). Some of the fields are (almost) not compressed by the LZ4 shuffle and LZ4Fast shuffle.315

Consequently, these algorithms tend to copy portions of the fields without any modification, leading to a quite high throughput.

4 Discussion

The results obtained with the extended testbench performed in this work show that the state-of-the-art algorithms performs

similarly in term of compression rate. Indeed, if there is a certain level of variability among the different fields of the data320
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Figure 15. Plot of the compression speeds over 300 GB/s, as histogram boxes, and the associated Cr as blue points, for the SWOT

Pixel_Area field.

acquired by the swot mission, the average rate for the best algorithms is comprised between 75 % and 82 %. Considering that

metric only, the LZ algorithm associated to bitshuffle (parameter 9) and Zstd associated to a shuffle preprocessing (parameter

1) provide the best results. However, the worst one does less than 10 % lower. Thus, the compression rate only is not a metric

to be considered provided that we pick the algorithm among the top ten best compression rate. It is worth to note that some

algorithms are not able compress some fields, this is the case of Pithy, some variants of the LZ4 etc. They have been excluded325

from the final results, even if for some fields they provide good performances typically the Pithy algorithm associated to the

shuffle filter as visible on the Figures 15 and 16.

An other metric that needs to be considered are the memory usage of the algorithms performing compression and decom-

pression. This information is not really relevant if the algorithms are executed by a workstation that can holds several GB of
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Figure 16. Plot of the compression speeds over 500 MB/s, as histogram boxes, and the associated Cr , as blue points, for the SWOT

CrossTrack field.

Random Access Memory (RAM), but it is extremely relevant if they are executed by an embedded system which can be quite330

limited. Moreover, for space application, memory are prone to faults since cosmic rays can deposit their energy into one or sev-

eral cells. Thus choosing algorithms that have a low memory usage for such implementations make sense. The SL6 algorithm

has a memory footprint lower than 128 kB while the others vary between 1 MB and 2 MB, which makes it a good candi-

date for embedded systems. This is also a good indicator of the capacity of the algorithm to be implemented in an embedded

programmable microcontroller or hardwired for a Field-Programmable Gate Array (FPGA) implementation.335

The couple compression rate and throughput is a good way to rank the algorithms. However, since the analysis of the results

we have obtained have shown a quite important variability in the results, we decided to propose the H-score to take it into

account into a combined metric. It shows that the top-3 algorithms are the SL6 (> 50), the LZ4Fast associated ot shuffle (> 40)

and the ZStd associated to shuffle which scores higher than 35.
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Another interesting point is that the compression throughput of SL6 is constant for a given datatype, which is quite under-340

standable as it operates in stream processing.

Beyond the choice of a compression algorithm for space-to-ground communication, where constraints require approaches

that can be easily embedded and have consistent compression and throughput performances, the ground applications related to

the SWOT mission is also considered. Compression for ground applications is extremely important too as the SWOT mission

may generate around 5 TB of data per day. Indeed, ultimately, the data will be used in numerical models and computed on345

HPCs, thus, it is important to be able to compress and decompress the messages on-the-fly without any loss of performance.

Compression of HPC messages is a good way to reduce computing time, provided that the compression/decompression is fast

enough, that is the reason why we have introduced the transmission-throughput-threshold. In the same vein, to enable smooth

storing an manipulating of these data requires, fast compression algorithms are required, ideally that can perform on-the-fly,

with no or almost no perceptible delay for the operators. The SL6 approach is the only one which has constant compression time350

for a given datawidth (64, 32, 16 or 8-bit words). It is also able to compress a signal with fixed-size buffers, which participates

to its deterministic characteristics in terms of compression time and hardware resources that are required for the SL6 algorithm

execution.

Another key point is the determinism of the compression rate, indeed, the storage and database systems will be sized for an

expected volume of data. The H-score metric that is proposed this paper clearly emphasizes the properties that we are seeking355

for both space and ground application.

5 Conclusion

Since space missions are generating more and more data, for example 7 PB is expected for the swot mission, efficient data

compression approaches needs to be explored. Huffman-based algorithms are traditionally used for scientific application, es-

pecially for netCFD data. It has been shown in the past they are quite efficient especially when associated to to filters such as360

shuffle and bitshuffle. This paper compared Huffman based algorithms and the SL6 approach. The Huffman-based algorithms

require memory (shuffle needs to analyze the entire file) and their performances are heterogenous, strongly depending on the

data. When associated to shuffle filter, stream processing is not possible. Alternatively, the SL6 algorithm provides homoge-

neous results, low memory usage, constant compression time for a given datatype, especially in terms of compression Cr. On

the dataset that is representative of the SWOT mission, the compression throughput is 35 % faster than the best algorithm of365

the bench for a similare compression level. It is also often almost twice faster than the other algorithms of this extensive bench.

Code availability. The code of the testbench was developped in Python and C. It uses the LZBench available on https://github.com/inikep/

lzbench. The code for SLX! (SLX!) can be provided by Subnet, Pigoury@Subnet.fr. The codes for the other compression algorithms are

included in the LZBench as opensource.
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