
Response to Reviewer 1

Berkemeier et al. present two surrogate model approaches, polynomial chaos expansion
and neural networks, used to predict discrete reaction times of kinetic multi-layer models
and used for sensitivity analysis and inverse modelling. The paper is well-organized,
concise, and appropriate for GMD. I recommend its publication after addressing the
comments below.

We would like to thank reviewer 1 for taking the time to review our manuscript and
highly appreciate the positive and constructive feedback. We enumerated each of their
comments (black) and address them in point-by-point answers (blue). Quotes from the
revised manuscript are indented and given in italic font with changes highlighted in red.
Line numbers refer to the revised manuscript with markup.

R1-1 One general comment: It is not clear in a first read what the surrogate models are
predicting (in other words, what the targets are). On a second read, it seems like the
targets are the order of magnitudes of 3 different reaction times: the 90% reaction time,
half-life, and 10% reaction time. Using these targets instead of concentration targets
makes sense if the application is machine learning aided sampling rather than full model
replacement. However, many readers (including myself) might initially assume that
surrogate models replicate the output of their reference model, so this non-standard
target should be addressed earlier on.

Thank you very much for this valuable input that was also shared by reviewer 2. First,
we would like to highlight the paragraph in the original, submitted manuscript that
addresses this question:

l. 94-97 - The outputs of KM-SUB are concentration profiles over space and
time, but in this study, we summarized KM-SUB output as the total number
of Y in a single aerosol particle at time t (NY,t). To minimize data storage
requirements, we reduce the full KM-SUB time series to three output values,
the time required to reach 90 %, 50 % (i.e. the chemical half-life), and 10 %
of NY,0 by interpolation of primary model output.

We agree that this point should be made clearer in the manuscript and revisit this idea
now in two further instances in the revised manuscript and added a discussion of the
choice to simplify KM-SUB model output.

l. 209-210 - Neural networks (NN) and polynomial chaos expansion (PCE)
are used to emulate the reaction time of a multiphase chemical system in
KM-SUB.

l. 316-321 - To reduce data storage requirements in sampling and simplify em-
ulation, the complex model output of KM-SUB, i.e. concentration profiles of
all reactants over space and time, is reduced to the reaction time of the system
to reach a certain reaction progress as this is a typical observable in labora-
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tory experiments. We note that other derivatives of KM-SUB model output,
such as the uptake coefficient of the reactant gas to the aerosol surface, could
be chosen depending on the target application of the surrogate model. The
choice will also depend on whether KM-SUB is used to parameterize a sub-
grid process in the model or part of the chemical integrator. Emulation of
the entire KM-SUB output may be feasible and could be facilitated by data
compression methods such as autoencoders, singular value decomposition or
principal component analysis [Bishop and Nasrabadi, 2006, Petersen et al.,
2008, James et al., 2013, Kingma and Welling, 2013].

R1-2 The methodology would be easier to follow if the output and purpose of the
surrogate models was described early on. This could be done on line 5 of the abstract,
for example “we show how machine learning methods can generate inexpensive surrogate
models \add{to predict reaction times for}\remove{based on} the kinetic multi-layer
model of. . . ”, or something to an equivalent effect.

We thank the reviewer for this good suggestion. The sentence in the abstract now reads:

l. 4-6 - In this study, we show how machine learning methods can generate
inexpensive surrogate models for the kinetic multi-layer model of aerosol sur-
face and bulk chemistry (KM-SUB) to predict reaction times in multiphase
chemical systems.

R1-3 Not required, but a suggestion that might improve clarity: could the authors
perhaps include a table for the 3 outputs, similar to Table 1 for the input parameters?
This might help new readers understand the targets more easily.

After the changes in response to reviewer comment R1-1 and R1-2, we think it is not
necessary to also include a table for this information.

R1-4 There is existing recent work towards network surrogate models in aerosol applica-
tions for atmospheric chemistry and physics. Though I have no objection to the mention
of applications outside the field, e.g. chemical engineering and materials science, the au-
thors could include several relevant references to round out the discussion around line
60, which would help embed this work in recent literature on ML surrogate modelling
for aerosol applications.

a. Surrogate model of MOSAIC, which includes heterogenous chemistry and mass trans-
fer: https://doi.org/10.1029/2020JD032759

b. Mass-conserving surrogate model of mass transfer for bulk/surface partitioning:
https://doi.org/10.5194/gmd-15-3417-2022

c. Physics-informed surrogate model of aerosol microphysics, specifically the M7 module:
https://doi.org/10.1017/eds.2022.22.
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Berkemeier et al. train surrogate models on a more granular kinetic multilayer model,
for use in sampling rather than a solver / operator replacement (thus predicting a dif-
ferent output instead of concentration distributions). Inclusion of these more relevant
references will allow the authors to make clear what the contribution of this paper is in
the context of the field.

We would like to thank reviewer for bringing these references to our attention. We added
the suggested references as well as others to the paragraph that addresses previous work
on machine learning surrogate modelling.

l. 63-68 - Machine learning-based surrogate models have also found appli-
cation as modules in geoscientific models, including large-scale atmospheric
chemistry, transport and climate models, to reduce computational cost in very
demanding tasks such as atmospheric convection [O’Gorman and Dwyer,
2018], gas-phase and heterogeneous chemistry [Keller and Evans, 2019, Kelp
et al., 2020, Sturm and Wexler, 2022], or aerosol and cloud microphysics
[Rasp et al., 2018, Harder et al., 2022]. These surrogate models function
either as parameterizations for subgrid processes or replace the chemical in-
tegrator.

R1-5 Line 65: “In the PCE approach, the full model is represented as an infinite se-
ries. . . ” I would get rid of the word infinite here, or perhaps say “In the PCE approach,
the full model can be approximated by a series. . . ”. The PCE approach assumesthe
model can be represented as an infinite series, but is not applied in practice. This isn’t
clearly stated until mention of truncation around line 136.

We thank the reviewer for this helpful comment and removed the word ’infinite’ in l. 70.

R1-6 Figure 2: Are these correlation coefficients for just the log10 of half-life or for
all reaction times, as line 205 suggests? Also, maybe “halflife” could be hyphenated to
match the text? The inset for the laboratory-experiment relevant timescale is a nice
addition.

We agree with the reviewer that this could be stated more clearly and added this infor-
mation to the sentence in question:

l. 213 -Figure 2 shows that these optimal versions for both surrogate models
track the chemical half-life in the test data set remarkably well.

We also changed the x-axis label of Fig. 2 to ”log10 of chemical half-life (s), KM-SUB
result”.
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Response to Reviewer 2

Berkemeier et al. present work using neural networks and polynomial chaos expansion
to emulate complex models of multiphase kinetics for atmospheric aerosols. They find
that both techniques are suitable for emulation, and assess the benefits and drawbacks
of each approach. In general, the work is well-presented, addresses an important topic,
and provides a valuable contribution to the scientific literature. I have a few comments
that I believe should be addressed before this paper is accepted for publication.

We would like to thank reviewer 2 for taking the time to review our manuscript and
highly appreciate the positive and constructive feedback. We enumerated each of their
comments (black) and address them in point-by-point answers (blue). Quotes from the
revised manuscript are indented and given in italic font with changes highlighted in red.
Line numbers refer to the revised manuscript with markup.

R2-1 Motivation. The motivation of this work makes it challenging to understand
exactly what the emulators are being used to emulate. This becomes clear on a more
careful read, but I suggest the authors clarify for readability.

Thank you very much for this valuable input that was also shared by reviewer 1. Please
refer to the response to R1-1 above.

R2-2 Emulator Performance. The authors demonstrate very good bulk performance of
their emulators in predicting the target quantity. However, the error of the methods as
a function of the input parameter space is important to assess (e.g., error as a function
of initial gas phase concentration). If the error is largely independent of the input
parameter space, a sentence clarifying this would suffice.

We thank the reviewer for this good suggestion and added a figure to the supplementary
material showing the error of the method as a function of each input parameter (Fig. 1).
The absolute logarithmic error in chemical half-life was found to be largely independent
of the value of input parameters.

We added the following sentence to the main text:

l. 216-217 - We found no significant correlations between surrogate model
error and the values of the 10 model input parameters (Fig. S1).
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Figure 1: Absolute logarithmic error of the surrogate model for the 50 % reaction time
(chemical half-life) in the test data set (N=1000) as a function of all 10 model
input parameters. Due to the large size of the test data set and the variability
in model error, errors are depicted as moving averages between the n=5 (blue
dots) and n=100 (red lines) closest neighbours in a sorted list with ascending
parameter values, respectively. No significant dependence of surrogate model
error on parameter values is observed.
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R2-3 L54-56 Much work on NN in the atmospheric science has been done since 1998. I
suggest improving the citations here.

Thank you very much for this valuable input that was also shared by reviewer 1. We have
included a new paragraph addressing this issue as outlined in our response to reviewer
comment R1-4.

R2-4 L93 Were other normalization strategies explored (e.g., log-normal outputs)?

We are not certain what reviewer 2 refers to with ”log-normal outputs”. We simply took
the decadic logarithm of the model output value and then uniformly transformed the
output onto the interval [0,1].

R2-5 L190 These packages need citations.

Thank you very much for pointing out this oversight. The packages are now referenced
as follows:

l. 194-196 - Model training of the NN was performed in Python 3.6 using the
packages Keras 2.3.0 [Chollet et al., 2015], TensorFlow 1.14.0 [Abadi et al.,
2015], scikit-learn 0.22.1 [Pedregosa et al., 2011], NumPy 1.18.1 [Harris
et al., 2020], and pandas 0.25.3 [McKinney et al., 2010].

R2-6 Table A2 Some of these hyperparameters selected are at the upper boundary of
the sampled parameter space. This suggests that additional exploration would benefit
model performance. Particularly for the shallow NN number of neurons parameter.

We would like to thank reviewer 2 for bringing this to our attention. Please note that
the table summarizes hyperparameter values taken into account for the comprehensive
grid-based hyperparameter tuning, while a multitude of initial tests has been conducted
prior to this step. We found that larger numbers of neurons even for shallow NN led to
over-fitting, indicated by a significantly lower training loss in comparison with the test
error. Additionally, the memory requirements associated with ”broader” NN models
would have posed a limitation on the computer cluster. However, we fully agree that
this relevant information should be provided in the manuscript. We added the following
footnote to Table A2:

Table A2: - 2 Larger numbers of neurons per layer lead to over-fitting and,
with the hardware setup in this study, memory limitations on the computa-
tional cluster.
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