First of all, thank you for your detailed comments and suggestions. We detail our response and the changes performed in the following bullets:

1. In the case of GNSS-RO, S_4 is a parameter provided directly from Spire and Cosmic databases without any processing by our side except for the temporal and geographic matching. For the GNSS ground stations, we have extended the description of the method applied in the following version of the manuscript and cited the related bibliography [1-3].

The specific response of ionospheric scintillation (measured using the S_4 parameter) associated to earthquake activity is under study, and one of the goals of this work is to analyze the performance of S_4 as a possible earthquake indicator using 3 different techniques (GNSS ground stations, GNSS-R and GNSS-RO) linked to the very same event.

2. You are right that the S_4 anomalies can also be due to geomagnetic or solar activity. We have already performed a deeper analysis correlating S_4 with geomagnetic and solar activity, and we can say that for most cases, the correlation is smaller than that from earthquakes. Figure 1 shows the correlation already obtained in the manuscript, which contrasts with the two new correlations calculated for the planetary index (Figure 2), and the solar flux $F10.7$ (Figure 3). It is clear that GNSS-RO shows larger peaks of correlation with EQ than for Kp or $F10.7$, and that they appear mostly before the EQ occurrence. Also, GNSS-R peaks are a bit larger than the ones on the correlation with Kp. We will extend this analysis and its results in the following version of the manuscript.

![Figure 1. Temporal correlation of seismic activity with ionospheric scintillation. This is the same figure as shown in the first version of the manuscript.](image-url)
3. The correlation coefficient (R) is the linear regression when plotting points of EQ energy vs. S_4; further explanation will be included in the following paper’s version. Yes, the correlation is small in this case, but so are the magnitudes of the earthquakes. Consequently, we will update the conclusions to remark that with the current event and its low magnitude, the correlation is almost undetectable for a practical use. As it has been said, the study’s novelty is to use the three techniques in the same event.

4. This study aims to analyze the correlation between seismic activity and ionospheric scintillation, not the physical mechanism behind it, which is the matter of other works already cited in the bibliography, notably the link between the non-static electric field generated by the pressure between tectonic plates and the ionosphere.
