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Abstract. The autocovariance of the semidiurnal internal tide (IT) is examined in a 32-day segment of a global run of the HY-

brid Coordinate Ocean Model (HYCOM). This numerical simulation, with 41 vertical layers and 1/25◦ horizontal resolution,

includes tidal and atmospheric forcing allowing for the generation and propagation of IT to take place within a realistic eddying

general circulation. The HYCOM data are in turn compared with global observations of the IT around 1,000 dbar, from Argo

float park phase data and mooring records. HYCOM is found to be globally biased low in terms of the
::
IT variance and decay5

rate of the autocovariance of the semidiurnal IT
::
of

:::
the

::
IT

:::::::::::::
autocovariance

:
over timescales shorter than 32 days. Except in the

Southern Ocean, where limitations in the model causes the discrepancy with in situ measurements to grow poleward, the spatial

correlation between the Argo and HYCOM tidal variance suggests that the generation of low-mode semidiurnal IT is globally

well captured by the model.

1 Introduction10

Internal tides (IT) are internal waves generated by the interaction of tidal currents with rough bathymetry. The radiated wave

beams can travel thousands of kilometers (e.g., Zhao et al., 2016; Buijsman et al., 2020) over which they undergo dissipative

processes as they interact with the eddying ocean and bottom topography, to eventually break (MacKinnon et al., 2017). The

dissipation of IT represents a major source of vertical mixing in the ocean interior (de Lavergne et al., 2020). As such, IT have

a key influence on the ocean state (Melet et al., 2016), and therefore on the global climate system (see Melet et al., 2022, for a15

review on the subject).

At any given position in a stationary medium, tidally forced waves would have a constant phase difference to the astronomical

forcing. However, since they propagate within the time varying ocean circulation, IT are subject to a variety of mechanisms that

cause their phase difference to the tidal forcing at their generation site to shift with time (Rainville and Pinkel, 2006; Shriver

et al., 2014; Zaron and Egbert, 2014; Buijsman et al., 2017). In other words, IT lose coherence by interacting with the eddying20

ocean. They decorrelate: the autocovariance of a time series representing the internal tide variability at a fixed position (away

from the source) inevitably decays with time lag (Caspar-Cohen et al., 2022; Geoffroy and Nycander, 2022).
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Only the coherent fraction of the IT energy decays with time lag, that is the energy carried by waves with a constant phase

difference to the astronomical forcing. Conversely, the incoherent fraction of the energy grows, so that the total IT energy,

or variance, at a given location (the sum of the coherent and incoherent components) is unaffected by the decorrelation.25

For very long time lags, the coherent and the complementary incoherent asymptotic limits are often called stationary and

nonstationary variance, respectively. While the global field of the stationary (low-mode) IT is widely considered to be well

constrained by multiyear satellite altimetry observations (Dushaw et al., 2011; Ray and Zaron, 2016; Zaron, 2019; Zhao, 2019),

the nonstationary component is not.

Some current high-resolution global ocean circulation models enable the estimation of the barotropic and internal tides30

concurrently with the ocean circulation (Arbic et al., 2010; Shriver et al., 2012; Buijsman et al., 2020). Such fully nonlinear

numerical simulations also incorporate the interactions of the generated IT with the eddying ocean and its boundaries. The

model utilized in this study is the HYbrid Coordinate Ocean Model (HYCOM; Chassignet et al., 2006) with 41 vertical

layers and 1/25◦ horizontal resolution. The literature on the validation of HYCOM with observations is already vast (see

Buijsman et al., 2020; Arbic, 2022, for recent accounts). In the latest developments, surface drifters have been used to validate35

the geographical variability of the kinetic energy in various frequency bands at the global scale (Arbic et al., 2022). While the

global coverage of drifter data is comparable to that of satellite altimetry, the contribution from the baroclinic tides to the kinetic

energy observed by drifters has not been determined yet. Hence, until recently, only altimetry could unveil the geographical

variability of the IT at the global scale.

The empirical mapping of IT from altimetry remains challenging for various reasons (Egbert and Ray, 2017). Most notably,40

the long sampling intervals of altimeters and the low signal-to-noise ratio preclude any direct estimation in the time domain of

the total IT variance at a single location. Notwithstanding, Zaron (2017) analysed
:::::::
analyzed

:
along-track wavenumber spectra of

the sea surface height to map the total and nonstationary semidiurnal IT variance (for the baroclinic mode 1 only). The author

found a global mean ratio of nonstationary to total semidiurnal IT variance of 44%. He also outlined the spatial inhomogeneity

of the tidal variability, with this ratio being larger than 50% in much of the equatorial Pacific
:::::
Pacific

:
and Indian Oceans (Zaron,45

2017). In a comparison with data from HYCOM, Nelson et al. (2019) showed the ‘k-space’ methodology of Zaron (2017)

to miss a large fraction of both the nonstationary and total variance. Nevertheless, the spatial correlation of the nonstationary

fraction (i.e., the ratio of the nonstationary to total variance) between the model and altimetry suggests that the model at least

qualitatively captures the generation of IT and their interactions with the background circulation (Nelson et al., 2019).

Recently, Geoffroy and Nycander (2022) used observations from Argo park phase data (Argo, 2000) to empirically map50

the variance of the semidiurnal IT at 1,000 dbar. The high sampling rate of the floats captures the total variance of the IT, i.e.

the autocovariance at short time lags, before any significant loss of coherence occurs and after most of the oceanic noise has

decorrelated. On the other hand, the Lagrangian sampling of the drifting floats results in decorrelating effects on top of the

decorrelation of the IT itself (Zaron and Elipot, 2021; Caspar-Cohen et al., 2022; Geoffroy and Nycander, 2022). Following

Caspar-Cohen et al. (2022), we call apparent decorrelation the effects of the Lagrangian sampling on the autocovariance. This55

apparent decorrelation cannot be disentangled from the decorrelation of the IT (i.e., the decorrelation due to interactions with

the background circulation) using Argo data only. Thus, to gain insights into the IT decorrelation around 1,000 dbar, one
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can instead apply the methodology of Geoffroy and Nycander (2022) to Eulerian observations from moorings. In the present

work we will compare observations of the (total) variance and decorrelation of the semidiurnal IT around 1,000 dbar from

Argo floats and moorings, respectively, to data from a global HYCOM run. Contrarily to other recent validations of HYCOM60

with mooring data (e.g., Ansong et al., 2017; Luecke et al., 2020), the Eulerian component of our analysis is not meant as a

standalone point-to-point comparison. Rather, it is designed to bolster and extend the main analysis of the Lagrangian data.

The remainder of this work is organized as follows: In Sect. 2, the in situ datasets and the numerical simulation are presented.

In Sect. 3, we review the methodology of Geoffroy and Nycander (2022) in an example location from the Lagrangian and

Eulerian perspectives. In Sect. 4, the main results are presented. We compare the geographical variability of the variance and65

decorrelation of the semidiurnal IT obtained from the in situ data and numerical simulation. Then, the model data are used to

quantify the decorrelation induced by the Lagrangian sampling. Finally, we outline the potential biases affecting the datasets.

We conclude in Sect. 5, by discussing the results and giving a summary.

2 Data

The different comparisons in this work are all done in terms of vertical displacement of the isotherms. The measurable variables70

needed to compute vertical isotherm displacement at a fixed depth are the temperature anomaly and vertical temperature

gradient at that depth. In this section we briefly describe the temperature time series from each dataset.

2.1 Argo Floats With Iridium Communication

We use data from a global collection of Argo Iridium floats deployed by the University of Washington as part of the National

Ocean Partnership Program during the period 2004–2022. Between the descending and ascending profiling phases, these floats75

also record temperature and pressure with an hourly resolution while adrift at 1,000 dbar. This so-called park phase typically

lasts 10 days. As in Hennon et al. (2014) and Geoffroy and Nycander (2022), we use the pressure records to correct for the

small departures of a float from its drifting control level during a park phase.

Stitching together data from successive cycles, by filling the time between park phases (typically 6 hr) with NaNs, one can

construct longer time series. In this study, we use segments of 32 days of data (i.e., the duration of the segment of numerical80

simulation we are using). The sampling period of the park phase can occasionally vary by more than a few seconds. To ensure

evenly spaced time series, we linearly interpolate each concatenated record of 32 days onto a time axis with constant 1 h step.

Any interpolated value lying between two original records that are more than 1.5 h apart is replaced by NaN.

The position of the floats can only be determined when they reach the surface. We assume straight trajectories between

two successive surfacings (typically 10 days apart). This assumption has been shown reasonable by Geoffroy and Nycan-85

der (2022), especially since we discard segments of data for which the mean speed of the float is larger than 0.1 m s−1.

This criterion is primarily intended to avoid contamination by lee waves: a flow with speed U ∼ 0.1
::::::
U ≈ 0.1 m s−1 passing

over a bathymetric feature with horizontal length scale λ∼ 10
:::::
λ≈ 10 km will generate lee waves with angular frequency

ω ∼ (2π/λ)U
::::::::::::
ω = (2π/λ)U rad s−1 of the order of the diurnal frequency.
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The Argo dataset used in this work is an updated version of the one used by Geoffroy and Nycander (2022). After the base90

processing and quality controls, we are left with 22,414 valid 32-day segments from 891 individual floats. A more detailed

description of the Argo data processing and quality controls we employed is available from Hennon et al. (2014) and Geoffroy

and Nycander (2022).

2.2 Global Multi-Archive Current Meter Database (GMACMD)

The Global Multi-Archive Current Meter Database (GMACMD; Scott et al., 2011) compiles tens of thousands of oceano-95

graphic time series from moorings. Previous model-data validation efforts involving both HYCOM and mooring data notably

include Luecke et al. (2020), where the authors compared the temperature variance and kinetic energy, over various frequency

bands, in realistic global ocean simulations to more than 3,800 instrumental records.

Here, we extracted 331 temperature time series spanning 1972–2010 and meeting the following criteria:

1. The mooring lies in water deeper than 2,000 m100

2. The record is longer than 64 days with a sampling interval shorter than 3 hr, for adequate resolution of the semidiurnal

tidal signals

3. The instrument depth is within ±200 m from 1,000 m

One particular mooring is used as an example in Sect. 3. It recorded during 366 days in the years 1982-83 at the position

28.00◦ N, 151.95◦ W (north of the Hawaiian Ridge). As previously documented by Alford and Zhao (2007), we refer to the105

instrument at 1,119 m depth as mooring No. 2. This instrument sampled temperature with a 0.25 h resolution.

2.3 HYbrid Coordinate Ocean Model (HYCOM)

This study uses 32 days, from May 20 to June 20, 2019, of hourly output at 1,000 m depth from a global run of HYCOM, with

41 vertical layers and 1/25◦ horizontal resolution. The non data-assimilative simulation, designated ‘GLBy190.04’, includes

realistic tidal and atmospheric forcing enabling the generation and propagation of IT within the eddying general circulation.110

The high resolution 2D fields are complemented by monthly-mean 3D fields of temperature and salinity subsampled to 1◦.

A Lagrangian analysis of the simulation is used for a direct model-data validation with Argo floats. The Argo quasi-

Lagrangian sampling is mimicked by releasing 41644 particles randomly across the world oceans. We let the particles be

advected by the 2D velocity field at 1,000 m for 32 days while sampling temperature with an hourly resolution. This La-

grangian sampling of HYCOM is achieved using the software Parcels (Van Sebille et al., 2021). The Lagrangian simulation115

uses a classic Runge-Kutta method for computing the advection of the particles (with 5 minutes integration time step). As for

the Argo data, we discard particles with a mean speed larger than 0.1 m s−1. We also discard any particle crossing the 1,000 m

isobath during the simulation.

3 Methods
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::
In

:::
this

:::::::
section,

:::
we

::::::
present

:
a
:::::
local

:::::::
example

::
to

::::::::
introduce

:::
the

:::::::
methods

::::
that

:::
will

:::
be

::::
used

::
in

::::
Sect.

::
4
:::
for

:::
the

:::::
global

:::::::::::
comparison. We120

start by comparing the Argo observations to the Lagrangian sampling of the HYCOM data. Next, we investigate the effects of

the drift by comparing Lagrangian and Eulerian samplings of the numerical simulation. We end the section by introducing the

comparison between the Eulerian HYCOM time series and mooring observations.

3.1 Lagrangian sampling of the isopycnal displacement at 1,000 dbar

As in Hennon et al. (2014) and Geoffroy and Nycander (2022), we define the vertical isotherm displacement observed by a125

Lagrangian particle ηL1000 as

ηL1000(t) =
T (t)−T

(dT/dP )1000(t)
, (1)

where T is the time average of the temperature measurements T (t) over a particle trajectory, and (dT/dP )1000(t) is the

temperature gradient at 1,000 dbar. Hence, the vertical isotherm displacement is simply computed as the temperature anomaly

recorded by a drifting particle at 1,000 dbar divided by the vertical temperature gradient at that depth. For HYCOM particles,130

we compute (dT/dP )1000 as the mean, within 100 m
::::::
between

::::
900

:::
and

:::::
1100

::
m,

:
of 1, 000 m, of the vertical gradient calculated

from the modeled monthly-mean 3D temperature field. We then linearly interpolate the temperature gradient
:
in

:::
the

:::::::::
horizontal

to the successive particle positions (hence the time dependence).
::
To

:::::
avoid

::::
any

:::::::
spurious

::::::::::::
displacements,

:::
we

:::
set

:::::
ηL1000::

to
:::::
NaN

::::::::
whenever

:::
the

:::::::::
magnitude

::
of

:::
the

::::::::::
temperature

:::::::
gradient

::
is

::::::
smaller

::::
than

::::::::
3× 10−5

:::

◦C
::::::
dbar−1.

:

In the case of Argo floats, Eq. (1) is evaluated over each park phase. T then represents the time average of the temperature135

measurements T (t) over a park phase, and the vertical temperature gradient is estimated from the average of the two neigh-

boring ascending profiles. Specifically, (dT/dP )1000(t) is computed as the mean, within 100 dbar of the parking pressure, of

the vertical gradient calculated from the average temperature profile. To avoid any spurious displacements
::
As

:::
for

:::
the

::::::::
HYCOM

:::::::
particles, we discarded the data from the whole park phase whenever the

:::::::::
magnitude

::
of

:::
the temperature gradient is smaller than

−3× 10−5
:::::::
3× 10−5 ◦C dbar−1. As explained in Sect. 2.1, ηL1000 time series from successive park phases are stitched together140

to constitute 32-day time series.

Both for Argo floats and HYCOM Lagrangian particles, the low frequency background activity is filtered out from ηL1000

using a fourth order
::::::::::
fourth-order Butterworth filter with a cut-off frequency of 0.3 cpd. The inertial peak is not removed by this

filter poleward of about ±10◦ of latitude.

3.2 Averaging sample autocovariance series145

The HYCOM derived Lagrangian time series ηL1000 can be analyzed in the same way as in Geoffroy and Nycander (2022).

We illustrate the mapping process below. The geographical patch presented here is also described in Geoffroy and Nycander

(2022). For this example area, Fig. 1 shows 8 32-day segments of Argo data and 13 HYCOM particles selected using their

median position. The circular patch of radius 200 km containing the latter median positions is centered on the mooring No. 2.
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Figure 1. Example circular geographical patch of radius 200 km (the white star denotes mooring No. 2 at the center). The median position

of the segments of Argo data and of the HYCOM particles are shown by white filled circles and white squares, respectively. The dashed

white curves represent the trajectories of the HYCOM particles over the 32 days of numerical simulation. The binned Argo segments were

all recorded by the same float, its trajectory is shown by the solid white curve with white crosses denoting the starting and ending points of

the different 32-day segments. In the background we show the amplitude of the M2 baroclinic sea level anomaly from the High-Resolution

Empirical Tide model (HRET; Zaron, 2019).

From a finite time series η(t) one can calculate the sample autocovariance R̂(τ):150

R̂(τ) =
1

N − τ

N−τ∑
t=1

(ηt− ˆ̄η)(ηt+τ − ˆ̄η), (2)

where N is the total number of observations, and ˆ̄η is the sample mean of the series. Note that R̂(0) is the sample variance of

the series. Here, N is taken as the number of non-missing observations, accounting for gaps in the Argo time series (during the

descent, main profiling, and surface transmission phases of the float cycle, or because of failed quality controls). The sample

autocovariance as defined in Eq. (2) is an unbiased estimator of the “true” autocovariance (i.e., R̂(τ) converges to the true155

value R(τ) for infinitely large N ). In the remainder of this article we only compute the variance and autocovariance of vertical

isotherm displacement time series. For the sake of brevity, we simply refer to them as the variance and autocovariance.

The sample autocovariances for all HYCOM particles within the circular patch shown in Fig. 1 are averaged to obtain a local

mean autocovariance R
L

HYCOM. The local mean autocovariance from the Argo data, RArgo, is computed in the same way. The

standard error of the local mean autocovariance is computed as160

SEM(τ) =
STD(τ)√

Np
, (3)

where STD is the standard deviation of the sample autocovariances over the subset, and Np is the number of particles in the

subset. Fig. 2a demonstrates the good agreement of the two datasets until τ ' 200
:::::::
τ ≈ 200 h. Past this time lag limit, RArgo
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falls under its 95% confidence interval (95% C.I.∼±2 SEM
::::::::::
=±2 SEM) and thus cannot be considered significantly different

from zero.165

A handy tool for monitoring the evolution of the autocovariance of the semidiurnal IT is complex demodulation. Here,

it consists in the least squares fitting of Acos(ωSDτ) +B sin(ωSDτ), where ωSD = (ωM2 +ωS2)/2
::::::::::::::::::
ωSD = (ωM2 +ωS2)/2 is

the semidiurnal frequency, to the sample autocovariance in 48-h windows with 75% overlap. This is equivalent to fitting

C cos(ωSDτ + Φ), where C and Φ are the amplitude and phase, respectively. We then define the complex demodulate as

C =
√
A2 +B2. This positive definite amplitude follows the envelope of the modulated sinusoidal with frequency ωSD. Note170

that this definition differs from the complex demodulation used in Geoffroy and Nycander (2022), where the authors fitted

C cos(ωSDτ), i.e. with Φ = 0. In practice, we compute the complex demodulate of the autocovariance following the harmonic

analysis method of Cherniawsky et al. (2001).
:::
The

::::::::::::
demodulation

::::
over

:
a
:::::
given

::::
48-h

:::::::
window

::
is

:::::::::
performed

::
in

:::
two

:::::::::
iterations.

:::
We

:::
first

::
fit

:::::::::::::::::::::::
Acos(ωSDτ) +B sin(ωSDτ)

:::
to

:::
the

:::::
signal

:::
and

::::::::
compute

:::
the

::::
root

:::::
mean

:::::
square

:::::
error

::::::::
(RMSE).

:::
We

::::
then

:::::
repeat

:::
the

::::::
fitting

::::
with

:
a
:::::::
trimmed

:::::
signal

::::
that

:::::::
excludes

::::::
values

::::::
outside

::
of
::::::::::
±2 RMSE

::::
from

:::
the

:::::::::
previously

::::
fitted

::::::
curve.175

Complex demodulation is just a convenient way of finding the envelope of the sample estimate of an underlying true oscil-

lating function at a given frequency. However, as an estimate of the envelope of the true oscillating function(computed from a

limited sample size), the complex demodulate can be shown to be biased high
::::
(see

::::::::
Appendix

:::
A). This bias is greatly mitigated

(i) at short time lags, and (ii) when the sample size is large (e.g., when demodulating regional or global mean autocovariances).

Throughout this paper we only rely on complex demodulation in one case or the other. A reasonable
::::::::::
conservative

:
estimate of180

the uncertainty of the envelope of the sample function (as an estimate of the true function
:::
i.e.,

:::
the

:::::::::
uncertainty

::
of

:::
the

::::::::::
demodulate)

is the uncertainty of the sample function itself. If this uncertainty range is larger than the envelope of the sample function, the

conclusion is not that the envelope of the true function can be negative, but that it is not significantly different from zero.

Here, we evaluate the uncertainty affecting the complex demodulate of a mean autocovariance series over a 48-h window by

computing the median of the standard error over that window, hereinafter denoted S̃EM. The corresponding 95% confidence185

intervals are taken as ±2 S̃EM.

::::::::
Following

:
Geoffroy and Nycander (2022),

:::
the

::::::::::
semidiurnal

:::
IT

:::::::
variance

::::
can

::
be

::::::::
estimated

:::::
from

:::
the

:::
first

:::::
48-h

::::::::::
demodulate

::
at

::
the

::::::::::
semidiurnal

:::::::::
frequency.

:::
In

::::::::
Appendix

::
B

:::
we

:::::::::
investigate

:::
the

::::::::
potential

::::::::::::
contamination

::
of

:::
the

:::
first

::::::::::
demodulate

:::
by

:::
the

::::::::
non-tidal

::::::::
variability

:::::::
(noise).

:::
We

:::::
found

::::
that

:
a
::::::::::
background

:::::
noise

:::
can

:::::::::
contribute

:::::
either

::::::::
positively

::
or

:::::::::
negatively

::
(a

:::::::::::
consequence

::
of

:::::::
filtering

::
the

::::
time

::::::
series)

::
to

:::
the

:::::::::
amplitude

::
of

:::
the

:::
first

::::::::::
demodulate,

:::::::::
depending

:::
on

::
its

:::::::::::
characteristic

:::::::::
timescale.

::::::::::::::
Notwithstanding,

:::
for

::::::
typical190

::::::::::::
signal-to-noise

::::
ratio

::::
and

::::::::
timescale

::
of

:::
the

::::::::::
background

:::::
noise

:::::::
observed

:::
by

:::::
Argo

:::::
floats,

:::
the

::::
first

::::::::::
demodulate

:::
was

::::
seen

:::
to

::::::
remain

:
a
::::::::::
conservative

::::::::
estimate

::
of

:::
the

::
IT

::::::::
variance.

::::
The

::::::
effects

::
of

:::
the

::::::::
non-tidal

::::::::
variability

:::
on

:::
the

::
IT

::::::::
variance

:::::::
estimate

::
as

:::::::::
computed

::
in

Geoffroy and Nycander (2022)
::::
thus

::
do

:::
not

:::
put

::::
their

::::::
results

::::
into

:::::::
question.

:

::::
Since

::::::::
HYCOM

::::
does

:::
not

:::::::
resolve

:::
the

:::
full

:::::::
spectrum

:::
of

::
the

:::::::
oceanic

:::::::::
variability,

::
in

::::::::
particular

:::
the

:::::::::
variability

::::::::
associated

::::
with

:::::
short

:::::::::
timescales,

:::
the

::::::::::::
corresponding

:::::::::
stochastic

::::
noise

::
is
::::::::

expected
::
to

:::::
differ

:::::
from

:::
the

::::
one

:::::::
captured

:::
by

:::
the

::
in

::::
situ

::::
data

::::
(both

:::
in

:::::
terms195

::
of

:::::::
variance

:::
and

::::::::::::
characteristic

:::::::::
timescale).

:::
The

::::::::::::
contamination

:::
of

:::
the

:::
first

::::::::::
demodulate

:::
by

:::
this

:::::
noise

:::::
would

::::::::
therefore

:::::::
account

:::
for

:
a
:::::::::
systematic

::::
bias

:::::
when

:::::::::
comparing

:::
the

:::::::::
simulated

::::
data

::::
with

:::::::::::
observations.

:::
To

::::
limit

::::
this,

:::
we

::::::
chose

::
to

::::::::::
consistently

:::::::
subtract

:::
an

:::::::
estimate

::
of

:::
the

::::::::::::
autocovariance

::
of

:::
the

::::::::
non-tidal

::::::::
variability

:::::
from

:::
the

::::::
sample

:::::
mean

::::::::::::
autocovariance

::::::
before

:::::::::
computing

::
the

::::::::
complex

7



:::::::::::
demodulates.

:::
The

::::
way

:::
we

::::::
obtain

::::
such

::
an

:::::::
estimate

::
is
:::::::::
described

::
in

::::::::
Appendix

:::
C.

:::::::
Namely,

:::
we

::
fit

:
a
::::::
model

::
of

:::
the

:::::::::::::
autocovariance

::
of

:
a
::::
tidal

:::::::::
variability

:::
on

:::
top

::
of

:
a
::::::::::
background

:::::
noise

::
to

:::
the

:::::::
sample

::::::::::::
autocovariance

:::
by

::::::::
nonlinear

::::
least

:::::::
squares.

:::::::
Besides

:::
the

:::::
noise200

:::::::::
parameters,

::::
this

:::
also

::::::::
provides

::
us

::::
with

::
an

:::::::
estimate

::
of

:::
the

::::
tidal

::::::::
variance.

::::
Still,

::
in

::::
this

:::::
work,

::
we

:::::
chose

::
to
:::::::
perform

:::
the

:::::::::::
comparisons

::
in

::::
terms

:::
of

:::
the

:::
first

::::::::::
demodulate

:::
for

:
it
::
is
::
a
::::::::::
conservative

::::
and

::::
more

::::::
robust

:::::::
estimate

::
of

:::
the

::
IT

::::::::
variance.

:

The result of the complex demodulation at the semidiurnal frequency applied to our two
:::::
(noise

::::::::
corrected)

:
mean autocovari-

ance series is presented in Fig. 2b. The first 48-h complex demodulate is
::::
taken

::
as

:
a direct estimate of the total semidiurnal IT

variance. From the Argo data plotted in Fig. 2b we obtain 23.3
:::
24.9

:
m2 with a 95% C.I. of [15.0, 31.6]

::::::::::
[16.7, 33.2] m2. For this205

local example, the first demodulate of R
L

HYCOM is almost identical to the first demodulate of RArgo. Apart from the first couple

of demodulates, the HYCOM demodulate series appears consistently smaller than the Argo one.

Figure 2. (a) Local mean autocovariance R
L
HYCOM computed from the HYCOM particles (solid black curve), and local mean autocovariance

RArgo computed from the 32-day segments of Argo data (solid red curve) and 95% confidence interval of RArgo (light blue shading). The

data are from the geographical patch shown in Fig. 1. The Argo variance lies above the figure scale, here RArgo(0)' 121 m2. (b) Complex

demodulates at the semidiurnal frequency of the autocovariance series shown in (a) and their 95% C.I. The red and grey shadings highlight

the 95% C.I. for the Argo and Lagrangian HYCOM data, respectively.

3.3 Eulerian perspective

The decay with time lag of the demodulates represented as red crosses in Fig. 2b mirrors the decorrelation captured by the

Lagrangian sampling of the Argo floats. The motion of the instruments results in decorrelating effects that cannot be isolated210

from the loss of coherence of the IT. However, by analyzing the HYCOM data within a Eulerian framework, one can directly

monitor the decorrelation of the IT. The Eulerian HYCOM time series can then be compared with observations from moorings.
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In the Eulerian framework, our methods remain practically unchanged. We now define the vertical isotherm displacement at

a given location as

ηE1000(x,y, t) =
T (x,y, t)−T (x,y)

(dT/dP )1000(x,y)
(4)215

where T (x,y) is the time average of the temperature field T (x,y, t), and (dT/dP )1000(x,y) is the temperature gradient at

1,000 m, calculated from the modeled monthly-mean 3D temperature field. As for the Lagrangian time series, we apply a

fourth order
::::::::::
fourth-order Butterworth high-pass filter with a cut-off frequency of 0.3 cpd on ηE1000.

For each HYCOM particle, we compute 32-day long time series of ηE1000 at the successive positions of the particle subsam-

pled at a 12-h rate. We then calculate the sample autocovariance from each of these time series and average the results over220

the particle’s trajectory. As in the Lagrangian framework, the resulting averages can be averaged over different particles to

compute local and global mean autocovariance series. By estimating the Eulerian autocovariance along the Lagrangian trajec-

tories we account for the geographic variability of the IT. Also, our Eulerian sample autocovariance estimates contain many

more degrees of freedom than their Lagrangian equivalents; As a result, the uncertainty affecting the Eulerian autocovariance

estimates is much smaller.225

Eq. (4) is also used to compute vertical displacement time series from the mooring temperature records. Here, the vertical

temperature gradient is computed from the annual mean climatology (WOA18; Boyer et al., 2018) as an average of the temper-

ature gradient within 100 m of the instruments’ depth. As for
:::
the

::::::::
HYCOM

:::
and Argo data, we discarded instruments for which

the
:::::::::
magnitude

::
of

:::
the temperature gradient is smaller than −3× 10−5

::::::::
3× 10−5 ◦C dbar−1. Each mooring time series is split

into successive 32-day segments. We then compute the sample autocovariance for each high pass filtered segment and average230

them to obtain a mean autocovariance.

The Eulerian sampling serves two main purposes: (i) validating the variance of the IT measured by the Lagrangian particles,

and (ii) comparing the decorrelation of the IT in the HYCOM data to
:::
with mooring observations. We illustrate these two aspects

for the local example introduced in Sect. 3.2 in Fig. 3 , and 4, respectively.

Fig. 3 shows the local mean autocovariance series at 1,000 dbar computed from both the Lagrangian ηL1000 (solid black curve)235

and Eulerian ηE1000 (solid red curve). As expected, the two autocovariance series demonstrate a close agreement at short time

lags, before the motion of the particles causes the Lagrangian R
L

HYCOM to decay faster: The first demodulate of the Eulerian

R
E

HYCOM (red crosses in Fig. 3b), reading 26.0
::::
28.4 m2 with a 95% C.I. of [25.3, 26.8]

:::::::::
[27.6, 29.1]

:
m2, is similar to the first

demodulate of the Lagrangian R
L

HYCOM (black crosses in Fig. 3b and in Fig. 2b). In contrast with R
L

HYCOM, R
E

HYCOM is not

affected by the apparent decorrelation, and it remains close to the mean autocovariance computed from the (Eulerian) mooring240

No. 2 time series RMoor at all time lags (see Fig. 4). In conclusion, for this local example, the model agrees very well with the

in situ observations, both in terms of variance and decorrelation of the semidiurnal IT at 1,000 dbar.
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Figure 3. (a) Mean autocovariance computed from ηL1000 (solid black curve, same as the solid black curve in Fig. 2a) and 95% confidence

interval ofR
L
HYCOM (light blue shading), and mean autocovariance computed from ηE1000 (solid red curve). The data are from the geographical

patch shown in Fig. 1. (b) Complex demodulates at the semidiurnal frequency of the autocovariance series shown in (a) and their 95% C.I.

The red and grey shadings highlight the 95% C.I. for the Eulerian and Lagrangian HYCOM data, respectively.

4 Results

4.1 The semidiurnal IT variance at 1,000 dbar

We bin the global collection of HYCOM particles based on their median position, using circular geographical patches of radius245

200 km centered on a regular 2.5◦×2.5◦ grid. Here, we use only particles for which (i) the mean speed is lower than 0.1

m s−1 (to avoid contamination by lee waves), and (ii) the variance of η1000 ::::
ηL1000 is lower than 2× 104

::::::
1× 104

:
m2. The latter

criteria accounts for the potential instability of the calculated η1000 values whenever the vertical temperature gradient,i.e. the

denominator in Eq. (1) or (4), is small.
:::::
second

:::::::
criterion

::::::::
accounts

:::
for

:::
41

::::::::
discarded

:::::::
particles

::::
(out

::
of

:::::::
41,644)

:::
that

:::
we

::::::::
consider

::
as

:::::::
outliers,

::::
most

::
of

::::::
which

::
are

:::::::
located

::
in

:::
the

::::::::
Labrador

:::::
Basin

::
or

::
in

::::::
shallow

:::::
water

:::::
close

::
to

:::::::::
Antarctica.

::::::::
Including

::
it
::::::
instead

::::::
would250

::::
only

:::::::::
marginally

:::::
affect

:::
our

::::::
results.

:::
We

:::
did

:::
not

:::::::::
investigate

:::::
more

:::
the

:::::
cause

::
of

:::::
these

:::::::
extreme

::::::
values.

As in Sect. 3.2 and 3.3, we compute an autocovariance series for each HYCOM particle, in the Lagrangian and Eulerian

framework, separately. Then, we average these autocovariances over the corresponding patches to obtain local mean autoco-

variance series R
L

HYCOM and R
E

HYCOM. For each geographical patch, we get local estimates of the total semidiurnal IT variance

from the first 48-h complex demodulate of R
L

HYCOM and R
E

HYCOM.255

We start by checking how the Lagrangian sampling affects the total semidiurnal IT variance. Fig. 5 shows the first 48-h

complex demodulate of R
E

HYCOM plotted as a function of the first demodulate of R
L

HYCOM for our collection of geographical

10



Figure 4. (a) Mean autocovariance computed from ηE1000 (solid black curve, same as the solid red curve in Fig. 3a), and mean autocovariance

computed from eleven 32-day segments of the mooring No. 2 time series (solid red curve) and 95% confidence interval of RMoor (light blue

shading). (b) Complex demodulates at the semidiurnal frequency of the autocovariance series shown in (a) and their 95% C.I. The red and

grey shadings highlight the 95% C.I. for the mooring and Eulerian HYCOM data, respectively.

patches. The agreement is close to perfect (with a
:::::::
Pearson’s

::
r
:::::::
squared,

::
or

:
coefficient of determination r2 ' 0.98

:::::::
r2 ≈ 0.99

::::
and

::::
0.76 in log-log domain and r2 ' 0.74 in linear domain

:::
and

:::::
linear

:::::::
domain,

::::::::::
respectively). Thus, the motion of the Lagrangian

particles, and therefore of the Argo floats, have no significant impact on the measured total variance of the IT.260

We can then map the semidiurnal IT variance (here taken as the first 48-h complex demodulate ofR
L

HYCOM) and the associated

S̃EM on a 2.5◦×2.5◦ grid (see Fig. 6a and 6b, respectively). In each figure we show only the bins which yield an IT variance

larger than one S̃EM. Note that the latter criterion is less binding than the one used for the global maps in Geoffroy and

Nycander (2022) since the uncertainties are smaller here, by definition. Fig. 6a can be directly compared with the global map

of the semidiurnal IT variance computed from Argo data (see Fig. 6c and 6d, updated from Geoffroy and Nycander, 2022). As265

documented in Buijsman et al. (2020), HYCOM is known to be subject to a thermobaric instability (TBI) in the north Pacific

(dashed black rectangle in Fig. 6a). Since only a few patches of Argo data are available at the edge of this TBI area, we do not

exclude it from the subsequent analysis.

The main patterns visible in Fig. 6a and Fig. 6c broadly agree, with energy radiating away from low-mode IT generation

hotspots, namely near Madagascar, Hawaii, and the tropical south and southwest Pacific. In Fig. 7a we show the Argo derived270

semidiurnal IT variance plotted as a function of the simulated one
:::::::::::
corresponding

::::
one

:::::
from

::::::::
HYCOM. The two datasets are

well correlated (r2 = 0.52
:::
and

::::
0.38

:
in log-log domain

:::
and

:::::
linear

:::::::
domain,

:::::::::::
respectively), but the semidiurnal IT variance is

systematically smaller in HYCOM than in the Argo data.
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Figure 5. First 48-h complex demodulate of R
E
HYCOM:::::::::

Semidiurnal
::
IT

:::::::
variance

::::::::
estimated

::::
from

::
the

:::::::
Eulerian

:::::::
HYCOM

::::
data as a function of

the first demodulate of R
L
HYCOM:::::::::

semidiurnal
::
IT

:::::::
variance

:::::::
estimated

::::
from

:::
the

:::::::::
Lagrangian

:::::::
HYCOM

:::
data

:
for the unmasked bins in Fig. 6a. A

warmer color indicates a denser scatter
::::
larger

::::::
density.

Figure 6. (a) Atlas of the total semidiurnal IT variance computed as the first 48-h complex demodulate of the local mean autocovariance

series at 1,000 dbar (R
L
HYCOM), and (b) corresponding S̃EM. (c) and (d) Same as (a) and (b), respectively, but computed from the Argo data

(RArgo). (c) and (d) are updated from Geoffroy and Nycander (2022). The area where the simulation is affected by the TBI is shown by the

dashed black rectangle in (a).
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We investigate this bias by looking at the geographical distribution of the HYCOM to Argo semidiurnal IT variance ratio.

For presentation purposes, instead of the latter ratio we plot the proxy σ2
HYCOM/(σ

2
HYCOM +σ2

Argo) in Fig. 7b. This statistic275

is robust to outliers and maps a pair of variances to the closed range [0,1]. The ratio is relatively homogeneous globally (in the

range [0.25,1.5], corresponding to [0.2,0.6] for our proxy), except over the Southern Ocean where the Argo inferred IT variance

is significantly larger. Furthermore, we show the zonal mean of the Argo and HYCOM derived semidiurnal IT variance as a

function of latitude in Fig. 7c. The zonal mean variance from Argo is generally larger, except around 40◦ N where the HYCOM

inferred zonal mean variance peaks at 1.7
:::
1.6 times the Argo one. Discarding the data in the TBI area has virtually no effect280

on this peak (not shown). More noteworthy than this localized feature, the ratio of the
:::::::
HYCOM

::
to
:::::
Argo

:
zonal mean variances

increases
::::::::
decreases approaching the poles (poleward of ±50◦ of latitude, not shown). In contrast, equatorward of ±50◦, this

ratio remains fairly constant, oscillating around a mean value of 0.74
:::
0.73

:
with a standard deviation of 0.27

::::
0.26. The global

mean and standard deviation of the ratio are 0.62
:::
0.61

:
and 0.33, respectively.

The representativity of the zonal mean variances is smaller north of 40◦ N, because of the scarcity of available data (solid red285

curve in Fig. 7c). We therefore focus on the pronounced discrepancy affecting the Southern Ocean. We gather the data available

over the unmasked bins in Fig. 7b into two groups, north and south of 50◦ S. For each group and the global collection of bins,

we compute a mean autocovariance by averaging the corresponding Argo and HYCOM local mean autocovariance series (see

Fig. 8). In Table 1
:
, we summarize the semidurnal

:::::::::
semidiurnal

:
IT variance values computed as the first 48-h demodulate of the

mean autocovariance for each group. A significant fraction of the divergence visible in the global mean autocovariance at short290

time lags (see Fig. 8a and 8b) can be explained by the larger discrepancy south of 50◦ S (see Fig. 8e and 8f). In this region, the

Argo derived semidiurnal IT variance is close to 4
:::
3.5 times larger than the simulated one. The agreement is better north of 50◦

S, where the corresponding factor is 1.5 (see Fig. 8c and 8d). In a separate section we will discuss possible explanations for

both the lower semidiurnal IT variance in HYCOM globally and the even lower simulated IT variance in the Southern Ocean.

Table 1. Semidiurnal IT variance from the autocovariance series plotted in Fig. 8.

Argo HYCOM HYCOM/Argo

σ2
SD

Global 35
::
37

:
m2 20

::
22

:
m2 0.57

:::
0.58

North of 50◦ S 35
::
38

:
m2 24

::
26

:
m2 0.68

:::
0.69

South of 50◦ S 34
::
37

:
m2 9

::
11 m2 0.28

:::
0.29

4.2 The decorrelation of the semidiurnal IT at 1,000 dbar295

In contrast to Argo floats, the Eulerian sampling of moorings allows us to directly monitor the decorrelation of the IT. In a

procedure similar to that in Sect. 4.1, we bin the global collection of HYCOM particles based on their median position, but this

time using geographical patches (of radius 200 km) centered on the available moorings. We compute a sample autocovariance

in the Eulerian framework for each particle, and average them within the corresponding patches to obtain local mean autoco-

variance series R
E

HYCOM. The mooring time series in a given patch is split into successive 32-day segments. We then compute a300
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Figure 7. (a) Argo derived semidiurnal IT variance as a function of the simulated
::::::::::
corresponding

:
one

:::
from

::::::::
HYCOM for the collection of

geographical bins shown in Fig. 7b. A warmer color indicates a denser scatter
::::
larger

::::::
density. (b) Atlas of σ2

HYCOM, SD/(σ
2
HYCOM, SD +

σ2
Argo, SD), a proxy for the HYCOM to Argo semidiurnal IT variance ratio at 1,000 dbar. The value of this proxy is close to 0 where

σ2
HYCOM, SD� σ2

Argo, SD, 0.5 where σ2
HYCOM, SD ∼ σ2

Argo, SD, and 1 where σ2
HYCOM, SD� σ2

Argo, SD. The ocean mask was
:
is colored in

yellow for readability. (c) Zonal mean of the semidiurnal IT variance from Argo (dash-dotted black curve) and HYCOM (solid black curve)

as a function of latitude and their respective 95% C.I. (light green and gray shading, respectively). The red curve represents the number of

geographical bins used to compute the zonal mean at a given latitude (red axis on the right). The vertical dashed red lines are placed at 50◦

S and 50◦ N.

sample autocovariance for each segment and average them to obtain a mean autocovarianceRMoor. Again, we use only particles

for which (i) the mean speed is lower than 0.1 m s−1 (to avoid contamination by lee waves), and (ii) the variance of η1000 is less

than 2× 104
::::
ηL1000::

is
:::::
lower

::::
than

:::::::
1× 104 m2

::::::::
(outliers). After some additional quality controls, mainly discarding bins where

either the mooring or HYCOM complex demodulates fall under one S̃EM within 15 days of time lag, we are left with 167
:::
172

moored instruments and the corresponding patches of simulated data.305

For all the datasets used in this study, we found the probability distribution of the global collection of local mean autoco-

variance at any given timelag
::::
time

:::
lag to be skewed (not shown). This is not an issue when computing average statistics from
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Figure 8. (a) Global mean autocovariance at 1,000 dbar computed from Argo data (solid red curve) and Lagrangian HYCOM particles (solid

black curve), and (b) corresponding complex demodulates at the semidiurnal frequency. The uncertainties are vanishingly small (not shown).

(c) and (d) Same as (a) and (b), respectively, but using only data north of 50◦ S. (e) and (f) Same as (a) and (b), respectively, but using only

data south of 50◦ S.
:::
The

::::
Argo

::::::
variance

:::
lies

:::::
above

:::
the

:::::
figure

::::
scale,

::::
here

:::::::::
RArgo ≈ 173

:::
m2.

:
In this figure

:
, we truncated τ at 500 h , since past

this limit the autocovariance series are close to 0.

the Argo or the corresponding simulated data, since the number of samples (i.e., the number of geographical bins) is very

large and the sample mean is therefore expected to be normally distributed, by virtue of the central limit theorem. In contrast,

geographical bins where mooring data are available are fewer. Thus, the influence of the tail of the distribution on the sample310

mean is larger when analyzing the relatively small collection of bins where mooring data are available than when considering

the global collections of Argo and HYCOM data. This precludes the use of statistics that assume a normal distribution when

describing regional or even global averages of the autocovariances computed from moorings. To limit the effects of skewness,

we discard bins for which either the mooring or the simulated first 48-h demodulate is above the 95th percentile of its observed

distribution (here P 95
Moor ∼ 720

::::::::::
P 95
Moor ≈ 575 m2 and P 95

HYCOM ∼ 320
:::::::::::::
P 95
HYCOM ≈ 330 m2, respectively). The latter criterion ac-315

counts for 4
::
12 additional discarded bins, all located in moderate to strong mesoscale activity areas. Even after discarding these

extreme samples, the data remain highly skewed.

The moorings may not offer as much spatial coverage as the Argo floats do, but they still provide an opportunity to validate

the geographical variability of the semidurnal
:::::::::
semidiurnal

:
IT variance in HYCOM. As in Sect. 4.1, we can get local estimates

of the total semidiurnal IT variance from the first 48-h complex demodulate of R
E

HYCOM and RMoor in each geographical patch320

centered on a mooring. Fig. 9a shows the scatter plot of the first 48-h complex demodulate of R
E

HYCOM as a function of the
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first demodulate of RMoor for our collection of geographical bins. As with the Lagrangian data (see Fig. 7a), the correlation

is good (r2 = 0.53
::::::::
r2 = 0.51

:::
and

::::
0.40

:
in log-log domain

:::
and

:::::
linear

:::::::
domain,

:::::::::::
respectively), but the semidiurnal IT variance is

systematically smaller in HYCOM than in the mooring data. In Fig. 9b and 9c we show the geographical location of the patches

along with a proxy for the HYCOM to mooring semidiurnal IT variance ratio, and the histogram of this proxy, respectively.325

The latter histogram shows that the distribution of the proxy is centered around 0.33
::::
0.37, corresponding to a ratio of 0.5

::
0.6,

approximately.

Figure 9. (a) Semidiurnal IT variance derived from mooring data as a function of the semidiurnal IT variance computed from the Eulerian

HYCOM data. (b) Map of the 163
:::
160 geographical bins presented in (a) along with the proxy σ2

HYCOM, SD/(σ
2
HYCOM, SD +σ2

Moor, SD)

for the ratio of the semidiurnal IT variance computed from the Eulerian HYCOM and mooring data, and (c) the histogram of this proxy. An

equivalent proxy was used in Fig. 7b. The dashed black line in (b) indicates 50◦ S.

To measure the strength of the decorrelation affecting the Eulerian mean autocovariances, we define the semidiurnal coherent

variance fraction (SCVF15) as the ratio between the 48-h demodulate at τ ' 15
:::::
τ ≈ 15 days (i.e., half the

:::
one spring-neap

period) and the first demodulate. Note that, due to the limiting duration of our time series, we cannot distinguish a strong330

but short from a weak but long decorrelating process. The SCVF15 being calculated from the demodulate at relatively long
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time lags, it is meaningfull
:::::::::
meaningful

:
only when estimated from a large enough sample size (i.e., with minimal uncertainty).

Therefore, we start by considering all the data available over our global collection of geographical bins.

Fig. 10a displays the global mean autocovariances calculated from the mooring (RMoor, solid red curve) and HYCOM data

(RHYCOM, solid black curve), as the average of the local mean autocovariance series over the bins presented in Fig. 9b. In335

Fig. 10b we show different statistics of the observed distribution of the demodulates of the local mean autocovariances in the

form of boxplots as a function of time lag. Fig. 10b suggests that the mooring records exhibit both a larger semidiurnal IT

variance and a stronger decorrelation on a global average: the mean of the first demodulates and the mean SCVF15 are 82
::
76

m2 and 0.50, and 43
::::
0.47,

::::
and

:::
41 m2 and 0.64

::::
0.57, for the moorings and HYCOM data, respectively. Using median values

instead leads to the same conclusions (not shown).340

We investigate a potential latitudinal dependence by plotting the mean autocovariance series computed separately from the

geographical bins lying north (150
:::
149 instruments) and south (13

::
11 instruments) of 50◦ S (see Fig. 10c and 10d, and Fig. 10e

and 10f, respectively). The mean semidiurnal IT variance and the mean SCVF15 for each group are shown in Table 2. Again,

the divergence between the two datasets appears enhanced south of 50◦ S. Moreover, the SCVF15 is larger in the Southern

Ocean than elsewhere for HYCOM, but smaller for the moorings. This indicates a weaker, or slower, decorrelation of the IT in345

HYCOM in the Southern Ocean than in the global ocean.

The slower decorrelation of the IT in the simulation can be explained by some decorrelating processes, such as eddies or

submesoscale variability, being weaker in HYCOM than in the real ocean. It could also be explained by the time variability

of certain decorrelating processes. Our numerical simulation only spans May 20 to June 20, 2019. Therefore, it is potentially

missing processes that would specifically occur or intensify at another time of the year (or in a different year). On the other350

hand, the mooring data span several decades. Thus, our single month of data from HYCOM may not be representative of the

broader temporal sampling of the mooring data.

The spatial distribution of the moorings is sparse and tends to be denser in particular areas (e.g. the Gulf Stream region).

This is all the more true south of 50◦ S , where much fewer moorings are available than in the northern region, and where they

are mostly located in the Drake Passage. For both these reasons, the mean autocovariances computed from moorings north and355

especially south of 50◦ S cannot be considered truly representative of the IT in these vast regions. Nonetheless, they remain

representative of the collection of geographical bins used to construct them.

4.3 Apparent decorrelation

In Sect. 4.1 we demonstrated that the motion of the floats has no significant impact on the measured total variance of the IT.

However, the Doppler effect and spatial decorrelation induced by the Lagrangian sampling of the floats both act as decorrelating360

processes causing the autocovariance to decay with increasing time lag (Geoffroy and Nycander, 2022). Following Caspar-

Cohen et al. (2022), we call this mechanism apparent decorrelation, as it is unrelated to the decorrelation of the IT. Geoffroy

and Nycander (2022) estimated the apparent decorrelation timescale to be longer than that of the autocovariance function

observed by Argo floats, on a global average. Thus, they concluded that the decay of the global mean autocovariance observed

by Argo floats is primarily due to the decorrelation of the IT.365
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Figure 10. (a) Global mean autocovariance computed as the average of the local mean autocovariance series from the HYCOM particles

over the geographical bins presented in Fig. 9b (solid black curve), and global mean autocovariance from the moored instruments computed

in the same way (solid red curve); (b) Boxplots of the observed distribution of the complex demodulates at the semidiurnal frequency of the

local mean autocovariances for the collection of geographical bins presented in Fig. 9b as a function of time lag. Each boxplot consists of

a rectangle extanding
:::::::
extending

:
from the first quartile to the third quartile of the data, with a line at the median and a cross at the mean.

For a given time lag, the red and black boxplots, offset on either side of the time lag value, represent the distribution of the demodulates

computed over the 48-h window centered on that time lag value from moorings and HYCOM, respectively. (c) and (d) Same as (a) and (b),

respectively, but using only the 150
:::
149 geographical bins north of 50◦

:
S. (e) and (f) Same as (a) and (b), respectively, but using only the 13

::
11 geographical bins south of 50◦ S. 18



Table 2. Summarizing numerics of the autocovariance series plotted in Fig. 10.

Mooring HYCOM HYCOM/Mooring

Global
σ2

SD 82
::
76

:
m2 43

::
41 m2 0.52

:::
0.53

SCVF15 0.50
::::
0.47 0.64

:::
0.57

:
1.27

:::
1.23

:

North of 50◦ S
σ2

SD 69
::
67

:
m2 37

::
39 m2 0.54

:::
0.58

SCVF15 0.55
::::
0.50 0.62

:::
0.58

:
1.14

:::
1.15

:

South of 50◦ S
σ2

SD 223
:::
201

:
m2 103

::
64

:
m2 0.46

:::
0.32

SCVF15 0.34
::::
0.29 0.70

:::
0.54

:
2.05

:::
1.83

:

The HYCOM data allow to study this by directly comparing the global mean autocovariance computed in the Lagrangian

and Eulerian frameworks (see Fig. 11a and 11b). As expected, the Lagrangian (R
L

HYCOM, solid black curve
:
in

::::
Fig.

::::
11a) and

Eulerian (R
E

HYCOM, solid red curve)
:::::
global

:::::
mean

:
autocovariances are virtually identical until τ ' 50

:::::
τ ≈ 50 h. Past this limit,

the more rapid decay of R
L

HYCOM can only be caused by the apparent decorrelation, while R
E

HYCOM continues to solely reflect

the decorrelation of the IT. Our aim in the present section is to find estimates for the characteristic timescales of the apparent370

decorrelation and decorrelation of the IT in HYCOM and compare it with observations.

Taking inspiration from Geoffroy and Nycander (2022) and Caspar-Cohen et al. (2022), we try a simple model for the

complex demodulate at the semidiurnal frequency of the Eulerian autocovariance computed over a time lag window centered

on τ :

CESD(τ) = σ2
SD

(
α+ (1−α)exp(−τ/T )

)
+σ2

AM

(
cos(ωAMτ)− 1

)
. (5)375

Here, σ2
SD is the total semidiurnal internal tide variance, α is the stationary fraction, T is the IT decorrelation timescale, and

σ2
AM and ωAM are the variance and angular frequency of an amplitude modulating sinusoidal, respectively. A heuristic model

for the demodulate of the corresponding Lagrangian autocovariance is then

CLSD(τ) = CESD(τ)exp(−τ/Tapp), (6)

where Tapp is the apparent decorrelation timescale.380

A constrained least squares fit of the model Eq. (5) to the complex demodulate series computed from R
E

HYCOM (red crosses

in Fig. 11b) yields T = 104
::::::
T = 94 h. The fitted model as well as the exponential decay due to the IT decorrelation (i.e.,

only the term proportional to σ2
SD) are represented in Fig. 11b as the solid and dashed red curves, respectively. On a global

average, 95% of the decorrelation of the nonstationary IT in HYCOM is therefore achieved within 3T ∼ 300
:::::::
T ≈ 300 h (for

exp(−3)∼ 0.05
:::::::::::::
exp(−3)≈ 0.05), i.e. well under the 32 days of data.385

By dividing R
L

HYCOM by R
E

HYCOM, we can isolate the effects of the apparent decorrelation on R
L

HYCOM. In Fig. 11c we plot

this ratio after applying a median filter with a window of 18 h (solid black curve). A least squares fit of a simple decaying

exponential to the obtained curve yields an apparent decorrelation timescale Tapp = 213
:::::::::
Tapp = 209 h (dashed black curve).
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Figure 11. (a) Global mean autocovariance at 1,000 dbar computed from the global collection of HYCOM derived ηL (solid black curve) and

ηE (solid red curve) time series, and (b) corresponding complex demodulates at the semidiurnal frequency. The uncertainties are vanishingly

small (not shown). The solid and dashed red curves represent the result of fitting the model Eq. (5) to the Eulerian demodulates and the

underlying exponential decay due to the decorrelation of the IT, respectively. The solid black curve corresponds to the model Eq. (6) with

the different parameters set as described in the text. (c) Median filtered ratio of R
L
HYCOM to R

E
HYCOM (solid black curve) and fitted decaying

exponential with the apparent decorrelation timescale (dashed black curve). For reference, we overlay a decaying exponential with the IT

decorrelation timescale obtained by fitting the model Eq. (5) to the Eulerian demodulates (dashed red curve).

For verification, we compute the Lagrangian CLSD from Eq. (6), by multiplying the fitted model of CESD (solid red curve Fig. 11b)

by the fitted exponential decay due to the apparent decorrelation (dashed black curve in Fig. 11c). The result (solid black curve390

in Fig. 11b) closely follows the demodulated Lagrangian autocovariance (black crosses in Fig. 11b). The different parameters

obtained from the Eulerian and Lagrangian simulated data are summarized in Table 3. Note that the fitted amplitude modulating

sinusoid is close to the spring-neap cycle, here ωAM ∼ |ωM2 −ωS2 |= 0.0177
::::::::::::::::::::::::
ωAM = |ωM2 −ωS2 | ≈ 0.0177 h−1.

Lastly, we
::
We

::::
can

:::::::
compare

:::
the

:::::
global

:::::
mean

::::::
values

::
of

::
T

:::
and

:::::
Tapp :::::::

obtained
::::
from

:::
the

:::::::::
simulation

::::
with

:::
the

:::::
Argo

:::::::::::
observations.

:::
The

:::::::::::
geographical

::::::::
coverage

::
of

:::
the

:::::
Argo

:::
data

::
is
::::
less

::::
than

:::
that

:::
of

::::::::
HYCOM

:::::::
(roughly

::::
55%

::
in
::::::

area).
::::::
Hence,

::::::
instead

::
of

:::
the

::::::
global395

:::::::::
collections

::
of

:::::
floats

:::
and

::::::::::
Lagrangian

:::::::
particles,

:::
we

::::
now

:::::::
consider

:::
the

::::::::::
intersection

::
of

:::
the

::::
two

::::::
datasets

:::::
taken

::
as

:::
the

:::::::::
unmasked

::::
bins

:::::
shown

::
in

::::
Fig.

:::
7b

:::
and

:::
the

::::::::::::
corresponding

:::::
local

:::::
mean

::::::::::::::
autocovariances.

:::::
These

:::::
local

::::
mean

::::::::::::::
autocovariances

:::
are

::::::::
averaged

::::::
further
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Table 3. Summary of the parameters estimated from the simulated Eulerian and Lagrangian data. These values are used to compute CLSD
from the model Eq. (6) (solid black curve in Fig. 10b).

σ2
SD α T σ2

AM ωAM Tapp

37
:::::
Global

: ::
39 m2 0.63

:::
0.60 105

::
94

:
h 4 m2 0.0186

:::::
0.0185 h−1 213

:::
209

:
h

::
to

:::::
obtain

:
a
::::::
global

:::::
mean

::::::::::::
autocovariance

:::
for

::::
each

::::::
dataset

::::
that

::
is

:::::::::::
representative

:::
of

:
a
::::::::
common

::::
area.

:::
We

::::
then

:
fit the model Eq. (6)

and (5) to the demodulates of the
::::
Argo

:
global mean autocovariance computed from all the Argo floats available (see Fig. 12,

updated from Geoffroy and Nycander, 2022). The geographical coverage of the Argo data is less than that of HYCOM, but we400

are simply interested in a qualitative comparison of the two. The fitted parameters
:::::::::
parameters

:::::
fitted

::
to

:::
the

:::::
Argo

:::::::::::
observations,

::
as

::::
well

::
as

:::
the

::::::::::
parameters

:::::::
obtained

:::
by

::::::::
repeating

:::
the

::::::
above

::::::::
procedure

:::
for

::::
the

::::::::::::
corresponding

::::::::
simulated

:::::
data, are gathered in

Table 4. The values of Tapp and T obtained
::::::::
computed

:
here, from Argo data only, are similar to those reported by Geoffroy

and Nycander (2022), where the authors estimated it from a comparable collection of Argo floats and HRET (in particular,

the stationary limit was determined from HRET instead of by fitting). The fitted stationary fraction α, however, is about 3405

times larger than previously reported. This could be explained by a biased low stationary variance (obtained by projecting

HRET at 1,000 dbar) in Geoffroy and Nycander (2022). As from the simulated data, fitting our model to the Argo global mean

demodulates yield a T shorter than Tapp. While the Argo Tapp is almost identical to the HYCOM value, T is about twice

smaller.

Parameters from the fitting of the model Eq. (6) to the demodulates of the global mean autocovariance computed from Argo410

data (see Fig. 12). σ2
SD α T σ2

AM ωAM Tapp 44 m2 0.45 64 h 3 m2 0.0182 h−1 230 h

Figure 12. Global mean autocovariance at 1,000 dbar computed from all the Argo floats available
:::
data

::::
over

:::
the

:::::::
unmasked

::::
bins

::
in

:::
Fig.

:::
7b

(solid black curve), and corresponding complex demodulates at the semidiurnal frequency (black crosses). The uncertainties are vanishingly

small (not shown). The solid red curve represents the result of fitting the model Eq. (6) and (5) to the demodulates.

Similarly to Geoffroy and Nycander (2022), we conclude that the decorrelation of the IT is more rapid than the apparent

decorrelation on a global average. Yet, according to the simulated data, it is only more rapid by a factor of 2, while this factor

is 4 according to the Argo data. Hence, some decorrelating processes appear to be weaker in the simulation than in the real
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ocean. As explained in Sect. 4.2, the slower decorrelation of the IT in HYCOM could also be explained by certain decorrelating415

processes being weaker than usual in the May 20 to June 20, 2019 period of outputs used here. Nevertheless, the decorrelation

of the IT typically is at least as important as the apparent decorrelation over the first few days of time lag. This result might not

hold true everywhere, since the geographical variability of T and α is expected to be large.

:::::
Lastly,

:
Zaron (2022)

:::::::
provides

:
a
::::::::
valuable

:::::::::
comparison

:::::
point

:::
for

:::
the

::::::
results

:::::
above.

::::::
Along

:::
the

:::::
same

::::
lines

::
as

::
in

::::
this

::::::
section,

:::
he

:::
uses

:::
the

::::::::
spatially

:::::::
averaged

:::::::::
frequency

::::::::
spectrum

::
of

:::
sea

::::
level

:::::::::::
observations

::::
from

:::::::
satellite

::::::::
altimetry

::
to

:::::::
measure

::::::::
properties

:::
of

::::
both420

::
the

:::::::::
baroclinic

::::
tidal

::::
peak

:::
and

:::::::::
continuum

::::
(i.e.,

:::
the

:::::::
coherent

::::
and

:::::::::
incoherent

::
IT

:::::::::
variability,

:::::::::::
respectively).

:::
For

:::
the

::::::::::
semidiurnal

:::::
band,

::
in

::
the

:::::::
latitude

:::::
range

::::
from

::::
30◦

:
S
::
to

::::
30◦

::
N,

:::
the

::::::
author

:::::
found

:::
that

:::::
about

::::
62%

:::
of

:::
the

::
IT

:::::::
variance

:::::::::
eventually

:::::::
becomes

:::::::::::
decorrelated

:::::
within

:::
34

::
d.

::::::::
Assuming

:::
an

:::::::::
exponential

::::::
decay

::
as

::
in

:::
the

:::::
model

::::
Eq.

:::
(5),

:::
this

::::::
would

::::::::
represent

:
a
::::::::
stationary

:::::::
fraction

::::::::
α≈ 0.38

:::
and

::
a

:::::::::::
decorrelation

::::::::
timescale

:::::::
T ≈ 163

:
h
::::
(for

::::
99%

::
of

:::
the

:::::::::::
nonstationary

::
IT

::
to

::::::::::
decorrelate

::
in

::::
5T ).

::::::::
Repeating

:::
the

:::::
fitting

:::::::::
procedure

:::::
above

::
for

::::
data

::::::
limited

:::
to

:::
the

:::::
±30◦

::::::
latitude

::::::
range,

::
we

:::::::
recover

::::::
values

::
in

:::::::::
reasonable

:::::::::
agreement

::::
from

:::
the

:::::
Argo

:::::::::::
observations:

::::::::
α≈ 0.29425

:::
and

:::::::
T ≈ 144

::
h

:::
(see

:::::
Table

:::
4).

::::
The

::::::::
HYCOM

::::
fitted

::::::::
α≈ 0.64

:::
and

::::::::
T ≈ 105

:
h
:::::
agree

:::
less

::::
well

::::
with

:::
the

::::::
results

::
of

:
Zaron (2022)

:
,
:::
but

:::
still

:::
are

::
in

:::
the

:::::
same

:::::::
ballpark.

::
In

::::
this

::::::
latitude

::::::
range,

:::
the

:::
bins

:::::
used

::
for

:::
the

::::::
fitting

:::::::
represent

:::::::
roughly

::::
45%

::
of
:::
the

:::::::
oceanic

::::
area.

:

Table 4.
:::::::

Parameters
::::

from
:::

the
:::::
fitting

::
of

::
the

:::::
model

:::
Eq.

:::
(6)

::
to

::
the

::::::::::
demodulates

::
of

:
(
:
i)
:::
the

:::::
global

::::
mean

:::::::::::
autocovariance

::::::::
computed

::::
from

:::
the

::::
Argo

:::
data

::::
over

::
the

::::::::
unmasked

:::
bins

::
in

:::
Fig.

::
7b

::::
(see

:::
Fig.

:::
12),

:::
and

:
(
:
ii
:
)
::
the

:::::
mean

:::::::::::
autocovariance

:::::::
computed

::::
from

:::
the

::::
same

:::
bins

:::
but

::::::
limited

:
to
:::
the

::::::
latitude

::::
range

::::
from

:::
30◦

::
S

:
to
::::
30◦

::
N.

:::::
These

::::::::
parameters

:::
are

:::
also

:::::::
estimated

::::
from

:::
the

:::::::
simulated

:::::::
Eulerian

:::
and

:::::::::
Lagrangian

:::
data

::
in

::
the

:::::
same

:::::::
locations.

:::
σ2
SD :

α
: :

T
::::
σ2
AM :::

ωAM: ::::
Tapp

Argo :::::
Global

: ::
52

:::
m2

:::
0.43

: :
51

::
h

:
4
:::
m2

:::::
0.0177

:::
h−1

: :::
207

:
h

::::
±30◦

: ::
51

:::
m2

:::
0.29

: :::
144

:
h
: :

4
:::
m2

:::::
0.0185

:::
h−1

: :::
242

:
h

HYCOM :::::
Global

: ::
26

:::
m2

:::
0.62

: :
94

::
h

:
3
:::
m2

:::::
0.0185

:::
h−1

: :::
199

:
h

::::
±30◦

: ::
37

:::
m2

:::
0.62

: :::
105

:
h
: :

4
:::
m2

:::::
0.0185

:::
h−1

: :::
188

:
h

4.4 Potential sources of bias

Why is the IT variance lower and IT decorrelation weaker in HYCOM than in the observations, particularly in the Southern

Ocean ? At the time of writing we cannot think of a particular reason for either the Argo or the mooring derived IT variance to be430

biased high globally. We did investigate
::
In

:::::::::
particular,

:::
the

::::::::
correction

::::::::::
accounting

::
for

:::
the

::::::::
non-tidal

:::::::::
variability

:::
we

::::::::::::
systematically

::::::
subtract

:::::
from

:::
the

::::::
sample

:::::::::::::
autocovariance

::::::::
precludes

::::
any

::::::::::::
contamination

::
of

:::
the

::::
first

::::::::::
demodulate

:::
by

:::
the

::::::::::
background

:::::
noise

::::
(see

::::::::
Appendix

:::
C).

:::
We

:::
also

::::::::::
investigated

:
whether the bias in the Southern Ocean could be related to the contamination of the first 48-h demodu-

late at ωSD by near-inertial waves as we approach the M2 critical latitude (where f = ωM2
, at about 74◦ S). To check this, we435

can map the semidiurnal IT variance from the Argo data anew (as shown in Fig. 6c), this time fitting an additional cos(fτ),

where f is the local Coriolis frequency, to the local mean autocovariances. The result of the fit becomes unstable at 74◦ S, but

the zonal mean of the demodulates at f does reach a maximum around 60◦ S while the zonal mean of the demodulates at ωSD
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remains unaffected (not shown). We conclude that the first 48-h demodulate at the semidurnal
::::::::::
semidiurnal

:
frequency is not

affected by near-inertial waves, at any latitude.440

As for the model, equatorward of ±50◦ latitude and for seafloor depths deeper than 1250 m, the horizontal grid spacing

limits the number of vertical modes correctly resolved to the first five modes
:
,
::::::::::
equatorward

:::
of

:::::
±50◦

::::::
latitude

::::
and

:::
for

:::::::
seafloor

:::::
depths

::::::
deeper

::::
than

::::
1250

::
m
:
(Buijsman et al., 2020). Approaching the poles, the number of model layers below the mixed layer,

and hence the vertical resolution, decreases. This further limits the number of resolved modes in HYCOM south of 50◦ S:

roughly, modes 3 and 2 are only partially resolved poleward of 60◦ S and 65◦ S, respectively. Although the bulk of the IT445

variance at 1,000 dbar is likely related to mode-1 waves on a global average (Geoffroy and Nycander, 2022), the contribution

from higher modes can become significant locally. In principle, both Argo floats, moorings, and HYCOM data include the

effect of higher modes, but these are less well resolved in HYCOM, particularly in the Southern Ocean. Together with the

assumption that higher-mode IT are less coherent (Egbert and Ray, 2017), this may explain the lower IT variance and weaker

IT decorrelation in HYCOM than in the observations, both on a global average and more specifically in the Southern Ocean.450

It is also in line with the larger mean SCVF15 computed from HYCOM data in the Southern Ocean compared with the rest of

the globe (indicating a weaker decorrelation there), whereas for moorings the SCVF15 is smaller in this region (see Table 2).

The mode-m vertical structure of the isopycnal displacement Φm(z) is obtained by solving the Sturm-Liouville problem

d2Φm(z)

dz2
+
N2(z)

c2m
Φm(z) = 0, (7)

with the boundary conditions Φm(0) = Φm(−H) = 0, where H is the ocean depth, N(z) is the buoyancy frequency profile,455

and −1/c2m is the eigenvalue corresponding to the eigenfunction Φm(z) for mode-m (Gill, 1982). The modal partitioning of

the IT energy at a given location is mainly determined by the conversion rate (both local and remote) and lifetime of each mode

(de Lavergne et al., 2019). Additionally, depending on the local stratification and ocean depth, the parking depth at 1,000 dbar

can be more or less close to the anti-node (point of maximal displacement) and node (point of no displacement) of the different

vertical modes. Therefore, the normalized contribution of mode-m relative to mode-1 waves to the variance recorded at this460

depth is weighted by a coefficient γm1. In Appendix B of Geoffroy and Nycander (2022), the authors derived an expression for

this coefficient:

γm1(z) =
Φ2
m(z)

∫ 0

−HN
2Φ2

1dz

Φ2
1(z)

∫ 0

−HN
2Φ2

mdz
. (8)

In Fig. 13a and 13b we plot the global maps of γ21 and γ31 at 1,000 dbar, respectively, computed from Eq. (8) after solving

the eigenvalue problem Eq. (7) for the 1/4◦ WOA18 summer climatology. Here, we extrapolated the climatological data down465

to the reference bathymetry from the General Bathymetric Chart of the Oceans 2019 (GEBCO, 2019) wherever the bathymetry

is deeper than the deepest valid climatological record. A visual comparison with Fig. 7b in the Southern Ocean suggests that

low HYCOM to Argo IT variance ratios (darker blue pixels in Fig. 7b) spatially coincide with large γ31, mostly, or γ21 to

some extent (especially in the Weddell Sea). South of 60◦ S, either γ31 or γ21 is larger than unity, hence the contribution from

mode-3 or mode-2 waves to the IT variance recorded at 1,000 dbar is magnified compared to the contribution from mode-1470

waves. However, modes 2 and higher are not well resolved in HYCOM at these latitudes.
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Figure 13. (a) Weight of the normalized contribution of mode-2 relative to mode-1 waves to the IT variance recorded at 1,000 dbar, computed

from the WOA18 stratification. (b) Same as (a) but for the relative contribution of mode-3 waves.

The magnification of the contributions from modes 2 and 3 to the variance at 1,000 dbar in the Southern Ocean only affects

how propagating IT are perceived at the Argo parking depth. This has no connection with the generation and dissipation

processes that set the underlying modal partitioning of the IT energy. Additional explanations might be found by examining

whether the main parameters affecting the generation of IT (namely the bottom topography, barotropic tidal forcing, and475

stratification) are less accurate in this region than in the rest of the globe.

The pattern of the enhanced discrepancies between Argo and HYCOM in the Southern Ocean (darker blue in Fig. 7) could

:::::
might be correlated with the distribution of bathymetric features. For instance, the large values around 45◦ S, 105◦ W in the

South Pacific are centered on the Chile Rise, a known IT generation area. To date, only about 19% of the global ocean seafloor

has been mapped using shipborne techniques. Therefore, global bathymetric products widely rely on depth prediction from480

satellite gravimetry (Smith and Sandwell, 1994). Small scale features such as abyssal hills are not resolved by this technique.

In the recent SRTM15+ bathymetry (Tozer et al., 2019), gravity predicted depths were estimated to have root-mean-square

(RMS) uncertainties and maximum error of the order of ±150 m and 1800 m, respectively (based on 50 cruises distributed
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globally). With about 22% seafloor coverage by high quality direct measurements, the International Bathymetric Chart of

the Southern Ocean v2 (Dorschel et al., 2022, IBCSO) is the state of the art bathymetric chart south of 50◦ S. A cell by485

cell comparison between IBSCO v2 and SRTM15+ v2.2 showed marked disparities, in particular for water depths between

−4000 m and −1000 m with differences reaching up to 1700 m (Dorschel et al., 2022). Most of the bathymetric errors only

affect the generation of high-mode IT which are bound to dissipate locally. Note that HYCOM may not resolve these high-

mode IT anyway, as discussed in the present section. Still, the less frequent errors of the order of thousands of meters are likely

to affect the generation of low-mode IT
::
in

:::
the

:::::
model.490

Efforts have been made to improve the accuracy of the M2 barotropic tides embedded in HYCOM. The simulation used

in this study incorporates the framework presented in Ngodock et al. (2016) aiming at minimizing the tidal elevation RMS

errors with respect to TPXO, a state of the art data-assimilative tide model (Egbert and Erofeeva, 2002). However, the tidal

elevations in TPXO itself also have errors. Both Stammer et al. (2014) and Zaron and Elipot (2021) point at the imperfection

of the modeled tidal elevations near Antarctica (using data from GRACE and CryoSat-2, respectively). On the other hand, it495

is not so much the sea surface height that matters here, but the tidal currents. Zaron and Elipot (2021) used surface drifter

observations for evaluating TPXO predicted tidal currents throughout much of the global oceans. Unfortunately, the spatial

density of observations is too poor to evaluate the model performance around much of Antarctica.

Lastly, to assess the stratification in HYCOM, we compare the phase speed of a mode-1 gravity wave in the model with the

phase speed determined from climatology. The phase speed of a mode-m gravity wave cm is directly related to the eigenvalue500

−1/c2m obtained by solving the Sturm-Liouville problem Eq. (7). Having already solved Eq. (7) for the climatology, we now

solve it for our simulated monthly-mean 3D fields of temperature and salinity
::::::::::
(subsampled

::
to

:::
1◦). As for the climatology, the

HYCOM data were extended down to the reference bathymetry from GEBCO 2019, wherever deeper, by appending the stored

bottom value. We then linearly interpolated the climatological phase speed of a mode-1 gravity wave cWOA
1 ::

at
::::
1/4◦

:::::::::
resolution

onto the coarser
::
1◦

:
HYCOM grid.505

In Fig. 14a we plot the climatology to HYCOM phase speed ratio. Most of the visible differences fall in the range of

expected interanual variability of less than 10% (Chelton et al., 1998). However, in a few areas around Antarctica there are

larger departures of the ratio from unity. Fig. 14b shows the zonal mean of the mode-1 phase speed from Argo and HYCOM

as a function of latitude. Equatorward of ±60◦, the two curves agree almost perfectly, and they also visually agree with the

results of Chelton et al. (1998) (not shown). Poleward of 60◦ S and 60◦ N, however, differences steadily grow. In the Southern510

Ocean, the zonal mean climatology to HYCOM phase speed ratio peaks at 1.7 (see Fig. 14c). Typically, weaker stratification

(smaller phase speed) results in smaller energy conversion.

In terms of wavelength (roughly ∝ 1/c) the latter ratio is reversed, with HYCOM being biased high in the Southern Ocean,

on a zonal mean. The energy conversion from the barotropic tide to the mode-m baroclinic tide mostly occurs where the

bathymetry horizontal wavelength is comparable to the mode-m wavelength. Hence, a biased mode-m wavelength in HYCOM515

results in a biased energy conversion from the barotropic tide to the mode-m IT.
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Figure 14. (a) Ratio of the phase speeds of a mode-1 gravity wave computed from the WOA18 and HYCOM stratification profiles. (b) Zonal

mean of the phase speed of a mode-1 gravity wave from WOA18 (solid red curve) and HYCOM (solid black curve) as a function of latitude.

(c) Same as (b) but zoomed in between 77◦ S and 60◦ S.

5 Conclusions

In this work we compared a 32-day segment of a global run of the HYCOM model, including realistic tidal and atmospheric

forcing, with in situ observations of the semidiurnal IT around 1,000 dbar. First, a Lagrangian sampling of the simulation

was compared to park phase data from Argo floats to validate the geographical variability of the semidiurnal IT variance in520

HYCOM (see Sect. 4.1). Then, the Eulerian simulation outputs were directly compared to geographically sparser mooring

records, in terms of variance and decorrelation of the IT (see Sect. 4.2).

The main spatial patterns of the simulated IT variance at 1,000 dbar broadly agree with Argo observations, with energy

radiating away from low-mode IT generation hotspots (see Fig. 6). Nonetheless, on a global average, the HYCOM data exhibit

a smaller semidiurnal IT variance than observed by Argo floats, by a factor 0.57
::::
0.58 (see Table 1). This is in line with the525

results of Ansong et al. (2017) and Luecke et al. (2020), who found HYCOM values to be biased low by a similar factor when

comparing the simulated M2 IT energy flux and temperature variance to historical mooring observations.
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While the difference between the model and Argo data appears reasonably homogeneous across most of the world ocean, it

steadily increases towards the poles (see Fig. 7). Because of the scarcity of Argo floats available in the northmost
:::::::::::
northernmost

region, we focused on the Southern Ocean. On average, south of 50◦ S, we found that the simulated semidiurnal IT variance is530

smaller than the variance observed by Argo by a factor 0.28
:::
0.29. North of 50◦ S, this factor is 0.68

:::
0.69

:
(see Table 1).

The mooring data support the above results for the semidiurnal IT variance. Additionally, we found that the decorrelation

affecting the semidiurnal IT in HYCOM over a 32-day window is weaker than observed in the mooring records, on average

(see Fig. 10 and Table 2). In other words, over timescales shorter than 32 days, the IT in HYCOM are more coherent than in

observations. This weaker decorrelation of the IT in HYCOM can be explained by some decorrelating processes being weaker535

in the model than in the real ocean. It could also be explained by certain decorrelating processes being unusually weak in

the May 20 to June 20, 2019 period of outputs used in this work. Depending on the location, the complete decorrelation of

the nonstationary IT is not systematically observable in a 32-day duration. Longer time series are thus needed to accurately

describe the decorrelation of the IT. Nonetheless, we found that the semidiurnal IT autocovariance in HYCOM actually reaches

its stationary limit within approximately 300 h on a global average, i.e. well under our 32 days of simulated data (see Fig. 11).540

Put together, these results support the conclusions of Buijsman et al. (2020), who found that the stationary (i.e., the longterm

coherent) M2 IT solution from HYCOM is too energetic compared with altimetry. Note that their comparison was based on

one-year simulated time series corrected for the duration difference with 17-year long altimetry records.

We also investigated the effects of the Lagrangian sampling inherent to the Argo floats. When comparing autocovariances

computed from the HYCOM data sampled in the Lagrangian and Eulerian frameworks, respectively, we found the total
::
IT545

variance to be unaffected in the mean (see Fig. 5). Moreover, the simulated apparent decorrelation (the decorrelation due to

the motion of a Lagrangian particle) agrees very well with the apparent decorrelation experienced by Argo floats, on a global

average (see Sect. 4.3). The IT decorrelation
::::::::
(Eulerian)

:::::::::::
decorrelation

::
of

:::
the

:::
IT in the simulated data, on the other hand, typically

is half as rapid as observed by Argo floats
:::
the

:::
one

:::::::
inferred

:::::
from

::::
Argo

:::::::::::
observations. This would make the IT decorrelation at

least as important as the apparent one over the first few days of time lag. However, the geographical variability of the duration550

and strength of the
::
IT

:
decorrelation is expected to be large.

:::::::
Limiting

:::
the

::::::::::
comparison

::
to

:::
the

:::::::
latitude

:::::
range

::::
from

:::
30◦

::
S

::
to

:::
30◦

:::
N,

::
the

:::::
Argo

:::
and

::::::::
HYCOM

::::
data

::::
lead

::
to

::
an

:::
IT

:::::::::::
decorrelation

::::::::
timescale

::
of

:::::
about

:::
4.5

:::
and

:
6
::
d,
::::::::::
respectively

::::
(see

:::::
Table

:::
4),

::
in

:::::::::
reasonable

::::::::
agreement

::::
with

:::
the

::::::
results

::
of

:
Zaron (2022)

:
.

Finally, we discussed the potential sources of bias. We could not think of a particular reason for the IT variance obtained

from either the Argo or the mooring data to be biased high, particularly in the Southern Ocean. However, HYCOM is subject555

to various limitations. First and foremost, the model can only correctly resolve vertical modes up to 5 in most of the global

oceans. Approaching the poles, the reduced number of layers further limits the number of resolved modes. While mode-1 IT

supposedly accounts for most of the tidal variability at 1,000 dbar on a global average (Geoffroy and Nycander, 2022), in situ

instruments also record the contribution from higher modes that can become significant locally. This may explain why the

IT variance is larger in the in situ data than in HYCOM, particularly in the Southern Ocean. Insufficient model stratification560

also seems to be a specific problem in that very region. We have not been able to quantitatively explain the overall smaller IT
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variance in HYCOM than in the in situ data over the global ocean. In principle, it could be due to limitations in the bathymetry,

barotropic tidal forcing, or the stratification.

Code and data availability. Argo data were obtained from U.S. GDAC (ftp://usgodae.org/pub/outgoing/argo). These data were collected

and made freely available by the International Argo Program and the national programs that contribute to it. (https://argo.ucsd.edu, https:565

//www.ocean-ops.org). The Argo Program is part of the Global Ocean Observing System. An Argo Iridium float list is maintained by

Stephen C. Riser (http://runt.ocean.washington.edu/argo/heterographs/rollcall.html). The code used to download and process the Argo data

is available at https://doi.org/10.57669/geoffroy-2022-argoit-1.0.0 (Geoffroy, 2022a). A global map of the total semidiurnal internal tide

variance at 1,000 dbar produced using the latter code is available at https://doi.org/10.17043/geoffroy-2022-argoit-1 (Geoffroy, 2022b).

There is no long term availability plan for the HYCOM data used in this work. Climatological data were obtained from the World Ocean Atlas570

2018 (https://accession.nodc.noaa.gov/NCEI-WOA18). Bathymetric data were obtained from the GEBCO Compilation Group (https://www.

gebco.net/data_and_products/gridded_bathymetry_data/). The Global Multi-Archive Current Meter Database is is not publicly available

but can be obtained through request (http://stockage.univ-brest.fr/~scott/GMACMD/gmacmd.html). Netcdf versions of the baroclinic tidal

harmonic constants from the High Resolution Empirical Tide model are made available by Edward D. Zaron (https://ingria.ceoas.oregonstate.

edu/~zarone/downloads.html).575

Appendix A:
::::
Bias

::
of

:::
the

::::::::
complex

::::::::::
demodulate

::
of

::
a

::::::
sample

:::::
mean

::::::::
function

:::
We

:::::::
consider

:::
the

:::::::
function

:::::
R(τ)

::
on

::
a

::::
48-h

:::::::
interval.

::::
This

::
is

::::
fitted

::
to
:::
the

:::::::
function

::::::::::::::::::::
Acos(ωτ) +B sin(ωτ),

::::
and

:::
we

::::
then

:::::
define

C =
√
A2 +B2.

:::::::::::::
(A1)

::::
This

::::::::
procedure

::
is
::

a
::::::::
mapping

::::
from

:::
the

::::::
space

::
of

::::::::
functions

::
R
:::

to
:::
the

:::::::
positive

:::::::
number

::
C,

::::
i.e.

:
a
:::::::::
functional.

::::
We

:::
can

:::::
write

::::
this

::::::::::
symbolically

::
as
:

580

C = Φ[R] ,
:::::::::

(A2)

:::::
where

::
Φ

::
is

:::
the

:::::::::
functional.

:
Φ
:::::::::
obviously

:::
has

:::
the

:::::::
property

:

Φ[aR] = |a|Φ[R] ,
:::::::::::::::

(A3)

:::::
where

:
a
::
is
::
a

:::::::
constant.

::
Φ
::::
also

:::
has

:::
the

:::::::
property

::::::
(proof

::::::::
hereafter)

:
585

Φ[R1 +R2]≤ Φ[R1] + Φ[R2] ,
:::::::::::::::::::::::::

(A4)

::::
with

::::::
equality

:::::
only

:
if
::::::
R1(τ)

:::
and

::::::
R2(τ)

:::
are

:::::::::::
proportional,

:::
i.e.

:::::::
perfectly

:::::::::
correlated

::::
with

::::::
positive

::::::::::
correlation.

:
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:::
Let

:::::::
{Ri(τ)}

:::
be

::
an

:::::::
infinite

:::::
series

:::
of

::::::::
functions

:::::
drawn

:::::
from

::
a

::::::::
stochastic

:::::::::::
distribution.

:::
We

:::::
have

:::::
access

:::
to

::::
only

::
N

:::
of

:::::
these

::::::::
(typically

::::::
around

:::
10).

::::::
Define

:::
the

::::::
sample

:::::::
average

RN (τ) =
1

N

N∑
i=1

Ri(τ).

:::::::::::::::::::

(A5)590

::::::
RN (τ)

::
is

::
an

::::::::
unbiased

:::::::
estimate

::
of

:::
the

:::
true

:::::::
average

:::::
R(τ):

:

lim
N→∞

RN (τ) =R(τ).
:::::::::::::::::

(A6)

:::
We

:::
also

:::::
want

::
an

:::::::
estimate

::
of

::::::
Φ
[
R
]
.
:::::::
Denote

:::
the

:::
true

:::::
value

::
by

:::::
C∞:

C∞ = Φ
[
R
]
.

:::::::::::
(A7)

:
A
:::::::
sample

:::::::
estimate

:::::
might

::
be

:
595

CN = Φ
[
RN
]
.

::::::::::::
(A8)

::::::::
However,

::::
(A4)

::::::
implies

::::
that

:::
this

::
is

::::::
biased.

:::
For

::::::::
example,

::::::
define

RM (τ) =
1

N

2N∑
i=N+1

Ri(τ).

:::::::::::::::::::::

(A9)

:::
We

:::
get

C2N = Φ
[
R2N

]
= Φ

[
RN +RM

2

]
≤ 1

2
(Φ
[
RN
]

+ Φ
[
RM

]
),

:::::::::::::::::::::::::::::::::::::::::::::::::

(A10)600

::::
with

::::::
equality

::::
only

::
if
::::
RN :::

and
::::
RM :::

are
::::::::::
proportional.

::::
But

:::
RN::::

and
:::
RM:::

are
:::::::::
stochastic

:::::::
functions

::::::
drawn

::::
from

:::
the

:::::
same

::::::::::
distribution,

:::
and

::::::::
therefore

:::::
almost

:::::
never

:::::::::::
proportional.

:::
On

:::::::
average

:::
we

:::
also

:::::
have

::::::::::::::::
Φ
[
RN
]

= Φ
[
RM

]
,
:::::
hence

:::
Eq.

::::::
(A10)

::::::
implies

:

C2N <CN ,
:::::::::

(A11)

::
so

:::
that

::::
CN ::

is
:
a
:::::::::
decreasing

:::::::
function

::
of

:::
N .

:::::
Thus,

:::
we

::::::
expect

:::
CN::

to
:::
be

:::::
larger

::::
than

::::
C∞.

::
In

:::::
other

::::::
words,

:::
the

:::::::
complex

::::::::::
demodulate

::
of

:::
the

::::::
sample

:::::::
function

:::::::
RN (τ),

:::
i.e.

::
the

::::::
fitting

::::::
defined

::
in

:::
Eq.

:::::
(A2),

::
is

:
a
::::::
biased

::::
high

:::::::
estimate

::
of

:::
the

::::::::
envelope

::
of

:::
the

::::
true

:::::::
function605

:::::
R(τ).

:::
We

::::
now

::::
show

:::
the

:::::::::
inequality

:::
Eq.

:::::
(A4).

:
It
:::::::::
resembles

:::
the

::::::
triangle

:::::::::
inequality

:::
for

:::
two

:::::::
vectors:

:

|a+b| ≤ |a|+ |b| .
:::::::::::::::

(A12)

:::
For

:::
2D

::::::
vectors

:::::::::::
a = (a1,a2),

::::::::::
b = (b1, b2),

::::
this

::::
gives

:√
(a1 + b1)2 + (a2 + b2)2 ≤

√
a21 + a22 +

√
b21 + b22,

::::::::::::::::::::::::::::::::::::::::::

(A13)610
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:::::
which

::
is

::::
valid

:::
for

:::::::
arbitrary

::::::::
numbers

:::
a1,

:::
a2,

::
b1,

::::
and

:::
b2.

:::::
Define

::
a
:::::
scalar

::::::
product

:::::
〈f,g〉

::::::::
between

:::
the

:::::::
functions

:::::
f(τ)

:::
and

::::
g(τ)

:::
as

:::
the

::::::
integral

::
of

:::
fg

::::
over

:::
the

:::::::
48-hour

:::::::
interval:

〈f,g〉 ≡
∫
f(τ)g(τ)dτ.

:::::::::::::::::::

(A14)

:::::::
Suppose

:::
that

:::
the

:::::
period

:::
of

::::::
sin(ωτ)

::::::
exactly

:::
fits

::::
this

::::::
window

:::::
(note

:::
that

:::
this

::
is
:::
the

::::
case

::
in

:::
the

::::::
present

:::::
work,

:::::
where

::::::::::::::::
4× 2π/ωSD ≈ 48.8

:::
h).

::::
Then

:::::::
sin(ωτ)

:::
and

::::::::
cos(ωτ)

:::
are

:::::::::
orthogonal:

:
615

〈cos(ωτ),sin(ωτ)〉= 0.
:::::::::::::::::::

(A15)

:::
Any

::::::::
function

::::
f(τ)

:::
can

:::
be

::::::::
expanded

::
in

:
a
:::::::
Fourier

:::::
series

::
on

:::
the

:::::::
interval.

::
A

::::
least

:::::::
squares

::
fit

::
of

::::
f(τ)

:::
to

:::::::::::::::::::
Acos(ωτ) +B sin(ωτ)

::
is

::
the

:::::
same

:::::
thing

::
as

::::::::
projecting

:::::
f(τ)

::
on

:::
the

:::::
basis

::::::::
functions

:::::::
cos(ωτ)

:::
and

::::::::
sin(ωτ).

:::::
Thus,

:::
the

:::
best

::
fit
::
is
:::::
given

:::
by

A=
1

E
〈f(τ),cos(ωτ)〉, andB =

1

E
〈f(τ),sin(ωτ)〉,

::::::::::::::::::::::::::::::::::::::::::

(A16)

:::::
where

::::::::::::::::::::::::::::::::::::::
E = 〈cos(ωτ),cos(ωτ)〉= 〈sin(ωτ),sin(ωτ)〉.

::::::::
Consider

:::
two

::::::::
functions

:::::
f(τ)

:::
and

:::::
g(τ),

:::
and

::::::
denote620

a1 =
1

E
〈f(τ),sin(ωτ)〉,

a2 =
1

E
〈f(τ),cos(ωτ)〉,

b1 =
1

E
〈g(τ),sin(ωτ)〉,

b2 =
1

E
〈g(τ),cos(ωτ)〉.

:::::::::::::::::::

(A17)

:::
We

::::
then

::::
have

Φ[f ]
:::

=
√
a21 + a22,

::::::::::

(A18)

Φ[g]
:::

=
√
b21 + b22,

::::::::::

(A19)

Φ[f + g]
:::::::

=
1

E

√
〈f + g,sin(ωτ)〉2 + 〈f + g,cos(ωτ)〉2 =

√
(a1 + b1)2 + (a2 + b2)2.

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(A20)625

::::::
Putting

:::
Eq.

:::::::::::
(A18)-(A20)

::
in

:::
Eq.

:::::
(A13)

:::::
gives

:::
Eq.

:::::
(A4).

Appendix B:
::::::
Effects

::
of

:::
the

::::::::
non-tidal

::::::::::
variability

::
on

:::
the

::::::::
complex

:::::::::::
demodulates

:::
Two

:::::::
aspects

:::
of

:::
the

:::::::::
processing

:::::::::
originally

:::::
used

::
in

:
Geoffroy and Nycander (2022)

::
are

:::::::::
important

::
in

:::::::::
mitigating

::
a
::::::::
potential

:::::::::::
contamination

:::
of

:::
the

::::
first

::::::::::
demodulate

:::
by

:::
the

::::::::
non-tidal

::::::::
variability

:::::::
(noise).

::
(i
:
)
::::
The

:::::::::::
demodulation

:::::
over

:
a
:::::
given

:::::
48-h

:::::::
window

:
is
:::::::::
performed

::
in

::::
two

::::::::
iterations.

:::::::::::::::::::::::
Acos(ωSDτ) +B sin(ωSDτ)

::
is
::::
first

:::::
fitted

::
to

:::
the

:::::
signal

::::
and

:::
the

:::
root

:::::
mean

::::::
square

::::
error

::::::::
(RMSE)630
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:
is
:::::::::
computed.

::::
The

:::::
fitting

::
is

::::
then

:::::::
repeated

::::
with

::
a
:::::::
trimmed

:::::
signal

::::
that

:::::::
excludes

::::::
values

::::::
outside

::
of

:::::::::
±2 RMSE

:::::
from

:::
the

:::::::::
previously

::::
fitted

::::::
curve.

:
(
:
ii
:
)
:::
The

::::
time

::::::
series

:::
are

::::::::
high-pass

::::::
filtered

:::::
prior

::
to

:::::::::
computing

::::
their

::::::
sample

::::::::::::::
autocovariance.

:::::::
Suppose

:::
the

::::::::
non-tidal

::::::::
variability

::::
ρ(t)

::
is
::

a
::::
first

:::::
order

::::::::::::
autoregressive

:::::::
process

::::::
(AR1)

:::::::::::
characterized

:::
by

::::
zero

::::::
mean,

:::
the

:::::::::
timescale

:::
τρ,

:::
and

:::
the

::::::
white

:::::::
Gaussian

:::::
noise

:::::
ερ(t) ::::

with
::::
zero

:::::
mean

:::
and

:::::::
variance

:::::
σ2
ε, ρ.

:::
The

::::::::
variance

:::
and

::::::::::::
autocovariance

:::
of

::
an

::::
AR1

:::::::
process

:::
are

:::::
given

::
by

:

σ2
ρ =

σ2
ε, ρ

1− exp(−2/τρ)
, Rρ(τ) = σ2

ρ exp(−τ/τρ),
::::::::::::::::::::::::::::::::::::::::

(B1)635

::::::::::
respectively.

:::
For

::::
very

::::
short

:::
τρ,

::::
ρ(t)

::
is

::::
close

::
to

::
a

::::
white

::::::
noise,

::
i.e.

::::::::
showing

:
a
:::
flat

:::::
power

::::::::
spectrum.

:::
As

::
τρ:::::::::

increases,
:::
ρ(t)

:::::::::
resembles

:
a
:::
red

:::::
noise

::::
with

::::::::::
increasingly

:::::
steep

:::::::::
exponential

:::::
decay

::
in
:::::::
spectral

::::::
space.

::::::::
Therefore,

:::
as

::
τρ::::::::

increases,
:::
an

::::::::
increasing

:::::::
fraction

::
of

:::
σ2
ρ

:
is
::::::
filtered

::::
out

::
by

:::
the

::::::::
high-pass

:::::
filter.

:::
We

:::
can

:::::::::
investigate

:::
this

::::::
further

:::::
using

::
a
::::::
simple

::::::
model,

::::::
adapted

:::::
from Geoffroy and Nycander (2022)

:
,
::
of

:
a
::::
tidal

:::::::::
variability

:::
on

:::
top

::
of

:
a
::::::::::
background

:::::
noise:

:
640

h(t) = ρ(t) +
∑
i

Ai cos(ωit+φ(t)).

::::::::::::::::::::::::::::::

(B2)

::::
Here,

:::
ωi::::

and
:::
Ai :::

are
:::
the

:::::::
angular

:::::::::
frequency,

:::
and

:::
the

:::::::::
amplitude

:::
of

:::
the

::::
tidal

::::::::::
constituent

:
i,
:::::::::::

respectively,
::::::
where

::::::::::::
i ∈ {M2, S2}.

:::
φ(t)

::::
and

::::
ρ(t)

:::
are

::::
AR1

::::::::
processes

:::::::::::
representing

::::::
random

:::::
phase

:::::::::::
modulations

:::
and

::
a
::::::::
non-tidal

:::::::::
variability,

::::::::::
respectively.

:::::
These

:::::
AR1

::::::::
processes

:::
can

::
be

:::::::
defined

::
by

::::
their

:::::::
variance

::::
and

:::::::::::
characteristic

:::::
time.

:::
We

:::
will

::::
vary

:::
σ2
ρ :::

and
::
τρ::::

(the
:::::::
variance

::::
and

:::::::::::
characteristic

::::
time

::
of

::::
ρ(t),

:::::::::::
respectively)

::::
with

:::
the

::::
rest

::
of

:::
the

::::::::
variables

:::
set

::
to

:::::::
realistic

::::::
values:

:::
the

::::
tidal

:::::::
variance

::::::::::::::::::::::::
σ2
SD = (A2

M2
+A2

S2
)/2 = 40

::::
m2,645

:::
and

:::::::::
σ2
φ = 1.19

:::
rad2

::::
and

::::::::
τφ = 150

:
h
::::
(the

:::::::
variance

:::
and

:::::::::::
characteristic

::::
time

::
of

:::::
φ(t),

:::::::::::
respectively).

:::::
Since

:::
the

::::
tidal

:::::::
variance

::
is

:::::
fixed,

::::::
varying

:::
σ2
ρ :

is
:::
the

:::::
same

::
as

::::::
varying

:::
the

::::::
signal

::
to

::::
noise

::::
ratio

::::::::::::::
S/N = σ2

SD/σ
2
ρ.

:::
For

::::::::
reference,

::
in
:::::::::
Appendix

:
C
:::
we

:::::::
estimate

:::
the

::::::
global

:::::::::
distribution

::
of

:::
the

:::::::::::::
signal-to-noise

::::
ratio

::::::::
observed

::
by

:::::
Argo

:::::
floats

:::
(not

:::::::
shown).

::::
This

::::::::::
distribution

::
is

:::::::
skewed,

::::
with

::::::
median

:::
0.8

::::
and

:::
5th

::::::::
percentile

:::
0.2,

:::::::::::::
approximately.

:::
We

::::
also

:::::::
estimate

:::
the

::::::
median

::::::
τρ ≈ 1

::
h

::::
from

:::
the

:::::
global

:::::::::
collection

::
of

:::::
floats.

:

:::
We

:::
start

:::
by

::::::
varying

:::
τρ ::

for
::
a
::::
fixed

:::::::
variance

:::::
value

::
of

::::::::
σ2
ρ = 200

::::
m2,

:::::::::::
corresponding

::
to
:::
the

:::::::
extreme

::::::::::
S/N = 0.2.

:::
For

:
a
:::::
given

:::::
value650

::
of

:::
τρ,

:::
we

:::::::
generate

:::::
1000

::::::
32-day

::::
long

::::::::
synthetic

::::
time

:::::
series

::::
h(t)

::::::::
following

::::
the

:::::
model

::::
Eq.

::::
(B2).

::::
The

::::
time

:::::
series

:::
are

:::::::::
high-pass

::::::
filtered

:::::
using

:
a
::::::::::
fourth-order

::::::::::
Butterworth

:::::
filter

::::
with

:
a
::::::
cut-off

:::::::::
frequency

::
of

:::
0.3

::::
cpd.

:::
We

::::
then

::::::::
compute

:
a
::::::
sample

:::::::::::::
autocovariance

::::
from

::::
each

::::::
filtered

::::
time

:::::
series

::::
and

::::::
average

:::::
these

::
to

:::::
obtain

::
a
:::::
mean

:::::::::::::
autocovariance.

::::::
Finally

:::
we

:::::::
compute

:::
the

::::
48-h

:::::::::::
demodulates

::
of

::
the

:::::
mean

:::::::::::::
autocovariance

::::::::
following

:::
the

:::::::
complex

::::::::::::
demodulation

::::::
method

::::::::
described

:::
in

::::
Sect.

:::
3.2.

:

::
In

:::
Fig.

::::
B1,

:::
we

::::
show

:::
the

:::::
mean

:::::::::::::
autocovariance

:::
and

:::
the

::::::::::::
corresponding

::::
48-h

:::::::::::
demodulates

:::
for

:::::::
τρ = 0.1,

::
1,
::::
and

::
12

::
h.
::::
The

:::::
value655

::
of

:::
the

:::
first

::::::::::
demodulate

:::
for

:::::::
τρ = 0.1

::
is
:::::::::
essentially

:::
the

:::::
same

::
as

::
if

:::::
there

:::
was

:::
no

::::
ρ(t)

::
at

:::
all,

::::::
namely

:::::::::::::::::
C(τ = [0, 48])≈ 34

:::
m2.

::::
For

:::::
longer

:::
τρ,

:::
the

::::
main

:::::::::
difference

::::
with

:::
the

:::::::
previous

:::::
curve

:::
can

::
be

:::::
easily

:::::::::
visualized

::::
from

:::
the

::::
first

:::
few

:::::::::::
demodulates.

::
In

:::::::::
particular,

:::
the

:::
first

:::::::::::
demodulates

:::::::::::::::::
C(τ = [0, 48])≈ 38

:::
and

:::
31

:::
m2,

::::::::::::
corresponding

::
to
::::::
τρ = 1

::::
and

::
12

::
h,
:::

are
:::::::::::::

systematically
:::::
biased

::::
high

::::
and

::::
low,

::::::::::
respectively.

:::
We

:::::
repeat

:::
the

::::
same

::::::::::
experiment

::
for

:::
τρ ::::::

ranging
:::::
from

:
0
::
to

::
48

::
h,
::::
and

:::::::
focusing

::
on

:::
the

::::::
effects

::
of

:::
the

:::::
noise

::
on

:::
the

:::
first

:::::::::::
demodulate.660

::
In

:::
Fig.

::::
B2,

:::
we

::::
plot

:::
the

:::
first

::::::::::
demodulate

:::
as

:
a
::::::::
function

::
of

::
τρ:::::

(solid
:::::::

curve).
:::
For

:::
any

:::
τρ,

::::
the

:::
first

::::::::::
demodulate

::
is
::::
seen

:::
to

::::::
remain

:::::
lower

:::
than

:::
the

::::
true

::::::::
σ2
SD = 40

::::
m2.

::::::::
Moreover,

::::
two

:::::::
regimes

:::
can

::
be

:::::::::
identified:

:
(i
:
)
:::
for

::
τρ::::::

shorter
::::
than

::
5

::
h,

:::::::
roughly,

:::
the

::::::::::
contribution
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Figure B1.
::

(a)
::::
Mean

:::::::::::
autocovariance

::::::::
computed

::::
from

::::
1000

:::::::
synthetic

:::
time

:::::
series

:::::::
generated

::::::::
following

:::
the

::::
model

:::
Eq.

::::
(C8)

:::
for

:::::::
τρ = 0.1,

::
1,

:::
and

::
12

:
h
::::::::::
(dash-dotted

::::
black,

::::
solid

:::::
black,

:::
and

::::
solid

:::
red

:::::
curve,

::::::::::
respectively)

:::
and

:
a
::::
fixed

:::::::::
S/N= 0.2.

:::
(b)

:::::::
Complex

:::::::::
demodulates

::
at

:::
the

:::::::::
semidiurnal

:::::::
frequency

::
of

:::
the

:::::::::::
autocovariance

:::::
series

:::::
shown

::
in

::
(a).

::
of

:::
the

:::::::
non-tidal

:::::::::
variability

::
to

:::
the

:::
first

::::::::::
demodulate

::
is

:::::::
positive

:::
and

:::::
peaks

:::
for

::::::
τρ = 1

:
h
:::::
where

:::::::::::::::::
C(τ = [0, 48])≈ 38

::::
m2,

:::
and

:
(
:
ii
:
)
:::
for

:::::
longer

:::
τρ,

:::
this

:::::::::::
contribution

::
is

:::::::
negative

::::
with

:
a
:::::::::

minimum
:::::::::::::::::
C(τ = [0, 48])≈ 30

:::
m2

::
at

:::::::
τρ = 11

::
h.

:::
For

:
a
:::::
more

::::::
typical

::::::::::
S/N = 0.8,

::
i.e.

::::::
setting

:::::::
σ2
ρ = 50

:::
m2

::
in
::::
our

:::::::
synthetic

::::
time

::::::
series,

:::
we

:::::
found

:
a
::::::
similar

::::::::::
dependence

::
of

:::
the

::::
first

::::::::::
demodulate

::
on

:::
τρ ::

as
:::::::::
previously665

:::
but

::::
with

:
a
::::::

much
::::::
smaller

:::::
span

::
in

:::::::::
amplitude

::::::::::
(dash-dotted

:::::
curve

:::
in

::::
Fig.

::::
B2).

::::
The

::::::::::
contribution

::
of

::::
the

::::::::
non-tidal

::::::::
variability

:::
to

::
the

::::
first

::::::::::
demodulate

:::::
again

:::::
peaks

:::
for

::::::
τρ = 1

:
h
:::::

with
::::::::::::::::
C(τ = [0, 48])≈ 35

::::
m2,

::::
and

:::
the

::::::::
minimum

::::::
occurs

::::::
around

::::::
τρ = 8

:
h
::::::
where

::::::::::::::::
C(τ = [0, 48])≈ 33

::::
m2.

::::::
Hence,

::
for

:::
the

::::::
typical

::::::::::
S/N = 0.8

:::
and

::::::
τρ = 1

::::::::
observed

::
by

:::::
Argo

:::::
floats,

:::
we

:::::::
estimate

::::
that

:::
the

::::::::
non-tidal

::::::::
variability

::::
can

::::
lead

::
to

:
a
::::
first

::::::::::
demodulate

:::::
being

:::::
biased

::::
high

:::
by

:::::::
roughly

::::
3%.

:::
For

:::
the

:::::
same

:::::::::::
characteristic

::::::::
timescale

:::
but

:::::::::
S/N = 0.2

::::
(the

:::
5th

:::::::::
percentile670

::
of

:::
the

:::::
global

::::
S/N

::::::::::
distribution

:::::::
sampled

::
by

:::::
Argo

::::::
floats),

::::
this

:::
bias

::::
can

:::::
reach

::::
10%.

:::::::::::::::
Notwithstanding,

::::
even

:::
for

::::
such

:::::::
extreme

::::
S/N

:::::
value,

:::
the

:::
first

::::::::::
demodulate

::
is

::::
seen

::
to

::::::
remain

::
a
::::::::::
conservative

:::::::
estimate

:::
of

:::
the

::
IT

::::::::
variance.

:::
The

::::::
effects

::
of

:::
the

::::::::
non-tidal

:::::::::
variability

::
on

:::
the

::
IT

::::::::
variance

:::::::
estimate

::
as

::::::::
computed

::
in

:
Geoffroy and Nycander (2022)

:::
thus

:::
do

:::
not

:::
put

::::
their

::::::
results

::::
into

:::::::
question.

:

:
It
::
is
:::
not

:::::::::::::
straightforward

::
to

::::::::::
understand

::::
why

:::
the

::::::::::
contribution

::
of

:::
the

::::::::
non-tidal

:::::::::
variability

::
to

:::
the

:::::
value

::
of

:::
the

::::
first

::::::::::
demodulate

:::
can

::
be

::::::::
negative.

:::::::
Because

:::
of

:::
the

:::
way

:::
we

:::::::
defined

::::
ρ(t),

:::
i.e.

:::
an

::::
AR1

:::::::
process

::::
with

:::::::
positive

:::::::::
parameter,

::
its

:::::::::::::
autocovariance

::::::
should675

::::::
remain

:::::::
positive.

::::::::::
Oscillations

::
of

::::::
Rρ(τ)

:::
are

:::::::
actually

:
a
:::::::::::

consequence
:::
of

:::
the

::::::::
high-pass

::::
filter

:::::::
applied

::
to

:::
the

::::
time

::::::
series.

:::
We

:::::
show

:::
this

::
in

::::
Fig.

:::
B3

:::::
where

:::
we

::::
plot

:::
the

:::::::::
theoretical

::::::::::::
autocovariance

::
of

::::
ρ(t)

::::
with

:::::::
τρ = 12

::
h

:::
and

::::::::
σ2
ρ = 200

:::
m2

:::::
(solid

:::::
black

::::::
curve),

::::
and

::
the

:::::::
sample

::::
mean

:::::::::::::
autocovariance

::::
from

:::::
1000

:::
non

::::::
filtered

:::
and

:::::
1000

::::::::
high-pass

::::::
filtered

::::::::
synthetic

::::
time

:::::
series

:::::
(solid

:::
and

::::::::::
dash-dotted

:::
red

:::::
curve,

:::::::::::
respectively)

:::::::::
constructed

:::::
using

:::
the

:::::
same

::::::::::
parameters.
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Figure B2.
:::
First

::::
48-h

:::::::::
demodulate

::
of

:::
the

:::::
mean

:::::::::::
autocovariance

::::::::
computed

::::
from

::::
1000

:::::::
synthetic

::::
time

:::::
series

:::::::
generated

::::::::
following

:::
the

:::::
model

::
Eq.

::::
(B2)

::
as

:
a
:::::::
function

::
of

::
τρ::

for
::::

fixed
:::::::::
S/N= 0.2

::::
(solid

:::::
curve)

::::
and

::
0.8

::::::::::
(dash-dotted

:::::
curve).

Figure B3.
::::::::
Theoretical

:::::::::::
autocovariance

:::
of

::
the

::::
AR1

::::::
process

::::
ρ(t)

::::
with

::::::
τρ = 12

::
h
:::
and

::::::::
σ2
ρ = 200

::
m2

:::::
(solid

:::::
black

:::::
curve),

::::
and

:::::
sample

:::::
mean

:::::::::::
autocovariance

:::::::
computed

::::
from

:::::
1000

:::
non

:::::
filtered

:::
and

:::::
1000

:::::::
high-pass

::::::
filtered

:::::::
synthetic

:::
time

:::::
series

::
of

:::
ρ(t)

:::::
(solid

:::
and

:::::::::
dash-dotted

:::
red

:::::
curve,

:::::::::
respectively)

:::::::::
constructed

::::
using

:::
the

::::
same

:::::::::
parameters.

::
As

:::::::::
mentioned

::
in
:::::
Sect.

:::
3.2,

:::
we

::::::
expect

:::
the

:::::::::
stochastic

::::::::::
background

::::
noise

::::::::
affecting

:::
the

::::::::
simulated

::::
data

::
to
:::
be

:::::::
different

:::::
from

:::
the680

:::
one

:::::::
recorded

:::
by

:::
the

::
in

::::
situ

::::::::::
instruments.

:::::::::
Therefore,

::
to

:::::::
prevent

:::
any

:::::::::
systematic

::::
bias

::
in

:::
the

:::::::::::
comparisons

::::::::
presented

::
in

::::
this

:::::
work,

::
we

::::::::::
consistently

::::::
correct

:::
the

:::::::
sample

::::::::::::
autocovariance

:::
by

:::::::::
subtracting

::
an

::::::::
estimate

::
of

:::
the

::::::::::::
autocovariance

::
of

:::
the

::::::::
non-tidal

:::::::::
variability

:::::
before

::::::::::
performing

:::
the

:::::::
complex

::::::::::::
demodulation

::::
(see

::::::::
Appendix

:::
C).

:::
We

::::::::
illustrate

:::
the

::::::
effects

::
of

::::
this

::::::::
correction

:::
in

:::
Fig.

::::
B4.

:::::
Here,

::
we

:::::::
proceed

::
in

:::
the

:::::
same

:::
way

:::
as

::
for

::::
Fig.

:::
B2,

:::
but

::::
this

::::
time

::::::
varying

::::
S/N

:::::
(from

::::::::
4× 10−2

::
to

::
4)

:::
for

::::
fixed

::::::
τρ = 1

:::
and

::
12

::
h.
::::::
While

:::
the

:::
first

:::::::::::
demodulates

::
of

:::
the

:::
non

::::::::
corrected

:::::
mean

:::::::::::::
autocovariances

:::::::
diverge

:::
for

::::
small

::::
S/N

::::::
values

:::::
(solid

:::::::
curves),

::
the

::::
first

:::::::::::
demodulates685

::
of

:::
the

::::
noise

::::::::
corrected

::::::::::::::
autocovariances

:::
are

:::::::
virtually

:::::::
constant

::::::::::
(dash-dotted

:::::::
curves).

:
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Figure B4.
:::
First

::::
48-h

:::::::::
demodulate

::
of

:::
the

:::::
mean

:::::::::::
autocovariance

::::::::
computed

::::
from

::::
1000

:::::::
synthetic

::::
time

:::::
series

:::::::
generated

::::::::
following

:::
the

:::::
model

::
Eq.

::::
(B2)

::
as
::

a
::::::
function

::
of
::::

S/N
::
for

:::::
fixed

:::::
τρ = 1

:::::
(solid

::::
black

:::::
curve)

::::
and

::
12

:
h
:::::

(solid
:::
red

::::::
curve).

:::
The

:::
first

::::::::::
demodulates

::
of

:::
the

:::::::::::
corresponding

:::::::::::
noise-corrected

::::::::::::
autocovariances

:::
are

:::::
shown

::
as

::
the

:::::
black

:::
and

:::
red

::::::::
dash-dotted

::::::
curves,

:::
for

:::::
τρ = 1

:::
and

::
12

::
h,

:::::::::
respectively.

Appendix C:
:::::::::
Estimating

:::
the

::::::::::::::
autocovariance

::
of

:::
the

::::::::
non-tidal

::::::::::
variability

::
In

:::
the

::::::
present

::::::::
appendix,

:::
we

:::::
derive

::
a
:::::
model

:::
for

:::
the

:::::::::::::
autocovariance

::
of

:
a
::::
tidal

:::::::::
variability

::
on

:::
top

:::
of

:
a
::::::::
high-pass

::::::
filtered

:::::::::
stochastic

:::::
noise.

::
In

::::::::
Appendix

::
B

:::
we

:::
saw

::::
that

:::
the

::::::::::::
autocovariance

:::
of

:::
the

:::::::
non-tidal

:::::::::
variability

::
is

:::::::
affected

::
by

:::
the

::::::::
high-pass

::::
filter

:::
we

:::::
apply

:::
on

::
the

:::::::
original

::::
time

:::::
series

::::
(see

::::
Fig.

::::
B3).

::::
This

::::::::::
consequence

:::
of

::::::
filtering

:::
the

::::
time

:::::
series

::::
was

:::
not

:::::
taken

:::
into

:::::::
account

:::
by Geoffroy and690

Nycander (2022)
::
in

:::
the

:::::
model

::
of

:::
the

::::::::::
background

:::::
noise

::::
they

::::
used.

:

::::::
Assume

::::
that

:::
the

::::::::
non-tidal

:::::::::
variability

::::
ρ(t)

::
is
::

a
::::
first

:::::
order

::::::::::::
autoregressive

:::::::
process

::::::
(AR1)

:::::::::::
characterized

:::
by

::::
zero

::::::
mean,

:::
the

::::::::
timescale

::
τρ,

::::
and

:::
the

:::::
white

::::::::
Gaussian

::::
noise

:::::
ερ(t)::::

with
::::
zero

:::::
mean

:::
and

::::::::
variance

::::
σ2
ε, ρ.

::
In

:::
the

::::
time

:::::::
domain,

:::
the

:::::::
filtered

::::
ρ′(t),

::::
can

::
be

:::::::
modeled

::
as

:::
the

::::::::::
convolution

::
of

:::
the

::::::::
unfiltered

::::
ρ(t)

::::
with

:::
the

:::::::
impulse

::::::::
response

::
of

:::
the

::::
filter

::::
h(t).

:::
We

::::
are,

:::::::
however,

:::::::::
interested

::
in

::
the

:::::::::::::
autocovariance

::
of

:::::
ρ′(t),

::::::
R′ρ(τ),

::::::
which

::
is

::::::
closely

::::::
related

::
to

:::
the

:::::
power

::::::::
spectrum

::::
(one

::
is

:::
the

::::::
Fourier

:::::::::
transform

::
of

:::
the

::::::
other).695

:::::::
Luckily,

:
it
::
is
:::::
much

:::::::
simpler

::
to

:::::::
perform

::::
this

::::::::
operation

::
in

:::
the

:::::::::
frequency

:::::::
domain,

:::::
where

:::
the

::::::
power

::::::::
spectrum

::
at

:::
the

::::::
output

::
of

::
a

:::::
linear

::::
filter,

::::::
P ′ρ(z),

::
is

::::::
related

::
to

:::
the

:::::
power

::::::::
spectrum

::
of

:::
the

:::::
input

::::::::
stochastic

:::::::
process,

::::::
Pρ(z),

:::
by

P ′ρ(z) = |H(z)|2Pρ(z).
:::::::::::::::::::

(C1)

::::
Here,

:::::
H(z)

::
is

:::
the

::::::
system

::
or

:::::::
transfer

:::::::
function

::
of

:::
the

::::
filter,

::::
and

:::
the

::::::::
z-domain

::
is

::::::
limited

::
to

:::
the

:::
unit

:::::
circle

::::::::::::::
z = exp(jω∆t),

:::
i.e.

:::
the

:::::::::
z-transform

::
is
:::::::::
equivalent

::
to

:::
the

:::::::
discrete

::::::
Fourier

:::::::::
transform,

:::::
where

::
ω
::
is
:::
the

:::::::
angular

:::::::::
frequency,

:::
and

:::
∆t

::
is

:::
the

:::::::
constant

::::::::
sampling700

::::::
interval

:
(Kay and Marple, 1981).

:::::::::
Moreover,

:::
the

::::::
power

:::::::
spectrum

:::
of

::
an

::::
AR1

:::::::
process

::
is

:
a
:::::::
standard

::::::
result:

Pρ(ω) =
σ2
ε, ρ∆t

1 + exp(−2/τρ)− 2exp(−1/τρ)cos(ω∆t)
.

:::::::::::::::::::::::::::::::::::::::::::

(C2)

:::
The

::::::::::
Butterworth

:::::
filter

:
is
:::::
linear

::
in
:::::::::
amplitude

:::
but

:::
not

::
in

::::::
phase.

::
As

::
a
::::::::::
workaround,

:::
we

:::::::
applied

:
a
::::::
second

:::::
order

::::
filter

:::::
twice,

:::::
once

::::::
forward

::::
and

::::
once

:::::::::
backward,

::
to

:::::::
recover

:
a
::::

4th
::::
order

:::::
filter

::::
with

::::
zero

::::::
phase.

::::
The

::::::
transfer

::::::::
function

::
of

:
a
:::::::

second
::::
order

:::::::::
high-pass
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::::::::::
Butterworth

::::
filter

::
in

:::
the

:::::::::
z-domain,

:::::::
HB2(z),

:::
can

:::
be

:::::::
obtained

::::
from

:::
its

:::::::
Laplace

::::::::
transform:

:
705

HB2(s) =
1

(ωc/s)2 +
√

2(ωc/s) + 1
,

:::::::::::::::::::::::::::::

(C3)

:::::
where

::
ωc::

is
:::
the

::::::
cut-off

:::::::
angular

::::::::
frequency

:
(Schlichthärle, 2000)

:
.
:::
We

:::
use

:::
the

:::::::
bilinear

:::::::::
transform,

::::::
namely

::::::
setting

s=
1

∆t
ln(z)≈ 2

∆t

z− 1

z+ 1
::::::::::::::::::::

(C4)

::
in

:::
Eq.

::::
(C3),

:::
to
:::::::

recover
:::
the

:::::::::
expression

HB2(z) =
4− 8z−1 + 4z−2

(ω2
c∆t2 + 2

√
2ωc∆t+ 4) + (2ω2

c∆t2− 8)z−1 + (ω2
c∆t2− 2

√
2ωc∆t+ 4)z−2

.

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(C5)710

::::::
Hence,

::
we

::::
can

:::::::
evaluate

:::
Eq.

::::
(C1)

::
as

:

P ′ρ(ω) =

(∣∣HB2

(
z = exp(jω∆t)

)∣∣2)2

Pρ(ω).

::::::::::::::::::::::::::::::::::::::

(C6)

::::
Since

::
ρ′
::
is
::::::::::
real-valued,

:::
the

::::::::::::
autocovariance

::::::
R′ρ(τ)

::
is

::::
given

:::
by

:::
the

::::::
inverse

::::::
discrete

:::::::
Fourier

:::::
cosine

::::::::
transform

::
of

:::
its

:::::
power

::::::::
spectrum

:::::
P ′ρ(ω)

:::::::::
(computed

:::::::::::
numerically).

:

::
As

:::::::::
mentioned

:::
in

::::
Sect.

::::
3.2,

::
to
:::::

limit
::::
any

:::::::::
systematic

::::
bias

:::
we

::::::::::
consistently

:::::::
estimate

::::
and

:::::::
subtract

:::
the

:::::::::::::
autocovariance

:::
of

:::
the715

:::::::
non-tidal

:::::::::
variability

::::
from

:::
the

::::::
sample

:::::::::::::
autocovariance

:::::
before

::::::::::
performing

::
the

::::::::
complex

::::::::::::
demodulation.

:::
We

:::::
obtain

::::
such

:::
an

:::::::
estimate

::::
from

:::
the

::::
least

::::::
squares

:::
fit

::
of

:::
the

:::::
model

:::::::
adapted

::::
from

:
Geoffroy and Nycander (2022):

:

Rm(τ) =R′ρf (τ) +R′ρs(τ) +
∑
i

Ai
2

cos(ωiτ)exp(−σ2
φ, i +Rφ, i(τ)),

::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(C7)

:::::::::::
corresponding

::
to
:::
the

:::::::::::::
autocovariance

::
of

::
a

::::
tidal

::::::::
variability

:::::::
affected

:::
by

:
a
::::::::::
background

:::::
noise:

:

m(t) = ρ′f (t) + ρ′s(t) +
∑
i

Ai cos(ωit+φi(t)).

::::::::::::::::::::::::::::::::::::::

(C8)720

::::
Here,

:::
ωi :::

and
:::
Ai ::

are
:::
the

:::::::
angular

::::::::
frequency,

::::
and

::
the

:::::::::
amplitude

::
of

:::
the

::::
tidal

:::::::::
constituent

:
i,
:::::::::::
respectively,

:::::
where

::::::::::::::::::
i ∈ {M2,S2,K1,O1}.

::::
φi(t)::

is
::
an

:::::
AR1

::::::
process

:::::::::::
representing

:::
the

::::::
random

:::::
phase

:::::::::::
modulations

:::::::
affecting

:::
the

::::::::::
constituent

:
i.
::::
For

:::
the

::::
sake

::
of

:::::::::
simplicity,

:::
we

::::::
assume

:::
that

:::
the

:::::::::::
decorrelating

:::::::::
processes

::
act

::
in
:::
the

:::::
same

:::::::
manner

::
on

::::::::::
neighboring

::::
tidal

:::::::::::
frequencies,

:::
that

::
is,

::::::::::::::
φM2

(t) = φS2
(t)

::::
and

::::::::::::::
φK1

(t) = φO1
(t).

:::::
Note

:::
that

:::
the

:::::::::
high-pass

::::
filter

::::
used

::
in
::::
this

:::::
work

:::
was

::::::::
designed

::
so

:::
as

:::
not

::
to

:::::
affect

:::
the

::::
tidal

::::::
signal.

:::::
ρ′f (t)

::::
and

::::
ρ′s(t):::

are
:::::::::
high-pass

::::::
filtered

::::
AR1

:::::::::
processes

:::::::::
accounting

:::
for

::
a
:::
fast

::::
and

::
a

::::
slow

::::::::
non-tidal

:::::::::
variability,

:::::::::::
respectively.

:::
All

:::
the

:::::
AR1725

::::::::
processes

:::
are

:::::::::::
characterized

::
by

::::
zero

:::::
mean,

:::
the

::::
time

:::::
scale

:::
τX ,

::::
and

:::
the

:::::
white

:::::::
Gaussian

:::::
noise

:::::
εX(t)

::::
with

::::
zero

:::::
mean

::::
and

:::::::
variance

:::::
σ2
ε,X ,

:::
and

::::::::::::::
X ∈ {φ,ρf ,ρs}.:::

The
::::::::
variance

:::
and

:::::::::::::
autocovariance

::
of

::
an

::::
AR1

:::::::
process

:::
are

σ2
X =

σ2
ε,X

1− exp(−2/τX)
, RX(τ) = σ2

X exp(−τ/τX),

:::::::::::::::::::::::::::::::::::::::::::

(C9)
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::::::::::
respectively.

::::
The

:::::
model

:::
Eq.

::::
(C7)

:::::
does

:::
not

:::
take

::::
into

:::::::
account

:::
the

::::::
effects

::
of

:::
the

::::
drift

::
of

:::
the

:::::
floats

::
or

:::::::::
Lagrangian

::::::::
particles.

:

:::
We

::
fit

:::
the

::::
full

:::::
model

::::
Eq.

:::::
(C7),

:::::::::
containing

::
12

::::::::::
parameters,

:::
to

:::
the

::::::
sample

:::::::::::::
autocovariance

:::
by

::::::::
nonlinear

::::
least

:::::::
squares,

:::::
with730

::::::
weights

::::::::
inversely

:::::::::::
proportional

::
to

:::
the

::::::::::::
corresponding

:::::
SEM,

:::
and

::::::::
imposed

::::::
bounds

:::
on

:::
the

:::::::::
parameters

::::::
(since

::
we

:::::
only

::
fit

:::::::
positive

::::::::
timescales

::::
and

:::::::::
variances).

::
In

:::::::::
particular,

:::
the

:::::::::
timescales

::
of

:::
the

:::
fast

::::
and

::::
slow

::::::::
non-tidal

::::::::
variability

:::
are

::::::::
restricted

::
to
:::
the

:
[
:
0,

::
5]

:::
and

[
:
5,

:::
48]

::
h
:::::
range,

:::::::::::
respectively.

:::
The

:::::::::::::
autocovariance

::
of

:::
the

::::::::
non-tidal

::::::::
variability

::
is
::::
then

:::::::::
computed

::
as

R′ρ(τ) =R′ρf (τ) +R′ρs(τ)
:::::::::::::::::::::

(C10)

::::
using

:::
the

:::::
fitted

::::::::::
parameters.

::::::
Lastly,

:::::
R′ρ(τ)

::
is

:::::::::
subtracted

::::
from

:::
the

::::::
sample

:::::::::::::
autocovariance

::
to

::::::
correct

:::
for

:::
the

:::::
effects

:::
of

:::
the

::::::
filtered735

:::::::::
background

::::::
noise.

:::
The

::::::::
inclusion

:::
of

:
a
::::
tidal

:::::::::
variability

:::
in

:::
the

:::::
model

::::
Eq.

::::
(C7)

::::::::
primarily

:::::
aims

::
at

:::::::
limiting

:::
the

:::::::::
projection

::
of

::::
the

:::::::
observed

:::::
tidal

::::::::
variability

::::
onto

:::
our

::::::
model

:::
for

:::
the

:::::::::
background

:::::
noise

:::::
when

::::::
fitting.

::::::::::
Nonetheless,

:::
the

:::::
fitted

:::::::::
parameters

:::
can

:::
be

::::
used

::
to

:::::::
compute

:::
an

:::::::
estimate

::
of

:::
the

:::::::::
semidiurnal

:::
IT

:::::::
variance

::::::::::::::::::::::
σ2
SD,LS = (A2

M2
+A2

S2
)/2,

:::
and

::::::
further

::
to

:::::::
estimate

:::
the

::::::::::::
signal-to-noise

::::
ratio

::::::::::::
characterizing

::
the

:::::::
filtered

::::
Argo

:::::::
records

::
as

:::::::::::::::::::
S/N = σ2

SD,LS/R
′
ρ(0).

::
In

::::
Fig.

:::
C1

:::
we

:::::
show

::::
maps

:::
of

:::::::
σ2
SD,LS,

::::::
R′ρ(0),

:::
and

::::
S/N

::::::::
computed

:::::
from

:::
the740

::::
same

:::::::::
collection

::
of

::::
local

:::::
mean

::::::::::::::
autocovariances

::
as

::::
used

::
in

::::
Fig.

:::
6c.

:::::
Note

:::
that

:::::::
σ2
SD,LS :::

and
::::::
R′ρ(0)

:::
are

:::
not

:::::::::
correlated

:::::::::
(r2 = 0.13

:::
and

:::::
0.009

::
in
:::::::

log-log
::::
and

:::::
linear

:::::::
domain,

::::::::::::
respectively).

::::
The

::::
least

:::::::
squares

:::::
fitted

:::::::
σ2
SD,LS ::::::

appear
:::::::::
reasonable

:::::
when

:::::::::
compared

::::
with

:::
the

::::
first

::::::::::
demodulates

:::::::::
presented

::
in

::::
Fig.

:::
6c.

::::
The

:::::::::
coefficient

:::
of

:::::::::::
determination

:::::::::
r2 = 0.53

::::
and

::::
0.29

::
in

:::::::
log-log

:::
and

::::::
linear

:::::::
domain,

:::::::::::
respectively,

::::::::
indicates

:
a
:::::
good

:::::::::
agreement

:::::::
between

:::
the

:::
two

:::::::::
estimates.

:::::::::
Moreover,

:::
the

:::::
global

:::::
mean

::::
and

::::::
median

::
of
:::::

their

::::
ratio

:::
are

:::
0.8

::::
and

:::
0.7,

:::::::::::
respectively,

::::::::::
accounting

:::
for

:::
the

:::::::::::
decorrelation

:::
of

:::
the

::
IT

::::::
taking

:::::
place

::
in

:::
the

::::
first

:::
48

::
h.

::::
For

::::
such

:::::
local745

::::
mean

::::::::::::::
autocovariances,

::::::::
however,

:::
the

:::::::::::
uncertainties

:::
are

::::::
simply

::
to

::::
high

:::
to

::::::
reliably

::::::::
estimate

:::
the

:::::::::
parameters

::
of
::::

the
:::::::::::
decorrelating

::::::
process

:::::
φi(t).

:::::::
Finally,

:::
we

:::::
chose

::
to

:::::::
perform

:::
the

::::::::::
comparisons

:::::::::
presented

::
in

:::
this

:::::
work

::
in

:::::
terms

::
of

:::
the

::::
first

::::::::::
demodulate,

:::
for

:
it
::
is
::
a

::::::::::
conservative

:::
and

:::::
more

:::::
robust

::::::::
estimate

::
of

:::
the

::
IT

::::::::
variance.
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Figure C1.
::
(a)

::::
Atlas

::
of

:::
the

:::::::::
semidiurnal

::
IT

:::::::
variance

:
at
:::::

1,000
::::
dbar

:::::::
computed

::::
from

:::
the

:::::
fitting

::
of

:::
the

:::::
model

:::
Eq.

:::
(C7)

::
to
:::
the

::::
same

::::
local

:::::
mean

:::::::::::
autocovariance

::::
series

::
as
::::
used

::
in

:::
Fig.

:::
6c.

::
(b)

::::::::
Non-tidal

::::::
variance

::::
from

:::
the

::::
same

:::::
fitting

::
as

:
in
:::
(a).

:::
(c)

:::::::::::
Signal-to-noise

::::
ratio

:::::::
computed

::
as
:::
the

::::
ratio

:
of
:::

(a)
::::
over

:::
(b).

:::
The

::::
ocean

:::::
mask

:
is
::::::
colored

::
in

:::::
yellow

:::
for

::::::::
readability.
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