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Abstract. Glacier mass balance is typically estimated using a range of in-situ measurements, remote sensing measurements,

and physical and temperature index modelling techniques. With improved data collection and access to large datasets, data-

driven techniques have recently gained prominence in modelling natural processes. The most common data-driven techniques

used today are linear regression models and, to some extent, non-linear machine learning models such as artificial neural net-

works. However, the entire host of capabilities of machine learning modelling has not been applied to glacier mass balance5

modelling. This study used monthly meteorological data from ERA5-Land to drive four machine learning models: random

forest (ensemble tree type), gradient-boosted regressor (ensemble tree type), support vector machine (kernel type) and artificial

neural networks (neural type). We also use ordinary least squares linear regression as a baseline model against which to com-

pare the performance of the machine learning models. Further, we assess the requirement of data for each of the models and

the requirement for hyperparameter tuning. Finally, the importance of each meteorological variable in the mass balance esti-10

mation for each of the models is estimated using permutation importance. All machine learning models outperform the linear

regression model. The neural network model depicted a low bias, suggesting the possibility of enhanced results in the event of

biased input data. However, the ensemble tree-based models, random forest and gradient-boosted regressor outperformed all

other models in terms of the evaluation metrics and interpretability of the meteorological variables. The gradient-boosted re-

gression model depicted the best coefficient of determination value of 0.713
:::
and

:
a
::::
root

:::::
mean

::::::
squared

:::::
error

::
of

:::::
1.071

::
m

:::
we. The15

feature importance values associated with all machine learning models suggested high importance to meteorological variables

associated with ablation. This is in line with predominantly negative mass balance observations. We conclude that machine

learning techniques are promising in estimating glacier mass balance and can incorporate information from more significant

meteorological variables as opposed to a simplified set of variables used in temperature index models.

1 Introduction20

We can visualize glaciers as interactive climate-response systems with their response described by changes in glacial mass

over a given period (e.g. White et al., 1998). Several studies have reported the impact of climate change on glacier mass at a

global and regional scale (e.g. Le Meur et al., 2007; Huss et al., 2008), with repercussions including and not limited to glacial

outburst floods and diminishing water supplies. Thus, understanding the response of glacier mass balance to climate change is
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crucial. Glacier mass balance is most commonly measured via (i) Direct Glaciological Method, where point measures of gain25

or loss of glacial ice are obtained and extrapolated for the entire glacier (e.g. Kuhn et al., 1999; Thibert et al., 2008; Pratap

et al., 2016), (ii) Geodetic Method, where the change in surface elevation between two-time instances for the same portion of

the glacier is estimated (e.g. Rabatel et al., 2016; Tshering and Fujita, 2016; Trantow and Herzfeld, 2016; Bash et al., 2018;

Wu et al., 2018) and (iii) Indirect Remote Sensing Method, where measured mass balance is correlated with the Equilibrium

Line Altitude (ELA) values or Accumulation Area Ratio (AAR) values for time series data (e.g. Braithwaite, 1984; Dobhal30

et al., 2021). In addition to observational data, simple temperature index-based or sophisticated physics-based energy balance

models (e.g. Gabbi et al., 2014) have also been developed. Energy balance models compute all energy fluxes at the glacier

surface and require measurements of input variables such as meteorological and other inputs at the glacier scale (e.g. Gerbaux

et al., 2005; Sauter et al., 2020). As these models are driven by the physical laws governing energy balance, they provide reliable

estimates of glacier mass balance. However, the substantial requirement for ground data to force the model
:
,
::
the

:::::::
sizeable

:::::::
number35

::
of

:::::::::
parameters

::
to

::::::::
calibrate and the computational complexity associated with running the model make it cumbersome to use

for large areas. Temperature index models use empirical formulations between temperature and melt (e.g. Radić and Hock,

2011). The simplicity afforded by these models permits extension to large scales effectively. However, using only temperature

and precipitation as inputs can lead to oversimplification.
:::::::
However,

:::::
using

:::::
only

::::::::::
temperature

::::
and

::::::::::
precipitation

:::
as

:::::
inputs

::::
can

:::
lead

::
to
::::::::::::::::

oversimplification.
:::::::
Further,

:::
the

::::::
degree

:::
day

::::::
factors

::::::
(DDF)

:::::::::
considered

:::
in

::::::::::
temperature

:::::
index

::::::
models

:::
are

:::::
often

::::::::
invariant.40

:::
But

::::::
studies

::::
such

:::
as

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Gabbi et al. (2014); Mattews and Hodgkins (2016); Ismail et al. (2023)

:::
have

::::::::
observed

::
a
:::::::::
decreasing

:::::
trend

::
in

::::
DDF,

::::::::::
particularly

::
in
::::::
higher

:::::::::
elevations.

::::::::::::::::
Ismail et al. (2023)

::::
also

:::::
report

:::
the

:::::::::
sensitivity

::
of

:::
the

::::
DDF

::::::
under

:::
the

:::::::
influence

:::
of

:::
the

:::::::
changing

:::::::
climate,

::::::::::
particularly

::
to

::::
solar

::::::::
radiation

:::
and

:::::::
albedo.

With increasing data points available, a new set of data-driven techniques has gained prominence in various domains of

Earth Sciences. For e.g weather prediction (for a review, see Schultz et al., 2021), climate downscaling (e.g. Rasp et al., 2018),45

hydrology (e.g. Shean et al., 2020) have used data-driven models, particularly, machine learning (ML) and deep learning (DL)

models. Cryospheric studies, too, have adopted the use of deep learning in several prediction problems (see review in Liu,

2021). Applications of deep learning in glaciology range from automatic glacier mapping (e.g. Lu et al., 2021; Xie et al.,

2021), ice thickness measurements (e.g. Werder et al., 2020; Jouvet et al., 2021; Haq et al., 2021), calving front extraction

(e.g. Zhang et al., 2019; Mohajerani et al., 2021), snow cover mapping (e.g. Nijhawan et al., 2019; Kan et al., 2018; Guo50

et al., 2020), snow depth extraction (e.g. Wang et al., 2020; Zhu et al., 2021), sea and river ice delineation (e.g. Chi and

Kim, 2017; Li et al., 2017). The use of ML and DL in glacier mass balance estimation is significantly fewer. Initial data-

driven studies used multivariate linear regression to estimate glacier mass balance from temperature and precipitation Hoinkes

(1968). Subsequently, several papers have used linear regression methods for varying inputs such as temperature and pressure

(Lliboutry, 1974), positive degree days, precipitation, temperature and longwave radiation (Lefauconnier and Hagen, 1990).55

Recent studies continue to use linear regression for modelling glacier mass balance. For example, Manciati et al. (2014) used

linear regression to study the effect of local, regional and global parameters on glacier mass balance, Carturan et al. (2009)

used linear regression to incorporate the effects of elevation models in the estimation of summer and winter mass balance

measurements. Steiner et al. (2005) was the first to use neural networks to estimate glacier mass balance for the Echaurren
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glacier. Bolibar et al. (2020) used a least absolute shrinkage and selection operator (LASSO) regression, a linear model, and60

the non-linear a
::::::::
nonlinear

:
neural network model to simulate glacier mass balance. Despite studies such as Steiner et al. (2005);

Vincent et al. (2018); Bolibar et al. (2020, 2022)
:::
are

::::
some

:::
of

:::
the

::::
few

::::::
studies

:
reporting consistently better performance of

non-linear models over linear models, few studies have used ML for modelling glacier mass balance. Most studies using

data-driven techniques attempt a linear modelling framework or shallow .
::::::
These

::::::
studies

::::
have

::::::
largely

:::::
used neural networks.

However, there exists a variety of other ML models, such as classification and regression tree, random forests, radial basis65

function networks, support vector machines. The utility of these models has not been sufficiently explored in
:
a
::::::
gamut

::
of

::::
ML

:::::::::
techniques

::::
such

::
as

:::::::::::::
ensemble-based

::::
and

:::::::::::
kernel-based

:::::::::
techniques

::::
exist

:::::
which

:::::
have

::::::
largely

::::
been

::::::::::::
under-utilized

:::
for

:::
the

:::::::
purpose

::
of

::::::::
modelling

:
glacier mass balancemodelling. This limited utilization of ML models is potentially due to the unavailability of

large ground truth datasets required for training the ML models and the perceived black-box nature of ML techniques. We

aim to address this by assessing the performance of different ML models for varying training dataset sizes. Further, we aim70

to shed light on the interpretability of ML models by using permutation importance to explain the relative importance of the

input meteorological variables. The interpretability of machine learning models is largely dependent on the input variables

provided. Existing non-linear neural network
:::::::::
data-driven models typically use a subset of topographic and meteorological

variables. For example, Hoinkes (1968) uses temperature, precipitation and cyclonic/anti-cyclonic activity, Steiner et al. (2005)

uses precipitation and temperature, Masiokas et al. (2016) uses temperature, precipitation and streamflow. To the extent of the75

authors’ knowledge, no ML-based study has attempted to use a complete set of meteorological variables associated with the

energy balance equation. We expand upon this and assess the monthly contributions of each of these meteorological variables

in the estimation of glacier mass balance.

Through this study, we assess the ability of ML models to estimate annual point mass balance. We use an example of each

of the following classes of ML models: ensemble regression tree-based, kernel-based, neural network-based and linear models.80

Under ensemble regression tree-based, we chose one example of boosted and unboosted models. Specifically, we compare

the performance of the random forest (RF), gradient-boosted regressor (GBR), support vector machine (SVM) and artificial

neural network (ANN) models against a linear regression (LR) model. We also assess the performance for varying dataset sizes

as real-world measurements are limited. Finally, to explain the role of the input features on each of the ML models, we use

permutation importance described further in Altmann et al. (2010). The input features for the models are the monthly mean of85

14 meteorological variables associated with the energy balance equation. We obtained the meteorological data from the ERA5-

Land Reanalysis dataset (Muñoz Sabater, 2019, 2021). The labels
:::::
target

::::
data used for training the ML models are obtained

from the Fluctuations of Glaciers database (WGMS, 2021; Zemp et al., 2021) over the second-order region Alps defined

by Randolph Glacier Inventory under first-order region 11: Central Europe (RGI, 2017). Section 2 of the manuscript further

describes each of these datasets. In this section, we also elucidate the preprocessing steps associated with an ML approach90

and outline the methodology followed. In sections 3 and 4, we compare the performance of each of the models for various

configurations of data availability. We also delve into the interpretability of the models from a feature importance perspective.

The specific point we investigate as a part of this study can be summarized as follows:

1. Understand the utility of ML models in the estimation of glacier mass balance using limited real-world datasets
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2. Identify specific use cases for different classes of ML models(ensemble tree-based, kernel based, neural network based95

and linear regression) pertaining to data availability, evaluation metrics and explainability

3. Investigate the ability of ML models to unravel the underlying physical processes

4. Explain the relative importance of meteorological variables contributing to the mass balance estimation on a monthly

basis over the year

2 Data and Methods100

2.1 Machine learning modelling

ML modelling is a data-driven set of modelling techniques. Here, we used a supervised learning framework for regression

where inputs are in the form of monthly meteorological variables and targets are in the form of point measurements of glacier

mass balance. The actual point mass balance measurements are the training labels
::::
target

::::
data

:
vital to tuning the model pa-

rameters. We do this parameter tuning by designing a loss function defining the variation between the actual mass balance105

measurements, i.e. the labels
:::::
target

::::
data, and the point mass balance estimates, i.e., the model’s output. We start with random

initialization of model parameters and finetune the parameters to minimize the loss function. For each of the ML models used

in the study, we used the mean squared error (MSE) as the loss function. Further, we obtained the features of importance by

assessing permutation importance. Figure 1 depicts the complete workflow used for the study.
:::
The

:::::::::::::
supplementary

:::
files

:::::::
include

:::
runs

:::
of

::::
such

::::::::::
experiments

::::
that

:::::
impact

:::
all

:::
the

:::
ML

:::::::
models

::
in

::
an

:::::::::
equivalent

:::::::
manner.110

The RF model is an ensemble-based algorithm where the base learner used is
:
a decision (regression or classification) trees

:::
tree

:
(Breiman, 2001). It relies on the principle of bootstrap aggregating or bagging (proposed by Breiman, 1996) for the

generation of multiple training datasets to be used by each base learner (Dietterich, 2000). To illustrate
:::
this, assume there are

Ndata samples in the training dataset D, and a new dataset D̂ is generated by sampling Ndata samples with repetition. In

addition to the generation of bootstrapped datasets, the decision trees are generated using a random subset of input features at115

every impure node of the tree instead of a complete set of features that standard regression trees use.

Like the RF model, the GBR model is an ensemble-based algorithm where aggregated base learners of decision (classifica-

tion or regression) trees provide an estimate. However, it differs from the RF model because it uses boosting instead of bagging

to construct ensembles. In boosting-based ensembles, base learners are typically weak learners, and the design of subsequent

learners is such that the overall error reduces (Natekin and Knoll, 2013; Friedman, 2001).120

The SVM model is a powerful ML tool that relies on Cover’s theorem. The theorem suggests that data that might not be

linearly separable in a lower dimensional space can be linearly separable when transformed into a higher dimensional space.

In the context of classification, the SVM model uses a kernel to transform the data into a higher dimensional space (Cortes and

Vapnik, 1995) where linear separability is feasible in the form of a hyperplane and decision boundaries. For this purpose, we

use kernels such as polynomial kernel and radial basis function kernel (Vapnik, 1999). In the case of regression, the hyperplane125
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represents the best fit line. Thus, unlike empirical risk minimization, where the difference between the actual and predicted

model is optimized, the SVM model for regression uses structural risk minimization by identifying the best fit line.

McCulloch and Pitts (1943) proposed the NN models as mathematical representations of biological neuron interconnections.

Hornik (1991) showed that
:::::
neural

::::::::
networks

::::
with

:::
as few as a single hidden layer with a sufficiently large number of neurons,

when used with a non-constant unbounded activation function, can function as universal function approximators. Presently,130

several applications (Seidou et al., 2006; Moya Quiroga et al., 2013; Haq et al., 2014) using multiple layered NN models

demonstrate that NN can infer abstract relationships between features. NN models use weighted combinations of input features

in tandem with non-linearity
::::::::::::
non-linearities provided by activation functions such as sigmoid, tanh and rectified linear unit

(ReLU), resulting in the model output. The weights of the NN model are the model parameters obtained by optimization of the

loss function.135

2.2 Preparation of features and labels
::::::
target

::::
data

The most crucial component in ML modelling is the availability of labelled
:::::
target data to train the model. The labels

:::::
target

::::
data

used for training should be representative of the entire population. Hence, we chose the Fluctuations of Glaciers (FoG) database

(WGMS, 2021; Zemp et al., 2021) that contains measured point mass balance information (46,356 data points) globally. The

study area is the Randolph Glacier Inventory (RGI) version 6 (RGI, 2017) second-order region Alps under the first-order140

region 11: Central Europe. This consisted of 15,727 glacier mass balance point measurements. We performed a first-level

preprocessing where we considered only annual mass balance measurements (10,102 data points) and measurements from

1950 (9,595 data points) onward. We then performed an outlier removal where we considered only those points within two

standard deviations of the median. This was to avoid the effects of noisy data. We finally used 9166 data points to apply our

model.145

The second aspect is the input features used by the model to make predictions. We used the ERA5-Land reanalysis dataset

(Muñoz Sabater, 2019, 2021) and specifically the variables contributing to the energy balance equation that drives mass balance

modelling from a physical standpoint. We considered the monthly mean of each of the following fourteen variables for the

modelling:
:::
the

:
temperature at 2m, snow density, snow temperature, surface net solar radiation, total precipitation, forecast

albedo, surface pressure, surface net solar radiation downwards, snowfall, surface net thermal radiation, snowmelt, surface150

sensible heat flux, snow depth and surface latent heat flux (For details, see Muñoz Sabater et al., 2021).
:::
We

:::::::
consider

:::::
these

::::::::::::
meteorological

::::::::
variables

:::::::
because

::
of

:::::
their

:::::
effect

:::
and

::::::::::::
representation

:::
of

:::
the

:::::::::::
accumulation

::::
and

:::::::
ablation

::::::
process

::::
and

::::::
define

:::
the

:::::::
variables

::::::::
expected

::
to

::::::::
represent

::::::::::::
accumulation

::::::::
processes

::
as
::::::::::::

accumulation
::::::::
variables

::::
(e.g.

::::::::
snowfall,

:::::::
forecast

:::::::
albedo)

:::
and

:::::
melt

::::::::
processes

::
as

:::::::
ablation

:::::::
variables

::::
(e.g.

:::::::::::
temperature,

::::
solar

:::::::::
radiation).

::::
The

:::::::
monthly

:::::
mean

::
of

::::
each

::
of

:::
the

:::::::::::
accumulation

::::
and

:::::::
ablation

:::::::
variables

::::
was

::::::::::
considered. Thus, we have 168 total input parameters. For each of these variables, we extracted the data using155

the nearest neighbour algorithm, using latitude, longitude and year of the glacier mass balance measurement from the FoG

database. Thus the final dataset has 168 input features and 9166 data points.

We then normalised the data points using a min-max scaling to ensure the absence of user-conceived bias in the model. We

::::
have split the dataset into training and testing samples to be utilised by the model .

::::
using

::
a

::::::
random

::::
split

::::::
where

::::
70%

::
of

:::
the

::::
total
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::::::
dataset

:
is
:::::
used

::
for

:::::::
training

:::
the

::::::
model

:::
and

::::
30%

::
is

::::
used

:::
for

::::::
testing

:::
the

:::::
model

::::::::::::
performance.

:::
The

:::::::
training

::::
split

::
is

::::
used

::
in

:
a
::::::
3-fold160

:::::::::::::
cross-validation

::::::
process

:::
for

::::::
tuning

:::
the

::::::::::::::
hyperparameters

::
as

:::::::::
described

::::::
further

::
in

::::::
Section

::::
2.3.

:
Finally, we rescaled the model’s

predictions to assess the model metrics, such as root mean squared error (RMSE),
::::
mean

:::::::
absolute

:::::
error

::::::
(MAE)

:::
and

::::::::::
normalized

::::
mean

:::::::
squared

::::
error

:::::::::
(nRMSE)

:::
and

::::::::::
normalized

::::
mean

::::::::
absolute

::::
error

:::::::
(nMAE)

:
in the measured point mass balance units.

2.3 Hyperparameter Selection and Finetuning

In typical ML workflows, we split the complete dataset (set of features and labels
::::
target

::::
data) into training, validation and165

testing. We fit the model to the data using the training subset, tune the parameters
::::::::::::::
hyperparameters using the validation subset,

and report the independent performance metrics using the testing subset. In our case, we used a 70%-30% split for training

and testing.
::
We

:::::
have

:::::::::
considered

:
a
:::::::::::::
hyperparameter

::::
grid

::::
with

::
all

::::::::::::
combinations

::
of

:::::
values

::::
that

::::
each

:::::::::::::
hyperparameter

:::
can

::::
take

::::
(see

:::
Tab.

:::
1).

:
Rather than using a

::::
fixed

:::::
ratio subset for validation , we used a grid search approach to tune the parameters associated

with each model. Table 1 depicts the grid used for estimating the parameters. We estimated the best set of hyperparameters170

using k-fold cross-validation. Here, we used three-fold cross-validation, i.e., the data was split into three subsets. We used two

of the three subsets for training the model and one for testing. This is repeated by considering all combinations of the subsets

for training and testing (in this case, three) for each hyperparameter combination. Based on the mean test score, the optimal

hyperparameters are selected
::
as

::::
was

:::
the

::::
case

::::
with

:::
the

::::::
testing,

:::
we

:::::::
divided

:::
the

:::::::
training

::::
data

:::::
subset

::::
into

:::::
three

:::::
equal

:::::
folds.

::::
Two

::::
folds

:::
are

::::::::
randomly

:::::::
selected

:::
as

:::
the

::::::
training

:::
set

::::
and

:::
the

::::
third

::::
fold

::
is

::::
used

:::
for

:::::::::
validation.

::::
The

::::::::
validation

:::::
score

::
is
:::::
noted

::::
and

:::
the175

::::::
process

::
is

::::
then

:::::::
repeated

:::
for

:::
the

:::::
other

::::
fold

:::::::::::
combinations.

::::
The

:::::
mean

::::::::
validation

:::::
score

:::
for

::::
each

:::::::::::::
hyperparameter

::::::
setting

::::::::
obtained

::::
from

:::
the

::::
grid

:
is
:::::
used

::
for

:::
the

::::::::
selection

::
of

:::
the

:::::::
optimal

::::::::::::::
hyperparameters. We compute the test

:::::::
validation

:
score as the negative of

the root mean squared error
:::::
RMSE

:
after scaling the target labels

:::
data

:
to a range between 0 and 1. Thus a more negative test

::::::::
validation score results in a more significant error.

For the RF model, we tuned the number of trees. We maintained the maximum depth as indefinite, leading to tree expan-180

sion until all nodes were pure. We considered all features to obtain the best split, ensuring minimum bias. As computation

for absolute error is slow at each split, we used the squared error as the splitting criterion. This ensured the minimisation of

the variance after each split. For the GBR model, we tuned the number of trees, maximum depth of each tree (which affects

the randomness in the choice of features in each tree), and subsampling ratio (for stochastic gradient boosting). Larger values

of maximum depth, such as the indeterminate depth of the RF model, are not used as GBR functions with weak learners to185

increase the randomness. The SVM model hyperparameter finetuning involved kernel selection and a choice of the regulari-

sation parameter. Further, in the case of polynomial kernels, the degree of the polynomial was also tuned. For the NN model,

we used a fully connected feedforward network where the hyperparameters of the number of layers and number of neurons in

a layer were tuned. The activation function ReLU was used to incorporate non-linearity. We used the adam (Kingma and Ba,

2014) optimiser to minimise the loss function. The training process was performed for 500 iterations with early stopping in the190

event of convergence before completing the iterations. The NN models for each set of hyperparameters converged before the

completion of the 500 iterations.
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2.4 Performance Evaluation

The testing dataset evaluation metrics used to assess the models’ performances are the coefficient of determination (R2) which

represents the percentage deviation between the target and model predictions, RMSE which represents the absolute deviations195

between the target and the model predictions. Lower R2 values suggest that the model does not represent the targets well. Values

close to one indicate a strong linear correlation. Lower RMSE values are preferable as this quantifies the variance between the

targets and predicted values. Additionally, we report the slope and additive bias using reduced major axis (RMA) regression.

We used RMA regression slope and bias to ensure symmetry about the y = 1 line. This is preferable as there exist uncertainties

in both labels
:::::
target

::::
data and outputs.200

ML models are heavily reliant on the availability of training data. To understand the effect of data availability on the model

performance, we split the
:::::::
perform

::
an

::::::::::
experiment

:::
on

:::::::
varying

:::
the

:::::::
training

:::::
sizes.

:::
We

::::
split

:::
the

:::::::
original

:
dataset into subsets of

iteratively increasing sizes. We trained the models for each subset and
::::::
partition

:::::
each

:::::
subset

::::
into

::::::
training

::::
and

::::::
testing

::::::::
partitions

::::
using

::
a
:::::
70:30

:::::
ratio.

:::
For

::::
each

::::::
subset,

:::
we

::::
train

:::
all

:::
the

::::::
models

:::::
using

:::
the

:::::::
training

::::::::
partition

:::
and

:
computed the evaluation metrics

over the testing datasets
:::::::
partition.205

2.5 Feature Importance

The feature importance is represented using permutation importance described in Altmann et al. (2010). Here, we disregard

individual features from the model at each iteration and recorded the reduction in evaluation score. This is repeated for each

input feature. We normalize the obtained permutation importance for each model and express the importance of each input me-

teorological variable as a percentage. A comparative analysis of the obtained feature importance is performed on two counts:210

(a) Features that are most important. Here the most important 10% of the features are considered. Thus the 17 most impor-

tant meteorological variables out of 168 used are reported. This is represented in Supplementary material S1. (b)
:::::::::
Percentage

importance associated with the accumulation months
:::::::::
(November

:::
to

::::::
March)

:
and the ablation months are

::::::::::::::
(June-September)

::
is

summed and graphically
:::::::::
represented

:
for each model and are represented in Fig. 6.

3 Results215

This section describes the major outcomes of the study categorized as the role of dataset size for the effective training of

each ML model (see Fig 2), the performance and feature importance associated with each ML model. Figure 3 represents the

comparative performance of each of the models in terms of the accuracy metrics RMSE, R2, Slope and Additive Bias. A

scatter plot of modelled point mass balance and labels
:::::
target

::::
data is represented in Fig 4. Figures ??, ?? and ??

:
5
::::
(a),

:::
(b),

:::
(c)

:::
and

:::
(d) represent the hyperparameter tuning associated with the models. The feature importance for all input variables summed220

over the ablation and accumulation months is represented in Fig 6. The most important meteorological variables (10% of total

number of variables) associated with each model are represented in Supplementary material S1.
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3.1 Role of Training Dataset Size

The number of samples required for training the ML models depends upon the complexity of the model. Thus each of the

models used in this study is variably sensible to the number of training samples. We use the evaluation metrics of root mean225

squared error
::::::
RMSE and correlation coefficient to assess the requirement of training samples for each of the models. Figure

2 depicts the training and testing metrics varying with the size of the training dataset. The training metrics stabilize
::
do

:::
not

::::
show

:::::::::
significant

:::::::
change after 20-30% of the training dataset size for the LR, RF, GBR and SVM models and at

:::
after

:
40%

for the NN model. This illustrates the larger number of trainable parameters resulting in the requirement of larger datasets for

artificial neural networks for training. The testing performance of each of the models stabilizes
::
do

:::
not

:::::
show

:::::::::
significant

::::::
change230

for training dataset sizes larger than 50%. This suggests that all models have successfully fit the data
:::
We

:::::::
observe

:::
that

:::::
while

::
a

::::::::
downward

:::::
trend

::
is

::::::
evident

::::
with

:::
the

:::::::
addition

::
of

::::
new

::::
data,

:::
the

::::
rate

::
of

:::::::::::
improvement

::
is

::::::
slower.

It is interesting to note that RF, GBR and LR models see an increase in training MAE as opposed to a consistent decrease in

testing MAE with increasing training samples. This depicts the tendency of these models to overfit the training samples in the

case of smaller datasets. This is evident when observing the order of variation in the training and testing evaluation metric for235

smaller datasets. E.g. GBR depicts a training MAE of 0.357 mwe
:::
357

::::
mm

:::
we

:
and a testing MAE of 1.183 mwe

::::
1183

::::
mm

::
we

:
at 10% training dataset size and training MAE of 0.659 mwe

:::
659

::::
mm

:::
we and a testing MAE of 0.774 mwe

:::
774

::::
mm

:::
we

at 100% training dataset size. Thus, care must be taken when using RF and GBR for smaller datasets as they are susceptible

to overfitting. The performance of the LR model deteriorates for training, and testing performance is also poor. This is not due

to overfitting but due to the inability of the model to explain the complex relationship between the inputs and the target. NN240

requires larger datasets for the training of the model. When compared with other models, SVM
:::::
Figure

::
2b

:::::::
depicts

:::
the

:::::::
superior

::::::::::
performance

::
of

::::
RF,

:::::
GBR,

:::
and

:::::
SVM

::
in

:::
the

::::
event

:::
of

::::::
limited

::::::
dataset

::::::::::
availability.

::::::::
However,

::
we

:::::
have

::::
seen

:::
that

:::
RF

:::
and

:::::
GBR

:::::
show

:
a
::::::
marked

:::::::
increase

::
in
:::::::
training

:::::
MAE

::::
with

:::::::::
increasing

:::::::
training

::::::
samples

::::::
which

:::::::
suggests

:::::::::
overfitting

::
to

::::::
limited

:::::::
datasets.

:::::
Thus

:::::
SVM

is more robust to the size of the dataset
::::::
smaller

:::::::
datasets.

3.2 Performance of RF modelling245

The best performing
:::::::::::::
best-performing RF model resulted in a testing RMSE value of 1.083 mwe

::::
1083

::::
mm

:::
we and an R2 value

of 0.705. The
::::
0.71.

::::
The

:::::
testing

::::::
MAE

:::::
value

:
is
::::
782

:::
mm

:::
we

:::
and

:::
the

::::::
testing

::::::::
nRMSE

:::
and

:::::::
nMAE

:::
are

::::
0.55

:::
and

::::
0.40

:::::::::::
respectively.

:::
The

:
training RMSE values are 0.934 mwe

::::
value

::
is

:::
934

::::
mm

:::
we,

::::::
MAE

:::::
value

:
is
::::
672

:::
mm

::::
we,

::::::::
nRMSE

::
is

::::
0.48,

:::::::
nMAE

::
is

::::
0.34

and R2 value is 0.804
::::
0.80. We observe that hyperparameter tuning is not important, and no major variations were observed

upon changing the number of estimators. The slope of RF was closest to 1 with a value of 0.752 for the training samples and250

0.744 for the testing samples. Both training and testing additive bias were negative, suggesting the model underestimated point

mass balance . This is illustrated in Fig 3. Figure 4 depicts a scatter plot of the testing samples estimated and actual point

glacier mass balance.
:::
(Fig

:::
3).

Feature importance analysis using permutation importance considering the 17 ( 10% of all features) most essential features

indicates the RF model is highly influenced by Downward Solar Radiation in January, Net solar radiation for July, Downward255
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thermal radiation in June, Temperature at 2m in June, forecast albedo in February and December, Snow Depth in January and

July, snow density and snowmelt in July, sensible heat flux in December, January, March and May, latent heat flux in August and

Surface Pressure in June and July. Permutation importance for the RF model summed over the accumulation months highest

importance scores for sensible heat flux followed by downward solar radiation and forecast albedo. Each of these variables

depict a summed percentage importance between 6-9%. Snow depth and pressure are also important with a summed percentage260

importance between 3-6%. For the ablation months, only pressure is observed to have a summed percentage importance greater

than 6%. Sensible heat flux, net solar radiation, latent heat flux, snow depth, forecast albedo, snow density and temperature at

2m display summed percentage importance between 3-6%.

3.3 Performance of GBR modelling

Tuning the maximum depth permitted for each weak learner tree was important in estimating the best model, and varying265

the number of weak learner trees during hyperparameter tuning improved performance in the case of smaller depths of the

weak learners. Deeper tree structures did not significantly change the model’s performance upon changing the number of trees.

Stochastic gradient boosting (subsampling at 0.7) resulted in reduced performance. The hyperparameter combination of the

best performing GBR model is 100 trees with a maximum depth of 5 nodes . This is depicted in Fig ??
::::
(Fig

:
5
::::
(a)). The best

performing GBR model resulted in an
:
a

:::::
testing

:
RMSE value of 1.071 mwe

::::
1071

::::
mm

:::
we and an R2 value of 0.713. The

::::
0.71.270

:::
The

::::::
testing

::::::
MAE

:::::
value

::
is

::::
774

:::
mm

:::
we

::::
and

:::
the

::::::
testing

:::::::::
nRMSE

:::
and

:::::::
nMAE

:::
are

:::::
0.55

:::
and

::::
0.39

:::::::::::
respectively.

::::
The

:
training

RMSE values are 0.759 mwe
::::
value

::
is

:::
759

::::
mm

::::
we,

:::::
MAE

:::::
value

::
is
::::
659

::::
mm

:::
we,

::::::::
nRMSE

::
is
:::::
0.39,

:::::::
nMAE

::
is

::::
0.34

:
and R2

value is 0.805. Figure 3 depicts the training and testing performance. Figure 4 depicts the scatter plot of actual versus estimated

point glacier mass balance.
::::
0.80.

:

The most important meteorological inputs for the GBR model are Snowfall in July, Downward solar radiation in January275

and December, Forecast Albedo in December, January, February, March and May, Sensible Heat Flux in January, March, May,

November and December, Temperature at 2m in June and August, snow depth in June and surface pressure in August. Note

the marked importance associated with ablation meteorological variables and the months associated with ablation. Permutation

importance expressed as a percentage and summed over the accumulation months depicts the most importance to forecast

albedo followed by sensible heat flux, with both variables depicting a summed percentage importance greater than 10%. Among280

other meteorological variables, downward solar radiation, net solar radiation and snow depth in the accumulation months are

also important. The ablation months depict higher summed importance values with forecast albedo in these months prominent.

Sensible heat flux, latent heat flux, surface pressure, snowfall, snow depth and temperature at 2m above the surface are also

important.

3.4 Performance of SVM modelling285

The SVM model depicted large fluctuations in the test
::::::::
validation score with changes in the hyperparameters. This is represented

in Fig ??
:
5
:::
(b). We considered the hyperparameters of the kernel, degree (for polynomial kernel) and regularisation (penalty)

factor. The sigmoid kernel resulted in evaluation metrics markedly poorer than the radial basis function (RBF) kernel and
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polynomial kernels. The sigmoid kernel was excluded from the graphical representation of the test
:::::::
validation

:
score to emphasise

the variations observed in the other kernels. The polynomial kernel at larger degrees consistently performed better than the RBF290

kernel in the case of regularisation tuning lower than 1. For larger regularisation parameters, the RBF kernels demonstrated

better performance. The best-performing model in this study is the RBF kernel (cost
::::::
penalty

:::::
factor: 10.0). Figure ??

:
5

:::
(b)

depicts the results of hyperparameter tuning for the SVM kernel. The testing RMSE values for the model are 1.085 mwe

::::
1085

::::
mm

:::
we and R2 value is 0.704. The

:::::
0.70.

:::
The

::::::
testing

::::::
MAE

:::::
value

::
is

:::
836

::::
mm

:::
we

:::
and

:::
the

::::::
testing

::::::::
nRMSE

::::
and

:::::::
nMAE

::
are

:::::
0.56

:::
and

::::
0.43

:::::::::::
respectively.

:::
The

:
training RMSE values are 0.727 mwe

::::
value

::
is

::::
727

:::
mm

::::
we,

:::::
MAE

:::::
value

::
is
::::
727

:::
mm

::::
we,295

::::::::
nRMSE

::
is

::::
0.37,

:::::::
nMAE

::
is
:::::
0.37 and R2 value is 0.763. This is represented graphically in Fig 3. Figure 4 depicts a scatter

plot of actual versus estimated point glacier mass balance.
::::
0.76.

:

The permutation importance associated with Sensible Heat Flux March is most important, as is the sensible heat flux as-

sociated with April, May, June and December. Latent heat flux in August and October is important. Snowfall in October and

snow density for the months of November, December and January are important. The temperature at 2m above the surface300

in June and July, downward solar radiation in December and forecast albedo in August, October and December are impor-

tant. Summing the percentage importance over the accumulation and ablation months, we observe that sensible heat flux in

the accumulation months is most important, followed by snow density and downward solar radiation. These three variables

depict a summed percentage importance of more than 6%. The temperature at 2m above the ground and forecast albedo de-

pict importance between 3-6% for the accumulation months. For the ablation months, sensible heat flux continues to depict a305

summed percentage importance of more than 6%. Latent heat flux, snow density, forecast albedo and temperature at 2m above

the surface also depict a summed percentage importance between 3-6%.

3.5 Performance of NN modelling

The NN model performance is highly susceptible to hyperparameter selection. We varied the number of hidden layers in the

network and the number of neurons in each hidden layer. Figure ??
:
5
:::
(c)

::::
and

:::
(d) depicts the variation in performance of the310

model for each of these cases. On the left is the variation in the number of neurons for a single hidden layer. A larger number

of hidden neurons permits more combinations of the inputs that can affect the targets. The improved performance with the

increasing size of neurons illustrates the role of the complexity of the model in estimating mass balance. Increasing the number

of layers also affects the performance of the NN model, with the best performance obtained using two hidden layers. This

further emphasises the importance of incorporating non-linear elements in estimating point mass balance. A larger number of315

hidden layers did not significantly improve performance as the larger number of parameters demanded a larger training dataset

to avoid overfitting and to complete the training. The testing RMSE values for the best performing model are 1.096 mwe

:::::::::::::
best-performing

::::::
model

:::
are

::::
1096

::::
mm

:::
we

:
and R2 value is 0.697. The

::::
0.70.

::::
The

::::::
testing

::::::
MAE

:::::
value

::
is

:::
836

::::
mm

:::
we

::::
and

:::
the

:::::
testing

:::::::::
nRMSE

:::
and

:::::::
nMAE

:::
are

::::
0.56

:::
and

::::
0.43

:::::::::::
respectively.

:::
The

:
training RMSE values are 0.773 mwe

:::::
value

:
is
::::
773

:::
mm

::::
we,

:::::
MAE

:::::
value

::
is

:::
773

::::
mm

:::
we,

:::::::::
nRMSE

:
is
:::::
0.39,

:::::::
nMAE

::
is

::::
0.39 and R2 value is 0.763. This is represented in Fig 3.

::::
0.76.320

The most important meteorological variables in terms of the percentage permutation importance for the NN model are the

Sensible Heat Flux for March, April and May, Latent Heat Flux in July, Surface Pressure in February, the Net Solar Radiation
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in May and September, downward solar radiation in December and forecast albedo in July. Snow Density in December and

the snow depth January, February, April, July, September, October and December are important. We see that snow depth

across the year dominates the important meteorological inputs for this model. Upon summing the percentage importance for325

the accumulation and ablation months, we observe that snow depth is the most important for both accumulation and ablation

months. Snow density, pressure, sensible heat flux and downward solar radiation are also important in the accumulation months,

with a summed percentage importance value between 3-6%. For the ablation months, net solar radiation is also important. Snow

density, forecast albedo, latent heat flux and sensible heat flux are also important, with summed percentage importance values

between 3-6%.330

3.6 Performance of LR modelling

The testing RMSE values for the LR model are 1.248 mwe
::::
1248

::::
mm

:::
we and R2 value is 0.577

::::
0.58 and the training RMSE

values are 1.197 mwe
::::
1197

::::
mm

:::
we and R2 value is 0.608. This is depicted in Fig 3

::::
0.61

::::
(Fig

::
3).

::::
The

::::::
testing

::::::
MAE

:::::
value

::
is

:::
941

::::
mm

::
we

::::
and

:::
the

::::::::
nRMSE

:::
and

:::::::
nMAE

:::
are

::::
0.64

::::
and

::::
0.48

::::::::::
respectively.

::::
The

:::::::
training

:::::
MAE

:::::
value

::
is

:::
935

::::
mm

:::
we,

:::::::::
nRMSE

:
is
::::
0.61

::::
and

:::::::
nMAE

::
is

::::
0.48.335

Snow depth over most of the year is the most important feature for the model, with surface pressure also playing an important

role. Other features do not depict as high an importance value. However, relative importance varies across the months.

4 Discussion

4.1 Comparison of Model Performance and Associated Errors

The performance of each of the models was evaluated using an independent test dataset. The GBR model resulted in the best340

testing performance metrics. It performs marginally better than
:::::
MAE,

:::::::
RMSE

:::
and

:::
R2

::::::
values

::::::::::::
outperforming

:
the RF model.

:
, SVM and NN modelsperform comparably, with the bias performanceof NN being better but RMSE being worse

:
.
::::::
Neural

:::::::
networks

:::::::
resulted

::
in

:::::
better

::::
bias

::::::::::
performance. RF, GBR, SVM and NN significantly improve upon the LR model’s metrics. The

ability of all non-linear models to outperform the linear model is further depicted in each model’s scatter plot (Fig. 4). This

is in agreement with similar studies in other domains, such as King et al. (2020) who showed that tree-based models such as345

RF were preferable to LR models for the bias-correction of snow water equivalent and Rasouli et al. (2012) who depicted the

efficacy of non-linear models in estimation of streamflow when compared to linear models.

The performance of all models is affected by the uncertainties associated with the input features and targets. Inherent errors

exist in point mass balance estimates as heterogeneity is not captured sufficiently by the available measurements (Zemp et al.,

2013; Van Tricht et al., 2021). Of the 727 locations with uncertainty estimation performed, we note a mean uncertainty of350

0.062 mwe
::
62

::::
mm

::
we, which can adversely impact performance evaluation. The uncertainty estimates for the remaining point

locations are unknown; hence, their impact is not constrained. Input meteorological reanalysis data do not fully reflect point

scale data as it has a coarse resolution. Further,
::
In

:::
this

:::::
study,

:::
we

:::
did

:::
not

::::::::
consider

::
the

:::::
effect

:::
of

:::::::::
topography

::::
and

:::::
debris

:::::
cover

:::
for
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::
the

:::::::
models.

::::
This

::::
can

::::
lead

::
to

::::::
inflated

::::::
RMSE

::::::
values.

:::::::
Further,

:::
the

:::
use

::
of
:::::

input
:::::::::::::
meteorological reanalysis data can result in bias,

especially in locations without sufficient ground stations (Guidicelli et al., 2022). Thus, we suggest using a bias correction step355

such as that proposed by Cucchi et al. (2020) in the case of RF, GBR and SVM models. Finally, in this study, we did not consider

the effect of topography and debris cover for the models. This can lead to inflated RMSE values.
:::::::::
Moreoever,

:::
the

::::::::
reanalysis

::::
data

::
do

:::
not

::::
fully

::::::
reflect

:::::
point

::::
scale

::::
data

::
as

::
it

:::
has

:
a
::::::

coarse
:::::::::
resolution.

::::::::::
Approaches

::::
such

:::
as

:::::
using

:
a
::::::
scaling

:::::
factor

:::
or

::::
lapse

::::
rates

:::::
have

::::
been

::::::::
attempted

:::
by

::::::
studies

::::::::::::::::::::::::::::::::::::::
(e.g. Radić et al., 2014; Maussion et al., 2019).

::::::::
However,

:::::
these

::::::
studies

::::::
largely

::::::
utilize

:::::::::::
precipitation

:::
and

::::::::::
temperature

::
as

::::::
inputs,

:::
the

::::::
scaling

::
of

:::::
which

::::
with

::::::::
elevation

:
is
:::::
fairly

:::::::::::::
straightforward.

:::::::::
Choosing

:::::::::
appropriate

::::::
scaling

::::::
factors

:::
for360

::::
other

:::::::::::::
meteorological

:::::::
variables

::::
that

::::
drive

::::::
glacier

:::::
mass

:::::::
balance

:::
(e.g

:::::::
sensible

::::
and

:::::
latent

::::
heat

:::::
fluxes,

:::::::
albedo)

::
is

:::
not

::::::::
intuitive.

:::
We

:::
note

::::
that

:::
the

::::::
effects

::
of

:::
the

:::::
larger

:::::
scale

::
of

:::
the

::::
input

:::::::
variable

::::
will

::::::
persist

::
in

:::
the

::::::
model.

::::::::
However,

::::
these

::::::
effects

::::
will

::
be

:::::::::
consistent

:::::
across

:::
all

:::
the

::::::
models.

:::::
Thus

:::
the

:::::
effect

::
of

:::
the

:::::
input

:::::::
variable

::::
scale

::
is
::::::::::
represented

:::
by

:::
the

:::::::::
uncertainty

::
of

:::
all

::::::
models

::::
and

:
a
:::::::
relative

::::::
analysis

:::
of

:::
the

::::::::::
performance

::
of

:::::::
models

:::
will

::::::
remain

::::::::::::
well-founded.

4.2 Role of Training Dataset Availability365

The testing performance improves with a larger
::
by

::::::::
increasing

:::
the number of training samples. However, the rate of improvement

reduces when including more datasets. This indicates that the training is successful
::
We

:::::::
observe

::::
that

:::
for

:
a
::::::

larger
::::::
number

:::
of

:::
data

::::::
points,

::::::::
marginal

:::::::::::
improvement

::
is
::::::::

observed
:::::
upon

:::::::::
increasing

:::
the

:::::::
number

::
of

:::::::
samples

::::::
further.

::::
The

::::::::
reduction

:::
in

:::
the

:::
rate

:::
of

:::::::::::
improvement for all models , but

:::::::
suggests

::::
that

::
all

::::::
models

::::
have

:::::
been

::::::::::
successfully

::::::
trained.

::::::::
However,

:::
the

::::::::
marginal

::::::::::::
improvements

:::::::
observed

:::::::
suggest

:
a
::::::::
potential improvement in model performance is possible when including more data samples. The RF and370

GBR models overfit the training samples in the case of smaller datasets. The NN model training and testing metrics depict

improved performance with training size. The NN model had the most trainable parameters and hence is most data-intensive.

A larger number of training samples is essential for models with a larger number of trainable parameters. The training perfor-

mance of the LR model deteriorates with increasing training samples. While the graph
::::
(LR

:::::
model

::
of

::::
Fig.

::
2)

:
appears similar to

the RF and GBR training graphs, the relatively close training and testing metrics values suggest that overfitting is not the likely375

cause. Rather, it suggests that the model cannot explain the non-linear relationship between the inputs and the target.

Further, Fig. 2 represents each model’s variation in training and testing evaluation metrics. Each model was trained and tested

over each dataset size. For each model, the box plots are generated utilising the outcome of the models developed using varying

training dataset sizes. The training performance, as expected, is better than the testing performance as the model parameters

are tuned to fit this dataset. The range of values is more extensive for the testing errors as a result of overfitting in the case of380

smaller datasets. In such cases, the use of the SVM model yields better results.

4.3 Unraveling the Physics using Machine Learning-Derived Feature Importance

Assuming a winter accumulation type glacier, we expect the months of November to March to be dominated by accumulation

processes and June to September to be dominated by ablation processes. Analysis of the permutation importance (by percent-

age) of the features of each model was studied month-wise based on a physical understanding of which season-specific features385

will be most important. Figure 6 represents the summed feature importance for each input variable in the accumulation and
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ablation months. We sum the percentage importance rather than the feature importance values to permit comparison between

models. We expect temperature (2m) for ablation seasons to be significant compared to temperatures in the accumulation sea-

son. This is not well reflected when using the LR model. While all the ML models show the reduced importance of temperature

in the accumulation months, it is most pronounced in the case of the RF and GBR models. A similar trend is expected for the390

downward thermal radiation and snowmelt. Here, too the LR model does not reflect the expected outcome. All ML models

depict reduced importance in the accumulation months, with a pronounced reduction observed in the RF and GBR models.

In the case of snowmelt, all ML models and the LR model follow the expected response. Snow depth throughout the year is

important when considering snow density. We expect the depth in the ablation months to be important. All models portray

this except the SVM model. We observe that the LR model relies heavily on snow depth to estimate the mass balance. The395

SVM model reports the exaggerated importance of snow density in the accumulation months. While we expect more impor-

tance to precipitation terms such as total precipitation and snowfall in the accumulation months, we do not observe this for

any model. The LR model did show a weak reduction in the importance of total precipitation and snowfall. However, the ML

models showed only a weak reduction or a weak increase in importance. This can be
::
is

:::::::
possibly a result of the effect of lower

resolution grid cells associated with the meteorological data
::::
scale

::
of

:::
the

:::::::::::::
meteorological

:::::::
variables

::::
used. Net solar radiation and400

albedo are important ablation components. Albedo over snow-covered regions is higher than that of exposed ice or firn. Hence,

the role of albedois less important in the ablation period
::
At

::::::
higher

:::::::::
elevations

:::
and

::
in

:::::::
summer

:::::::
months,

:::
we

::::::
expect

:::::
lower

::::::
values

::
of

::::::
albedo.

::::
Thus

:::::::::
variations

::
in

::::::
albedo

:::
are

::
of

::::::::::
significance. The expected trend

:::::::::
importance

::
of

:::
the

:::::
albedo

:
is observed in the RFand

GBRmodels and inverted in the case of NN, SVM and LR models,
:::::
GBR,

::::
NN

:::
and

:::::
SVM

::::::
model.

:::
LR

:::::::
models,

::
in

:::::::
contrast,

::::::
depict

::::
very

:::
low

:::::::::
importance

:::
of

:::::
albedo

:::
for

:::
the

:::::::::::
accumulation

:::::::
months. Thus we see that the ML models well represent the importance of405

the ablation features. This is in line with the predominantly negative mass balance observed in in-situ measurements.

We can observe that the importance associated with the meteorological variables is not dominated solely by total precipitation

and temperature, as with temperature index models. Thus, ML modelling can represent the contributions of a complete set of

variables with lesser complexity and ease of use than physical models. This also emphasises the requirement for ML models to

use all meteorological variables of interest, as opposed to a subset of them. This is the case with studies such as Bolibar et al.410

(2020). Further, our results agree with the studies conducted by Steiner et al. (2005) and Bolibar et al. (2022) in that artificial

neural networks capture the complexity of the mass balance estimation using non-linear relationships between inputs. However,

we propose that other ML models, notably ensemble tree-based methods, can be used for equivalent to improved estimates in

case of fewer real-world data samples for training. This has also been observed in other studies (e.g. Bair et al., 2018) For

this case, feature importance derived using permutation importance for the ensemble-based models, RF and GBR, represented415

the expected role of meteorological variables in determining feature importance. The evaluation metrics also emphasise the

performance of these models.

4.4
::::::::

Relevance
::
to

::::::
future

::::::
studies

::::
With

:::
the

:::::::::
emergence

:::
of

:::::::
artificial

::::::::::
intelligence

::::::::::
techniques,

::
a
:::::::
number

::
of

::::::
studies

:::::
have

:::::::::
employed

::::
deep

:::::::
learning

::::::::::
algorithms

:::
for

::::::::
numerous

::::::::::
applications.

::
A
::::::::
majority

::
of

::::
these

::::::
studies

:::
use

::::::
neural

::::::::
networks

::
to

:::::::::
incorporate

:::::::::::
non-linearity

::
in

:::
the

::::::::
modelling

::
of

:::::::
various420
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::::
Earth

::::::::::
observation

:::::::::::
applications.

::::::::
However,

:
a
::::

host
:::
of

:::
ML

:::::::::
techniques

:::::
exist

:::::
which

::::::
remain

::::::::::::
under-utilized.

::::
This

::
is
:::::
being

:::::::
studied

::
in

::
the

::::
ML

::::::::::
community

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Fernández-Delgado et al., 2014, studied 179 classification models)

:::
and

::
it

:::
has

::::
been

::::::::
observed

::::
that

:::
for

::::::
tabular

:::::::
datasets,

:::::::::
tree-based

::::::
models

::::::
remain

:::
the

::::
state

::
of

:::
the

:::
art

:::::::::::::::::::::::::::::::::::::::::::::
(Shwartz-Ziv and Armon, 2021; Grinsztajn et al., 2022)

:::
for

::::
both

::::::::::
classification

::::
and

:::::::::
regression

::::::::
problems

:::
for

:::::::::::
medium-sized

:::::::
datasets

::::::::
(training

:::::::
samples

:::::
under

:::::::
10,000).

::::
Our

:::::
study

:::
also

:::::::
depicts

:::
the

::::::::
improved

::::::::::
performance

:::
of

::::
GBR

:::::::
models

:::::
which

::
is
::
in
::::

line
::::
with

:::::
these

::::::
recent

:::::::
findings.

::::::
While

:
it
:::::::

largely
::::::
follows

:::
the

:::::::::::
assumptions425

::::
made

:::
by

:::::::::::::::::::
Grinsztajn et al. (2022),

:::
we

:::::::::::
demonstrate

::
the

::::
case

:::
of

::::::::
regression

::::
with

::::::::::::
heterogeneous

::::
and

::::::::::::
interdependent

:::::
input

:::::::
features

:::
and

:
a
::::::
voided

::::::::::
assumption

::
of

:::
the

:::::::
identical

:::
and

:::::::::::
independent

:::::::::
distribution

::
of

:::::::
samples

::::
also

:::::
depict

::
a

:::::
better

::::::::::
performance

:::
by

::::::::
ensemble

::::::::
tree-based

:::::::
models.

:::::::
Glacier

:::::
mass

::::::
balance

:::::::
datasets

::::::
being

:::::::
typically

::::::::::::
medium-sized

:::::::
datasets

:::::
with

::::::::
correlated

:::::
input

::::::::
features,

:::
we

:::::::::
recommend

::::
that

::::::
studies

::::::
aiming

::
to

:::
use

::::
ML

:::
for

::::::::
modelling

:::
the

:::::
Earth

::::::
system

:::::::
consider

:::
the

::::::::::::::
ensemble-based

:::::::::
techniques.

::
A

:::::::
number

::
of

:::::::::::::
ensemble-based

:::::::::
techniques

::::
exist

:::::
which

:::::::
include

:::::::
bagging

::
as

::::
used

::
by

:::
RF,

::::
and

:::::::
boosting

::
as

::::
used

:::
by

::::::::
Adaboost

:::
and

:::::
GBR.

:::::::
Further,430

::::::
studies

:::::
which

:::::::
combine

::::::::
ensemble

:::::
trees

::::::
models

::::
with

::::
deep

:::::::
learning

:::
are

::::
also

:::::
being

::::
used

:::::::::
effectively

:

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Shwartz-Ziv and Armon, 2021, used XGboost in tandem with an ensemble of deep models)

:
.
:::::::::::::::::
Bolibar et al. (2020)

:::::
utilize

:
a
:::::::::::::::::
Leave-One-Year-Out

::::
and

:::::::::::::::::::
Leave-One-Glacier-Out

:::::
mode

::
of

::::::
testing

:::
the

:::::::::::
performance

::
of

:::
the

::::::
model.

::::
This

::
is

::
in

:::
line

::::
with

:

:::::::::::::::::
Roberts et al. (2017)

:::
who

:::::::
suggest

:::
that

::::::::
spatially

:::
and

:::::::::
temporally

:::::::::
structured

:::::::
datasets

:::::
would

::::::
benefit

:::::
from

:
a
::::::::
manually

::::::::
designed

:::::::
blocking

:::::::
strategy.

:::
As

:::
the

::::::
testing

::::
and

::::::::
validation

:::::
splits

::::
will

:::::
result

::
in

::::::
similar

::::::
effects

::
in

:::
all

:::
the

:::::::
models,

:::::::::
performing

::::
the

:::::::
grouped435

:::::::
splitting

::::
does

:::
not

::::::
provide

::::::::
immense

::::
value

::
to
::::
this

:::::
study.

::::::::
However,

:::
for

::::
cases

::::::
where

:
a
:::::
single

::::::
model

:
is
::
to
:::
be

::::
used

::
to

:::::::
estimate

::::::
glacier

::::
mass

:::::::
balance,

:::
the

:::::
Leave

::::
One

:::::::
Glacier

:::
Out

:::
and

::::::
Leave

::::
One

::::
Year

:::
Out

:::::::::
techniques

:::
are

::::::
useful.

:

::
An

::::::
aspect

:::
not

::::::::::
considered

::
in

::::
this

:::::
study

::
is

:
a
:::::::

transfer
:::::::
learning

::::::::
approach

:::
to

:::
the

::::
ML

::::::::
modelling

::::::
where

::::::
glacier

:::::
mass

:::::::
balance

::::::
datasets

:::::
from

::::
other

::::::::
locations

::::
can

::
be

::::
used

::
to

::::::::
pre-train

:::
the

:::::
neural

:::::::
network

::::
and

:::::::
generate

:::
an

::::::::::
initialization

::
of

:::::::
weights

::
to

:::
be

:::::
tuned

::
by

:::
the

::::::
dataset

::
of

:::
the

::::::
region

::
of

::::::
interest

:::::::::::::::::::::::
(see Anilkumar et al., 2022).

:::
In

:::
line

::::
with

:::::::
utilizing

:::::::
datasets

::::
from

:::::
other

::::::::
locations,

:::::::
another440

:::::
aspect

::
to

::::::::
consider

::::
with

::::::
glacier

:::::
mass

:::::::
balance

:::::::
datasets

::
is

:::
the

:::::::::::::
generalizability

:::
of

:::
the

:::::::
models.

:::::::::::::
Understanding

:::::
which

::::::::
machine

:::::::
learning

:::::
model

:::
can

:::
be

::::
used

:::
for

:::::
local,

:::::::
regional

::::
and

:::::
global

:::::::
analysis

::
is
:::::::::
important

:::
and

::::
will

::
be

::
a

:::::
useful

:::::
study

::
to

::::
take

:::
up.

:::::::
Feature

:::::::::
importance

:::::::::
associated

::::
with

:::
the

::::
local,

:::::::
regional

::::
and

:::::
global

:::::::
analysis

::::
also

:::
will

:::::::
provide

::::
new

::::::
insights

::::
into

:::
the

:::::::
changes

::
in

:::
the

::::::
glacier

::::
mass

:::::::
balance

::
at

::::
these

::::::
scales.

5 Conclusions445

In this study, we constructed 4 ML models to estimate point glacier mass balance for the RGI order one region 11: Central

Europe. We used the ERA5-Land reanalysis meteorological data to train the models against point measurements of glacier

mass balance obtained from the FoG database. In addition to the NN model, which is being increasingly utilised for glacier

mass balance estimation, we used other classes of ML models, such as ensemble tree-based models: RF and GBR, and the

kernel-based model: SVM. We compared these ML models with an LR model commonly used for mass balance modelling.450

Care must be taken to tune the hyperparameters for the GBR, NN and SVM models. We observe that for these models,

hyperparameter tuning was beneficial for improving the estimates of glacier mass balance. For smaller datasets, ensemble

models such as RF and GBR depict overfitting. The NN model requires more data samples for effective training. We suggest

14



the use of a kernel-based model in such situations. The SVM model can effectively be used in the case of a smaller number of

data samples, which is characteristic of real-world datasets. The LR model is consistently unable to capture the complexity of455

the data and underperforms. For larger datasets, ensemble models such as RF and GBR perform slightly better in terms of R2

and RMSE. However, NN models depict the least bias. The meteorological variables obtained from reanalysis datasets are

associated with high bias. Using NN and LR models permits us to use them directly. For other models, bias correction should

be incorporated in the preprocessing. Representation of real-world features is also performed more effectively by RF and GBR

models. These models indicate the importance of ablation features dominating the mass balance estimates. This is expected460

as the mass balance measurements are primarily negative. Further, feature importance suggests that features such as forecast

albedo, sensible heat flux, latent heat flux and net solar radiation also play a pivotal role in estimating point mass balance. Thus

inclusion of these additional variables might be of importance for future studies.

Code and data availability. The data used for the study is the monthly mean ERA5-Land reanalysis product for inputs features and point

mass balance measurements from the Fluctuation of Glaciers database for the target data. The code for processing the data and applying all465

models used in this study is available at https://github.com/RituAnilkumar/pt-gmb-ml

Author contributions. RA, RB and DJC were involved in the design of the study. RA wrote the code for the study and produced the figures,

tables and first draft of the manuscript using inputs from all authors. RB, DC and SPA proofread and edited the manuscript. RA performed

the first level of analysis, which was augmented by inputs from RB, DJC and SPA.

Competing interests. The authors report that this study contains no competing interests470

Acknowledgements. The authors acknowledge the engaging discussions with peers, most notably Dr Aniket Chakraborty, who always lent a

patient ear and sound suggestions to roadblocks along the way.

15



References
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Table 1. Grid of settings used for hyperparameter tuning of each of the models

Machine learning model Hyperparameter Values

Random Forest Number of trees 10,20,50,100

Number of trees 50,100,200

Gradient Boosted Regressor Subsampling 0.7, 1.0

Maximum Depth 3,5,10

Cost 0.1, 1, 10, 20

Support Vector Machine Kernels Sigmoid, Radial Basis Function, Polynomial

Degree (polynomial kernel) 2, 3, 4, 5

Artificial Neural Network Number of layers and nodes 1: 10, 50, 100, 200, 300, 400, 500,

2: (100, 50), (200, 100), (400, 200), (200, 400)

3: (400, 200, 100), (500, 200, 100), (200, 100, 50), (100,

50, 10),

4: (200, 300, 400, 500), (300, 200, 100, 50), (200, 100,

50, 10)
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Figure 1. Flowchart of the methodology
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Figure 2. Training
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Figure 3. Training and testing performance of each of the models: Random Forest (RF), Gradient Boosted Regression (GBR), Support

Vector Machine (SVM), Artificial Neural Network (ANN) and Linear Regression (LR)
::::::
depicted

:::::
using

::
the

::::::::::
performance

::::::
metrics

:::
(a)

::::
Root

::::
Mean

::::::
Squared

:::::
Error,

:::
(b)

::::::::
Coefficient

::
of

:::::::::::
Determination,

:::
(c)

::::
Slope

:::
and

:::
(d)

:::::::
Additive

:::
Bias
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Figure 4. Testing scatter plot depicting the performance for each of the models: Random Forest (RF), Gradient Boosted Regression (GBR),

Support Vector Machine (SVM), Artificial Neural Network (ANN) and Linear Regression (LR)
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Figure 5. Hyperparameter tuning for the gradient boosted regressor
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NN
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Hyperparameter tuning for the support vector machine model varying the kernels and regularization values as well as degree in case of the

polynomial kernel.

Hyperparameter tuning for the artificial neural network model varying the number of hidden layers and the number of neurons in the layer

Figure 6. Percentage importance of all features summed over the accumulation and ablation season for the models: Random Forest (RF),

Gradient Boosted Regression (GBR), Support Vector Machine (SVM), Artificial Neural Network (ANN) and Linear Regression (LR). The

figure has an x-axis limited to 13 for representation. The abbreviations used in the figure are expanded in Supplementary file S1.
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