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Key Points: 10 

¶ Spatial scale of the transition from geostrophically balanced to unbalanced motions is 

estimated regionally from satellite altimetry data for the first time. 

¶ Results agree with in situ observations and predictions from high-resolution models 

including tidal forcing. 

Abstract 15 

The oceanôs sea surface height (SSH) field is a complex mix of motions in geostrophic 

balance and unbalanced motions including high-frequency tides, internal tides and internal 

gravity waves. Barotropic tides are well estimated for altimetric SSH in the open ocean, but 

the SSH signals of internal tides remains. The transition scale, Lt, at which these unbalanced 

ageostrophic motions dominate balanced geostrophic motions, is estimated for the first-time 20 

using satellite altimetry. Lt is critical to define the spatial scales above which surface 

geostrophic currents can be inferred from SSH gradients. We use a statistical approach based 

on the analysis of 1 Hz altimetric SSH wavenumber spectra to obtain four geophysical 

parameters that vary regionally and seasonally: the background error, the spectral slope in the 

mesoscale range, a second spectral slope at smaller scales, and Lt. The mesoscale slope and 25 

error levels are similar to previous studies based on satellite altimetry. The break in the 

wavenumber spectra to a flatter spectral slope can only be estimated in mid-latitude regions 

where the signal exceeds the altimetric noise level. Small values of Lt are observed in regions 

mailto:overgara@groupcls.com


2 
 

of energetic mesoscale activity, while larger values are observed towards low latitudes and 

regions of lower mesoscale activity. These results are consistent with recent analyses of in 30 

situ observations and high-resolution models. Limitations of our results and implications for 

reprocessed nadir and future swath altimetric missions are discussed.  

1 Introduction  

Global maps of multi-mission satellite altimetry sea surface height (SSH) are widely used in 

the ocean community, resolving the larger mesoscale dynamic scales greater than 150-200 km 35 

in wavelength (Chelton et al., 2011; Ballarotta et al., 2019). Our understanding of upper ocean 

dynamics in the smaller mesoscale to submesoscale wavelength range (roughly 15-200 km) 

has seen great improvement in recent years due to the combined use of in situ measurements 

and state-of-the-art high-resolution ocean models (Sasaki et al 2014; Rocha et al. 2016a, 

2016b; Qiu et al. 2017, 2018; Klein et al., 2019).  Processes at these spatial scales are 40 

essential in determining the upper ocean energy budget through the kinetic energy cascade 

and energy dissipation (e.g. Ferrari and Wunsch 2009; McWilliams, 2016; Rocha et al., 

2016a). Additionally, they play a critical role in connecting the surface ocean with the 

interior, through the modulation of the mixed layer seasonality and heat transfer (Capet et al., 

2008; Klein et al., 2008; Thomas et al., 2008; Su et al., 2020; Siegelman, 2020). 45 

Kinetic energy and SSH variance at these 15-200 km spatial scales is partitioned between 

balanced (geostrophic) and unbalanced (ageostrophic) motions. Quantifying the relative 

importance of each component of the flow across the ocean is capital for the correct 

calculation of geostrophic currents from SSH for all satellite altimetry missions, including the 

upcoming Surface Water and Ocean Topography (SWOT) high-resolution altimetry mission. 50 

Barotropic tides are well estimated for altimetric SSH in the open ocean, but the SSH signals 

of other ageostrophic high-frequency motions remains. Recent results show that, depending 
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on the location and season, the energy and SSH signature associated with unbalanced motions 

(including near-inertial flows, internal tides, and inertia-gravity waves) can overcome that of 

the balanced motions at smaller scales (Rocha et al., 2016b; Qiu et al., 2018, Chereskin et al., 55 

2019), imposing a wavelength boundary beyond which SSH measurements provided by 

satellite altimetry can no longer be used to infer upper ocean geostrophic flows. Documenting 

the spatial scale at which this occurs (the so-called transition scale, Lt) for the world ocean 

has become one of the focal points of recent efforts in the satellite altimetry and SWOT 

communities (Qiu et al., 2017, 2018; Wang et al., 2018). 60 

Tackling this problem needs high-resolution ocean data, ideally in space and time. To date, 

progress on documenting Lt has been achieved exclusively through the use of in situ data in a 

few limited regions and high-resolution global models, given the insufficient time-space 

resolution of sea surface height (SSH) maps from multi-mission altimetry (these maps have 

decorrelation scales of ~15 days and 200 km; Chelton et al., 2011; Ballarotta et al 2019). In 65 

constructing the altimetric SSH maps, the spatial scales below 200km are severely smoothed 

by the optimal interpolation algorithm, conserving only a small portion of the signal at small 

wavelengths (e.g. Ray and Zaron, 2016; Dufau et al., 2016).   

Alongtrack altimeter data have a finer spatial resolution than the mapped data, and recent 

reprocessing now allows us to access oceanic scales down to 50-70 km for Jasonïclass 70 

altimeters, and 35-50 km for Saral/AltiKa (Dufau et al., 2016; Vergara et al., 2019; Lawrence 

and Callies, 2022). Most of the unbalanced internal tide energy, and some of the internal 

gravity wave energy, occurs at scales larger than 40 km wavelength and can be observed with 

the latest alongtrack altimetry data (Zaron, 2019). Using alongtrack SSH data from recent 

altimetric missions and a statistical approach based on wavenumber spectral analysis, this 75 

paper will document the global distribution of Lt. Considering the noise characteristics of 

different altimetric missions, we limit our Lt estimates to regions where they exceed the local 
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observability wavelength. We also take into account the uncertainties associated with the 

altimetric measurements and the influence of this error in our estimates.  

Our satellite altimetry wavenumber spectral Lt estimates are consistent with previous studies 80 

based on modeling or in-situ analysis:  small values of Lt are observed in the highly energetic 

western boundary current systems and in the vicinity of the ACC (Rocha et al., 2016b, Qiu et 

al., 2018) suggesting a dominance of geostrophically balanced motions on the surface kinetic 

energy field. On the other hand, Lt is larger in the vast intertropical ocean (20°S-20°N), 

suggesting a significant contribution of energetic wave-type motions to the upper ocean SSH 85 

field here.  

2 Data and Methods 

2.1 Sea Surface Height (SSH) 1Hz data 

Alongtrack SSH data from two missions with different technologies (Jason-3 ï J3 

conventional nadir altimetry and Sentinel-3A ï S3 Synthetic Aperture Radar nadir altimetry) 90 

are analyzed at a global scale. The time period analyzed spans their common 4-year period, 

from March 2015 to March 2019.  

Alongtrack SSH observations are maintained at their original 1 Hz observational position with 

7 km spacing, and are corrected for all instrumental, environmental, and geophysical 

corrections (Taburet et al., 2019). Only time dependent variations of alongtrack SSH 95 

measurements are considered, following Stammer (1997), Le Traon et al. (2008) and Xu and 

Fu (2011, 2012). Since S3 is on a new repeat track, Sea Level Anomalies (SLAs) are 

computed for both missions by subtracting the Mean Sea Surface model CNES_CLS_2015 

(Schaeffer et al. 2016; Pujol et al., 2018) from the alongtrack SSH measurements.  

2.2 Unbiased wavenumber spectrum and spectral shape analysis 100 
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In order to obtain regionally varying spectral estimates, we apply the methodology described 

in Vergara et al (2019). We sample the alongtrack SSH measurements inside a 12°x12° 

regional box and then subsample the tracks of each pass inside this regional box to a constant 

length of 1200 km. Individual spectral estimates are then obtained by performing a spatial 

Fast Fourier Transform (FFT) on each 1200 km subsample. A Tukey window of 0.5 width is 105 

applied to the data in order to minimize boundary effects when performing the FFT over the 

finite dataset (Tchilibou et al., 2018). Data overlapping is allowed but limited to a 250 km 

overlap. We verified that the overlapping scale is larger than the local spatial decorrelation 

scale (estimated from the first zero-crossing of the local autocorrelation function), to avoid an 

artificial overrepresentation of certain spatial scales introduced by the overlapping. The 110 

regional spectrum is then obtained by averaging the individual spectral estimates inside the 

12°x12° box. Global coverage is obtained by iteratively repeating this process every 2° in 

longitude and in latitude.  

For each average spectrum, we estimate the 1 Hz error level by fitting a straight-flat line to 

the SLA Power Spectral Density (PSD) level for wavelengths between 15 and 30 Km 115 

wavelength; a similar technique was applied by Xu and Fu (2011); Dufau et al. (2016); 

Vergara et al (2019). This straight-line fit is horizontal for J2 and S3 (white noise). The 

spectrum shape of S3 shows a slight slope over the 15 to 30 km wavelength range (red-type 

noise), which is a characteristic effect of the wind wave field on the SAR measurements 

(Moreau et al., 2018). The differences on the unbiased spectrum and our methodology when 120 

applying either a red noise or white noise fit to the 15-30 km band of S3 data are explored in 

Appendix A.  

The spatial patterns of the noise levels for Jason-3 and Sentinel-3A (Figure 1a, 2a) 

approximately follow the spatial distribution of significant wave height (Dufau et al., 2016), 

with peaks in the regions of high sea-state in the North Atlantic, Southern Ocean, and off the 125 
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coast of South Africa. The increased SSH noise of the current generation of satellite 

altimeters due to surface waves is well documented for both radar and SAR altimeters (Tran 

et al., 2002; Moreau et al., 2018; 2021). The latitudinal trend (Figures 1c, 2c) shows an 

increase of the noise levels from the equator towards the poles, in agreement with previous 

studies (Dufau et al., 2016; Vergara et al. 2019). Annual mean Jason-3 wavenumber spectra 130 

noise levels range from 1.8 cm rms at the equator to 2.8 cm rms in the Southern Ocean, 

whereas the Sentinel-3 SAR noise floor is smaller (1.4 cm rms at the equator and 2.3 cm rms 

in the Southern Ocean). In general, noise levels observed for both satellites indeed show local 

maxima in the vicinity of the Gulf Stream, Kuroshio extension and the ACC, related to local 

geophysical effects such as rain cells and more importantly the local wind wave field. Despite 135 

the relatively higher noise levels observed in these regions, the mesoscale signal is also strong 

and therefore the signal to noise ratio remains favorable over these highly energetic regions 

(Figures 1b and 2b). 
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Figure 1. (a) Average spectral noise level in meters RMS and (c) its zonal average for Jason-140 

3. Noise level is computed as the average PSD value between 15 and 30 km wavelength. (b) 

Observable Wavelength, or wavelength for signal-to-noise ratio equal to 1 (in Km) and its 

zonal average (d). The observable wavelength is computed as the intercept wavelength for the 

mesoscale spectral slope and the noise level. White contours represent the topography at 3000 

m depth. 145 
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Figure 2. Same as Figure 1, but for Sentinel-3A data. 

 

This computed flat noise spectral level is then subtracted from the PSD estimates over the 150 

entire wavenumber range, which provides an unbiased estimate of the regionally-averaged 

spectrum (Xu and Fu, 2012). We then analyze the unbiased spectrum in order to determine 

two spectral slopes, taking into account the variations of spectral slope values in the fit. The 

mesoscale spectral slope is calculated within a geographically variable wavelength range: the 

maximum mesoscale wavelength is where the spectral shape significantly (at 95%) departs 155 

from the observed mesoscale spectral slope (usually occurring at wavelengths larger than 500 

km), and the minimum regional wavelength limit is based on the local eddy length scale, as in 
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Vergara et al. (2019). Where possible, a second smaller-scale spectral slope is determined at 

wavenumbers between 30 km wavelength and the lower mesoscale spectral slope limit. 

In order to analyze the two slopes from the regional unbiased spectrum shape, we least-square 160 

fit a linear model to the average spectrum obtained from observations in the logarithmic 

space, defined as: 

Ὢὼ ὼ
ρπ  

ὼ
ρπ  

    (1)  

where x corresponds to the observed SSH values after applying the Fourier transform, a1 and 

a2 are the intercepts and b1 and b2 the spectral slopes. This model is therefore defined as the 165 

sum of two straight lines in the log-log space, each one representing a different part of the 

spectrum and capturing a different variability regime. The benefit of performing a 

simultaneous double-fit  for analyzing the spectral shape compared to successive individual 

least-square fits is two-fold: (1) considering the sum of two linear models preserves the shape 

of the observed unbiased spectrum and also allows for curvature where there is a shift in the 170 

spectral slope, representing the observed spectrum in a realistic manner. (2) The uncertainty 

associated with our spectral slope estimates is continuous across the entire wavelength range 

considered by the model, which is not the case if we consider two successive fits that will 

minimize the fit errors only for a prescribed wavelength range. We apply this model to each 

regionally-averaged unbiased spectrum, between 30 km wavelength and the upper mesoscale 175 

wavelength, following Vergara et al. (2019). 

The fitting algorithm is initialized using a first guess for the spectral slopes across the 

wavelength range: for the mesoscale spectral slope we follow Vergara et al. (2019), using the 

change in spectral slope at low wavenumber and the local eddy length scale as the wavelength 

bounds. The small-scale fit is initially computed as a linear fit between the spectral signal at 180 

30 km wavelength and the signal at the local eddy length scale. These values are used for the 
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first iteration and are recomputed at each step of the least-square minimization procedure to 

best resolve the double fit, maintaining the end points of the 30 km wavelength and the slope 

change at low wavenumber boundaries. The minimization process then adjusts the mesoscale 

and small-scale intercept to better capture the overall shape of the unbiased PSD. 185 

An example of the results of this two-slope methodology are presented in Figure 3a for a 

region in the north Pacific Ocean, in comparison to the single mesoscale slope fit of Vergara 

et al. (2019) in Figure 3b. The one-slope mesoscale slope fit in Figure 3b follows the 

wavenumber curve well within the defined mesoscale range (vertical dashed lines) with a 

slope of k-4.5, and a change in spectral slope is clearly evident at scales smaller than 120 km in 190 

wavelength. The two-slope mesoscale fit is slightly steeper in the mesoscale range (k-4.9) but 

the change in slope is well captured at smaller scales down to 30 km in wavelength (k-2.5), and 

the sum of the two linear fits follows the change in curvature of the observed spectral slope 

(bold solid line). The two-slope linear fit is constrained by inverse-weighting the observations 

according to the confidence interval of the average spectrum (gray shading in Figure 3a). 195 

Using the 4-years of data and multiple tracks within our 12°x12° box, we can expect the 

linear fit to be well constrained in the mesoscale wavelength range, and the error associated 

with the estimates of the slope and the intercept to be relatively low. On the other hand, since 

the confidence interval becomes larger towards smaller wavenumbers (a consequence of 

subtracting the noise level), the uncertainty in the slope/intercept estimates increases towards 200 

shorter wavelengths and the smaller-scale slope fit has higher uncertainty.  
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Figure 3. (a) Result of the double slope methodology used to characterize the spectral shape 

over the unbiased power spectral density (PSD) (full gray line). The original and unbiased 205 

PSD (dashed blue and gray lines) and the 95% confidence interval of the average PSD (blue 

and gray shading) are shown. The mesoscale and small-scale spectral slope fits (dashed 

black), combined double linear fit model (full black), and the Lt intercept of large- and small-

scale spectral slopes (blue dot, including its uncertainty), are also illustrated. (b) Single 

mesoscale fit method, as in Vergara et al. (2019). As a reference, the result of the PSD fit 210 

from 3a is also plotted (dashed green line). Unbiased average PSD (full gray line) and 95% 

confidence on the average estimate (gray shading) analyzed using the wavelength range 

depicted by the vertical dashed lines to characterize the spectral slope. Average spectral slope 

and their corresponding 1-sigma values are indicated in the inserts. (c) Zone where the 

average PSD sample is computed from J3 data over 2015-2019. 215 

 

2.3 Observability  wavelength 

The Observability Wavelength (OWL) is defined as the threshold wavelength where the SSH 

spectral signal exceeds this flat noise level (i.e. SNR > 1). Given that the first Rossby radius 

of deformation and the eddy length scales (Eden, 2007) both generally decrease towards 220 

higher latitudes whereas the noise level increases due to higher sea-state, one would expect 
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that the OWL scales would increase towards high latitudes. The zonal average of the 

Observable Wavelength (OWL) for both satellites is summarized in Figures 1d and 2d. The 

combined regional variability of the mesoscale spectral slope and the noise levels both 

contribute to the complex observed patterns of the OWL (Figures 1b, 2b). For regions with 225 

strong mesoscale variability signals (e.g. Southern Ocean, Gulf Stream, Kuroshio, Agulhas 

current), the local observable wavelength is short despite relatively high noise levels. The 

observable wavelength for Jason-3 varies from 40 km in the western tropical Pacific, 50-60 

km in the western boundary currents and can reach 90 km in the low energy Eastern North 

Pacific due to the higher noise levels. Zonal averages across these regional patterns lead to 230 

values between 60-70 km (Figure 1d), whereas the zonally averaged OWL for Sentinel-3 

reaches 65-70 km in the mid latitudes, but only 50 km in the equatorial band. 

2.4 Uncertainty analysis for the intercept wavelength 

In addition to the fitting parameters for the model described by Eq. (1), we compute the 

uncertainty associated with the least-square fitting, related to each parameter. This helps us in 235 

the interpretation of the results by allowing us to estimate the validity of the spectral slope 

values for the large and small wavelength ranges, and also their intercept.  

The uncertainty (or error) emerges from the confidence interval envelope obtained when 

computing the regional average spectrum (gray shaded area in Fig. 3a and 3b). On this log 

scale, the 95% envelope of the average PSD appears to grow considerably towards high 240 

wavenumbers. This is a consequence of the denoising method: the 95% envelope is impacted 

by the subtraction of the noise plateau computed between 15 and 30 km wavelength and the 

effect will become more evident in the high wavenumber part of the spectrum, given that the 

smaller amplitude of the PSD values is closer to the noise level. 



13 
 

Using the uncertainty estimates from the mesoscale and small-scale spectral slopes, we can 245 

determine the error associated with their intercept by propagating the uncertainty as:  

ὒ‏ ὒ Ͻ      (2) 

where Lt is the intercept wavelength, a1 and a2 the slopes and b1 and b2 the intercepts of the 

two lines fitted to the observed PSD. The 1-ů deviations from the fitted parameters a and b are 

denoted by ŭ. 250 

3. Results 

In this section, we analyze the temporal mean geographical distribution of the mesoscale and 

small-scale spectral slopes computed using the model described by Eq. (1). Additionally, we 

estimate (when possible) the intercept wavelength between the two slopes in the spectral 

space. This characteristic intercept wavelength may be considered as a first-order approach to 255 

the transition scale (Lt) calculated from model analyses by Qiu et al (2018), and from in situ 

observations in Qiu et al (2017). However, we do not analytically separate the contributions 

of the first-three baroclinic modes of internal gravity waves (IGW) as in Qiu et al (2018), so 

the intercept scale that we present here is a statistical position from SSH wavenumber spectral 

slope changes, and not a dynamical calculation. The spectral slope changes can delineate the 260 

separation of mesoscale balanced motions from a combination of small-scale balanced 

motions, unbalanced motions and altimetric observation errors. 

3.1 Meso- and small-scale spectral slopes 

The methodology used to analyze the spectral shape does not explicitly separate the 

geostrophically balanced mesoscale regimes from small-scale regions of the spectrum. 265 

However, it allows us to infer their associated contributions to the observed PSD by means of 



14 
 

the change in spectral slopes and their intercept. We will refer to the results of either part of 

the bi-linear model as meso- and small-scale spectral slopes.  

3.1.1 Mesoscale spectral slope 

The geographical distribution of the mesoscale spectral slope values is very close for the two 270 

missions analyzed (Figures 4a and 5a), showing larger slope values over the Western 

boundary current systems, as well as the Antarctic Circumpolar Current, indicative of the 

energetic mesoscale circulation that is observed in both regions. The observed spectral slope 

values in these highly-energetic regions vary between k-4 and k-5, for both Jason-3 and 

Sentinel-3A, and are in general agreement with the distribution reported in Vergara et al. 275 

(2019). Conversely, the lowest spectral slope values are observed in the intertropical band 

(equatorward of 15°), with slope values between k-2 and k-3, also consistent with values 

obtained using a simple fit methodology (Xu & Fu, 2012; Dufau et al., 2016; Vergara et al., 

2019).  
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 280 

Figure 4.  (a) Mesoscale and (b) small-scale spectral slopes fitted to the observed unbiased 

PSD from Jason-3. (c) Zonal average of the mesoscale (Lg SL) and small-scale (Sm SL) 

spectral slopes in (a) and (b). Color shading around the average values correspond to the 95% 

confidence interval for the zonal mean. Vertical gray lines denote the k-11/3 and k-5 spectral 

slope values. Gray shading in (b) corresponds to zones where the uncertainty associated with 285 

the slope estimate is higher than 40% of the slope value. Blanks zones in (b) corresponds to 

zones where the double slope model does not describe the observed shape of the spectrum. 

White contours represent the topography at 3000 m depth. 

 


