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Key Points: 10 

• Spatial scale of the transition from geostrophically balanced to unbalanced motions is 

estimated regionally from satellite altimetry data for the first time. 

• Results agree with in situ observations and predictions from high-resolution models 

including tidal forcing. 

Abstract 15 

The ocean’s sea surface height (SSH) field is a complex mix of motions in geostrophic 

balance and unbalanced motions including high-frequency tides, internal tides and internal 

gravity waves. Barotropic tides are well estimated for altimetric SSH in the open ocean, but 

the SSH signals of internal tides remains. The transition scale, Lt, at which these unbalanced 

ageostrophic motions dominate balanced geostrophic motions, is estimated for the first-time 20 

using satellite altimetry. Lt is critical to define the spatial scales above which surface 

geostrophic currents can be inferred from SSH gradients. We use a statistical approach based 

on the analysis of 1 Hz altimetric SSH wavenumber spectra to obtain four geophysical 

parameters that vary regionally and seasonally: the background error, the spectral slope in the 

mesoscale range, a second spectral slope at smaller scales, and Lt. The mesoscale slope and 25 

error levels are similar to previous studies based on satellite altimetry. The break in the 

wavenumber spectra to a flatter spectral slope can only be estimated in mid-latitude regions 

where the signal exceeds the altimetric noise level. Small values of Lt are observed in regions 
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of energetic mesoscale activity, while larger values are observed towards low latitudes and 

regions of lower mesoscale activity. These results are consistent with recent analyses of in 30 

situ observations and high-resolution models. Limitations of our results and implications for 

reprocessed nadir and future swath altimetric missions are discussed.  

1 Introduction 

Global maps of multi-mission satellite altimetry sea surface height (SSH) are widely used in 

the ocean community, resolving the larger mesoscale dynamic scales greater than 150-200 km 35 

in wavelength (Chelton et al., 2011; Ballarotta et al., 2019). Our understanding of upper ocean 

dynamics in the smaller mesoscale to submesoscale wavelength range (roughly 15-200 km) 

has seen great improvement in recent years due to the combined use of in situ measurements 

and state-of-the-art high-resolution ocean models (Sasaki et al 2014; Rocha et al. 2016a, 

2016b; Qiu et al. 2017, 2018; Klein et al., 2019).  Processes at these spatial scales are 40 

essential in determining the upper ocean energy budget through the kinetic energy cascade 

and energy dissipation (e.g. Ferrari and Wunsch 2009; McWilliams, 2016; Rocha et al., 

2016a). Additionally, they play a critical role in connecting the surface ocean with the 

interior, through the modulation of the mixed layer seasonality and heat transfer (Capet et al., 

2008; Klein et al., 2008; Thomas et al., 2008; Su et al., 2020; Siegelman, 2020). 45 

Kinetic energy and SSH variance at these 15-200 km spatial scales is partitioned between 

balanced (geostrophic) and unbalanced (ageostrophic) motions. Quantifying the relative 

importance of each component of the flow across the ocean is capital for the correct 

calculation of geostrophic currents from SSH for all satellite altimetry missions, including the 

upcoming Surface Water and Ocean Topography (SWOT) high-resolution altimetry mission. 50 

Barotropic tides are well estimated for altimetric SSH in the open ocean, but the SSH signals 

of other ageostrophic high-frequency motions remains. Recent results show that, depending 



3 
 

on the location and season, the energy and SSH signature associated with unbalanced motions 

(including near-inertial flows, internal tides, and inertia-gravity waves) can overcome that of 

the balanced motions at smaller scales (Rocha et al., 2016b; Qiu et al., 2018, Chereskin et al., 55 

2019), imposing a wavelength boundary beyond which SSH measurements provided by 

satellite altimetry can no longer be used to infer upper ocean geostrophic flows. Documenting 

the spatial scale at which this occurs (the so-called transition scale, Lt) for the world ocean 

has become one of the focal points of recent efforts in the satellite altimetry and SWOT 

communities (Qiu et al., 2017, 2018; Wang et al., 2018). 60 

Tackling this problem needs high-resolution ocean data, ideally in space and time. To date, 

progress on documenting Lt has been achieved exclusively through the use of in situ data in a 

few limited regions and high-resolution global models, given the insufficient time-space 

resolution of sea surface height (SSH) maps from multi-mission altimetry (these maps have 

decorrelation scales of ~15 days and 200 km; Chelton et al., 2011; Ballarotta et al 2019). In 65 

constructing the altimetric SSH maps, the spatial scales below 200km are severely smoothed 

by the optimal interpolation algorithm, conserving only a small portion of the signal at small 

wavelengths (e.g. Ray and Zaron, 2016; Dufau et al., 2016).   

Alongtrack altimeter data have a finer spatial resolution than the mapped data, and recent 

reprocessing now allows us to access oceanic scales down to 50-70 km for Jason–class 70 

altimeters, and 35-50 km for Saral/AltiKa (Dufau et al., 2016; Vergara et al., 2019; Lawrence 

and Callies, 2022). Most of the unbalanced internal tide energy, and some of the internal 

gravity wave energy, occurs at scales larger than 40 km wavelength and can be observed with 

the latest alongtrack altimetry data (Zaron, 2019). Using alongtrack SSH data from recent 

altimetric missions and a statistical approach based on wavenumber spectral analysis, this 75 

paper will document the global distribution of Lt. Considering the noise characteristics of 

different altimetric missions, we limit our Lt estimates to regions where they exceed the local 
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observability wavelength. We also take into account the uncertainties associated with the 

altimetric measurements and the influence of this error in our estimates.  

Our satellite altimetry wavenumber spectral Lt estimates are consistent with previous studies 80 

based on modeling or in-situ analysis:  small values of Lt are observed in the highly energetic 

western boundary current systems and in the vicinity of the ACC (Rocha et al., 2016b, Qiu et 

al., 2018) suggesting a dominance of geostrophically balanced motions on the surface kinetic 

energy field. On the other hand, Lt is larger in the vast intertropical ocean (20°S-20°N), 

suggesting a significant contribution of energetic wave-type motions to the upper ocean SSH 85 

field here.  

2 Data and Methods 

2.1 Sea Surface Height (SSH) 1Hz data 

Alongtrack SSH data from two missions with different technologies (Jason-3 – J3 

conventional nadir altimetry and Sentinel-3A – S3 Synthetic Aperture Radar nadir altimetry) 90 

are analyzed at a global scale. The time period analyzed spans their common 4-year period, 

from March 2015 to March 2019.  

Alongtrack SSH observations are maintained at their original 1 Hz observational position with 

7 km spacing, and are corrected for all instrumental, environmental, and geophysical 

corrections (Taburet et al., 2019). Only time dependent variations of alongtrack SSH 95 

measurements are considered, following Stammer (1997), Le Traon et al. (2008) and Xu and 

Fu (2011, 2012). Since S3 is on a new repeat track, Sea Level Anomalies (SLAs) are 

computed for both missions by subtracting the Mean Sea Surface model CNES_CLS_2015 

(Schaeffer et al. 2016; Pujol et al., 2018) from the alongtrack SSH measurements.  

2.2 Unbiased wavenumber spectrum and spectral shape analysis 100 
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In order to obtain regionally varying spectral estimates, we apply the methodology described 

in Vergara et al (2019). We sample the alongtrack SSH measurements inside a 12°x12° 

regional box and then subsample the tracks of each pass inside this regional box to a constant 

length of 1200 km. Individual spectral estimates are then obtained by performing a spatial 

Fast Fourier Transform (FFT) on each 1200 km subsample. A Tukey window of 0.5 width is 105 

applied to the data in order to minimize boundary effects when performing the FFT over the 

finite dataset (Tchilibou et al., 2018). Data overlapping is allowed but limited to a 250 km 

overlap. We verified that the overlapping scale is larger than the local spatial decorrelation 

scale (estimated from the first zero-crossing of the local autocorrelation function), to avoid an 

artificial overrepresentation of certain spatial scales introduced by the overlapping. The 110 

regional spectrum is then obtained by averaging the individual spectral estimates inside the 

12°x12° box. Global coverage is obtained by iteratively repeating this process every 2° in 

longitude and in latitude.  

For each average spectrum, we estimate the 1 Hz error level by fitting a straight-flat line to 

the SLA Power Spectral Density (PSD) level for wavelengths between 15 and 30 Km 115 

wavelength; a similar technique was applied by Xu and Fu (2011); Dufau et al. (2016); 

Vergara et al (2019). This straight-line fit is horizontal for J2 and S3 (white noise). The 

spectrum shape of S3 shows a slight slope over the 15 to 30 km wavelength range (red-type 

noise), which is a characteristic effect of the wind wave field on the SAR measurements 

(Moreau et al., 2018). The differences on the unbiased spectrum and our methodology when 120 

applying either a red noise or white noise fit to the 15-30 km band of S3 data are explored in 

Appendix A.  

The spatial patterns of the noise levels for Jason-3 and Sentinel-3A (Figure 1a, 2a) 

approximately follow the spatial distribution of significant wave height (Dufau et al., 2016), 

with peaks in the regions of high sea-state in the North Atlantic, Southern Ocean, and off the 125 
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coast of South Africa. The increased SSH noise of the current generation of satellite 

altimeters due to surface waves is well documented for both radar and SAR altimeters (Tran 

et al., 2002; Moreau et al., 2018; 2021). The latitudinal trend (Figures 1c, 2c) shows an 

increase of the noise levels from the equator towards the poles, in agreement with previous 

studies (Dufau et al., 2016; Vergara et al. 2019). Annual mean Jason-3 wavenumber spectra 130 

noise levels range from 1.8 cm rms at the equator to 2.8 cm rms in the Southern Ocean, 

whereas the Sentinel-3 SAR noise floor is smaller (1.4 cm rms at the equator and 2.3 cm rms 

in the Southern Ocean). In general, noise levels observed for both satellites indeed show local 

maxima in the vicinity of the Gulf Stream, Kuroshio extension and the ACC, related to local 

geophysical effects such as rain cells and more importantly the local wind wave field. Despite 135 

the relatively higher noise levels observed in these regions, the mesoscale signal is also strong 

and therefore the signal to noise ratio remains favorable over these highly energetic regions 

(Figures 1b and 2b). 
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Figure 1. (a) Average spectral noise level in meters RMS and (c) its zonal average for Jason-140 

3. Noise level is computed as the average PSD value between 15 and 30 km wavelength. (b) 

Observable Wavelength, or wavelength for signal-to-noise ratio equal to 1 (in Km) and its 

zonal average (d). The observable wavelength is computed as the intercept wavelength for the 

mesoscale spectral slope and the noise level. White contours represent the topography at 3000 

m depth. 145 
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Figure 2. Same as Figure 1, but for Sentinel-3A data. 

 

This computed flat noise spectral level is then subtracted from the PSD estimates over the 150 

entire wavenumber range, which provides an unbiased estimate of the regionally-averaged 

spectrum (Xu and Fu, 2012). We then analyze the unbiased spectrum in order to determine 

two spectral slopes, taking into account the variations of spectral slope values in the fit. The 

mesoscale spectral slope is calculated within a geographically variable wavelength range: the 

maximum mesoscale wavelength is where the spectral shape significantly (at 95%) departs 155 

from the observed mesoscale spectral slope (usually occurring at wavelengths larger than 500 

km), and the minimum regional wavelength limit is based on the local eddy length scale, as in 
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Vergara et al. (2019). Where possible, a second smaller-scale spectral slope is determined at 

wavenumbers between 30 km wavelength and the lower mesoscale spectral slope limit. 

In order to analyze the two slopes from the regional unbiased spectrum shape, we least-square 160 

fit a linear model to the average spectrum obtained from observations in the logarithmic 

space, defined as: 

𝑓(𝑥) = 𝑥𝑎1

10−𝑏1  
⁄ + 𝑥𝑎2

10−𝑏2  
⁄     (1) 

where x corresponds to the observed SSH values after applying the Fourier transform, a1 and 

a2 are the intercepts and b1 and b2 the spectral slopes. This model is therefore defined as the 165 

sum of two straight lines in the log-log space, each one representing a different part of the 

spectrum and capturing a different variability regime. The benefit of performing a 

simultaneous double-fit for analyzing the spectral shape compared to successive individual 

least-square fits is two-fold: (1) considering the sum of two linear models preserves the shape 

of the observed unbiased spectrum and also allows for curvature where there is a shift in the 170 

spectral slope, representing the observed spectrum in a realistic manner. (2) The uncertainty 

associated with our spectral slope estimates is continuous across the entire wavelength range 

considered by the model, which is not the case if we consider two successive fits that will 

minimize the fit errors only for a prescribed wavelength range. We apply this model to each 

regionally-averaged unbiased spectrum, between 30 km wavelength and the upper mesoscale 175 

wavelength, following Vergara et al. (2019). 

The fitting algorithm is initialized using a first guess for the spectral slopes across the 

wavelength range: for the mesoscale spectral slope we follow Vergara et al. (2019), using the 

change in spectral slope at low wavenumber and the local eddy length scale as the wavelength 

bounds. The small-scale fit is initially computed as a linear fit between the spectral signal at 180 

30 km wavelength and the signal at the local eddy length scale. These values are used for the 
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first iteration and are recomputed at each step of the least-square minimization procedure to 

best resolve the double fit, maintaining the end points of the 30 km wavelength and the slope 

change at low wavenumber boundaries. The minimization process then adjusts the mesoscale 

and small-scale intercept to better capture the overall shape of the unbiased PSD. 185 

An example of the results of this two-slope methodology are presented in Figure 3a for a 

region in the north Pacific Ocean, in comparison to the single mesoscale slope fit of Vergara 

et al. (2019) in Figure 3b. The one-slope mesoscale slope fit in Figure 3b follows the 

wavenumber curve well within the defined mesoscale range (vertical dashed lines) with a 

slope of k-4.5, and a change in spectral slope is clearly evident at scales smaller than 120 km in 190 

wavelength. The two-slope mesoscale fit is slightly steeper in the mesoscale range (k-4.9) but 

the change in slope is well captured at smaller scales down to 30 km in wavelength (k-2.5), and 

the sum of the two linear fits follows the change in curvature of the observed spectral slope 

(bold solid line). The two-slope linear fit is constrained by inverse-weighting the observations 

according to the confidence interval of the average spectrum (gray shading in Figure 3a). 195 

Using the 4-years of data and multiple tracks within our 12°x12° box, we can expect the 

linear fit to be well constrained in the mesoscale wavelength range, and the error associated 

with the estimates of the slope and the intercept to be relatively low. On the other hand, since 

the confidence interval becomes larger towards smaller wavenumbers (a consequence of 

subtracting the noise level), the uncertainty in the slope/intercept estimates increases towards 200 

shorter wavelengths and the smaller-scale slope fit has higher uncertainty.  



11 
 

 

 

Figure 3. (a) Result of the double slope methodology used to characterize the spectral shape 

over the unbiased power spectral density (PSD) (full gray line). The original and unbiased 205 

PSD (dashed blue and gray lines) and the 95% confidence interval of the average PSD (blue 

and gray shading) are shown. The mesoscale and small-scale spectral slope fits (dashed 

black), combined double linear fit model (full black), and the Lt intercept of large- and small-

scale spectral slopes (blue dot, including its uncertainty), are also illustrated. (b) Single 

mesoscale fit method, as in Vergara et al. (2019). As a reference, the result of the PSD fit 210 

from 3a is also plotted (dashed green line). Unbiased average PSD (full gray line) and 95% 

confidence on the average estimate (gray shading) analyzed using the wavelength range 

depicted by the vertical dashed lines to characterize the spectral slope. Average spectral slope 

and their corresponding 1-sigma values are indicated in the inserts. (c) Zone where the 

average PSD sample is computed from J3 data over 2015-2019. 215 

 

2.3 Observability wavelength 

The Observability Wavelength (OWL) is defined as the threshold wavelength where the SSH 

spectral signal exceeds this flat noise level (i.e. SNR > 1). Given that the first Rossby radius 

of deformation and the eddy length scales (Eden, 2007) both generally decrease towards 220 

higher latitudes whereas the noise level increases due to higher sea-state, one would expect 
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that the OWL scales would increase towards high latitudes. The zonal average of the 

Observable Wavelength (OWL) for both satellites is summarized in Figures 1d and 2d. The 

combined regional variability of the mesoscale spectral slope and the noise levels both 

contribute to the complex observed patterns of the OWL (Figures 1b, 2b). For regions with 225 

strong mesoscale variability signals (e.g. Southern Ocean, Gulf Stream, Kuroshio, Agulhas 

current), the local observable wavelength is short despite relatively high noise levels. The 

observable wavelength for Jason-3 varies from 40 km in the western tropical Pacific, 50-60 

km in the western boundary currents and can reach 90 km in the low energy Eastern North 

Pacific due to the higher noise levels. Zonal averages across these regional patterns lead to 230 

values between 60-70 km (Figure 1d), whereas the zonally averaged OWL for Sentinel-3 

reaches 65-70 km in the mid latitudes, but only 50 km in the equatorial band. 

2.4 Uncertainty analysis for the intercept wavelength 

In addition to the fitting parameters for the model described by Eq. (1), we compute the 

uncertainty associated with the least-square fitting, related to each parameter. This helps us in 235 

the interpretation of the results by allowing us to estimate the validity of the spectral slope 

values for the large and small wavelength ranges, and also their intercept.  

The uncertainty (or error) emerges from the confidence interval envelope obtained when 

computing the regional average spectrum (gray shaded area in Fig. 3a and 3b). On this log 

scale, the 95% envelope of the average PSD appears to grow considerably towards high 240 

wavenumbers. This is a consequence of the denoising method: the 95% envelope is impacted 

by the subtraction of the noise plateau computed between 15 and 30 km wavelength and the 

effect will become more evident in the high wavenumber part of the spectrum, given that the 

smaller amplitude of the PSD values is closer to the noise level. 
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Using the uncertainty estimates from the mesoscale and small-scale spectral slopes, we can 245 

determine the error associated with their intercept by propagating the uncertainty as:  

𝛿𝐿𝑡 = 𝐿𝑡  ∙  (
𝛿𝑏1+𝛿𝑏2

𝑏1+𝑏2
+  

𝛿𝑎1+𝛿𝑎2

𝑎1+𝑎2
)    (2) 

where Lt is the intercept wavelength, a1 and a2 the slopes and b1 and b2 the intercepts of the 

two lines fitted to the observed PSD. The 1-σ deviations from the fitted parameters a and b are 

denoted by δ. 250 

3. Results 

In this section, we analyze the temporal mean geographical distribution of the mesoscale and 

small-scale spectral slopes computed using the model described by Eq. (1). Additionally, we 

estimate (when possible) the intercept wavelength between the two slopes in the spectral 

space. This characteristic intercept wavelength may be considered as a first-order approach to 255 

the transition scale (Lt) calculated from model analyses by Qiu et al (2018), and from in situ 

observations in Qiu et al (2017). However, we do not analytically separate the contributions 

of the first-three baroclinic modes of internal gravity waves (IGW) as in Qiu et al (2018), so 

the intercept scale that we present here is a statistical position from SSH wavenumber spectral 

slope changes, and not a dynamical calculation. The spectral slope changes can delineate the 260 

separation of mesoscale balanced motions from a combination of small-scale balanced 

motions, unbalanced motions and altimetric observation errors. 

3.1 Meso- and small-scale spectral slopes 

The methodology used to analyze the spectral shape does not explicitly separate the 

geostrophically balanced mesoscale regimes from small-scale regions of the spectrum. 265 

However, it allows us to infer their associated contributions to the observed PSD by means of 
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the change in spectral slopes and their intercept. We will refer to the results of either part of 

the bi-linear model as meso- and small-scale spectral slopes.  

3.1.1 Mesoscale spectral slope 

The geographical distribution of the mesoscale spectral slope values is very close for the two 270 

missions analyzed (Figures 4a and 5a), showing larger slope values over the Western 

boundary current systems, as well as the Antarctic Circumpolar Current, indicative of the 

energetic mesoscale circulation that is observed in both regions. The observed spectral slope 

values in these highly-energetic regions vary between k-4 and k-5, for both Jason-3 and 

Sentinel-3A, and are in general agreement with the distribution reported in Vergara et al. 275 

(2019). Conversely, the lowest spectral slope values are observed in the intertropical band 

(equatorward of 15°), with slope values between k-2 and k-3, also consistent with values 

obtained using a simple fit methodology (Xu & Fu, 2012; Dufau et al., 2016; Vergara et al., 

2019).  
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 280 

Figure 4.  (a) Mesoscale and (b) small-scale spectral slopes fitted to the observed unbiased 

PSD from Jason-3. (c) Zonal average of the mesoscale (Lg SL) and small-scale (Sm SL) 

spectral slopes in (a) and (b). Color shading around the average values correspond to the 95% 

confidence interval for the zonal mean. Vertical gray lines denote the k-11/3 and k-5 spectral 

slope values. Gray shading in (b) corresponds to zones where the uncertainty associated with 285 

the slope estimate is higher than 40% of the slope value. Blanks zones in (b) corresponds to 

zones where the double slope model does not describe the observed shape of the spectrum. 

White contours represent the topography at 3000 m depth. 
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 290 

Figure 5.  Same as Figure 4 for Sentinel-3: (a) Mesoscale and (b) small-scale spectral slopes 

fitted to the observed unbiased PSD from Sentinel-3A. (c) Zonal average of the mesoscale 

(Lg SL) and small-scale (Sm SL) spectral slopes in (a) and (b). Color shading around the 

average values correspond to the 95% confidence interval for the zonal mean. Vertical gray 

lines denote the k-11/3 and k-5 spectral slope values. Gray shading in (b) corresponds to zones 295 

where the uncertainty associated with the slope estimate is higher than 40% of the slope 

value. Blank areas in (b) correspond to zones where the double slope model does not describe 

the observed shape of the spectrum. Dashed gray lines in (c) correspond to Jason-3 zonal 

averages from Figure 4c. White contours represent the topography at 3000 m depth. 

 300 

In some regions, the mesoscale spectral slope values obtained are slightly lower (flatter 

slopes) for Sentinel-3A than for Jason-3. This could be related to the white noise level model 
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used for S3A. Red noise is often observed in the 1Hz SAR data at small wavelengths related 

to wave and swell impacts on the signal processing (Moreau et al., 2018). Our methodology 

of removing a white noise level computed over the 15-30 km wavelength range could impact 305 

the unbiased PSD up to ~150 km wavelength, leaving a remanent of energy associated with 

the SAR processing of ocean swell effects (Moreau et al., 2021) over the mesoscale and 

small-scale range that will act to flatten the spectral slope at the mesoscale wavelength range. 

We tested the differences in the spectral PSD levels related to fitting a red or white noise 

model for S3A in Appendix A, illustrated in Figure A1. In general, the difference in the 310 

unbiased curves appears at high wavenumbers having a smaller PSD amplitude, but the 

differences in the mesoscale spectral slope are generally small.  

Indeed, the zonal annual-mean distribution of the mesoscale spectral slope values is the same 

for both missions (Figure 4c and 5c, in blue), showing a profile that is nearly symmetrical 

around the equator, with values increasing poleward, ranging between k-11/3 and k-5 for 315 

latitudes poleward of 20°S/30°N and decreasing sharply towards k-2 around the equator. 

These values confirm that the mid-latitude SSH mesoscale spectral slopes vary within the 

regimes of sQG to QG dynamics, whereas the tropical band has much flatter spectral slopes 

that reach k-2, in agreement with previous altimetric studies (Xu and Fu, 2012; Vergara et. al.; 

2019).  320 

3.1.2 Small-scale spectral slope 

The originality of this method is to estimate the second small-scale slope from the 

wavenumber spectra when possible. The wavelength range for this small-scale slope varies 

geographically, but is generally between 30 to ~150 km wavelength. This region of the 

spectrum is where we expect to observe the upper ocean dynamics to shift from a regime 325 

dominated by geostrophically balanced motions (eddy-like mesoscale structures in an SQG or 
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QG regime) towards a wave-like regime where the SSH variability is dominated by 

unbalanced motions (i.e., IGWs, coherent internal tides and the cascade of energy from non-

phase locked internal tides). For the current generation of satellite altimetry observations, 

these 30-150 km wavelengths of the SSH spectrum can also be influenced by residual 330 

altimetric geophysical errors and may approach the observability capabilities of each 

instrument (OWL). Therefore, the results on the small-scale SSH spectral slope estimates 

need to be interpreted in light of their inherent limitations, taking into account the uncertainty 

in the slope determination, residual altimetric errors, and the local observable wavelength.  

On average, the linearly fitted small-scale spectral slopes vary between k-1 and k-2 for both 335 

S3A and J3 (Figures 4b and 5b), with slightly higher slope values over the western part of 

each ocean basin (around k-2 at 30° of latitude) in mid-latitudes compared to the eastern 

basins. The meridional distribution of valid slope values shows a decrease of the small-scale 

spectral slope values towards the poles, as well as an increase in the dispersion around the 

average values (i.e. the uncertainty envelope tends to grow as latitude increases). The zones 340 

where the uncertainty associated with the small-scale slope estimate is higher than 40% of the 

slope value are shaded in grey. This value was chosen in order to discard estimates with high 

uncertainty associated with the bilinear fit from the analysis. These regions are generally at 

higher latitude, and with slopes close to, or less than, k-1.  As latitude increases, the first 

baroclinic Rossby radius decreases and therefore the mesoscale slope fit will be made over 345 

progressively smaller wavelengths. This pushes the small-scale fit to be estimated over a very 

narrow wavelength range above the 30 km noise cutoff, having large uncertainties.  

Note that the optimal fitting algorithm is not able to separate the contribution of two different 

spectral slopes in the intertropical band equatorward of ~20°. In this zone, we observe that the 

SSH signal is essentially captured by the flatter meso-scale spectral slope of k-2 (Figures 4c, 350 

5c), extending to small wavelengths, and although the least-squares double slope fit does 
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estimate a small-scale spectral slope, it is not significant (reduced by several orders of 

magnitude in terms of energy content compared to the mesoscale slope contribution). These 

cases have been left blank in Figures 4b and 5b.  

The zonal-mean values of the valid small-scale slopes (Figs 4c and 5c) show a k-1.5 spectral 355 

slope between 10-20° latitude for both J3 and S3A. These values come from isolated patches 

in the western Pacific, the Indian Ocean, and in the zone of tropical instability waves (up to 

~10°N) in the north-eastern Pacific. In the mid-latitudes, from 20-45° in latitude, the small-

scale slope decreases from k-1.5 to around k-1.3 for both missions, with higher values near k-2 in 

the western basins. Any differences in the small-scale spectral slope for S3A, related to the 360 

removal of the white spectral noise, are small, and within the small-scale error range in Figs 

4c and 5c. 

3.2 Intercept wavelength  

The intercept of the fitted meso- and small-scale spectral slopes results can be used to obtain a 

characteristic wavelength for the change in their dynamical regime. If we consider that the 365 

mesoscale slopes reflect the balanced (s)QG dynamics at mid latitudes, and the valid small-

scale slope values reflect the wave-like motions from internal tides or IGWs, the intercept 

wavelength therefore indicates the boundary at which the SSH variability would be mainly 

driven by either dynamical regime. This wavelength scale could be considered as an 

approximation of the so-called transition scale from balanced to unbalanced motions (Qiu et 370 

al. 2017; 2018), which indicates the boundary between the circulation dominated by either 

geostrophically balanced or unbalanced motions (in terms of SSH variability). While Qiu et 

al. (2018) calculate the transition scale by explicitly filtering the contribution of 

balanced/unbalanced motions from the PSD in the wavenumber/frequency space, we compute 



20 
 

the spatial scale directly from the observed PSD, assuming that its shape captures both 375 

dynamical regimes.  

Considering the limitations inherent to satellite altimetry observations (e.g. noise level, 

residual errors from corrections and observability wavelength), we also compute the 

uncertainty associated with our estimates for the intercept wavelength. We then exclude any 

results that have the following criteria: (1) uncertainty in the mesoscale and/or small-scale 380 

spectral slope higher than 40%, (2) intercept wavelength value being less than the local 

observable wavelength (OWL). Following these criteria, the intercept wavelengths we can 

interpret from alongtrack altimetry are reduced to a fraction of the world ocean. Nevertheless, 

within these constraints, intercept wavelength spatial distribution shows higher values in the 

tropical band and lower values towards the poles for the two missions considered (Fig. 6). 385 

Both J3 and S3A show intercept wavelengths around 100 km on average in mid latitudes from 

25-45°, reaching to 140-160 km in the tropics near 10° latitude (Fig 6c and 6d).  
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Figure 6. Intercept scale (in Km) between the large- and small-scale spectral slopes for J3 (a) 

and S3 (b). Shaded/hatched areas correspond to regions where the intercept scale is smaller 390 

than the local observable wavelength (signal-to-noise ratio equals 1). Blank areas in (a) and 

(b) correspond to the regions where the observed PSD is accounted for using a single slope 

approach. (c, d) Zonal averages of (a) and (b). Uncertainty envelope is also included in the 

zonal average. Orange lines in panels (c) and (d) correspond to the zonal average of the 

observable wavelength for J3 and S3A respectively (Figures 1d and 2d). Note that the average 395 

intercept scale is always higher than the average OWL. We also verified that the first 

baroclinic Rossby radius of deformation is larger than the computed intercept values. White 

contours represent the topography at 3000 m depth. 

 

Using a state-of-the-art global ocean simulation, Qiu et al. (2018) recently explored the 400 

geographical and seasonal variations of the balanced to unbalanced transition scale, 

highlighting that the highly energetic western boundary current systems have relatively short 
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transition scales, with the largest transition scale values occurring in the relatively low-energy 

regions bounded by the intertropical and subpolar bands. Their modelled regional distribution 

reflected the local levels of mesoscale variability and the energy levels of unbalanced motions 405 

(near-inertial flows, internal tides and inertia-gravity waves). Large transition scale values are 

also observed where prominent bathymetric features exist (Qiu et al., 2018) such as the North 

Atlantic Ridge, and the Western Equatorial Pacific. 

The observed J3 and S3A intercept values across each basin are similar to recent modelling 

results of global estimates for the balanced/unbalanced motions transition scale, with shorter 410 

transition wavelengths located in the energetic western boundary current regions and longer 

values in the eastern basins. Using the points that can be defined from our estimates, the 

Kuroshio Extension has intercept values of around 90-100 km for both J3 and S3, the Gulf 

Stream having values of around 60 km (Figure 7). Whereas the eastern North Pacific intercept 

wavelengths reach values of 120-140 km. We note that S3-A with lower noise has more 415 

geographical coverage of Lt estimates within each defined box, leading to local differences in 

the average meridional Lt distribution. Observations in the Antarctic Circumpolar Current are 

unfortunately non-interpretable. The sharp mesoscale spectral slopes observed here (related to 

the highly energetic local eddy activity at small Rossby radii), result in an intercept 

wavelength scale around 50 km or less. Given the higher noise levels, from higher sea-state in 420 

the Southern Ocean, these intercept scales are below the local observable wavelength. 

Observational results point out that the balanced/unbalanced transition scale for this region 

often shows values around 30 km (Drake Passage region; Rocha et al.; 2016a), which is 

currently inaccessible with satellite altimetry observations.  
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 425 

Figure 7. Meridional average of the intercept wavelength presented in Figure 4 over the 

North Pacific (130°E,30°N-240°E,50°N) and North Atlantic (280°E,30°N-350°E,50°N), for 

Jason-3 (a) and Sentinel-3A (b). The envelope around the averages indicates the 1-sigma 

deviation.  

 430 

Equatorward of 25°, the intercept scale shows the highest values often exceeding 150 km, 

which suggests that the dynamical regime characterized by shallow spectral slopes is the main 

contributor to the observed SSH variability. Modelling results show that the kinetic energy of 

the unbalanced motions dominates the SSH variability at the low latitude regions, with 

transition scale values exceeding 200 km (Qiu et al., 2018).  435 
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4. Summary and discussion 

We have in this study explored the capability of currently available alongtrack data to capture 

the changes in the circulation variability at wavelengths shorter than 150 km. We used a 

statistical approach consisting of analyzing the shape of the SSH power spectral density, 

which can be indicative of the underlying circulation dynamics. In addition to the mesoscale 440 

spectral slope, we compute a secondary spectral slope at smaller spatial scales, in a 

wavelength region that is characterized by a regime change from geostrophically balanced 

mesoscale motions to a potentially non-geostrophic regime. The methodology used here is 

based on an unbiased slope estimate, after removal of a white-type instrument noise. 

However, the least-squares fit takes into account the variance of the errors associated with the 445 

instrumental noise, which grows towards the high-wavenumber part of the SSH spectrum as 

the signal amplitude decreases, and therefore increases the uncertainty of the estimated 

parameters towards short wavelengths.  

A second outcome was to compute the intercept of the meso- and small-scale spectral slopes 

estimated in order to obtain a characteristic transition wavelength. We interpret this 450 

wavelength as a proxy for the transition scale that marks the boundary between the 

geostrophically balanced and unbalanced motions in the SSH signal. Despite the limited 

number of intercept wavelengths that pass our rigorous selection criteria, these intercept 

wavelengths show a distinctive geographical pattern. Higher spectral slope transition values 

are located around the tropics, sometimes exceeding 200 km in wavelength, and towards the 455 

eastern ocean boundaries (between 100-150 km), in agreement with circulation patterns with 

important wave-like variability at the mesoscale wavelength range (Pollmann, 2020; 

Tchilibou et al., 2018) compared to the local eddy field. The shortest intercept wavelengths 

are on the other hand observed over the western boundaries and towards high latitudes, where 

the circulation variability is dominated by an energetic mesoscale eddy field. 460 
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4.1 Uncertainty in the mesoscale spectral slope 

In our 2-slope methodology, the larger mesoscale spectral slope estimate starts from a first 

guess based on the geographically variable wavelength range specified in Vergara et al 

(2019). Then, the least-squares minimization of the 2-slope fit allows this minimum 

wavelength range to be adjusted. As opposed to previous studies, we also include in our 465 

spectral slope estimates the inherent uncertainty that is contained in the altimetric 

observations. We have compared the results of the mesoscale spectral slopes from the bilinear 

solution against the observed spectrum (Fig. 8). For consistency, we used the locally variable 

wavelength range proposed in Vergara et al. (2019) to compute the mesoscale spectral slopes. 

Overall, we observe that the differences in spectral slopes when diagnosing either the optimal 470 

fit solution or the observed spectra are small, of order 0.1 across the world ocean. The 

differences are slightly higher in the equatorial regions (from both datasets) between 0.3 to 

0.5 (Fig. 8), but remain smaller than the average uncertainty associated with the mesoscale 

spectral slope for the bilinear fit for these latitudes (Figures 4 and 5). 



26 
 

 475 

Figure 8. Difference in the mesoscale spectral slope estimates computed over the fitted 

solution (from eq. 1) and the observed spectrum using the simple linear fit approach of 

Vergara et al. (2019). (a) Jason-3 and (b) Sentinel-3A.  

 

4.2 Uncertainty in the small-scale wavelength range  480 
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At wavelengths shorter than 150 km, the analysis of the SSH spectral shape becomes 

increasingly sensitive to the observation errors (i.e. instrumental error, accuracy of the 

altimetric corrections) and therefore the interpretation of the results at high wavenumber need 

to account for the increased uncertainty compared to the mesoscale wavelength range. Our 

methodology for the analysis of the unbiased spectral shape assumes a white noise plateau for 485 

the J3 and S3A 1Hz observations which is removed to reveal the SSH spectrum free of 

instrumental errors. Using this first-order approximation for the instrumental error 

significantly increases the uncertainty of the spectral estimates towards high wavenumbers in 

comparison to their weak amplitude (i.e. the 95% CI envelope grows as we move towards the 

small-scale part of the spectrum).  Thus, the uncertainty in the estimates compared to the 490 

signal is more important in the small-scale part of the spectrum than in the mesoscale 

wavelength range. This uncertainty also affects the estimates of the intercept wavelength in 

equation (2).  

In addition, in regions where the first baroclinic Rossby radius is small (e.g. high latitudes) 

and/or the mesoscale energy is intense, the mesoscale spectral slope dominates the double fit 495 

and extend down to small wavelengths. In this case, there is not much wavelength range 

above 30 km to perform a second-slope fit, and this combines with the larger error variance at 

small scales. We therefore observe an inverse relationship between the error associated with 

the small-scale spectral slope and the wavelength range used to perform the small-scale fit 

(Fig. 9) (i.e. the range between the intercept wavelength and the 30 km wavelength, the limit 500 

for computing the noise plateau). We note that Jason-3 (Fig 9a) has higher error variance than 

S3A (Fig 9b), as expected, and this larger error extends over a longer wavelength range. 

Whereas the S3A small-scale spectral slope to error ratio tend to be confined to smaller 

wavelength ranges. Note that values of small-scale slope error ratio > 0.4 were discarded from 

the analysis of intercept wavelengths as estimates having high uncertainty, and Figure 9 505 
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explains why more regions are eliminated with this 0.4 cutoff for Jason-3 analyses, than for 

S3A (see Figures 4b, 5b and 6). We also discarded all the intercept wavelength estimates that 

were below the SNR=1 level, which delimits the observable wavelength in altimetric 

observations. The small intercept values observed at high latitudes (often smaller than 50 km 

wavelength) were therefore classified as non-interpretable, even though their distribution 510 

agrees with the results of Qiu et al (2018) for the SSH-based transition scale estimates, in 

particular the short Lt values observed around the Antarctic Circumpolar region. 

 

Figure 9. Error in the determination of the small-scale spectral slope plotted against the 

wavelength range between the computed intercept scale and 30 km wavelength (noise level 515 

limit) for Jason-3 (a) and Sentinel-3A (b).  

 

At these smaller spatial scales, the observed variability may result from different sources, 

both geophysical and instrument/platform related, and the diagnosed small-scale spectral 

slope is potentially a combination of such elements. Among the dynamical contributions, it 520 
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has been shown that a significant part of the SSH PSD spectrum at wavelengths shorter than 

150 km is related to phase-locked and non phase-locked internal tides (Ray and Zaron, 2016). 

An important cascade of energy is apparent in the SSH spectrum around the tropical latitudes 

(Tchilibou et al., 2018), with an increased high-frequency variability of tidal origin (mainly 

non-phase locked) for wavelengths shorter than 70 km (Tchilibou et al. 2022). Using a high-525 

resolution global OGCM, Qiu et al. (2018) explored the influence of the internal tides on their 

estimates of Lt, concluding that the removal of the phase-locked internal tide contribution 

significantly reduces the values of Lt by 50 to 100 km in many regions. Today, only a few 

phase-locked tidal constituents are available as a potential altimetric correction (e.g. M2; 

Zaron, 2019). So a significant portion of the SSH PSD in our analysis may be influenced by 530 

internal tide variability.  

In addition to the dynamical contributions, the altimetry-based small-scale spectral slope 

estimates may also be influenced by errors in the altimetric measurements used. One source 

of error that has been characterized at wavelengths ranging from 30 to ~80 km are the 

imprecisions related to the Mean Sea Surface Model (MSS) used to compute the altimetric 535 

Sea Level Anomalies (SLA), which have been quantified to contribute as much as 30% of the 

observed SLA variability (Pujol et al., 2018). The benefit of the latest MSS model, 

CNES_CLS_2015, is a reduction of the associated error by at least half compared to 

conventional models (Pujol et al., 2018). Nevertheless, this could still be a source of errors at 

short wavelengths for recent uncharted missions such as S3A. We performed sensitivity tests 540 

on the impact of the MSS model on our estimates at small-scale (not shown), revealing SSH 

PSD may increase but the spectral shape is preserved, and therefore the estimates of the 

small-scale spectral slope do not significantly change. This effect is comparable to the noise 

plateau differences presented in Appendix A for S3A.  

4.3 Seasonality of the spectral shape and intercept wavelength 545 
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The seasonal variability of the spectral characteristics derived from altimetric observations 

has been documented in recent literature (e.g. Dufau, et al., 2016; Vergara et al., 2019; 

Lawrence and Callies; 2022), highlighting the fact that the variations of the spectral shape are 

related to changes in both the underlying circulation and surface ocean stratification as 

expected, but also to variations of the altimetric noise levels throughout the year. The 550 

methodology used in the present paper also reveals a marked seasonal change of the spectral 

slopes, with variations in the mesoscale wavelength range showing sharper values during 

summer months than during winter, as a byproduct of the interaction between the higher noise 

levels during winter and the presence of small-scale turbulence that is generated through 

vigorous vertical mixing (Sasaki et al., 2014; Callies et al., 2015). This small-scale variability 555 

is therefore partially masked by the increased noise levels (and increased uncertainty in our 

slope estimates) during winter months. On the other hand, during summer months the 

instrumental noise levels drop, hence the SSH observability spans a large wavelength range 

with favourable signal-to-noise ratio. During summer months, higher spectral slope values are 

consistent with interior QG dynamics, suggesting that large eddies are formed through 560 

baroclinic instabilities in the thermocline and very little energy cascades to smaller scales 

(e.g. Callies, et al., 2015). The combination of favourable conditions for the generation of 

eddies at mesoscales (larger than 100 km) and lower noise levels provide an ideal altimetric 

observability scenario during summer months. The seasonal variability of the meso- and 

small-scale spectral slopes is documented in Appendix B. 565 

The intercept wavelength also modulates seasonally, suggesting that information about the 

SSH variability in the sub-100km wavelength range is effectively reflected by this parameter 

computed from along-track altimetry observations (Figures 10 and 11). Changes in the upper 

ocean stratification will significantly modulate the energy levels of balanced and unbalanced 

motions, that collectively contribute to the SSH variability observed for wavelengths ranging 570 
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from 15 to 200 km. During summer months, a shallow mixed layer with a sharp density 

gradient at its base works to enhance the surface unbalanced motion kinetic energy (Rocha et 

al., 2016b), that surpass the energy levels of the geostrophic turbulence at <100 km 

wavelength range. Conversely, the vigorous vertical mixing observed during winter energizes 

the balanced motions in the small-scale part of the spectrum, leading to a predominance over 575 

unbalanced motions in the SSH variability during this season (Rocha et al., 2016b; Qiu et al., 

2017). The modeling results reported by Qiu et al. (2018) show that this pattern is nearly 

ubiquitous in the global ocean, with larger transition scale values observed during summer 

than winter. Our seasonal estimates of the intercept scale show a similar pattern both in terms 

of eastern-western basin asymmetry and larger transition scales in summer in the zonal-580 

averages (Figures 10 and 11; Appendix B).  

 

Figure 10. Intercept scale (in Km) averaged during (a) August-September-October and (b) 

February-March-April for Jason-3. Shaded/hatched areas correspond to regions where the 
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intercept scale is smaller than the local observable wavelength (signal-to-noise ratio equals 1). 585 

Blank areas in (a) and (b) correspond to the regions where the observed PSD is accounted for 

using a single slope approach. (c) Zonal averages of the non-masked areas of (a) and (b), but 

only considering the pixels where the observations of (a) and (b) are different at 95% 

confidence. The percentage of data that meets this criterion is also indicated. White contours 

in (a) and (b) represent the topography at 3000 m depth. 590 

 

 

Figure 11. Same as Figure 10, but for Sentinel-3. 

 

We note that our zonally-averaged results are only calculated in the non-masked areas and 595 

have partial coverage, but these first altimeter-based seasonal Lt modulation agrees with the 

modeling results reported by Qiu et al. (2018). The altimeter spectral-based seasonal Lt values 

are however longer than that reported in Qiu et al., (2018) from a modeled SSH, by 30 to 70 

km (Bo Qiu, personal communication). Several key methodological differences could explain 
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the observed differences. While Qiu et al (2018) use either a spectral filter over SSH field, or 600 

a Helmholtz decomposition of the velocity field in order to determine Lt, we use the observed 

SSH and the change in spectral shape as a proxy for the boundary between large- and small-

scale in the observed SSH spectrum. Our spectral approach, although straightforward, is 

coarser in comparison, given that the spectral shape analyzed (over the wavelength range of 

interest) contains a mixture of large- and small-scale dynamics and residuals of imperfect 605 

instrumental corrections inherent to the satellite altimetry technique. The overall influence of 

these factors is accounted for by the uncertainty envelope that is generated from our statistical 

averaging, yielding an uncertainty of a few tens of km in some regions. Whereas Qiu et al. 

(2018) generates a precise separation between the high- and low-frequency parts of the 

modelled SSH spectrum, by filtering the SSH signal using a thorough methodology based on 610 

the data-derived dispersion relation for higher dynamical modes and different tidal 

constituents up to O1, which are not readily available for the altimetric observations. 

Although our analyses show the possibility to partially diagnose the small-scale part of the 

SSH spectrum, a thorough diagnosis of the impact of the instrumental noise levels on the 

methodology presented in this paper should be also carried out. This could be built around a 615 

series of Observing System Simulation Experiments that simulate the along-track 

observations, and also isolate the different contribution to the SSH energy spectrum. This is 

planned for future work. 

4.4 Implications for altimetric mapping and the SWOT mission   

There are two major implications for these spectral analyses results. The first is that the 620 

observable wavelength of all SSH signals above the instrument noise are limited to 60-70 km 

for Jason-3 and 50-70 km for S3-A (Figures 1 and 2). So, at present, any alongtrack altimetric 

studies addressing either balanced ocean dynamics or internal tides or internal gravity waves 
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will be limited to these spatial scales by this instrument noise level. Recent improvements in 

high-resolution 20/40 Hz processing techniques for the alongtrack altimetric signal aiming to 625 

improve the SNR of existing data show a reduction of the noise plateau in the order of 20% 

for 1Hz data (Tran et al., 2021, Quilfen and Chapron, 2021). This may improve the lower 

bound of our estimated OWL, as recent results using the latest SAR processing suggest 

(Moreau et al., 2021; Pujol et al., 2023). 

The performance of the upcoming SWOT mission, embarking a new generation of altimeter 630 

technology, anticipates more than one order of magnitude of noise level reduction compared 

to current 1Hz Jason observations (Fu & Ubelmann, 2014). Refined estimates for the SWOT 

SNR including realistic wind-wave effects on the interferometric technology anticipate an 

observability ranging from around 15 km in wavelength at low latitudes to around 30-45 km 

in wavelength towards the poles, with an important longitudinal dependence (Wang et al. 635 

2019). This will greatly extend our capacity to estimate the smaller-spectral slope, especially 

at mid to high latitudes. 

The second implication is for the Lt intercept wavelength. This wavelength value is critical 

when calculating geostrophic currents from altimetric SSH slopes. If the smaller-slope at 

shorter wavelengths is indeed dominated by ageostrophic dynamics and internal tides or 640 

internal gravity waves, these contributions will induce large errors in the geostrophic current 

calculation. In our analysis, we have not included any recent corrections to remove the phase-

locked internal tide from the alongtrack altimetry data.  Separate tests (not shown) indicate 

that these coherent internal tide corrections have a minor impact on our Lt results, since the 

non-phase-locked internal tide remains, and the cascade of internal tide energy to smaller 645 

scales contributes to the small-scale slope over similar wavelengths. So this regionally 

varying Lt value needs to be taken into account when choosing the appropriate spatial scales 

to calculate geostrophic currents: either for the cross-track geostrophic currents from the 
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alongtrack SSH slopes, or when mapping the alongtrack data onto a regular grid. Although 

our alongtrack Lt statistical values are not available globally, due to the limitations with the 650 

current generation of altimetric noise, the limited values are consistent with the modeling 

results of Qiu et al. (2018). This suggests that 1) these changes of slope, predicted by the 

models, are observable in limited regions with today’s altimetry missions, and 2) that the 

global modelled Lt values can be used as a good estimation of the appropriate spatial scales 

for separating balanced motions for geostrophic current calculations with altimeter data. 655 

Our results indicate that at low latitudes, the intercept wavelength remains large (100-150 km) 

suggesting that the changes in the spectral slope will be well observed in two-dimensions by 

the future SWOT mission with its reduced noise level. The estimated observability at high 

latitudes, particularly in the ACC could still be a challenge for diagnosing the transition from 

geostrophic to non-geostrophic circulation regimes from SWOT observations alone, unless 660 

noise-reduction techniques are also applied to SWOT data. Wang et al. (2019) estimate the 

observed wavelengths for SWOT in the ACC to be between 30 and 45 km wavelength, with 

an important longitudinal dependency. Our very limited alongtrack estimates in this region 

indicate that the spectral slope break should occur in the 40-60 km wavelength range on 

average, as do the modeling estimates from Qiu et al (2018). In situ observations from the 665 

Drake Passage report that half of the near surface kinetic energy between 10 and 40 km 

wavelength is accounted for by ageostrophic motions (Rocha et al., 2016a), likely dominated 

by inertia-gravity waves. Our estimates also reveal an inherent geographical variability of the 

intercept wavelength, suggesting a localized dependence of the different dynamical regimes 

around the ACC that was also observed by Wang et al. (2019) for the region. This implies that 670 

the observability in the ACC will not be a constant threshold but rather a pattern dominated 

by localized and seasonal variability.  

Appendix A 



36 
 

Several studies have reported the effect of sea and swell on SAR-mode acquisition satellites 

such as Sentinel-3A (Moreau et al., 2018; Rieu et al. 2021; Moreau et al., 2021), highlighting 675 

that SAR-specific processing methods result in a PSD signature at high wavenumbers that 

deviates from the expected random thermal noise. The expected signature of a random signal 

in the high wavenumber part of the spectrum is a characteristic flat plateau or “white noise” 

(in the case of 1Hz SSH, this concerns wavelengths shorter than 30 km wavelength). In the 

case of Sentinel-3A, SSH data in this part of the spectrum exhibits a slightly slanted shape or 680 

“red noise” plateau (Figure A1a and b, dashed lines).  

 

Figure A1. Result of the double fit algorithm over the denoised S3A data for the white 

(black-WN) and red (blue-RN) noise model for a 12°x12° box over the North Pacific (a) and 

the South Atlantic (b). Considering the error associated with the optimal fit analysis, the 685 

spectral slopes obtained for either the black or blue curves are not significantly different.  

 

Following Xu and Fu (2012), in the present paper we analyze the shape of the unbiased SSH 

spectrum and therefore we assume that the thermal noise signature that dominates the SSH at 
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wavelengths shorter than 30 km is essentially a white-noise plateau. We perform a sensitivity 690 

test on the effect of using a red-type noise plateau rather than a white-type plateau for 

wavelengths between 15 and 30 Km wavelength to compute the unbiased S3A spectra. Figure 

A1 shows the result of using the two different functions as the approximation for the noise 

plateau over selected regions, Figure A2 shows the spatial distribution of the mesoscale and 

small-scale spectral slopes resulting from the observed PSD denoised using a red-type noise. 695 

Results show that the mesoscale spectral slope is not significantly different between both 

methods of denoising (Fig. A1, Figures A2a and A2c) and that the same geographical patterns 

can be observed in the two cases (Figures 5a and A2a). The red noise estimate reduces the 

PSD levels particularly at smaller wavelengths, with a small impact on the small-scale 

spectral slope. These small-scale spectral slope values vary between 1.5 and 2.5 for all 700 

latitudes equatorward of 40° (Fig. A2b), and the most important differences with the white-

noise unbiased case are observed between 30° and 40°, with the latter showing steeper slopes 

(eg Figure A1a), albeit falling inside the uncertainty envelope on average (Fig. A2c). More 

evident differences between the two methods arise at high-latitudes where the small-scale 

spectral slopes for the red-noise unbiased PSD are lower than for its white-noise counterpart 705 

(Figures 5b and A2b). The uncertainty associated with the small-scale spectral slope is also 

higher for the red-noise unbiased PSD, resulting from the additional energy that is subtracted 

by the denoising process in comparison with a white-plateau. This is illustrated by the 

different energy levels observed for the blue and black curves in Figure A1. Therefore, the 

uncertainty associated with the spectral slopes at small scales are higher for the red-noise 710 

unbiased spectra than for the white-noise unbiased spectra (note that the shaded areas in Fig 

A2b are more important than in Fig. 5b).  
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Figure A2. (a) Mesoscale and (b) small-scale spectral slopes fitted to the observed unbiased 

PSD from Sentinel-3A. The noise function used to unbiased the full PSD corresponds to a 715 

red-type noise function. (c) Zonal average of the mesoscale and small-scale spectral slopes in 

(a) and (b). Vertical gray lines denote the k-11/3 and k-5 spectral slope values. Gray shading in 

(b) corresponds to zones where the uncertainty associated with the slope estimate is higher 

than 40% of the slope value. Blank areas in (b) correspond to zones where the double slope 

model does not describe the observed shape of the spectrum. Dashed green and purple lines in 720 

(c) correspond to Jason-3 and Sentinel-3A zonal averages from Figures 4c and 5c 

respectively. White contours represent the topography at 3000 m depth. 

 

Appendix B 

In the following we present the seasonal results of the meso- and small-scale spectral slopes, 725 

and for the intercept wavelength at three regions. This analysis complements the discussion 

presented in Section 4.3. 
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The seasonality of the spectral slope observed by the two missions (Figure B1) shows a 

distinctive pattern around the average values (Figures 4 and 5), with maximum values in the 

vicinity of highly energetic regions (e.g. Kuroshio extension, Gulf Stream, ACC), and rather 730 

shallow slopes in the intertropical band.  In agreement with recent studies (e.g. Dufau et al., 

2016; Vergara et al., 2019), slope values during summer are higher than during winter, 

indicative of a contrasting dynamical regime during both seasons. These changes are 

essentially related to the seasonal changes in the vertical structure of the upper ocean, which 

would allow the development of vigorous small eddies during winter months (Rocha et al., 735 

2016b) that tend to flatten and reduce the mesoscale slope of the spectrum (Figures B1c). This 

enhanced late-winter small-scale energy may be transferred up-scale to larger-scale eddies in 

summer at mid-latitudes (eg Sasaki et al., 2014),  increasing the energy levels in the 

mesoscale wavelength range during summer months. There is nearly null seasonal modulation 

in the equatorial band (10°S-10°N), where the seasonal changes in stratification are rather 740 

limited. 
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Figure B1. Mesoscale spectral slope averaged during (a) August-September-October and (b) 

February-March-April for Sentinel-3. (c) Zonal averages of (a) and (b). ASO (black line, 

dotted shading) and FMA (gray line, hatched shading) zonal averages for Jason-3 are also 745 

plotted in (c). Thick gray lines in (c) denote the spectral slope values of 11/3 and 5. White 

contours in (a) and (b) represent the topography at 3000 m depth. 

 

Seasonal small-slope values follow a different pattern compared to the mesoscale spectral 

slopes, with zonally-averaged higher slopes during winter compared to summer (Figure B2c). 750 

These zonal statistics are dominated by the western-boundary regions of the Kuroshio, the 

East Australian Current, the Gulf Stream and the Brazil-Malvinas Confluence regions. There 

are smaller seasonal differences over low eddy energy regions such as the Southeastern 

Pacific. The winter-summer asymmetry suggests a change in the circulation variability, tied to 

the distinctive annual cycle observed in the 10-100 Km wavelength range (Callies et al., 2015; 755 
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Qiu et al., 2017) and may indicate that a wintertime energization of the small scales related to 

mixed layer instabilities (e.g. Lawrence and Callies, 2022), echoes on the small-scale spectral 

slopes observed here. As for the rest of the paper, we restricted our analyses and zonal 

averages to the zones where the spectral slope error is lower than 40%. 

 760 

Figure B2. Small-scale spectral slope averaged during (a) August-September-October and (b) 

February-March-April for Sentinel-3. Gray shading in (a) and (b) corresponds to zones where 

the uncertainty associated with the slope estimate is higher than 40% of the slope value. Blank 

areas in (a) and (b) correspond to zones where the double slope model does not describe the 

observed shape of the spectrum. (c) Zonal averages of the valid pixels in (a) and (b). ASO 765 

(black line, dotted shading) and FMA (gray line, hatched shading) zonal averages for Jason-3 

are also plotted in (c). White contours in (a) and (b) represent the topography at 3000 m 

depth. 
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In addition to the seasonal modulation of the intercept wavelength illustrated by Figures 10 770 

and 11, we analyzed the statistical distribution of Lt over three western boundary regions (Fig. 

B3). Longer intercept wavelengths are observed during summer months compared to winter 

(20-35 km longer, significant at 95%), with differences between the two sets of observations 

of around 10 to 12 km.  

A detailed analysis using the latest altimetric data available with lower noise levels (Moreau 775 

et al., 2021) over a longer time-series is planned for future work, including comparisons 

against in situ measurements and results from recent literature (e.g. Qiu et al., 2017).  
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Figure B3. Histogram and cumulative distribution function for the values of the intercept 780 

wavelength observed during August-September-October (ASO) and February-March-April 

(FMA), for Jason-3 (full line) and Sentinel-3 (dashed line) over three regions: (a), (b) North 

Western Pacific (20-45°N; 135-170°E); (c), (d) North Western Atlantic (25-45°N; 280-

320°E); South Western Atlantic (55-25°S; 290-320°E). Only the pixels with seasonal 

differences significant at 95% confidence were considered. 785 
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