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Abstract. The lack of long–term observational data has limited research on sea–air CO2 exchange variabilities in the 10 

Tropical Maritime Continent (TMC). To address the issue, we utilized a three–dimensional high–resolution physical–

biogeochemical ocean numerical model and applied it to simulate sea–air CO2 exchange in the region over the last decade 

(2010–2019). Some key features like atmospheric CO2 source signature and high sea surface pCO2 environment inside the 

TMC were captured by the model. Within the TMC, model results indicated strong CO2 degassing along the south of Java 

associated with the seasonal cycle of the upwelling system. Abundant supply of inorganic carbon during upwelling season 15 

and strong wind speed results in CO2 degassing that could reach as high as 30 gC m–2 year–1 around the area. In addition to 

the region acting as a full–year atmospheric CO2 source, the TMC also exhibited interannual modulation in both sea–air CO2 

flux and sea surface pCO2 which can be related to the El Niño–Southern Oscillation (ENSO) and Indian Ocean Dipole 

(IOD). Large–scale anomalous strong CO2 degassing and high sea surface pCO2 from 2015 to 2016 in response to the 

2015/2016 El Niño evolution was observed and dominated by modulation within the TMC. It is further found that 20 

modulation of CO2 degassing related to IOD were confined along the west of south of Java with a higher magnitude 

compared with anomalies related to ENSO which shows larger spatial scale but lower in the magnitude. Study conducted 

here may provide insight about possible variabilities of sea–air CO2 exchange in the area that still poorly represented in 

many global–scale modelling and reconstruction efforts. 
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1 Introduction 

The Tropical Maritime Continent (TMC) region acts as a water passage that allows Pacific Ocean water to be transported to 30 

the Indian Ocean as part of thermohaline circulation, which modulates the global climate system (Gordon, 1986; Wyrtki, 

1961). Located between the Indian and Pacific Ocean, the TMC area is subject to modulation caused by variabilities 

occurring in these two ocean basins, including the El Niño–Southern Oscillation (ENSO) in the tropical Pacific Ocean, and 

Indian Ocean Dipole (IOD) in the Indian Ocean (Ashok et al., 2003; Saji and Yamagata, 2003; Sprintall et al., 2014). Recent 

studies have confirmed that these climate modes influence the TMC area through sea–air interaction perturbation, which 35 

affects the rainfall rate and oceanic properties such as sea surface temperature, sea surface height, and circulation pattern 

(Delman et al., 2016; Pujiana et al., 2019, 2020; Saji and Yamagata, 2003; Siswanto et al., 2020; Sprintall et al., 2014; 

Susanto et al., 2001; Syamsudin et al., 2004).  

Despite the progress, studies on oceanic carbon cycle dynamics in the area remain very limited compared to the number of 

oceanic carbon–related studies that are growing globally (Bakker et al., 2016; Key et al., 2004; Takahashi et al., 2002, 2009). 40 

Although one of the latest observations–based studies by Kartadikaria et al. (2015) on the compilation of sea surface CO2 

partial pressure (sea surface pCO2) across the Indonesian seas could provide a general view of the atmospheric CO2 

sink/source characteristics, it still could not represent the actual seasonal cycle and response of the sea–air CO2 exchange to 

large–scale climate variabilities. Typical sea surface pCO2 underway measurements conducted in a short period are not 

reliable in capturing the low–frequency variabilities that usually develop within an interannual time scale or longer (Sutton et 45 

al., 2017b). A study by Hamzah et al. (2020) in western Indonesian seas later confirmed this issue by highlighting the 

possible variation in the carbonate system over seasonal and interannual timescales in the undersampled area. The recent 

development of empirical model (Iida et al., 2015) or machine learning (Landschützer et al., 2016) in estimating sea surface 

pCO2 and sea–air CO2 exchange is unfortunately producing a relatively coarse resolution for resolving the complex island 

configuration within the TMC and showed inconsistent atmospheric CO2 sink/source signature with observations–based 50 

study. These constraints make it challenging to apprehend TMC sea–air CO2 exchange variabilities at various time scales.  

Several modelling studies have indicated that the sea surface pCO2 and sea–air CO2 flux exhibit apparent modulation related 

to climate variability. A modelling study by Chai et al. (2009) in the South China Sea showed that sea surface pCO2 

followed the seasonal variations of net primary productivity, which was inversely correlated with the sea surface temperature 

(SST) anomaly in the Eastern Tropical Pacific region (NINO3). Global–scale modelling by Obata and Kitamura (2003) 55 

emphasized the Tropical Pacific Ocean sea–air CO2 flux, where the variability in the region related to ENSO contributed 

approximately 70% to the global variability. Similar global–scale modelling was conducted by Valsala et al. (2014); despite 

indicating differences in the contribution of Tropical Pacific sea–air CO2 flux variabilities to global variabilities, the study 

still agrees to the extent that Tropical Pacific Ocean variability has a significant influence on global carbon cycle 

modulation. They further suggested a stronger influence of El Niño–Modoki (Ashok et al., 2007) on upper–carbon cycle 60 

variability in the western part of the Tropical Pacific, adjacent to the TMC. In their modelling study, Xiu and Chai (2014) 
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also addressed the significance of the Pacific Decadal Oscillation and North Pacific Gyre Oscillation in modulating the sea–

air CO2 flux across the North Pacific region, highlighting the variabilities in much lower frequency domains. These studies 

partly confirm the hypothesis about the possible low–frequency modulation of the sea–air CO2 exchange, considering the 

proximity of the TMC to the area studied previously. One of the remaining questions concerns the modulation pattern related 65 

to the Indo–Pacific climate variability in the area, which this study attempts to address. Information regarding sea–air CO2 

exchange variabilities in the TMC can enhance our understanding about overall atmospheric CO2 sink/source variations 

across the tropics and its contribution to the global carbon cycle. 

A high–resolution coupled Ocean General Circulation Model (OGCM) with low–trophic ecosystem module was employed 

to further resolve the issue of elucidating the sea–air CO2 exchange variability across the TMC. The model was forced by 70 

realistic high–temporal resolution atmospheric forcings to approach the actual ocean–atmosphere dynamics that occurred 

during the simulation period. We further focused the analysis between 2010 and 2019 to examine the interannual changes in 

sea surface pCO2 and sea–air CO2 flux in the region. The analysis period included extreme events, such as the 2015/2016 El 

Niño and the 2019 positive IOD (pIOD). Previous studies have indicated that unprecedented anomalies occur around the 

TMC associated with these extreme climate events (e.g., Lu and Ren, 2020; Pujiana et al., 2019) and thus, have become an 75 

interesting period to examine the sensitivity of the sea–air CO2 exchange variabilities in the area to such anomalous climate 

events. 

2 Model and datasets 

2.1 Model description 

The low–trophic ecosystem model employed here was based on carbon (C) and nutrient (phosphate, nitrate, ammonium) 80 

tracing, low–trophic ecosystem model developed by Nakamura et al. (2018). The model was embedded in the Coupled 

Ocean–Atmosphere–Wave and Sediment Transport (COAWST) modelling environment (Warner et al., 2010) with the 

Regional Ocean Modelling System (ROMS; Shchepetkin and McWilliams, 2005) as the OGCM. Note that although model 

in Nakamura et al. (2018) mainly focuses on coral reef ecosystem, application on regional scale modelling was possible by 

deactivating the coral reef model and mainly relies on the low–trophic ecosystem compartment which further modified in 85 

this study. The low–trophic ecosystem model includes three phytoplankton functional types (PFT) in terms of carbon 

biomass, comprising diatoms, dinoflagellates, and coccolithophores. These PFTs utilize nutrients and total dissolved 

inorganic carbon (DIC) for photosynthesis and assimilation with dissolved oxygen as a by–product. The PFTs were 

distinguished by different assimilation efficiency, mortality rate, sinking velocity, and survivability under zooplankton 

grazing. Additionally, coccolithophores PFT use total alkalinity in addition to the DIC for the calcification process to 90 

produce CaCO3 shells which explicitly calculated in this model. Details of relevant parametrization used for each PFT in this 

study can be seen in Table 1. 
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The material excreted by PFTs following the assimilation process immediately enters the labile dissolved organic matter 

(labile–DOM) pool. All dead phytoplankton biomass enters the particulate organic matter pool as detritus (detritus–POM) 

and immediately sinks into a deeper layer in the water column. As for the dead coccolithophore biomass, the previously 95 

produced CaCO3 from the calcification process enters the particulate inorganic matter (CaCO3–PIM) pool and sinks into a 

deeper layer, like the detritus–POM. Estimated produced CaCO3–PIM from coccolithophore dead biomass was adapted from 

Krumhardt et al. (2017, 2019) which incorporates the effect of nutrient limitation, water temperature, and dissolved CO2 gas 

on calcification efficiency.  

One type of zooplankton in terms of carbon biomass was assigned in this model which grazed on phytoplankton, labile–100 

DOM, and detritus–POM. As in the phytoplankton, the dead bodies of zooplankton also entered the detritus–POM pool, with 

a small part entering the CaCO3–PIM pool. The CaCO3–PIM fraction from zooplankton dead biomass was based on Ishizu et 

al. (2019, 2020).  

The decomposition process takes place in the labile–DOM pool to resupply the dissolved inorganic carbon, nitrogen (as 

ammonium), and phosphorus (as phosphate) needed by phytoplankton. The decomposition of detritus–POM transforms 105 

detritus–POM into labile–DOM and dissolved inorganic material compounds (i.e., DIC, phosphate, and ammonium) 

simultaneously. Nitrate in this model was recovered through the nitrification of ammonium. We applied the first order 

dissolution reaction equation for the dissolution process of CaCO3–PIM with a seawater CaCO3 saturation state that varied 

within the water column (Jansen et al., 2002; Sarmiento and Gruber, 2006). Here, the CaCO3–PIM saturation state was 

approximated as the calcite saturation state, given that the main CaCO3 produced in this model came from coccolithophores. 110 

Dissolution of CaCO3–PIM resupply the DIC and alkalinity as well. Schematic figure of material flow in our low–trophic 

ocean ecosystem model can be seen in Figure 1. Details on model formulation and additional parameters used in this model 

can be seen in the supplementary section 1 (S1). 

 

https://doi.org/10.5194/egusphere-2022-1067
Preprint. Discussion started: 14 October 2022
c© Author(s) 2022. CC BY 4.0 License.



5 

 

 115 

Figure 1. Schematic figure of low–trophic ecosystem model used in this study.  

Sea surface pCO2 was calculated in each time–step of simulation, set as 120 seconds, using modelled surface layer DIC, total 

alkalinity, water temperature, and salinity value following OCMIP protocol (Najjar and Orr, 1999). Exchange of CO2 gas 

between sea surface and atmosphere further calculated by incorporating wind speed and difference between sea surface 

pCO2 and atmosphere pCO2 as in Wanninkhof (1992) with CO2 solubility parameterization following Weiss (1974). By 120 

allowing the gas exchange, the DIC within the sea surface layer is subject to dynamics from sea–air interaction in addition to 

the biogeochemical processes within the seawater. The sea surface pCO2 can be decomposed into four driving components 

of sea surface temperature (SST), sea surface salinity (SSS), sea surface total DIC (SSDIC), and sea surface total alkalinity 

(SSAlk) following Takahashi et al. (1993) 

 125 

dpCO2 = (
∂pCO2

∂SST
) dSST + (

∂pCO2

∂SSS
) dSSS + (

∂pCO2

∂SSDIC
) dSSDIC + (

∂pCO2

∂SSAlk
) dSSAlk 

 

We set the model domain to span from the Southeast Tropical Indian Ocean (SETIO) to the Northwest Pacific Ocean (90oE–

164oE; 18oS–29oN). The domain was gridded uniformly with a horizontal resolution of 1/6° × 1/6° while the water column 

was transformed into 30–layers of non–uniform, terrain–following s–coordinates. Simulation experiment was started from 130 
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December 2007 to January 2020. Results analysed in this study covers the 2010–2019 period considering the first two years 

simulation as spin–up period. Generic length scale (GLS) mixing parameterizations of the k–ε configuration were utilized in 

this model for vertical mixing combined with the Kantha–Clayson stability function (CPP options KANTHA_CLAYSON) 

and horizontal smoothing of buoyancy/shear (CPP options N2S2_HORAVG). Smagorinsky–like diffusion (CPP option 

UV_SMAGORINSKY and TS_SMAGORINSKY) was activated in this simulation for the horizontal diffusion and viscosity 135 

for both momentum and tracer variables. 

Table 1. Relevant parameterizations for each phytoplankton functional types (PFT) used in simulation experiment. All values 

shown here were coarsely calibrated from Gregg et al. (2007) and Krumhardt et al. (2019). 

 Dinoflagellate Diatom Coccolithophore 

Maximum photosynthetic rate at 0oC (day–1) 0.44 0.50 0.47 

Optimum light intensity (J m2 s–1) 87 93 71 

Maximum grazing rate by zooplankton at 0oC 

(day–1) 
0.36 0.34 0.29 

Threshold value for grazing by zooplankton 

(µmolC L–1) 
0.054 0.072 0.082 

PO4 half saturation constant (µmol L–1) 0.005 0.050 0.006 

NO3 half saturation constant (µmol L–1) 0.20 0.50 0.20 

NH4 half saturation constant (µmol L–1) 0.01 0.05 0.01 

Sinking Velocity (m day–1) 0.25 0.75 1.00 

 

2.2 Model forcing 140 

To generate the physical–biogeochemical ocean dynamics within the model domain, the model was by forced three main 

components consisted of tidal forcing, atmospheric forcing, and atmospheric CO2 concentration. The Oregon State 

University TPXO tides model output (Egbert and Erofeeva, 2002) and 55–years Japan Reanalysis product (JRA–55; 

Kobayashi et al., 2015) as tidal forcing and atmospheric forcing, respectively, were used to generate the circulation dynamics 

(Physical aspect) in the model domain. Utilized atmospheric forcing here include the three–hourly surface air pressure, air 145 

temperature, humidity, wind speed, precipitation, and cloud fraction. Bulk fluxes (i.e., Shortwave radiation, longwave 

radiation, latent heat, and sensible heat) were computed internally in the model. Annual global–averaged atmospheric CO2 

concentration recorded in the NOAA Earth System Research Laboratory (NOAA ESRL) was used and applied uniformly 

across the entire model domain to generate the CO2 exchange between sea surface and atmosphere (Biogeochemical aspect). 
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River discharge across the model domain was not implemented in this study; thus, the indicated results of pCO2 and sea–air 150 

CO2 flux were caused solely by the ocean–atmosphere interaction dynamics. 

2.3 Model initialization and boundary condition 

The circulation model was initialized using Global Ocean Forecasting System (GOFS) analysis/reanalysis product 

(Chassignet et al., 2006) which provides horizontal momentum (𝑢, 𝑣, 𝑢̅, 𝑣̅), water temperature (T), water salinity (S), and sea 

surface height (𝜂) information. Information in domain’s boundary also provided by the same GOFS dataset. Initial and 155 

boundary condition for biogeochemical tracers were provided by analytically estimating the vertical profile of 

phytoplankton, zooplankton, DIC, Alkalinity, nutrients (Nitrate, Ammonium, and Phosphate), and dissolved oxygen. 

Analytical expression for necessary parameters in the low–trophic ecosystem model was established using Global Data 

Analysis Project 2nd version (GLODAPv2; Key et al., 2004) which stores scientific cruise data across the globe including 

some areas within modelling domain. Each of observed total DIC (Total CO2 in GLODAPv2), total alkalinity, and dissolved 160 

oxygen were paired with observed water temperature to create a fourth–order polynomial equation using least–square 

method. The polynomial equation was later applied to the model’s initial and boundary condition by using GOFS water 

temperature data.  

The nutrients in the model’s initial and boundary condition further calculated using linear relationship between salinity–

normalized DIC and nutrient concentration indicated by the GLODAPv2 data adapting Sarmiento and Gruber (2006). The 165 

linear equation then utilized estimated DIC value and Salinity from the GOFS. We found that the C:P and C:N ratio of 131.9 

and 9.2 which higher than Redfield ratio (Redfield, 1934) but still lower than contemporary estimation in Martiny et al. 

(2014). Observed C:P and C:N values from the GLODAPv2 were later used in the model as well. Through this approach, we 

could create initial condition in the area with sparse observation record such as the TMC. The initial and boundary condition 

for phytoplankton and zooplankton on the other hand, used simpler analytical approach where biomass was calculated as 170 

function of vertical position. More details on the analytical equations used to create the initial and boundary conditions of the 

low–trophic ecosystem model is provided in Table 2.  

 

Phy(z) =
10.5 − 0.00095 × (z + 50)2

24
   For z > −155 m 

Zoo(z) = 0.1 × Phy(z) 175 

 

Lateral boundary condition was set to be mixed radiation–nudging for the 3D momentum and tracer variables. The inflow 

nudging timescale for the temperature/salinity and biogeochemical tracers were set to 100 days and 180 days, respectively.  

Table 2. Analytical equations used to estimate necessary biogeochemical parameters in initial and boundary conditions of the 

ecosystem model. For application in the simulation experiment, water temperature (T) and salinity (S) in the equations were 180 
obtained from the Global Ocean Forecasting System (GOFS) product. 
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Parameter (unit) Equation 

Dissolved inorganic carbon (µmol kg–1) 
2312.12 + (10.68 × T) – (3.50 × T2) + 

(0.16 × T3) – (2.42 × 10–3 × T4) 

Total alkalinity (µmol kg–1) 
2444.73 – (22.29 × T) + (0.09 × T2) + 

(1.28 × 10–3 × T3) + (4.60 × 10–4 × T4) 

Dissolved oxygen (µmol L–1) 
245.85 – (52.01 × T) + (6.46 × T2) – 

(0.28 × T3) + (3.84 × 10–3 × T4) 

Nitrate (µmolN L–1) 
0.98 ×

(
(DIC ×  35)

S
− 1977.4)

9.77
 

Ammonium (µmolN L–1) 
0.02 ×

(
(DIC ×  35)

S
− 1977.4)

9.77
 

Phosphate (µmolP L–1) 
(

(DIC ×  35)
S − 1961.3)

141.23
 

 

3 Results 

3.1 Overall sea–air CO2 exchange features and comparison with other datasets 

Comparison with Surface Ocean CO2 Atlas (SOCAT; Bakker et al., 2016) over the 2010–2019 period shows that the model 185 

could capture the high sea surface pCO2 environment within the TMC as shown from underway observation track in the 

Indonesia Throughflow area (Figure 2). Modeled sea surface pCO2 inside the TMC also fell within the observed value by 

Kartadikaria et al. (2015) and Hamzah et al. (2020). They reported sea surface pCO2 value inside the TMC that higher than 

400 µatm and suggested the role of the region as a net atmospheric CO2 source. However, the model still overestimates the 

sea surface pCO2 in open ocean surrounding the TMC such as the Western Pacific Ocean. The striking sea surface pCO2 190 

gradient between open ocean and inner TMC was still reproduced by the model despite being much weaker than SOCAT 

data. Other dataset derived from empirical model (Iida et al. 2021) and machine learning (Landschützer et al., 2016; not 

shown) with 1° × 1° horizontal resolution did not exhibit such contrasting differences. Excess alkalinity in the sea surface, 

calculated as difference between total alkalinity and DIC, from simulation indicates that there is a considerable gradient 

between the TMC and surrounding open ocean which corresponds to higher sea surface pCO2 inside the TMC compared 195 

with open ocean. Modeled excess alkalinity in the open ocean were still lower compared with reconstruction in Iida et al 

(2021) which may explain the higher–than–observed sea surface pCO2 in the open ocean. 
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Figure 2. First row: Overall sea surface pCO2 (in µatm) indicated by (a) Numerical model utilized in this study, (b) Global 200 
reconstruction product using empirical model (Iida et al., 2021), and observation archived in Surface Ocean CO2 Atlas (SOCAT; 

Bakker et al., 2016). Second row: Sea surface excess alkalinity (in µmol kg–1) as calculated by (a) Numerical model and (b) 

empirical model (Iida et al., 2021). 

The atmospheric CO2 sink/source characteristic over the 2010–2019 shows large spread between datasets as shown in Figure 

3. Our model indicates that inside TMC acts as a net atmospheric CO2 source with average flux of +0.42 mol m–2 year–1 205 

consistent with study by Kartadikaria et al. (2015) and Hamzah et al. (2020) which estimated the average CO2 degassing rate 

of +0.33 mol m–2 year–1 and +0.10 mol m–2 year–1, respectively. Overall CO2 source characteristic within the TMC produced 

by model here also in line with recent state–of–art global scale earth system model which incorporated coastal dynamics 

(Mathis et al., 2022). Other sea surface pCO2 and sea–air CO2 exchange reconstruction products in contrast, indicated the 

area as a net atmospheric CO2 sink with average flux of –0.04 mol m–2 year–1 (Iida et al., 2016) and –0.01 mol m–2 year–1 210 

(Landschützer et al., 2016), respectively. Note that in comparison with study conducted by Kartadikaria et al. (2015), study 

by Hamzah et al. (2020) utilized much shorter observation data and smaller area. 

 

Figure 3. Estimated sea–air CO2 flux (in mol m–2 year–1) inside the TMC according to various studies and global reconstruction 

product. Positive and negative value indicates atmospheric CO2 source and sink signature, respectively. Area used for calculating 215 
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the sea–air CO2 flux from simulation experiment and global reconstruction products (i.e, Iida et al., 2021; Landschützer et al., 

2016) is bounded by red line shown in upper–right map.  

3.2 Seasonal pattern of sea–air CO2 exchange 

Figure 4 showed mean seasonal cycle of sea surface pCO2 and sea–air CO2 flux across the TMC between 2010–2019. 

During winter (December–February), model results show high sea surface pCO2 around the Timor Sea along with strong 220 

CO2 degassing to the atmosphere. In following spring (March–May), high sea surface pCO2 is more distributed within the 

TMC from northern part to southern part of the region, including South China Sea and most of area in Indonesia sea. Strong 

CO2 degassing however, did not apparent during the season as result from weak wind speed. Simulation results indicated 

strong CO2 degassing appear again during Summer (June–August) particularly around South China Sea and South of Java 

along with high pCO2 which can exceed 30 gC m–2 year–1 and 466 µatm, respectively. High sea surface pCO2 and strong 225 

CO2 degassing around South of Java was further maintained until Autumn (September–November) making it the longest 

strong CO2 degassing across the TMC region. The strong CO2 degassing period in South of Java was coincided with 

upwelling season which previously observed by many studies (Horii et al., 2018; Ningsih et al., 2013: Siswanto et al., 2020; 

Susanto et al., 2001). 
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 230 

Figure 4. Mean seasonal cycle of sea surface pCO2 (Left column figures; in µatm) and sea–air CO2 flux (Right column figures, in 

gC m–2 year–1). Positive and negative value in sea–air CO2 flux map indicates atmospheric CO2 source and sink area, respectively. 

Figure 5 shows the results of sea surface pCO2 decomposition analysis following Takahashi et al. (1993). It was indicated 

that spatial variation of sea surface pCO2 closely follows SST seasonality in the TMC. As the region located in the tropics, 

there is a clear interhemispheric difference of SST seasonal cycle in the northern and southern part of the region which led to 235 

alternating north–south gradient of sea surface pCO2. The biological processes, represented by SSDIC and SSAlk, generally 

has weaker influence than the SST influence on large–scale sea surface pCO2 seasonality as the effect of SSDIC and SSAlk 

on sea surface pCO2 tends to cancel each other. With the exception on South of Java, the biological process in the region 

induced net increase(decrease) to the sea surface pCO2 during the onset(termination) of upwelling. In those periods, the 

biological effect on sea surface pCO2 was counteracted by the SST effect. We also noted that in comparison with the open 240 

ocean, our simulation results indicated the inner part of TMC region as biogeochemical activities ‘hotspot’ where influence 
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of SSDIC and SSAlk to sea surface pCO2 was more notable. As expected for the sea surface salinity, changes in SSS showed 

smallest influence on the sea surface pCO2 seasonality across the region compared with other three driving components. 

 

Figure 5. Decomposition of sea surface pCO2 seasonality across the Tropical Maritime Continent (in µatm). From left column to 245 
right column figures: Changes in sea surface pCO2 caused by sea surface temperature, sea surface DIC, sea surface Alkalinity, and 

sea surface salinity. 

Upwelling in the South of Java reaches its annual peak in September as shown in the sea surface chlorophyll–a concentration 

from MODIS satellite (Hu et al., 2012) and phytoplankton carbon biomass from simulation results (Figure 6). Calculation of 

Chl:C ratio in the area shows an average value of 0.02 which within the range in study by Arteaga et al. (2016). The sea 250 

surface pCO2 in the South of Java closely follow this upwelling seasonality with sea surface DIC become the main driving 

component for high sea surface pCO2 during upwelling peak. On the other hand, strong CO2 degassing to the atmosphere (~ 

30 gC m–2 year–1) lead the upwelling peak by one month (August) and maintained until succeeding month of September. 

Wind speed around the area according to JRA–55 showed its maxima in August which can explain the early strong CO2 

degassing prior to the upwelling peak. Although wind speed around south of Java showed relaxation starting from 255 

September, surface water with high inorganic carbon concentration further maintains the strong CO2 degassing condition due 

to high sea surface pCO2.  
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Figure 6. (a) South of Java map; (b) Modelled seasonal sea surface pCO2 associated with its component (in µatm); (c) Seasonal 

wind speed around South of Java according to JRA–55 datasets (in m/s) and modelled sea–air CO2 flux (in gC m–2 year–1); (d) 260 
Modelled seasonal phytoplankton carbon biomass (mgC m–3) and chlorophyll–a concentration (mg m–3) according to Moderate 

Resolution Imaging Spectrometer (MODIS) satellite observation 

3.3 Interannual variability over the last decade (2010–2019) 

The interannual variability was examined by removing the mean seasonal cycle of simulated sea surface pCO2 and sea–air 

CO2 flux over the 2010–2019 period which later identified as anomalies. In addition to the secular trend caused by 265 

atmospheric CO2 concentration growth used in the model forcing, modeled sea–air CO2 flux showed notable interannual 

variation particularly between 2015–2016 and 2019 coincided with the development of 2015/2016 El Niño and 2019 pIOD 

(Figure 7). Those two major modulations in the sea–air CO2 flux had shown to slow down the decreasing trend in the CO2 

flux over the study period (Figure 7a). The sea surface pCO2 anomalies on the other hand, showed relative steady increase 

although some modulations like in the early 2016 can be observed. This again confirms that sea–air CO2 exchange across the 270 

TMC also subject to low–frequency modulation which can be related to the Indo–Pacific climatic forcing. 
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Figure 7. Five–months moving average of (a) sea–air CO2 flux anomalies (in gC m–2 year–1) and (b) sea surface pCO2 anomalies (in 

µatm) across the 95oE–164oE; 15oS–15oN over the 2010–2019 period. Positive and negative values indicate higher–than–usual sea 

surface sea–air CO2 flux/ pCO2 and lower–than–usual relative to the mean seasonal cycle, respectively. 275 

Quantification of Indo–Pacific climatic forcing influence on the sea–air CO2 exchange across the TMC was conducted by 

regression analysis on sea surface pCO2 anomalies, sea–air CO2 flux anomalies, and wind speed anomalies. Considering that 

ENSO and IOD showed a statistically significant correlation over the 2010–2019 (Pujiana et al., 2019), we further separated 

the effect of ENSO on IOD and vice versa by performing partial correlation analysis for sea surface pCO2 anomalies, sea–air 

CO2 flux anomalies, and wind anomalies following the methods in Saji and Yamagata (2003) prior to the regression analysis. 280 

This will allow us to evaluate the extent of each climatic forcing effects on sea–air CO2 exchange across the study region. 

The ENSO and IOD events were represented by central–eastern Pacific sea surface temperature anomaly ‘NINO3.4’ and 

dipole mode index ‘DMI’ (See Saji et al., 1999 for further details about DMI calculation), respectively from HadISST 1.1 

(Rayner et al. 2003). For uniformity reasoning, we regressed the sea surface pCO2 anomalies, sea–air CO2 flux anomalies, 

and wind speed anomalies from JRA55 against one–standard deviation (± 1σ) of NINO3.4 (σNINO3.4 = 0.80 oC) and DMI 285 

(σDMI = 0.26 oC) over the 2010–2019 period. Note that typical ENSO mature phase occurs within the November–March 

period, while the IOD occurs in July–November. Thus, results presented in this section will be focused on these two–period 

which corresponds to each climatic event. 

Regressed sea surface pCO2 anomalies and sea–air CO2 flux anomalies against one–standard deviation (± 1σ) of NINO3.4 

and DMI revealed distinguishable spatial extents of modulation (Figures 8 and 9). Anomalies associated with ENSO during 290 

the November–March period tended to have a larger spatial extent, extended from SETIO region up to South China Sea, 

compared with IOD during July–November, which was confined along south of Java. Results from the regression analysis 

also showed an extended minor influence of IOD on the sea surface pCO2 variabilities up to the lesser Sunda Island water 

area and inside the Indonesian seas.  

Regressed sea surface pCO2 anomalies against NINO3.4 further suggested a stronger sensitivity of the TMC to ENSO 295 

forcing compared with the adjacent Western Pacific Ocean denoted by the area which satisfy statistical significance 

threshold defined in this study (i.e., p < 0.01). The smaller extent of regressed sea–air CO2 flux anomalies against NINO3.4 

implies the nonlinearity between sea surface pCO2 modulation and sea–air CO2 exchange modulation in response to the same 
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climatic forcing which is possible considering the additional factor of wind speed that determine the sea–air CO2 flux. 

Regression analysis conducted here suggested an anomalous sea surface pCO2 and CO2 degassing increase associated with 300 

associated with ENSO over the 2010–2019 can be as high as +40 µatm (1σNINO3.4)–1 and +5 gC m–2 year–1(1σNINO3.4)–1. 

Exclusion of the 2015/2016 El Niño event in the regression analysis (Figure 8, second column) decreased the magnitude of 

the sea surface pCO2 anomalies and significantly reduced the spatial extent of the sea–air CO2 flux anomalies despite the 

occurrence of strong 2010–2012 La Niña. This further suggests that the double–dip La Niña in 2010/2011 and 2011/2012 

induced less–pronounced sea–air CO2 flux modulation within the TMC. 305 

 

Figure 8. November–March (a) regressed sea surface pCO2 anomalies (in µatm) and (b) regressed sea–air CO2 flux anomalies (in 

gC m–2 year–1) along with wind anomalies (Vector arrows, in m/s) against one–standard deviation of NINO3.4 (1σNINO3.4) at 

zero–lag. Regression was calculated after separating IOD effect on ENSO. Shaded colours and vector arrows are significant at p < 

0.01. 310 

Despite regressed sea surface pCO2 anomalies against DMI, which showed a magnitude comparable to the NINO3.4–

regressed value which about +40 µatm (1σDMI)–1, the regressed sea–air CO2 flux anomalies against DMI showed a much 

higher value. Regressed sea–air CO2 flux anomalies against the DMI showed value as high as +20 gC m–2 year–1(1σDMI)–1. 

Removing the 2019 pIOD events from the regression analysis (Figure 9, second column) resulted in only slight changes in 

both sea surface pCO2 anomalies and sea–air CO2 flux anomalies associated with IOD. This implies that even a typical IOD 315 

event (after the ENSO influence has been removed) could trigger strong anomalies in the sea–air CO2 flux, especially around 

the south of Java. 
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Figure 9. July–November (a) regressed sea surface pCO2 anomalies (in µatm) and (b) regressed CO2 flux anomalies (in gC m–2. 

year–1) along with wind anomalies (Vector, in m/s) against one–standard deviation of DMI (1σDMI) at zero–lag. Regression was 320 
calculated after separating ENSO effect on IOD. Shaded colours and vector arrows are significant at p < 0.01. 

4 Discussion 

Examination of long–term sea–air CO2 exchange in the TMC requires careful consideration. Global sea surface pCO2 and 

sea–air CO2 flux reconstruction based on neural network approach (Landschützer et al., 2016) or empirical model (Iida et al., 

2021) shows opposite atmospheric CO2 sink/source characteristic with observations–based study (Hamzah et al., 2020; 325 

Kartadikaria et al., 2015). Lack of continuous observation system (e.g., open ocean mooring) in the area create additional 

constraint to decide the true atmospheric CO2 sink/source characteristic of the region. Our coupled OGCM simulation 

experiment on the other hand, showed consistent results with those observations–based study within the TMC and other 

model with higher complexity. Consistency in the CO2 sink/source characteristic shown by our simulation experiment 

enabled us to further analyse the produced sea–air CO2 exchange variabilities in response to the climatic forcing over the 330 

2010–2019 period. Biases in open ocean as shown previously can be associated to the excess alkalinity in the surface that 

still underestimated in the model. This was supported by the fact that the model domain is still within the Indo–Pacific warm 

pool region with small horizontal SST gradient which should results in similar thermally forced sea surface pCO2. Further 

model improvement to address this issue by enhancing the excess alkalinity gradient between TMC and its adjacent open 

ocean is subject to upcoming studies. 335 

While acted as full–year net atmospheric CO2 source, particularly inside the TMC, our simulation results indicated 

pronounced seasonality around the South of Java. Strong seasonal winds that triggered upwelling around the area during 
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autumn (Horii et al., 2018; Ningsih et al., 2013: Siswanto et al., 2020; Susanto et al., 2001) created favourable conditions for 

strong CO2 degassing through a combination of accelerated gas exchange and an abundant supply of subsurface inorganic 

carbon. This mechanism was not apparent in other areas across the TMC, making it a unique feature from the sea–air CO2 340 

exchange perspective. Note that the aggregate results of upwelling to the sea–air CO2 exchange might vary across regions 

(Chakraborty et al., 2018; Valsala et al., 2014) and thus, the results presented by this model for the South of Java should not 

be taken as a generalization for all upwelling–active regions. 

An attempt to elucidate the extent of extreme climate events (2015/2016 El Niño and 2019 pIOD) influence on the sea–air 

CO2 exchange across the TMC through regression analysis yielded notable results. In agreement with the suggestion by 345 

Kartadikaria et al. (2015), regression analysis suggested a lower–than–usual sea surface pCO2 during La Niña and vice versa 

during El Niño. The sea–air CO2 flux modulation under ENSO influence interestingly, did not necessarily follow the sea 

surface pCO2 modulation spatial pattern and relatively weaker than under IOD influence. This can be attributed to different 

modulation tendency caused by the two climatic forcings.  

Weaker (stronger) northwest monsoon circulation within the TMC during El Niño (La Niña) due to anomalous divergence 350 

(convergence) in the western Pacific could weaken (strengthen) the gas exchange between the sea surface and the 

atmosphere. However, shifts in the Walker circulation (Alexander et al., 2002) caused by the same anomalous divergence 

(convergence) also altered the cloud distribution across the tropics, including the TMC itself, and affected SST. Decreased 

(increased) cloud cover around the TMC during El Niño (La Niña) can increase (decrease) SST through an increase 

(decrease) in incoming solar radiation. This mechanism could increase (decrease) sea surface pCO2 and ultimately strengthen 355 

(weaken) CO2 degassing. The opposite modulation tendencies between atmospheric and oceanic conditions in response to 

ENSO forcing made the CO2 flux anomalies magnitude associated with ENSO less pronounced, despite the strong sea 

surface pCO2 anomalies. 

Conversely, the IOD did not exhibit such opposite tendencies, which resulted in the strong linearity between the sea surface 

pCO2 anomalies and the sea–air CO2 flux anomalies. Typical IOD events occur between late summer–autumn, where 360 

seasonal upwelling occurs (Delman et al., 2016; 2018; Susanto et al., 2001). Anomalous south–easterly (north–westerly) 

winds during the pIOD (nIOD) around SETIO can directly modulate upwelling around the south of Java. Enhanced 

(suppressed) upwelling in response to stronger (weaker) wind forcing during pIOD (nIOD) then result in higher (lower)–

than–usual sea surface pCO2 from the ocean side and accelerated (decelerated) gas exchange on the atmospheric side. 

Exclusion of extreme climate events (i.e., 2015/16 El Nino and 2019 pIOD) in the regression analysis implies the events 365 

were likely responsible for a larger extent of sea–air CO2 exchange modulation around the TMC over the last decade. 

Significant difference in regressed sea–air CO2 flux anomalies after exclusion of 2015/16 El Niño despite the existence of 

strong 2010–2012 La Niña emphasizes the peculiarities of the recent extreme El Niño event. The 2010–2012 La Niña shows 

comparable magnitude with the 2015/16 El Niño as indicated by the Multivariate ENSO Index v2 (MEIv2; Zhang et al., 

2019). It is possible that the Pacific decadal climatic shift in the 2010s modified the ENSO flavour, as pointed out by 370 

Newman et al. (2016), including its influence on the TMC, so that sea–air CO2 flux modulation related to the 2015/2016 El 
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Niño showed substantially different characteristics. Further modelling studies across the TMC over a longer time–scale will 

be needed to confirm this possible decadal variation in the sea–air CO2 exchange. Considering the simulation results and 

analysis conducted here, pronounced modulation of the sea–air CO2 exchange across the TMC in the future can be expected, 

as recent studies have indicated an intensification of extreme climate anomalies under the effect of greenhouse gas forcing 375 

(Cai et al., 2018; Grothe et al., 2019; Zhang et al., 2018). 

Finally, one of the biggest challenges hindering this study was that we have not incorporate river discharge in the simulation 

experiment. The lack of reliable datasets, especially for carbonate chemistry–related parameters, such as total DIC, total 

alkalinity, and nutrients, as highlighted by Valsala et al. (2014), was the main reason for this limitation. Such data are critical 

for evaluating the robustness of any regional–scale watershed modelling effort before further use in coupled OGCM–380 

ecosystem models. Incorporating river discharge inappropriately for studying upper–ocean carbon cycle variability will only 

produce questionable results. DIC concentration from river discharge, for example, varies widely between river mouths, with 

values ranging from 284 µmol kg–1 (Rosentreter and Eyre, 2019) to as high as 3,500 µmol kg–1 (Kawahata et al., 2000). This 

highly variable value did not include the possible strong seasonal and interannual variability of the river–discharged 

material, as presumed by Xiu and Chai (2014). 385 

5 Conclusion 

This study presents results from high–resolution coupled OGCM with low–trophic ecosystem simulation experiment 

focusing on sea–air CO2 exchange variabilities across the TMC, a region regarded as undersampled (Hamzah et al., 2020) 

and usually overlooked by global–scale modelling and/or reconstruction efforts. Compared with available reconstruction 

product, simulated atmospheric CO2 sink/source characteristic within the TMC from this modelling study agreed with 390 

previous observation–based studies (Hamzah et al., 2020; Kartadikaria et al., 2015) where the region acts as net atmospheric 

CO2 source. Further, we also analysed the interannual variations of sea–air CO2 exchange under Indo–Pacific climatic 

forcing over the 2010–2019 period along with its possible mechanism from sea–air interaction perspective. This has never 

been done before considering the aforementioned limitations. Generally, the CO2 degassing anomalies showed in–phase 

relationship with both IOD and ENSO (i.e., positive sea–air CO2 flux anomalies during positive phase of IOD or ENSO, and 395 

vice versa). The ENSO tends to induce larger scale of sea–air CO2 flux modulation while the IOD showed confined 

influence around South of Java but with higher magnitude of modulation. It was further suggested that the latest extreme 

climate event such as the 2015/2016 El Niño and 2019 pIOD were responsible for slowing the secular trend in the CO2 

degassing to atmosphere from the region. While results presented may provide insight about sea-air CO2 exchange 

variabilities in TMC, it can be utilized also to invite interdisciplinary research collaborations regarding establishment of a 400 

continuous sea–air CO2 exchange monitoring system across the region and enrich our understanding of its dynamics under 

changing environments.  
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