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Abstract. Simulation of daily rainfall for the region of Bologna produced by 13 climate models for the period 1850 - 2100

are compared with the historical series of daily rainfall observed in Bologna for the period 1850 - 2014, and analysed to

assess meteorological drought changes up to 2100. In particular, we focus on monthly and annual rainfall data, seasonality and

drought events to derive information on the future development of critical events for water resources availability. The results

prove that rainfall statistics, including seasonal patterns, are fairly well simulated by models, while the historical sequence of5

annual rainfall is not satisfactorily reproduced. In terms of show that historical data analysis under the assumption of stationarity

provides more precautionary predictions for long term meteorological droughts, we conclude that historical data analysis under

the assumption of stationarity may depict a more critical future with respect to climate model simulations, thereby outlining

importantthat information integration is key to obtain technical indications.

1 Introduction10

Droughts originate one of the most challenging risks for modern society. Indeed, most countries across the globe are exposed

to medium/high drought risk (see Fig. 1). Recent events, like the Millenium Drought in Australia (Van Dijk et al., 2013) and

droughts in California (Lund et al., 2018) and South Africa (Sousa et al., 2018) pointed out once again that drought events may

occasionally last for several years, therefore originating “multiyear droughts”, with 5-10 years duration, or “megadroughts”,

with duration longer than a decade (Cook et al., 2016). The sporadic occurrence of megadroughts across the globe is also15

confirmed by several paleoclimatic records (Cook et al., 2016; Vance et al., 2015). Multiyear droughts and megadroughts are

a reason of concern as they strongly impact ecosystems, water supply, socio-economical assets and, ultimately, public health

(Tabari et al., 2021; Ukkola et al., 2020; Tabari, 2020; Stahl et al., 2016). Also, the vulnerability and exposure to these events

are much higher than in the past.

Multiyear droughts are rare extreme events, which are related to large scale atmospheric teleconnections whose dynamics20

are dictated by chaotic behaviors. An implication of the rare occurrence of multiyear droughts is the limited availability of data

to decipher their frequency and train prediction models. For the same reason, it is also difficult to predict how climate change

may exacerbate drought risk. Indeed, the warmer climate is changing the hydrological cycle and further affects precipitation

(Trenberth, 2011), with evidence demonstrating that precipitation is altering in terms of both annual mean (Knutti and Sedláček,

2013), seasonal variation (Polade et al., 2014; Kumar et al., 2014a), and extreme events (Papalexiou and Montanari, 2019;25
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Figure 1. Drought risk index score by countries. It combines information on droughts hazard, exposure, and vulnerability. Higher values

indicate higher risk of drought. Source: WRI Aqueduct, accessed on Aug 8, 2022 (aqueduct.wri.org).

Alexander et al., 2006). According to the Intergovernmental Panel on Climate Change Sixth Assessment Report (IPCC AR6),

such changing conditions are likely to continue in the 21st century (IPCC, 2021). Therefore, the risk of multiyear droughts is

likely to increase in the future, in view also of the increased water demands originated by global warming (Li et al., 2020).

The above reasoning highlights the key role of predictions in mitigating the risk of multiyear droughts and designing adap-

tation procedures. Future climatic scenarios are usually generated by General Circulation Models (GCMs), which attempt to30

simulate future climate variables under given scenarios of CO2 emissions. Recently, the World Climate Research Programme

(WCRP) released the Coupled Model Intercomparison Project Phase 6 (CMIP6; Eyring et al. (2016)). Simulations from several

models are available which deliver ensemble projections of future climate.

The reliability of rainfall simulated by GCMs has been analysed by several studies that focused primarily on the generation

of climate models that preceded CMIP6 (CMIP5 and previous models; see Palerme et al., 2017; Koutroulis et al., 2016;35

Aloysius et al., 2016; Kumar et al., 2014b; Sillmann et al., 2013). Most of these researches compared the climatic scenarios

with historical datasets produced by reanalysis such as NCEP or ERA-Interim (Palerme et al., 2017; Kumar et al., 2014b;

Sillmann et al., 2013). However, on the one hand, reanalysis may introduce biases in the reproduction of extreme events. On

the other hand, the observation period of these datasets covers only the recent past and therefore may undermine a statistical

assessment of performances.40

The present study aims at inspecting the ability of selected CMIP6 models in simulating regional scale climate by focusing

on meteorological drought occurrence. We first compare simulated statistics with those ofsimulations with one of the longest
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daily rainfall records globally available: the Bologna rainfall series, whose observation period dates back to 1813. We decided

to adopt as baseline an observed record, instead of a reanalysis, to take advantage from an extraordinary long observation

period and avoid any bias that may be potentially induced by spatial interpolation.45

The purpose of our study is twofold: (i) to evaluate the ability of up-to-date GCMs in simulating the statistics of observed

precipitation by focusing on multiyear meteorological droughts and (ii) to infer how precipitation and drought risk will change

in the future. The paper is organized as follows: Section 2 provides detailed descriptions of the data used in this study. Section

3, 4 and 5 describe the methods for bias correction, reliability testing, and future change assessment, respectively. Section

6 presents the results of the historical evaluation and future projections for both precipitation and drought risk. Section ??50

discusses the results. Finally, Section 7 summarises our conclusions.

2 Data

2.1 Rainfall observationsObservation data

Italy is one of the first countries that started to systematically collect meteorological observations. Meteorological instruments

and a network of observations were developed by Galileo’s scholars and operated in the 17th century already. The rainfall series55

collected in Padua since 1725 is the longest daily record in the world, and five other rainfall stations have been continuously in

operation – with few missing values - since the eighteenth century (Bologna, Milan, Rome, Palermo and Turin). Therefore, a

data set of enormous value has been accumulated in Italy over the last three centuries (Brunetti et al., 2006).

Rainfall observation in Bologna at daily time scale dates back to 1714. Since 1813 the series is continuous. Brunetti et al.

(2001) provided an interesting description of the history of the time series and the procedures that were applied to detect and60

resolve apparent inconsistencies. The observatory was originally located in the center of the city. The raingauge was changed

in 1857 and likely in 1900. After 1978 data were collected by another observatory in a nearby location. Brunetti et al. (2001)

proposed monthly correction factors to resolve apparent underestimation of rainfall during 1813-1858, 1900-1928 and 1813-

1978. These corrections are valid for monthly rainfall only.

The daily rainfall series observed in Bologna from 1813 to 2021 can be obtained from the European Climate Assessment-65

Daily Database (ECA & D) (https://climexp.knmi.nl/). It is one of the longest daily rainfall records worldwide publicly

available. These are original data as reported in the transcripts of the observatory, without any correction. For the purpose

of the present analysis, we assume that the daily series is homogeneous. In view of the time window adopted by CMIP6 GCMs

for the historical reconstruction, we limit our analysis of the Bologna time series from 1850 to 2014 (see section 2.2).

Fig. 2 shows the daily time series and the 10-year moving average, which oscillates between a minimum of 1.2 mm and a70

maximum of 2.5 mm (more than twice the minimum). The above extreme values occurred in the 1820s and the decade ending

in 1902, respectively. After 1950, a mild increasing trend is noticed, which mirrors a similar tendency that occurred from about

the 1830s1830 to about the 1890s1890.

3



Figure 2. Daily rainfall records in Bologna during 1813-2021, with 10-year moving average (red line)

2.2 General Circulation Model simulation

GCM simulations for both historical (1850-2014) and future (2015-2100) periods are publicly available from the Copernicus75

database (https://cds.climate.copernicus.eu/). Future projections are obtained under the emission scenarios “Shared Socioeco-

nomic Pathway” (SSP) 1-2.6 (SSP1-2.6), 2-4.5 (SSP2-4.5), and 5-8.5 (SSP5-8.5). These are the future emissions considered

by the Scenario Model Intercomparison Project (ScenarioMIP) (O’Neill et al., 2016) of CMIP6.

From each model an ensemble simulation is generated for different initial conditions, initialization methods, physics ver-

sions, and forcing datasets. Similarly to Grose et al. (2020) and Kim et al. (2020), we analyse only the first run of each80

ensemble, that is identified by the acronym "r1i1p1f1", where "r", "i", "p" and "f" indicate initial conditions, initialization

method, physics version and forcing data set, respectively (see https://pcmdi.llnl.gov/CMIP6/Guide/dataUsers.html for more

details). We assume that analysing a single ensemble member per GCM model is sufficient to sample the ensemble for testing

model bias. The assumption above was recently proved to be tenable by Longmate et al. (2022).

Table 1 shows detailed information for 13 GCMs used in this study. We select all the models providing future simulations85

for the three considered emission scenarios. The multi-model ensemble mean is the arithmetic average value of the 13 GCM

outputs. To compare the simulation with observed data, bilinear spatial interpolation is applied to estimate the model prediction

for Bologna depending on the four nearest GCM grid points. Given that GCM simulations start from 1850, we adopt the time

window 1850-2014 as our "historical period".

3 Bias correction90

Simulations by GCM are provided at the grid scale. To compare them with observed data, one should take into account the

potential bias that may be introduced by subgrid variability. For the considered time scale subgrid variability is expected to be
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Table 1. Description of 13 GCMs from CMIP6 used in this study.

Model Institution Resolution
Grid

(lon × lat)

CMCC-ESM2 Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, Italy 1.25◦ × 0.94◦ 288× 192

NorESM2-MM Norwegian Climate Centre, Norway 1.25◦ × 0.94◦ 288× 192

CanESM5
Canadian Centre for Climate Modelling and Analysis, Environment and

Climate Change, Victoria, Canada
2.81◦ × 2.81◦ 128× 64

INM-CM5-0 Institute for Numerical Mathematics, Russian Academy of Science, Russia 2.00◦ × 1.50◦ 180× 120

INM-CM4-8 Institute for Numerical Mathematics, Russian Academy of Science, Russia 2.00◦ × 1.50◦ 180× 120

MPI-ESM1-2-LR Max Planck Institute for Meteorology, Germany 1.875◦ × 1.875◦ 192× 96

MIROC6 Japan Agency for Marine-Earth Science and Technology, Japan 1.40◦ × 1.40◦ 256× 128

EC-Earth3-Veg-LR Consortium of European Research Institution and Researchers, Europe 1.125◦ × 1.125◦ 320× 160

GFDL-ESM4 Geophysical Fluid Dynamics Laboratory, USA 1.25◦ × 1.00◦ 360× 180

MRI-ESM2-0 Meteorological Research Institute, Japan 1.125◦ × 1.125◦ 320× 160

ACCESS-CM2
Commonwealth Scientific and Industrial Research Organization- Australian

Research Council Centre of Excellence for Climate System Science, Australia
1.875◦ × 1.250◦ 192× 144

FGOALS-g3 Institute of Atmospheric Physics, Chinese Academy of Sciences, China 2.00◦ × 2.25◦ 180× 80

IPSL-CM6A-LR Institut Pierre Simon Laplace, Paris, France 2.50◦ × 1.25◦ 144× 143

limited in the region of Bologna. In fact, we focus on monthly and annual rainfall data, which exhibit low spatial variability

in the region (see the annual reports of the Regional Agency for Environmental Protection at https://www.arpae.it; see also

Antolini et al. (2016) for an analysis of subgrid variability in the considered spatial domain).95

To compensate for potential bias, we applied bilinear spatial interpolation to estimate the model prediction for Bologna

depending on the four nearest GCM grid points. Moreover, we applied quantile delta mapping (QDM) to correct bias with

respect to the observed daily rainfall series.

QDM (Cannon et al., 2015) preserves model-projected relative change in quantiles, while at the same time correcting the

systematic biases in quantiles of a model simulation compared to observed values. It is widely adopted for bias correction of100

GCM output such as precipitation (Xavier et al., 2022; Fauzi et al., 2020). Here, we apply the QDM to the model runs for the

historical (1850-2014) and future periods (2015-2100).

First, we compute the empirical frequency of not exceedance qf (t) of each GCM simulated value mf (t) during the future

(denoted by subscript f ) period. Then, the relative change in quantiles ∆(t) of GCM simulated precipitation over two time

periods is given by:105

∆(t) =
F−1
f (qf (t))

F−1
h (qf (t))

=
mf (t)

F−1
h (qf (t))

, (1)
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where Ff and Fh denote the distribution of empirical frequencies of each GCM simulated value mf (t) and mh(t) during the

future and historical period, respectively. Then, the bias-corrected value ô(t) of qf (t) is computed by the frequency of not

exceedance Fo of the observations during the historical period:

ô(t) = F−1
o (qf (t)) (2)110

Finally, the bias-corrected GCM simulation m̂f (t) for the future period is given by:

m̂f (t) = ô(t) ·∆(t). (3)

Note that bias correction for the historical GCM simulation only needs the application of eq. (2) by plugging in qh(t) in the

right hand side instead of qf (t).

4 Reliability testing115

The reliability of GCM simulations with and without bias correction is evaluated by focusing on different temporal scales and

both low and high rainfall, to obtain a comprehensive picture of model performances.

4.1 Monthly and annual rainfallAnnual rainfall

To evaluate the performance of each of the considered CMIP6 GCMs in reproducing the behavior of annual rainfall we

evaluate their capability to reproduce the observed time serieshyetograph and its statistics during the historical period. The120

goodness of the time serieshyetograph simulation is evaluated by computing the modified Kling-Gupta efficiency (KGE)

(Kling et al., 2012), the mean absolute relative error (MARE), and the Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970).

GCM historical simulations are divided into two periods: long-past (1850-1949) and near-past (1950-2014).

KGE is computed by combining three statistical parameters: correlation coefficient (r), bias ratio (β), and variability ratio

(γ)): In eq. ??-??, obsi and GCMi indicate annual rainfall at year i given by historical observations and the considered GCM125

simulation, respectively, µobs and µGCM represent the mean value along the considered period of observed data and GCM,

respectively, and σobs and σGCM indicate the corresponding standard deviation. MARE and NSE are computed as follows:

As for the time serieshyetograph statistics, we first make a visual comparison of the sample probability density of observed

and simulated annual rainfall. Moreover, we compare the lag 1 autocorrelation coefficient of historical data versus each

simulation.130

To assess the performance of each of the considered CMIP6 GCMs in reproducing the statistics of monthly data during the

historical period (1850-2014) we use the “Combined Probability-Probability” (CPP) plot (Koutsoyiannis and Montanari, 2022).

CPP plot compares the probability distributions Fo and Fh of observed and GCM simulated monthly rainfall, respectively,

during the historical period. The comparison refers to 5 subsequent 33-year long time windows during 1850-2014 to assess the

capability of GCMs to reproduce changes along the time of climate statistics.135
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To make the CPP plot, first a realisation w from uniform random variable Fw is generated in the range [0,1] and then we

compute the empirical probability distribution

F̂w(w) = Fh

(
F−1
o (w)

)
. (4)

The ability of GCM in reproducing observed statistics is regarded as good if the plot Fw(w) versus w is the equality line, that

is, if Fw(w) = w. This is possible only if Fh is identical to Fo, which is what we would like to check. In essence, the plot140

tests whether the two distributions, estimated from the GCM simulation and observation, are identical. Note that a CPP plot

lying above (below) the equality line indicates underestimation (overestimation) while an S-shaped CPP plot with the initial

part above (below) the equality line and the second part below (above) the equality line indicates an underestimation of low

(high) rainfall and overestimation of high (low) rainfall (Koutsoyiannis and Montanari, 2022). We also compare observed and

simulated empirical density distribution and lag-1 autocorrelation coefficient of annual rainfall for the whole historical period.145

Autocorrelation is particularly interesting as indicates the capability of models to simulate long term cycles, such as those

occurring during multiyear droughts.

4.2 Mean monthly and seasonal rainfall

The goodness of the simulation of mean monthly and seasonal rainfall averaged over the observation period is evaluated

by a graphical comparison with the observed values and the Taylor diagram (Taylor, 2001). The latter is widely applied150

to summarise how accurately a model simulates an observed record. It integrates three statistical metrics: correlation (R),

centered root-mean-square error (CRMSE) and ratio of standard deviation (SD) in a single diagram. The angular coordinate

represents R. The CRMSE is measured by the distance from the point of reference (observation). Finally, the radial distance

from the origin represents the ratio of SD between model simulation and observation. For perfect model simulation, R and

the SD ratio assume unit value and CRMSE = 0. These statistics provide a quick summary of the correspondence between155

the modeled and observed mean monthly and seasonal rainfall, which is particularly useful in assessing the relative merits

and overall performance of climate models (Rivera and Arnould, 2020; Dong and Dong, 2021; Yazdandoost et al., 2021). The

Taylor diagram is herein used to assess the goodness of the fit of the (a) mean monthly rainfall, (b) March-April-May (MAM),

(c) June-July-August (JJA), (d) September-October-November (SON), (e) December-January-February (DJF) mean rainfall.(a)

mean monthly rainfall, (b) March-April-May (MAM) and (c) September-October-November (SON) mean rainfall.160

Extreme rainfall The climate extreme indexes suggested by the Expert Team on Climate Change Detection and Indices

(ETCCDI) (Zhang et al., 2011) have been widely used in the evaluation and projection of climate extremes (Faye and Akinsanola, 2022; Faye and Akinsanola, 2019; Faye and Akinsanola, 2016; Faye and Akinsanola, 2014).

Table ?? describes the eight indexes that are herein used to evaluate the change of the rainfall extremes. More detailed

information on the indexes can be found on the ETCCDI website (http://etccdi.pacificclimate.org/indices.shtml).

We compute the relative root-mean-square error (RMSE
′
) (Ge et al., 2019, 2021) of the simulation by each model of165

each index as follows. First, the root-mean-square error (RMSE) is calculated for each GCM in reproducing a given index:

where X is a given extreme rainfall index simulated by the considered model and Y is the corresponding observed value. A

standardized value RMSE
′

of the RMSE of each model is then computed as follows: where RMSEMedian is the median
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RMSE of all models. A negative RMSE
′

indicates a better model performance than half of the models. For instance, a value

of RMSE
′
= −0.4 means that the model RMSE for the given index is 40% smaller than the median value across all models170

(Gleckler et al., 2008).

4.3 Meteorological droughts

To test GCM’s reliability in simulating multiyear meteorological droughts we apply run theory (Yevjevich, 1967) to annual

rainfall to characterise drought events in terms of drought frequency, duration, severity and intensity. Run theory is one of the

most effective approaches for drought identification and has been applied in several areas worldwide (Mishra et al., 2009; Wu175

et al., 2020; Ho et al., 2021).

In detail, the long term mean rainfall RLT is adopted as the threshold to identify positive or negative runs (see Fig. 3). If

rainfall in a given year is lower than an assigned threshold Tlower <RLT a negative run is started which ends in the year

when the rainfall is higher than RLT . If the interval between two negative runs is only one year and rainfall in that year is less

than a selected threshold Tupper >RLT , then these two runs are combined into one drought. Finally, only runs which have a180

duration of no less than 3 years are determined as multiyear drought events. Here, the thresholds Tupper and Tlower are defined

as 20% more and 10% less than RLT , respectively. The threshold values have been identified with a trial and error procedure

by verifying that relevant droughts observed in the past have been consistently recognised.

Once a multiyear drought has been identified, drought duration is the time span between the start and the end of the event,

and drought severity is computed as the cumulative rainfall deficit with respect to RLT during drought duration divided by185

the mean rainfall, and drought intensity is computed as the ratio between drought severity and duration. We also estimate the

maximum deficit of the drought event, namely, the largest difference between annual rainfall andRLT during the event. Finally,

drought frequency is computed as the ratio between the number of drought events that have been identified and the length of

the observation period.

5 Future climate change assessment190

Statistics of future projections of annual and seasonal rainfall of the 13 considered GCMs under the three considered scenarios

are compared with observed and simulated statistics of the historical period to evaluate future climate change in the Bologna

region. For a detailed comparison of seasonal rainfall, the future time horizon is divided into near-future (2030-2059) and

long-future (2070-2099) time windows. The multi-model median and the 25th–75th percentiles of the projections given by the

GCMs are considered for each scenario to represent the associated ensemble uncertainty.195
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Figure 3. Identification of multiyear drought events and characteristics by using run theory.

6 Results

6.1 Reliability of historical data simulation

6.1.1 Monthly and annual rainfall

Fig. 4 and Fig. 5 show a comparison of simulated versus observed hyetographs for each of the 13 CMIP6 GCMs thus providing

a visual assessment of their reliability for long-past and near-past historical period, respectively. Some models (e.g. CanESM5200

and MPI-ESM1-2-LR) generally underestimate the annual rainfall for both periods while other models (e.g. ACCESS-CM2

and GFDL-ESM4) end up with a prevailing overestimation. Some other models perform differently in the two considered

historical time periods. In INM-CM5-0 and NorESM2-MM, for example, long-past rainfall is relatively better reproduced

than near-past rainfall while the opposite result is found for INM-CM4-8, which can better simulate near-past rainfall. The

multi-model ensemble (MME), namely the mean value of the 13 GCMs, is characterized by a much lower variability than the205

historical data and therefore does not provide any improvement with respect to each individual GCM.

Fig. 6 shows the obtained goodness of fit indexes. Good model performances correspond to a high positive correlation

coefficient (R), high Kling-Gupta efficiency (KGE), high Nash-Sutcliffe efficiency (NSE), and a small mean absolute relative

error (MARE). The metrics are calculated for long-past, near-past, and total historical period 1850-2014.

For both long-past and near-past periods, 4 of the models (GFDL-ESM4, CMCC-ESM2, FGOALS-g3, and INM-CM5-0)210

and the MME show a positive R while MIROC6, ACCESS-CM2, and NorESM2-MM are characterised by negative R in

both periods. Some other models perform differently in each time period. INM-CM4-8 and CanESM5 show a positive R in

near-past and negative in long-past. It is interesting to note that INM-CM4-8 obtains the highest R in near-past. An opposite
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result is obtained for MPI-ESM1-2-LR, EC-Earth3-Veg-LR and MRI-ESM2-0 with the latter showing the highest negative

value in near-past. INM-CM5-0 exhibits the highest R in the long-past but shows no significant correlation in the near-past215

while FGOALS-g3 obtains the highest R in the near-past. In addition, the IPSL-CM6A-LR exhibits the highest negative value

in simulating long-past rainfall. In general, the positive correlation is low for all models.

The MME delivers the lowest MARE in each period and performs similarly for both near-past and long-past. ACCESS-CM2,

GFDL-ESM4, and MPI-ESM1-2-LR show a relatively higher MARE for both periods while ACCESS-CM2 shows the highest

MARE in each period. The other models exhibit a relatively smaller MARE and perform slightly different in each period.220

As for KGE, 5 of 13 models and the MME show negative KGE values for both long-past and near-past. The ACCESS-CM2

and the MME show the highest negative value for long-past and near-past, respectively. Furthermore, CanESM5 and IPSL-CM6A-LR

exhibit a high negative value for long-past while the values are near to zero for the near-past. Only FGOALS-g3, GFDL-ESM4,

and CMCC-ESM2 depict relatively higher KGE values for both periods while the INM-CM5-0 and INM-CM4-8 show the

highest value for long-past and near-past, respectively.225

All models and the ensemble show negative values of NSE which indicate an overall poor ability in replicating historical

annual rainfall. ACCESS-CM2, MPI-ESM2-2-LR, and GFDL-ESM4 depict relatively poorer performancessmaller values for

both periods with the ACCESS-CM2 providing the less satisfactory onesshowing the smallest value in each period. The multi-model

ensemble and FGOALS-g3 exhibit a higher NSE with a value close to zerovalue near zero, which presents a similar performance to the mean of observation data.

In general, CMIP6 GCMs do not satisfactorily reproduce the historical sequence of annual rainfall, with the less satisfactory230

performances exhibited by ACCESS-CM2, MRI-ESM2-0, and EC-Earth3-Veg-LR. FGOALS-g3, GFDL-ESM4 and CMCC-ESM2

perform relatively better for both periods while INM-CM5-0 and INM-CM4-8 show the best ability in simulating long-past

and near-past annual rainfall, respectively. Interestingly, all the models show a better performance during one separate period

than the total historical period. Compared to every single model, the MME shows no obvious better capability in replicating

the long sequence of annual rainfall.235

Fig. 4 and Fig. 5 show the CPP plots of observed and simulated monthly rainfall time series in the 5 subsequent time windows

during the historical period before and after QDM bias correction, respectively. Note that QDM was operated over the whole

historical period.

While each individual model displays consistent performance in terms of probability distribution across various time win-

dows with only minor differences, the results do not allow an easy identification of the optimal model for a given time window.240

Before bias correction, MPI-ESM1-2-LR generally underestimates monthly rainfall for all periods while some other models

(ACCESS-CM2, GFDL-ESM4, and MIROC6) end up with a prevailing overestimation. CMCC-ESM2 and CanESM5 rela-

tively well capture the low rainfall while underestimating high rainfall. The remaining models (e.g. FGOALS-g3, IPSL-CM6A-

LR, and INM-CM4-8) fit the observed distribution generally well in some time windows while exhibiting slight departures in

other periods. The multi-model ensemble satisfactorily simulates the mean value while overestimating and underestimating the245

low and high rainfall, respectively.

As expected, after bias correction all models show a better performance in reproducing probability distributions in different

periods except FGOALS-g3 and INM-CM4-8 which slightly underestimate low rainfall after QDM. The performance of the
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Figure 4. Combined Probability-Probability plot of observed and GCM simulated monthly rainfall in five time windows during the historical

period before bias correction.

ensemble remains somewhat consistent, although for some periods one notes an improvement in the fit of the mean value. In

general, it is confirmed that bias correction improves the model performances for historical simulation. The obvious limit of250

QDM is the requirement of an extended data set of historical data.

For the whole historical period, Fig. 6 shows a comparison between observed and simulated empirical density distribution of

annual rainfall before and after bias correctionWe further investigate the ability of GCMs in capturing the sample probability

density for annual rainfall in the whole historical period. Before QDM, the majority of models perform worse in capturing

heavier rainfall than lighter rainfall, with the opposite result occurring for EC-Earth3-Veg-LR, MIROC6, and MRI-ESM2-0.255

Only ACCESS-CM2 and GFDL-ESM4 overestimate both high and low rainfall. After QDM, all the models exhibit improved

performances although underestimation of high rainfall is introduced by QDM for 7 models and the ensemble simulation. It

is noted that MME exhibits lower variability with respect to observed data both before and after bias correction. This result is

coerent with what is shown in Fig. 4 and Fig. 5.

Table 2 displays the lag-1 autocorrelation coefficient for each model simulation before and after QDM bias correction. It is260

interesting to note that the correlation of observed data is slightly higher than all the models, therefore highlighting possible

model weakness in simulating long runs. After QDM, the correlation decreases which indicates that QDM may influence the

autocorrelation of raw output of GCM.
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Figure 5. Combined Probability-Probability plot of observed and GCM simulated monthly rainfall in five time windows during the historical

period after bias correction.

Table 2. Lag-1 autocorrelation coefficient between observed annual rainfall and each historical simulation before and after bias correction.

Label OBS MME 1 2 3 4 5 6 7 8 9 10 11 12 13

RAW 0.226 0.052 −0.012 0.122 0.036 0.173 0.127 0.099 0.085 −0.084 0.018 0.086 0.067 0.081 −0.052

QDM 0.226 0.018 −0.063 0.061 0.006 0.120 0.103 0.080 0.059 −0.079 −0.068 −0.001 0.013 0.013 −0.088

OBS is observation data, MME is multi-model ensemble mean and numbers indicate models: 1. ACCESS-CM2; 2. CMCC-ESM2; 3.CanESM5; 4.EC-Earth3-Veg-LR; 5. FGOALS-g3; 6.

GFDL-ESM4; 7. INM-CM4-8; 8. INM-CM5-0; 9. IPSL-CM6A-LR; 10. MIROC6; 11. MPI-ESM1-2-LR; 12. MRI-ESM2-0; 13. NorESM2-MM.

12



Figure 6. Comparison of sample probability density of annual rainfall for observations and GCM historical simulations.
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6.1.2 Mean monthly and seasonal rainfall

Fig. 7 shows the graphical comparison between observed and simulated mean monthly rainfall for the whole historical period265

before bias correction. Most of the models adequately replicate the seasonal rainfall pattern except INM-CM4-8IPSL-CM6A-LR

and FGOALS-g3. However, ACCESS-CM2 significantly overestimates rainfall for all months. Moreover, all models but MPI-

ESM1-2-LR, CMCC-ESM2, NorESM2-MM, and CanESM5 overestimate rainfall in DJFDecember-January-February. Con-

versely, all models but ACCESS-CM2, GFDL-ESM4, EC-Earth3-Veg-LR, and MRI-ESM2-0 underestimate JJAJune-July-August

and/or SONSeptember-October-November rainfall. For MAMthe March-April-May rainfall, several models exhibit overesti-270

mation. In addition, the MME satisfactorily reproduces the annual cycle of rainfall, especially MAMthe March-April-May

rainfall while slightly underestimating JJAthe June-July-August and SONSeptember-October-November and overestimating

DJFthe December-January-February rainfall.

Fig. 8 displays the same graphical comparison after QDM. Although INM-CM4-8 and FGOALS-g3 still fail in reproducing

the seasonal pattern, the performance of ACCESS-CM2 has been improved. Other models show improvement in some seasons275

only (e.g. NorESM2-MM better captures SON rainfall but shows worse performances for MAM rainfall). In general, most of

the models underestimate summer JJA rainfall after QDM.

Figure 7. Annual cycle of historical (1850-2014) mean monthly rainfall (mm/month) of MME and CMIP6 models against observation data.
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Figure 8. Annual cycle of historical (1850-2014) mean monthly rainfall (mm/month) of MME and CMIP6 models against observation data

after bias correction.

Fig. 9 shows the Taylor diagram for each GCM and the MME in simulating the seasonal rainfall pattern. It confirms

that 6 of the models and the MME adequately replicate the mean monthly rainfall with relatively high R, low CRMSE,

and low SD. In particular, satisfactory results are provided by EC-Earth3-Veg-LR and MRI-ESM2-0. IPSL-CM6A-LR and280

FGOALS-g3 display relatively poor performance. However, a considerablesignificant improvement is exhibited in reproduc-

ing MAM, SON, and DJFthe March-April-May and September-October-November rainfall for these two models, especially

FGOALS-g3 that can simulate SONthe September-October-November rainfall best. For DJF rainfall, all models show a bet-

ter performance with respect to other seasons and MME shows the best performance than any individual model. Most of the

models depict a worse performance in SON and JJA than MAM and DJF with much larger biasa higher R but larger bias285

in September-October-November than March-April-May. In general, the EC-Earth3-Veg-LR provides a satisfactory simula-

tion of both annual cycle and each seasonalMarch-April-May rainfall while GFDL-ESM4, ACCESS-CM2 and FGOALS-g3

can better reproduce the MAM, JJA, and SONMarch-April-May and September-October-November rainfall, respectively. Al-

though R is slightly lower than the EC-Earth3-Veg-LR, the MME performs satisfactorily in simulating the annual cycle of

rainfall and best captures DJF rainfall but shows no significant advance over the single models in reproducing MAM, JJA, and290

SONMarch-April-May and September-October-November rainfall.

15



Fig. 10 shows the Taylor diagram after QDM. In general several models show higher CRMSE for JJA rainfall and lower

SD for SON rainfall while the performance for MAM rainfall is similar before and after QDM. Although QDM displays no

evident improvement in the models’ ability to capture seasonal rainfall patterns, one notes a slightly enhanced performance

for the SON season. Overall, the models still show a better ability to reproduce DJF rainfall compared to other seasons. For295

the annual cycle, individual models (e.g. GFDL-ESM4 and MRI-ESM2-0), exhibit improved simulation abilities but the MME

shows a higher SD after bias correction.

Extreme rainfall

Table ?? shows the median RMSE of each extreme index for the ensemble models. TheRMSE
′

of individual model in simulating

rainfall extremes are summarized in Fig. 10. MRI-ESM2-0 performs fairly well with all negative RMSE
′

values for different300

indices. Two models, EC-Earth3-Veg-LR and GFDL-ESM4, provide acceptable performance with mainly negative RMSE
′

values for different indices. TheRMSE
′

of the multi-model mean is shown in the last column of Fig. 10. The ensemble mean performs better than any individual model for most of the indices. In general, the ensemble mean better reproduces the extreme indices than individual model.The ensemble mean performs better than any individual model for all indices.
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Figure 9. Taylor diagram of (a) March-April-May (MAM), (b) June-July-August (JJA), (c) September-October-November (SON), (d)

December-January-February (DJF) and (e) Annual cycle of historical (1850-2014) mean monthly rainfall for the GCM models and their

MME before bias correction.
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Figure 10. Taylor diagram of (a) March-April-May (MAM), (b) June-July-August (JJA), (c) September-October-November (SON), (d)

December-January-February (DJF) and (e) Annual cycle of historical (1850-2014) mean monthly rainfall for the GCM models and their

MME after bias correction.
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6.1.3 Meteorological droughts

Table 3 and Table 4 show the characteristics of multiyear droughts derived by using run theory for both observations and each

model simulation before and after bias correction for both the whole historical and whole future periods, the latter for SSP2.6305

and SSP8.5 scenarios. For the observation data, the long-term mean value of annual rainfall, which RLT of 705 (mm/year) is

considered as the threshold to identify the observed multiyear drought events.

Table 3. Mean values over the considered period of drought frequency (DF), duration (DD), intensity (DI) and maximum deficit

(MD)Statistics for multiyear meteorological droughts exhibited by observed data (1850-2014) and reproduced by models before bias correc-

tion for the historical (1850-2014) and future (2015-2100) periods under the two considered scenarios.

Models
Drought Frequency Drought Duration Drought Intensity Max Deficit

HIS SSP2.6 SSP8.5 HIS SSP2.6 SSP8.5 HIS SSP2.6 SSP8.5 HIS SSP2.6 SSP8.5

OBS 0.055 - - 4.80 - - 0.205 - - 36.70% - -

MME 0.053 0.056 0.050 3.96 4.02 4.75 0.153 0.168 0.184 26.40% 27.87% 32.24%

1 0.030 0.070 0.058 4.20 3.83 4.20 0.134 0.184 0.202 27.05% 33.23% 39.55%

2 0.042 0.035 0.035 3.86 4.00 4.00 0.167 0.154 0.192 23.13% 27.05% 31.84%

3 0.042 0.047 0.058 4.14 3.75 4.20 0.155 0.188 0.210 29.89% 28.32% 36.45%

4 0.079 0.081 0.058 4.23 3.71 4.60 0.140 0.171 0.203 24.60% 28.18% 34.16%

5 0.055 0.035 0.035 4.11 3.00 3.67 0.130 0.110 0.091 22.03% 18.29% 19.21%

6 0.048 0.035 0.047 3.63 6.33 4.50 0.162 0.152 0.173 28.76% 25.12% 26.90%

7 0.048 0.070 0.070 4.25 4.00 3.83 0.167 0.155 0.177 27.27% 23.55% 29.40%

8 0.055 0.058 0.058 4.33 3.60 4.60 0.131 0.189 0.189 21.66% 30.67% 34.00%

9 0.048 0.081 0.023 4.25 3.57 9.00 0.132 0.177 0.246 26.86% 28.29% 48.37%

10 0.055 0.070 0.047 3.44 3.67 5.75 0.163 0.147 0.138 26.55% 24.34% 21.95%

11 0.079 0.047 0.047 3.54 3.75 5.00 0.173 0.226 0.184 29.03% 37.97% 34.04%

12 0.055 0.035 0.058 3.89 5.67 4.40 0.173 0.161 0.191 28.75% 26.34% 28.02%

13 0.055 0.070 0.058 3.56 3.33 4.00 0.158 0.165 0.194 27.63% 30.93% 35.23%

The unit of drought frequency is (times/year) and the unit of drought duration is (years). OBS and HIS are observed data and historical simulation. MME is multi-model

ensemble mean and different numbers indicate different models: 1. ACCESS-CM2; 2. CMCC-ESM2; 3.CanESM5; 4.EC-Earth3-Veg-LR; 5. FGOALS-g3; 6.

GFDL-ESM4; 7. INM-CM4-8; 8. INM-CM5-0; 9. IPSL-CM6A-LR; 10. MIROC6; 11. MPI-ESM1-2-LR; 12. MRI-ESM2-0; 13. NorESM2-MM.

The results highlight that FGOALS-g3, INM-CM5-0, MIROC6, MPI-ESM2-0, and NorESM2-MM simulate drought fre-

quency (DF) fairly well. Notably, all models fail to replicate the drought duration (DD), drought intensity (DI), and maximum

deficit (MD). For instance, IPSL-CM6A-LR and INM-CM4-8 show the best performance in simulating DD, which, however,310

is underestimated by about 10% by the best simulation. Although MPI-ESM1-2-LR presents the highest value of DI and MD

against all the models, marked underestimation with respect to the observations still occurs. MME displays relatively good
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Table 4. Mean values over the considered period of drought frequency (DF), duration (DD), intensity (DI) and maximum deficit (MD) for

multiyear meteorological droughts exhibited by observed data (1850-2014) and reproduced by models after bias correction for the historical

(1850-2014) and future (2015-2100) periods under the two considered scenarios.

Models
Drought Frequency Drought Duration Drought Intensity Max Deficit

HIS SSP2.6 SSP8.5 HIS SSP2.6 SSP8.5 HIS SSP2.6 SSP8.5 HIS SSP2.6 SSP8.5

OBS 0.055 - - 4.80 - - 0.205 - - 36.70% - -

MME 0.054 0.056 0.055 4.22 4.05 4.32 0.184 0.199 0.209 32.14% 33.15% 37.02%

1 0.030 0.070 0.081 4.20 3.83 4.43 0.141 0.202 0.203 28.75% 36.10% 38.72%

2 0.030 0.058 0.047 4.40 4.40 4.50 0.198 0.202 0.242 35.35% 30.73% 45.30%

3 0.055 0.047 0.047 4.00 4.00 3.75 0.191 0.213 0.220 28.36% 33.23% 37.02%

4 0.073 0.081 0.047 4.33 3.71 4.75 0.171 0.199 0.271 29.43% 31.78% 44.94%

5 0.061 0.023 0.047 4.60 3.50 4.25 0.191 0.123 0.148 35.21% 21.78% 32.31%

6 0.061 0.035 0.047 4.00 6.00 3.75 0.191 0.217 0.201 32.07% 33.46% 32.54%

7 0.042 0.070 0.058 5.00 4.33 4.00 0.212 0.193 0.232 35.14% 29.17% 38.56%

8 0.042 0.058 0.070 4.29 5.00 4.33 0.179 0.227 0.206 28.46% 42.26% 38.50%

9 0.048 0.058 0.035 4.63 4.00 5.33 0.170 0.219 0.228 33.72% 36.45% 42.97%

10 0.067 0.058 0.058 3.45 3.40 5.00 0.195 0.185 0.168 33.73% 30.12% 26.46%

11 0.079 0.058 0.047 3.69 3.60 3.50 0.194 0.226 0.177 33.03% 38.03% 28.24%

12 0.048 0.047 0.070 4.25 3.00 4.50 0.188 0.211 0.214 33.32% 30.98% 36.38%

13 0.067 0.070 0.058 4.00 3.83 4.00 0.168 0.182 0.204 31.32% 36.83% 39.64%

The unit of drought frequency is (times/year) and the unit of drought duration is (years). OBS and HIS are observed data and historical simulation. MME is multi-model

ensemble mean and different numbers indicate different models: 1. ACCESS-CM2; 2. CMCC-ESM2; 3.CanESM5; 4.EC-Earth3-Veg-LR; 5. FGOALS-g3; 6.

GFDL-ESM4; 7. INM-CM4-8; 8. INM-CM5-0; 9. IPSL-CM6A-LR; 10. MIROC6; 11. MPI-ESM1-2-LR; 12. MRI-ESM2-0; 13. NorESM2-MM.

performance in terms of DF but still underestimates DD, DI, and MD. In detail, the MME DD is underestimated by about 17%,

while DI and MD for observations are even nearly 34% and 39% higher than MME, respectively.

After QDM, a slight improvement is obtained for the simulation of DF. MME confirms its satisfactory performance, although315

6 models still end up with underestimation. Notably, all models still fail to replicate the DD, DI and MD, with the only exception

of INM-CM4-8 which satisfactorily reproduces drought characteristic. In general, the impact of QDF varies depending on each

model and drought characteristic.

QDM slightly mitigates the underestimation by MME of DD, DI, and MD, which however remain 12%, 10% and 12% lower

than observations, respectively.320
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Figure 11. Time series of annual rainfall for both historical simulation and future projections after bias correction (mm/year). Historical

(black), 30-year mean of historical (yellow), future MME simulations for SSP1-2.6 (green), SSP2-4.5 (blue), and SSP5-8.5 (red). The

uncertainty range for historical simulation (grey shading) and future projection under SSP5-8.5 (red shading) are shown in the 25th and 75th

percentiles of the ensemble.

6.2 Future changes

6.2.1 Changes in average rainfall

Fig. 11 shows the future projections of annual rainfall after QDM for three different scenarios (SSP1-2.6, SSP2-4.5 and SSP5-

8.5), compared with the MME simulation of the historical period (1850-2014). Future annual rainfall shows only a slight

decrease for the SSP5-8.5 scenario while fluctuating with close to stationary variability with respect to the historical period.325

After applying bias correction, future projections exhibit similarities to the raw output but with a slightly lesser degree of

change.

To inspect the temporal progress of changes, the annual cycle of rainfall after bias correction is considered and the future

period is divided into near-future (2030-2059) and long-future (2070-2099) related to the present-day simulation (1985-2014).

Fig. 12 shows an overall decrease in monthly rainfall under all the scenarios in each future period. Under the SSP2.6 scenario,330

the MAM rainfall in the long-future is expected to be less than in the near-future period. Conversely, the rainfall during the SON

season in the long-future will be higher than in the near-future. Moreover, rainfall may be more likely to be concentrated in

November rather than in October in both periods. This change in rainfall pattern also occurs in the near-future period under the

SSP4.5 scenario, but the overall monthly rainfall shows no evidentsignificant difference between periods. Under the SSP8.5

scenario, the MAM and JJS rainfall in the long-future will be considerablysignificantly less than in the near-future and the335

rainfall will be more concentrated in the SON and DJF season. The results after QDM depict an analogous future change of the
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Figure 12. Monthly mean rainfall (mm/month) for multi models in present-day (1985-2014), near-future (2030-2059) and long-future (2070-

2099) under SSP1-2.6, SSP 2-4.5 and SSP5-8.5 scenarios. Thick lines indicate multi-model medians while shading indicates the 25th–75th

percentile model ranges.

seasonal rainfall pattern. With respect to raw output, however, the JJA season is projected to be drier after QDM which aligns

with the historical simulation.
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6.2.2 Future meteorological drought changes

Table 3 reports future drought changes for SSP2.6 and SSP8.5 future scenarios, which represent low emission pathway and340

high emission pathway, respectively. Corresponding statistics for observed data (whole 1850-2014 observations) and model

simulations under historical period (1850-2014) are also shown.

For drought frequency (DF), tThe future changes of DF with respect to historical simulations are not remarkable. DD, DF

and MD are generally underestimated with respect to historical data.Note that this statistic was fairly well reproduced by

the simulation of models under historical period with respect to observed DF. The MME also shows no significant change,345

with DF slightly increasing under SSP2.6 but declining under SSP8.5 compared to historical simulation. The future changes

are much more significant for drought duration (DD), drought intensity (DI) and maximum deficit (MD), which, however,

were underestimated by models when simulating the historical period. In fact, the values of DD, DI and MD for MME under

SSP2.6 and SSP8.5 are both lower with respect to observations. Moreover, DD of all models but GFDL-ESM4 is shorter

under SSP2.6 with respect to observed data. Only the MME and models CMCC-ESM2, MIROC6 and MPI-ESM1-2 show a350

consistent increase of DD when turning from historical simulation to SSP2.6 and SSP8.5. Nearly all models show an increase

in DI with respect to historical simulation for at least one future scenario and all models but FGOALS-g3 and MIROC6 show

a more intense drought under SSP8.5 than SSP2.6. Changes in MD are similar to DI. The above considerations show that

historical data depict a worse future in terms of multiyear droughts with respect to simulations before QDM.The DD of most

of the models is longer under SSP8.5, while being shorter under SSP2.6, with respect to historical simulation. Nearly all the355

models show a marked increase in DI for at least one future scenario and the majority of models show a more intense drought

under SSP8.5 than SSP2.6 except FGOALS-g3 and MIROC6, which show a continuous decline in both future scenarios. The

changes in MD are similar to DI. Additionally, the MME shows a continuous increase for DD, DI and MD with a relatively

larger increase under SSP8.5. The DD will only slightly increase under SSP2.6 while resulting 19.9% longer under SSP8.5.

Similar changes occur in MD, which will increase by 22.1% under SSP8.5. The MME shows that DI will increase by 9.8%360

under SSP2.6, while a much larger increase of 20.3% under SSP8.5. We should note that the climate models do not show

consistent predictions for future changes in statistics of multiyear droughts, but they depict overall drier conditions in the

high-emission scenario compared to both low-emission scenario and historical simulation.

Table 4 presents the corresponding future drought changes after QDM. The good performance of MME in terms of DF is

confirmed. However, more models exhibit less DF compared to observations under SSP8.5. For DD, QDM results in a general365

deterioration of performances in terms of underestimation. For DI and MD, similar values to observed data are reached by

MME under SSP8.5 only, but with large variability among models. In general, QDM improves MME performances but one

still notes large variability among models. Moreover, the expectation of increased drought risk in the future with respect to

historical observations is not confirmed even after QDM and the application of the worst emission scenario.

In general, few models only predict the worst meteorological drought statistics during 2015-2100 with respect to 1850-2014370

observations, and MME does not resolve the problem as it delivers a less conservative prediction with respect to past occurrences

of multiyear droughts.
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6 Discussion

As the results show, the GCMs cannot satisfactorily reproduce the chronological annual rainfall series and the performance

of the model will depend on the selected window of the historical period. However, the multi-model ensemble can simulate the375

monthly rainfall pattern and extreme rainfall fairly well, as well as drought frequency. Conversely, drought duration, intensity,

and maximum deficit are underestimated by models.

Therefore, one may expect that future projections for different emission scenarios provided by GCM models may deliver

useful predictions of rainfall statistics to assess the impact of climate change. However, one should note that the projected

changes in average rainfall are not remarkable: only for SSP8.5, a decrease is predicted of about 10% with respect to the380

historical period. The seasonal rainfall pattern is not predicted to change significantly.

For multiyear meteorological droughts, that is our main focus, we pointed out above that the multi-model ensemble can

satisfactorily simulate their frequency while significantly underestimating duration, intensity, and maximum deficit. Additionally,

the duration, intensity and maximum deficit predicted by models in the future are generally less critical than what was observed

in the past. Such evidence suggests carefully considering the information supporting the technical design of climate change385

adaptation policies for droughts. For the considered case of the Bologna region, extreme drought estimation carried out by

statistical analysis of historical records under the assumption of stationarity delivers a more critical future prediction with

respect to climate model simulations.

7 Conclusions

The present study refers to the region of Bologna, where the availability of a 209-year-long daily rainfall series allows us to390

make a unique assessment of GCM reliability and their predicted changes in rainfall and drought risk. Our results confirm the

poor capability of GCM to simulate the chronological order of observations, therefore highlighting that their uncertainty should

be carefully considered, which is not effectively accounted for by drawing ensemble simulations. The results show that GCMs

provide a satisfactory simulation of rainfall seasonality while statistics of rainfall series estimated for the long term historical

period exhibit discrepancies among models and limited reliability in some cases. In particular, the correlation of annual rainfall395

looks underestimated, thereby implying a possible lack of fit in the simulation of long term cycles.

In fact, our focus is concentrated on the statistics of multiyear droughts. We found that the multi-model ensemble can

satisfactorily simulate the mean frequency of drought during the historical period. Conversely, the mean duration, intensity,

and maximum deficit of multiyear droughts are underestimated.

Bias correction with QDM improves the simulation of the statistics of the monthly and annual series while it does not show400

consistent enhancements in capturing the correlation of annual rainfall and the distribution of seasonal rainfall. The latter

result is consistent with previous studies (Fauzi et al., 2020; Fauzi et al., 2022) The improvement by QDM to simulate drought

characteristics is limited. Indeed, future projections by the multimodel ensemble of multiyear droughts depict a similar risk as

historical observations, even after bias correction and adopting the most critical emission scenario.
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Our results suggest that validation at the local scale of GCM simulations is an essential step to inform downscaling proce-405

dures and correction techniques, to make sure that model predictions are consistent with the local features of climate. However,

extreme events like multiyear droughts are unfrequent, and therefore validating their predicted statistics is particularly chal-

lenging.

Therefore, the identification of future drought risk, which one would expect to be increased under climate change, remains

a challenge, especially if we consider that the reliability of bias correction depends on the availability of observed historical410

data. GCMs perform fairly well in terms of predicted statistics, with uncertainty that is however expected to depend on the

considered design variable. GCMs’ predictions for the future generally deliver a worse picture with respect to present day

simulations, but our results suggest carefully considering the impact of uncertainty when designing climate change adaptation

policies. For some situations, classical engineering methods for critical event estimation under the assumption of stationarity,

with appropriate integration of the information provided by climate models to account for climate change, may still be the most415

precautionary approach. Therefore, rigorous use and comprehensive interpretation of the available information are needed

to avoid mismanagement, by also taking into account that the impact of multiyear meteorological droughts is likely to be

exacerbated by further pressure on water resources due to increasing population and water demand.
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Knutti, R. and Sedláček, J.: Robustness and Uncertainties in the New CMIP5 Climate Model Projections, Nature Climate Change, 3, 369–480

373, https://doi.org/10.1038/nclimate1716, 2013.

Koutroulis, A. G., Grillakis, M. G., Tsanis, I. K., and Papadimitriou, L.: Evaluation of Precipitation and Temperature Simulation Performance

of the CMIP3 and CMIP5 Historical Experiments, Climate Dynamics, 47, 1881–1898, https://doi.org/10.1007/s00382-015-2938-x, 2016.

Koutsoyiannis, D. and Montanari, A.: Bluecat: A Local Uncertainty Estimator for Deterministic Simulations and Predictions, Water Re-

sources Research, 58, e2021WR031 215, https://doi.org/10.1029/2021WR031215, 2022.485

Kumar, D., Kodra, E., and Ganguly, A. R.: Regional and Seasonal Intercomparison of CMIP3 and CMIP5 Climate Model Ensembles for

Temperature and Precipitation, Climate Dynamics, 43, 2491–2518, https://doi.org/10.1007/s00382-014-2070-3, 2014a.

Kumar, S., Lawrence, D. M., Dirmeyer, P. A., and Sheffield, J.: Less Reliable Water Availability in the 21st Century Climate Projections,

Earth’s Future, 2, 152–160, https://doi.org/10.1002/2013EF000159, 2014b.

Li, Z., Fang, G., Chen, Y., Duan, W., and Mukanov, Y.: Agricultural Water Demands in Central Asia under 1.5 °C and 2.0 °C Global Warming,490

Agricultural Water Management, 231, 106 020, https://doi.org/10.1016/j.agwat.2020.106020, 2020.

Longmate, J. M., Risser, M. D., and Feldman, D. R.: Prioritizing the Selection of CMIP6 Model Ensemble Members for DownscalingPro-

jections of CONUS Temperature and Precipitation, Preprint available at https://www.researchsquare.com/article/rs-1428854/latest.pdf,

https://doi.org/10.21203/rs.3.rs-1428854/v1, 2022.

Lund, J., Medellin-Azuara, J., Durand, J., and Stone, K.: Lessons from California’s 2012–2016 Drought, Journal of Water Resources Planning495

and Management, 144, 04018 067, https://doi.org/10.1061/(ASCE)WR.1943-5452.0000984, 2018.

Mishra, A. K., Singh, V. P., and Desai, V. R.: Drought Characterization: A Probabilistic Approach, Stochastic Environmental Research and

Risk Assessment, 23, 41–55, https://doi.org/10.1007/s00477-007-0194-2, 2009.

Nash, J. E. and Sutcliffe, J. V.: River Flow Forecasting through Conceptual Models Part I — A Discussion of Principles, Journal of Hydrology,

10, 282–290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970.500

27

https://doi.org/10.1029/2007JD008972
https://doi.org/10.1029/2019EF001469
https://doi.org/10.1016/j.jhydrol.2021.127056
https://doi.org/10.1017/9781009157896.001
https://doi.org/10.1016/j.wace.2020.100269
https://doi.org/10.1016/j.jhydrol.2012.01.011
https://doi.org/10.1038/nclimate1716
https://doi.org/10.1007/s00382-015-2938-x
https://doi.org/10.1029/2021WR031215
https://doi.org/10.1007/s00382-014-2070-3
https://doi.org/10.1002/2013EF000159
https://doi.org/10.1016/j.agwat.2020.106020
https://doi.org/10.21203/rs.3.rs-1428854/v1
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000984
https://doi.org/10.1007/s00477-007-0194-2
https://doi.org/10.1016/0022-1694(70)90255-6


O’Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe,

J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M.: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6,

Geoscientific Model Development, 9, 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016, 2016.

Palerme, C., Genthon, C., Claud, C., Kay, J. E., Wood, N. B., and L’Ecuyer, T.: Evaluation of Current and Projected Antarctic Precipitation

in CMIP5 Models, Climate Dynamics, 48, 225–239, https://doi.org/10.1007/s00382-016-3071-1, 2017.505

Papalexiou, S. M. and Montanari, A.: Global and Regional Increase of Precipitation Extremes Under Global Warming, Water Resources

Research, 55, 4901–4914, https://doi.org/10.1029/2018WR024067, 2019.

Polade, S. D., Pierce, D. W., Cayan, D. R., Gershunov, A., and Dettinger, M. D.: The Key Role of Dry Days in Changing Regional Climate

and Precipitation Regimes, Scientific Reports, 4, 4364, https://doi.org/10.1038/srep04364, 2014.

Rivera, J. A. and Arnould, G.: Evaluation of the Ability of CMIP6 Models to Simulate Precipitation over Southwest-510

ern South America: Climatic Features and Long-Term Trends (1901–2014), Atmospheric Research, 241, 104 953,

https://doi.org/10.1016/j.atmosres.2020.104953, 2020.

Schoof, J. T. and Robeson, S. M.: Projecting Changes in Regional Temperature and Precipitation Extremes in the United States, Weather and

Climate Extremes, 11, 28–40, https://doi.org/10.1016/j.wace.2015.09.004, 2016.

Sillmann, J., Kharin, V. V., Zhang, X., Zwiers, F. W., and Bronaugh, D.: Climate Extremes Indices in the CMIP5 Multimodel515

Ensemble: Part 1. Model Evaluation in the Present Climate, Journal of Geophysical Research: Atmospheres, 118, 1716–1733,

https://doi.org/10.1002/jgrd.50203, 2013.

Sousa, P. M., Blamey, R. C., Reason, C. J. C., Ramos, A. M., and Trigo, R. M.: The ‘Day Zero’ Cape Town Drought and the Poleward

Migration of Moisture Corridors, Environmental Research Letters, 13, 124 025, https://doi.org/10.1088/1748-9326/aaebc7, 2018.

Stahl, K., Kohn, I., Blauhut, V., Urquijo, J., De Stefano, L., Acácio, V., Dias, S., Stagge, J. H., Tallaksen, L. M., Kampragou, E., Van Loon,520

A. F., Barker, L. J., Melsen, L. A., Bifulco, C., Musolino, D., de Carli, A., Massarutto, A., Assimacopoulos, D., and Van Lanen, H. A. J.:

Impacts of European Drought Events: Insights from an International Database of Text-Based Reports, Natural Hazards and Earth System

Sciences, 16, 801–819, https://doi.org/10.5194/nhess-16-801-2016, 2016.

Tabari, H.: Climate Change Impact on Flood and Extreme Precipitation Increases with Water Availability, Scientific Reports, 10, 13 768,

https://doi.org/10.1038/s41598-020-70816-2, 2020.525

Tabari, H., Hosseinzadehtalaei, P., Thiery, W., and Willems, P.: Amplified Drought and Flood Risk Under Future Socioeconomic and Climatic

Change, Earth’s Future, 9, e2021EF002 295, https://doi.org/10.1029/2021EF002295, 2021.

Taylor, K. E.: Summarizing Multiple Aspects of Model Performance in a Single Diagram, Journal of Geophysical Research: Atmospheres,

106, 7183–7192, https://doi.org/10.1029/2000JD900719, 2001.

Trenberth, K.: Changes in Precipitation with Climate Change, Climate Research, 47, 123–138, https://doi.org/10.3354/cr00953, 2011.530

Ukkola, A. M., De Kauwe, M. G., Roderick, M. L., Abramowitz, G., and Pitman, A. J.: Robust Future Changes in Meteoro-

logical Drought in CMIP6 Projections Despite Uncertainty in Precipitation, Geophysical Research Letters, 47, e2020GL087 820,

https://doi.org/10.1029/2020GL087820, 2020.

Van Dijk, A. I. J. M., Beck, H. E., Crosbie, R. S., de Jeu, R. A. M., Liu, Y. Y., Podger, G. M., Timbal, B., and Viney, N. R.: The Millennium

Drought in Southeast Australia (2001–2009): Natural and Human Causes and Implications for Water Resources, Ecosystems, Economy,535

and Society, Water Resources Research, 49, 1040–1057, https://doi.org/10.1002/wrcr.20123, 2013.

Vance, T. R., Roberts, J. L., Plummer, C. T., Kiem, A. S., and van Ommen, T. D.: Interdecadal Pacific Variability and Eastern Australian

Megadroughts over the Last Millennium, Geophysical Research Letters, 42, 129–137, https://doi.org/10.1002/2014GL062447, 2015.

28

https://doi.org/10.5194/gmd-9-3461-2016
https://doi.org/10.1007/s00382-016-3071-1
https://doi.org/10.1029/2018WR024067
https://doi.org/10.1038/srep04364
https://doi.org/10.1016/j.atmosres.2020.104953
https://doi.org/10.1016/j.wace.2015.09.004
https://doi.org/10.1002/jgrd.50203
https://doi.org/10.1088/1748-9326/aaebc7
https://doi.org/10.5194/nhess-16-801-2016
https://doi.org/10.1038/s41598-020-70816-2
https://doi.org/10.1029/2021EF002295
https://doi.org/10.1029/2000JD900719
https://doi.org/10.3354/cr00953
https://doi.org/10.1029/2020GL087820
https://doi.org/10.1002/wrcr.20123
https://doi.org/10.1002/2014GL062447


Wu, J., Chen, X., Love, C. A., Yao, H., Chen, X., and AghaKouchak, A.: Determination of Water Required to Recover from Hy-

drological Drought: Perspective from Drought Propagation and Non-Standardized Indices, Journal of Hydrology, 590, 125 227,540

https://doi.org/10.1016/j.jhydrol.2020.125227, 2020.

Xavier, A. C. F., Martins, L. L., Rudke, A. P., de Morais, M. V. B., Martins, J. A., and Blain, G. C.: Evaluation of Quantile Delta Mapping

as a bias-correction method in maximum rainfall dataset from downscaled models in São Paulo state (Brazil), International Journal of

Climatology, 42, 175–190, 2022.

Xu, K., Xu, B., Ju, J., Wu, C., Dai, H., and Hu, B. X.: Projection and Uncertainty of Precipitation Extremes in the CMIP5 Multimodel545

Ensembles over Nine Major Basins in China, Atmospheric Research, 226, 122–137, https://doi.org/10.1016/j.atmosres.2019.04.018, 2019.

Yazdandoost, F., Moradian, S., Izadi, A., and Aghakouchak, A.: Evaluation of CMIP6 Precipitation Simulations across Different Climatic

Zones: Uncertainty and Model Intercomparison, Atmospheric Research, 250, 105 369, https://doi.org/10.1016/j.atmosres.2020.105369,

2021.

Yevjevich, V.: An Objective Approach to Definitions and Investigations of Continental Hydrologic Droughts, Ph.D. thesis, Hydrology Pa-550

per23, Colorado State University, Fort Collins, 1967.

Zhang, X., Alexander, L., Hegerl, G. C., Jones, P., Tank, A. K., Peterson, T. C., Trewin, B., and Zwiers, F. W.: Indices for Monitoring Changes

in Extremes Based on Daily Temperature and Precipitation Data, WIREs Climate Change, 2, 851–870, https://doi.org/10.1002/wcc.147,

2011.

29

https://doi.org/10.1016/j.jhydrol.2020.125227
https://doi.org/10.1016/j.atmosres.2019.04.018
https://doi.org/10.1016/j.atmosres.2020.105369
https://doi.org/10.1002/wcc.147

