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Abstract. Accurate measurement of vegetation density metrics including plant, wood and leaf area indices (PAI, 10 

WAI and LAI) is key to monitoring and modelling carbon storage and uptake in forests. Traditional passive sensor 11 

approaches, such as Digital Hemispherical Photography (DHP), cannot separate leaf and wood material, nor 12 

individual trees, and require many assumptions in processing. Terrestrial Laser Scanning (TLS) data offer new 13 

opportunities to improve understanding of tree and canopy structure. Multiple methods have been developed to 14 

derive PAI and LAI from TLS data, but there is little consensus on the best approach, nor are methods 15 

benchmarked as standard.  16 

Using TLS data collected in 33 plots containing 2472 trees of five species in Mediterranean forests, we compare 17 

three TLS methods (LiDAR Pulse, 2D Intensity Image and Voxel-Based) to derive PAI and compare with co-18 

located DHP. We then separate leaf and wood in individual tree point clouds to calculate the ratio of wood to total 19 

plant area (α), a metric to correct for non-photosynthetic material in LAI estimates. We use individual tree TLS 20 

point clouds to estimate how α varies with species, tree height and stand density.  21 

We find the LiDAR Pulse method agrees most closely with DHP, but is limited to single scan data so cannot 22 

determine individual tree properties, including α. The Voxel-Based method shows promise for ecological studies 23 

as it can be applied to individual tree point clouds. Using the Voxel-Based method, we show that species explain 24 

some variation in α, however, height and plot density were better predictors. 25 

Our findings highlight the value of TLS data to improve fundamental understanding of tree form and function, 26 

but also the importance of rigorous testing of TLS data processing methods at a time when new approaches are 27 

being rapidly developed. New algorithms need to be compared against traditional methods, and existing 28 

algorithms, using common reference data. Whilst promising, our results show that metrics derived from TLS data 29 

are not yet reliably calibrated and validated to the extent they are ready to replace traditional approaches for large 30 

scale monitoring of PAI and LAI.   31 
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1 Introduction 33 

Leaf Area Index (LAI), defined as half the amount of green leaf area per unit ground area (Chen and Black, 1992), 34 

determines global evapotranspiration, phenological patterns and canopy photosynthesis, and is therefore an 35 

essential climate variable (ECV), as well as a key input in dynamic global vegetation models (Sea et al., 2011; 36 

Weiss et al., 2004). Accurate measurements of leaf, wood and plant area indices (LAI, WAI and PAI) have 37 

historically been derived from labour intensive destructive sampling (Baret et al., 2013; Jonckheere et al., 2004), 38 

so over large spatial or temporal scales these can only be measured indirectly, typically with remote sensing. 39 

Large-scale remote sensing, using spaceborne and airborne instruments, has been widely used to estimate LAI 40 

over large areas (Pfeifer et al., 2012), but requires calibration and validation using in situ measurements to 41 

constrain information retrieval (Calders et al., 2018). Non-destructive in situ vegetation index estimates have 42 

historically been made by measuring light transmission below the canopy and using simplifying assumptions 43 

about canopy structure to estimate the amount of intercepting material (e.g. Beer-Lambert’s law; Monsi and Saeki, 44 

1953). The most common method, Digital Hemispherical Photography (DHP; Figure 1a), requires both model 45 

assumptions and subjective user choices during data acquisition and processing in order to estimate both PAI and 46 

LAI (Breda, 2003). DHP images are processed by separating sky from canopy, but not photosynthetic from non-47 

photosynthetic vegetative material, so additional assumptions are needed to calculate either LAI or WAI 48 

(Jonckheere et al., 2004; Pfeifer et al., 2012). Separation of LAI from PAI can be achieved by removing or 49 

masking branches and stems from hemispherical images (e.g. Sea et al., 2011; Woodgate et al., 2016), but is not 50 

reliable when leaves are occluded by woody components (Hardwick et al., 2015). An alternative approach is to 51 

take separate DHP measurements in both leaf on and leaf off conditions, and derive empirical wood to plant ratios 52 

(WAI/PAI, α) (Leblanc and Chen, 2001), but this is not always practical, for example in evergreen forests. The 53 

difficulty of separation means that studies often omit correcting for the effect of WAI on optical PAI 54 

measurements altogether (Woodgate et al., 2016), but since woody components in the forest canopy can account 55 

for more than 30% of PAI (Ma et al., 2016) this can introduce overestimation. Further, although DHP estimates 56 

of LAI or PAI are valuable both for ecosystem monitoring and developing satellite LAI products (Hardwick et 57 

al., 2015; Pfeifer et al., 2012), they are limited to sampling only at a neighbourhood or plot level (Weiss et al., 58 

2004), and cannot be used to measure individual tree LAI except for open grown trees (Béland et al., 2014).  59 

The ratio of wood to total plant area, α, is known to be dynamic, changing in response to abiotic and biotic 60 

conditions. For example, the Huber value (sapwood to leaf area ratio, a related measure to α) may vary according 61 

to water availability (Carter and White, 2009). Leaf area may therefore be indicative of the drought tolerance level 62 

of a tree, with more drought tolerant species displaying a lower leaf area, reducing the hydraulic conductance of 63 

the whole tree and therefore increasing its drought tolerance (Niinemets and Valladares, 2006). α has been 64 

hypothesised to increase with the size of a tree in response to the increased hydraulic demand associated with 65 

greater hydraulic resistance of tall trees (Magnani et al., 2000) and higher transpiration rates of larger LAI 66 

(Battaglia et al., 1998; Phillips et al., 2003). Stand density may also impact α (Long and Smith, 1988; Whitehead, 67 

1978), as increased stand level water use scales linearly with LAI (Battaglia et al., 1998; Specht and Specht, 1989), 68 

reducing water availability to individual trees competing for the same resources (Jump et al., 2017).  Large scale 69 

quantification of α or Huber value, however, is difficult as studies usually rely on a small number of destructively 70 

sampled trees (e.g. Carter and White, 2009; Magnani et al., 2000), litterfall traps (e.g. Phillips et al., 2003) or 71 
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masking hemispherical images (e.g. Sea et al., 2011; Woodgate et al., 2016). These approaches are only applicable 72 

on a small to medium scale, and in the case of image masking, cannot differentiate between individuals. Variation 73 

in α, for example by species and or stand structure, is therefore largely unknown. 74 

1.1 TLS methods for calculating PAI, LAI and WAI 75 

Terrestrial Laser Scanning (TLS) generates high-resolution 3D measurements of whole forests and individual 76 

trees (Burt et al., 2018; Disney, 2018), leading to the development of completely new monitoring approaches to 77 

understand the structure and function of ecosystems (Lines et al., 2022). Unlike traditional passive sensors, TLS 78 

can estimate PAI, WAI, and LAI for both whole plots and individual tree point clouds (Calders et al., 2018), and 79 

is unaffected by illumination conditions. This has led to the development of several methods for processing TLS 80 

data to extract the key metrics PAI, WAI and LAI (e.g. Hosoi and Omasa, 2006; Jupp et al., 2008; Zheng et al., 81 

2013). However, intercomparison studies of algorithms and processing approaches to derive the same metrics 82 

from different TLS methods are lacking.TLS methods for extracting PAI, LAI and WAI can be broadly 83 

categorised into two types: (1) LiDAR return counting, using single scan data (e.g., the LiDAR Pulse method; 84 

Jupp et al., 2008, and 2D Intensity Image method; Zheng et al., 2013) and (2) point cloud voxelisation, usually 85 

using co-registered scans (e.g., the Voxel-Based method; Hosoi and Omasa, 2006).  86 

The LiDAR Pulse method (Jupp et al., 2008; Figure 1b) estimates gap fraction (Pgap) using single scan data, as a 87 

function of the total number of outgoing LiDAR pulses from the sensor and the number of pulses that are 88 

intercepted by the canopy. This method, which eliminates illumination impacts associated with the use of DHP 89 

(Calders et al., 2014), has been implemented in the python module, PyLidar (www.pylidar.org) and the R package, 90 

rTLS (Guzman, et al. 2021). Using the LiDAR Pulse method, Calders et al. (2018) compared PAI estimates from 91 

two ground-based passive sensors (LiCOR LAI-2000 and DHP) with TLS data collected with a RIEGL VZ-400 92 

TLS in a deciduous woodland, and found the two passive sensors underestimated PAI values compared to TLS, 93 

with differences dependent on DHP processing and leaf on/off conditions. 94 

The 2D Intensity Image method (Zheng et al., 2013; Figure 1c), also uses raw single scan TLS point clouds, but, 95 

unlike the LiDAR Pulse method, converts LiDAR returns into 2D panoramas where pixel values represent return 96 

intensity. PAI is estimated by classifying pixels as sky or vegetation, based on their intensity value, to estimate 97 

Pgap, and then applying Beer-Lambert’s law. Like the LiDAR Pulse method, this approach has been shown to 98 

generate higher PAI estimates than DHP (Calders et al., 2018; Woodgate et al., 2015; Grotti et al., 2020), with 99 

differences attributed to the greater pixel resolution and viewing distance of TLS resolving more small canopy 100 

details (Grotti et al., 2020). 101 

The Voxel-Based method (Figure 1d) estimates PAI by segmenting a point cloud into voxels and either simulating 102 

radiative transfer within each cube (Béland et al., 2014; Kamoske et al., 2019), or classifying voxels as either 103 

containing vegetation or not, and dividing vegetation voxels by the total number of voxels (Hosoi and Omasa, 104 

2006; Itakura and Hosoi, 2019; Li et al., 2017). Crucially, this method may be applied to multiple co-registered 105 

scan point clouds and so can be used to calculate PAI for both whole plots and individual, segmented TLS trees. 106 

However, PAI estimates derived using the voxel method are highly dependent on voxel size (Calders et al., 2020). 107 

Using a radiative transfer approach, Béland et al. (2014) demonstrated that voxel size is dependent on canopy 108 

clumping, radiative transfer model assumptions and occlusion effects, making a single, fixed choice of voxel size 109 

http://www.pylidar.org/
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for all ecosystem types, scanners or datasets impossible. To test various approaches to selecting voxel size using 110 

a voxel classification approach, Li et al. (2016) matched voxel size to point cloud resolution, individual tree leaf 111 

size, and minimum beam distance and tested against destructive samples, finding that voxel size matched to point 112 

cloud resolution had the closest PAI values to destructive samples. The LiDAR Pulse method and 2D Intensity 113 

Image method both use single scan data. However, to generate robust estimates of canopy properties that avoid 114 

errors from occlusion effects, multiple co-registered scans taken from different locations are likely needed (Wilkes 115 

et al., 2017). Further, both these methods require raw unfiltered data to accurately measure the ratio of pulses 116 

emitted from the scanner and number of pulses that are intercepted by vegetation. This means “noisy” points 117 

caused by backscattered pulses (Wilkes et al., 2017) are included in analyses, potentially leading to higher PAI 118 

estimates. However, the LiDAR Pulse and 2D Intensity Image methods may introduce fewer estimation errors 119 

compared to DHP, which is influenced by differences in sky illumination conditions and camera exposure (Weiss 120 

et al., 2004).  121 

 122 



5 

 

 123 

Figure 1: Visual representation of the four methods for PAI and WAI estimation used in this study: (a) a binarised 124 
digital hemispherical photograph (DHP), (b) TLS raw single scan point cloud, for the LiDAR Pulse method (Jupp et 125 
al., 2008). Image shows a top-down view of raw point cloud and greyscale represents low (grey) and high (black) Z 126 
values, (c) TLS 2D intensity image for the 2D Intensity Image method (Zheng et al., 2013), (d) Voxelised co-registered 127 
whole plot point cloud for the Voxel-Based method (Hosoi and Omasa, 2006), showing a representative schematic of 128 
cube voxels with edge length of 1m, voxelised using the R package VoxR (Lecigne et al., 2018). Solid black voxels are 129 

classified as containing vegetation (filled) and voxels outlined with grey lines are voxels classified as empty.  130 

1.2 Scope and aims 131 

The aims of this study are twofold: the first aim is to compare three TLS methods for estimating PAI with 132 

traditional DHP. The second aim of this study is to use TLS to understand drivers of individual tree α variation.  133 

In this study we use a dataset of 528 co-located DHP and high-resolution TLS scans from 33 forest plots to 134 

compare DHP derived PAI (PAIDHP) with estimates from three methods to estimate PAI from TLS data (PAITLS): 135 

the LiDAR Pulse method; the 2D Intensity Image method and the Voxel-Based method (Figure 1). We use a dataset 136 

collected from a network of pine/oak forest plots in Spain (Owen et al., 2021) and ask (1) are the three TLS 137 

methods able to reproduce PAIDHP estimates at single scan and whole plot level? (2) does α, calculated from the 138 

Voxel-Based method on individual tree point clouds, vary with species and tolerance to drought? and (3) does α 139 

scale with height and stand density? 140 

2. Methods  141 

2.1 Study site 142 

We collected TLS and DHP data from 29 plots in Alto Tajo Natural Park (40°41′N, 02°03′W; FunDIV – 143 

Functional Diversity plots; see Baeten et al. (2013) for a detailed description of the plots) and four plots in Cuellar 144 

(41°23′N 4°21′W) in June - July 2018 (see Owen et al. (2021) for full details) (Figure A1). Plots contained two 145 

oak species: semi-deciduous Q. faginea and evergreen Q. ilex, and three pine species: P. nigra, P. pinaster and P. 146 

sylvestris. P. sylvestris is the least drought tolerant species, followed by P. nigra, Q. faginea, Q. ilex; shade 147 

tolerance follows the same ranking (Niinemets and Valladares, 2006; Owen et al., 2021). Although not 148 

quantitatively ranked, P. pinaster has been shown to be very drought tolerant, appearing in drier areas than the 149 

other species (Madrigal-González et al., 2017). The area is characterised by a Mediterranean climate (altitudinal 150 

range 840 – 1400 m.a.s.l.) (Jucker et al., 2014; Madrigal-González et al., 2017). In addition to the five main canopy 151 

tree species, plots contained an understory of Juniperus thurifera and Buxus sempervirens (Kuusk et al., 2018). 152 

2.2 Field protocol  153 

In each of the 33 plots of size 30 x 30 m, we collected TLS scans on a 10 m grid, making 16 scan locations 154 

following Wilkes et al. (2017) to minimise occlusion effects associated with insufficient scans. We used a Leica 155 

HDS6200 TLS set to super high resolution (3.1 x 3.1mm resolution at 10 m with a beam divergence of ≤ 5 mm at 156 

50 m; scan time 6m 44 s; see Owen et al. (2021)). At each of the 528 scan locations and following the protocol in 157 

Pfeifer et al. (2012), we captured co-located DHP images with three exposure settings (automatic and ± one stop 158 

exposure compensation), levelling a Canon EOS 6D full frame DSLR sensor with a Sigma EX DG F3.5 fisheye 159 

lens, mounted on a Vanguard Alta Pro 263AT tripod. 160 

https://tools.wmflabs.org/geohack/geohack.php?pagename=Alto_Tajo_Nature_Reserve&params=40_41_N_02_03_W_type:landmark
https://tools.wmflabs.org/geohack/geohack.php?pagename=Cu%C3%A9llar&params=41_23_N_4_21_W_type:city(9584)_region:ES-SG
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2.3 Calculation of single scan and whole plot PAI using DHP data 161 

For each of the red-green-blue (RGB) DHP images we extracted the blue band for image thresholding, as this best 162 

represents sky/vegetation contrast (Pfeifer et al., 2012). For each plot, we picked the exposure setting that best 163 

represented sky/ vegetation difference based on pixel brightness histograms of four sample locations indicative of 164 

the plot. We carried out automatic image thresholding using the Ridler and Calvard method (1978), to create a 165 

binary image of sky and vegetation, avoiding subjective user pixel classification (Jonckheere et al., 2005). We 166 

calculated PAI from the binary image, limiting the field of view to a 5o band centred on the hinge angle of 57.5o 167 

(55o – 60o). The hinge angle has a path length through the canopy twice the canopy height, so the band around it 168 

is an area of significant spatial averaging taken as representative of canopy structure of the area (Calders et al., 169 

2018; Jupp et al., 2008). From the binarised hinge angle band we calculated Pgap as the number of sky pixels 170 

divided by the total number of pixels and PAI using an inverse Beer-Lambert law equation (Monsi and Saeki, 171 

1953). We calculated whole plot PAI as the arithmetic mean of the 16 plot scan location PAI estimates. As this 172 

value does not correct for canopy clumping, it is better described as effective PAI, rather than true PAI (Woodgate 173 

et al., 2015). However, as the TLS and DHP methods we apply here account for canopy clumping differently, we 174 

compared effective values and here-on refer to effective PAI as PAI (Calders et al., 2018). DHP images used in 175 

this study are freely available (see Flynn et al., 2023). 176 

2.4 Calculation of single scan and whole plot PAI from TLS data 177 

To calculate PAI using the LiDAR Pulse method (Jupp et al., 2008), we calculated Pgap for a single scan (Figure 178 

1b) by summing all returned laser pulses and dividing by the number of total outgoing pulses, following Lovell et 179 

al. (2011; see Eq. 7 in that study), and then estimated PAI following Jupp et al. (2008; see Eq. 18 in that study), 180 

setting the sensor range to 5o around the hinge angle as before (55o – 60o). Single scan PAI was taken as the 181 

cumulative sum of PAI values estimated by vertically dividing the hinge region into 0.25 m intervals (Calders et 182 

al., 2014). We implemented the LiDAR Pulse method using the open-source R (R Core Team, 2020) package, 183 

rTLS (Guzmán and Hernandez, 2021).  184 

To calculate PAI using the 2D Intensity Image method (Zheng et al., 2013), we converted 3D TLS point cloud 185 

data from all 528 scan locations into polar coordinates, scaled intensity values to cover the full 0-255 range (Figure 186 

1c) and rasterised into a 2D intensity image using the open-source R package, raster (Hijmans, 2022). We cut the 187 

2D intensity image to a 5o band around the hinge angle (55 o – 60o) and classified sky and vegetation pixels in each 188 

image using the Ridler and Calvard method (1978). We calculated Pgap as the number of pixels classified as sky 189 

divided by the total number of pixels and derived PAI with an inverse Beer-Lambert law equation (Monsi and 190 

Saeki, 1953). 191 

Following the same approach as applied to our DHP data, we calculated whole plot PAI for the LiDAR Pulse and 192 

2D Intensity Image methods as the arithmetic mean of the 16 plot scan location PAI estimates. 193 

To calculate PAI using the Voxel-Based method, we followed a voxel classification approach (Hosoi and Omasa, 194 

2006), downsampling the point cloud to 0.05 m to aid computation time and matching the voxel size to the 195 

resolution of the point cloud, following Li et al. (2016), who showed that matching the voxel size to the point 196 

cloud point to point minimum distance (resolution) increases accuracy as small canopy gaps are not included in 197 

voxels classified as vegetation.  We chose to use a voxel classification approach (rather than a radiative transfer 198 
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based one) as this method is widely applicable to a range of TLS systems and levels of processing, as well as 199 

providing explicit guidance on voxel size selection, which is known to impact derived PAI estimates (Li et al., 200 

2016). We re-combined individually segmented trees, filtered for noise using a height-dependent statistical filter 201 

(see Owen et al., 2021) back into whole plot point clouds and voxelised them using the open source R package, 202 

VoxR (Lecigne et al., 2018), with a full grid covering the minimum to maximum XYZ ranges of the plot. We 203 

classified any voxel containing > 0 points as vegetation (“filled”), and empty voxels as gaps. We then split the 204 

voxelised point cloud vertically into slices one voxel high. Within each slice, the contact frequency is calculated 205 

as the fraction of filled to total number of voxels. We then multiplied the contact frequency by a correction factor 206 

for leaf inclination, set at 1.1 (Li et al., 2017), and whole plot PAI was calculated as the sum of all slices’ contact 207 

frequencies. 208 

2.5 Calculation of individual tree PAI, WAI and α using the voxel-based method 209 

Figure 2: Visualisation of the workflow for applying the Voxel-Based method to estimate individual-tree PAI, WAI and 210 

α. (a) Individual tree point cloud; (b) separated leaf off (wood) individual tree point cloud; (c) voxelised individual tree 211 

point cloud; (d) voxelised wood cloud. Coloured voxels (green represents leaf and brown represents wood) are filled 212 

voxels and grey lines are empty voxels. Empty voxels occupy the space within the projected crown area of the tree. 213 

Image shows schematic of point cloud voxelised with cube voxels with edge length of 0.5 m. Panels (a) and (b) show 214 

wood and leaf separation of an example P. sylvestris, carried out using TLSeparation (Vicari et al., 2019). Point cloud 215 



8 

 

voxelisation was carried out using modified functions from R package VoxR (Lecigne et al., 2018). Note that our method 216 

used voxel sizes at the resolution of the cloud (0.05 m), but here we present an image with larger voxels to ease visual 217 

interpretation. 218 

As the only method using multiple co-registered scans, the Voxel-Based method is only method compared in this 219 

study capable of deriving PAI, WAI and LAI of segmented individual tree point clouds. We estimated PAI and 220 

WAI for 2472 individual trees segmented from co-registered point clouds following a similar method to the whole 221 

plot point cloud. We used individual tree point clouds downsampled to 0.05 m, to aid computation time, and  222 

segmented using the automated tree segmentation program treeseg (Burt et al., 2019), implemented in C++,  by 223 

Owen et al. (2021) for that study.  Individual segmented tree data used in this study are freely available (see Owen 224 

et al., 2022).   225 

To estimate PAI, WAI and α for each tree, we  used individual tree point clouds wood – leaf separated by Owen 226 

et al. (2021) using the open source Python library TLSeparation (Vicari et al., 2019), and then used the separated 227 

wood point clouds to calculate WAI. TLSeparation assigns points as either leaf or wood, iteratively looking at a 228 

predetermined number of nearest neighbours (knn). The knn of each iteration is directly dependent on point cloud 229 

density, since high density point clouds will require higher a knn (Vicari et al., 2019). The utility package in 230 

TLSeparation was used to automatically detect the optimum knn for each tree point cloud.  231 

To voxelise individual tree complete (Figure 2a) and wood only (Figure 2b) point clouds, we used a modified 232 

approach based on Lecigne et al. (2018), voxelising within the projected crown area of the whole tree point cloud 233 

(Figure 2c) to calculate PAI. In the same way as for PAI, we calculated WAI using the separated wood point cloud 234 

within the projected crown area of the whole tree (Figure 2d; using the whole crown and not just the wood point 235 

cloud), and derived α for each tree as 𝑊𝐴𝐼
𝑃𝐴𝐼⁄ , allowing a comparison with existing literature estimating α for a 236 

range of ecosystems, (Sea et al., 2011; Woodgate et al., 2016). 237 

2.6 Statistical Analyses  238 

We tested the relationships between PAITLS and PAIDHP estimates using Standardised Major Axis (SMA) using 239 

the open source R (R Core Team, 2020) package, smatr (Warton et al., 2012). SMA is an approach to estimating 240 

a line of best fit where we are not able to predict one variable from another (Warton et al., 2006); we chose SMA 241 

because we do not have a ‘true’ validation dataset, so avoid assuming either DHP or any of the TLS methods 242 

produces the most accurate results. For each TLS method, we assessed the relationship with DHP using the 243 

coefficient of determination and RMSE. We chose to compare PAI values rather than WAI or LAI as to do so 244 

would mean an additional correction for non-photosynthetic elements, which each method does in different ways, 245 

so introducing further source of uncertainty and limiting our ability to fairly compare processing approaches. To 246 

further understand observed drivers of variance in PAI, we tested the relationship between PAI and whole plot 247 

crown area index, CAI, a proxy measure of stand density and local competition (Caspersen et al., 2011; Coomes 248 

et al., 2012). We calculated CAI as the sum of TLS-derived projected crown area, divided by the plot area (Owen 249 

et al., 2021).  250 

 251 

To test if α differs by species, we used linear mixed models (LMMs) in the R package, lme4 (Bates et al., 2015). 252 

We included an intercept only random plot effect to account for local effects on α: 253 
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 254 

𝛼𝑖,𝑠𝑗 =  𝜑𝑠 + 𝑃𝑙𝑜𝑡𝑗 ,                                                                                                                   (1) 255 

 256 

here, αi is α of an individual of species s, in plot j, and φs is the parameter to be fit. To test the effect of stand 257 

structure and tree height on α, we fit relationships separately for each species, again including a random plot 258 

effect:  259 

 260 

𝛼𝑖,𝑠𝑗 =  𝜑𝑠 + 𝑏𝑠 𝐻𝑖 + 𝑐𝑠 𝐶𝐴𝐼𝑗 + 𝑃𝑙𝑜𝑡𝑠𝑗.                                                                                      (2) 261 

 262 

here Hi is the height of the tree, CAIj is the crown area index for the plot, with other parameters as before.  263 

For each species’ model (equation 2), we calculated the intra-class correlation coefficient (ICC). The ICC, similar 264 

to coefficient of determination, quantifies the amount of variance explained by the random effect in a linear mixed 265 

model (Nakagawa et al., 2017). 266 

3. Results  267 

3.1 Comparison of plant area index estimated by DHP and single scan TLS 268 

Of the two single scan TLS methods tested (LiDAR Pulse method and 2D Intensity Image method), we found that 269 

the relationship between PAI estimated using the LiDAR Pulse method and PAIDHP, had a higher R2 than the 2D 270 

Intensity Image method (SMA; LiDAR Pulse method R2 = 0.50, slope = 0.73, p < 0.001, RMSE = 0.14, and 2D 271 

Intensity Image method R2 = 0.22, slope = 0.38, p < 0.001, RMSE = 0.39, respectively, Figure 3a). At larger PAI 272 

values, both TLS methods underestimated PAI relative to DHP (Figure 3b). We found statistically significant 273 

negative correlations between residuals and DHP for both methods (SMA; 2D Intensity Image method residuals 274 

R2 = 0.85, slope = −0.88, p < 0.01; LiDAR Pulse method residuals R2 = 0.47, slope = -0.70, p < 0.01; Figure 3b). 275 

The 2D Intensity Image method showed larger underestimation at higher PAIDHP values, suggesting this method 276 

may saturate sooner for higher PAI values than either DHP or the LiDAR Pulse method (Figure 3b). 277 
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 278 

Figure 3: Comparison of single scan PAITLS and PAIDHP estimates, for all 528 scan locations (16 per plot). (a) The 279 

correlation between DHP derived PAI with PAI derived using the 2D Intensity Image method R2 = 0.22, slope = 0.38, 280 

p < 0.001, RMSE = 0.39 (circles), and LiDAR Pulse method R2 = 0.50, slope = 0.73, p < 0.001, RMSE = 0.14 (triangles). 281 

Dashed line in panel (a) represents 1:1 relationship. (b) The difference between PAITLS and PAIDHP estimates for the 282 

2D Intensity Image method, and LiDAR Pulse method. Dashed line in panel (b) represents 0. Solid lines show 283 

statistically significant relationships fitted using SMA (p < 0.01). 284 

3.2 Comparison of whole plot plant area index estimated using TLS and DHP and the effect of plot structure 285 

on PAI 286 

We found statistically significant correlations between whole plot PAITLS values and PAIDHP for all three TLS 287 

methods (Figure 4). As for single scans, the LiDAR Pulse method showed the closest agreement to PAIDHP, here 288 

compared to both the Voxel-Based and 2D Intensity Image methods (SMA; LiDAR Pulse method R2 = 0.66, slope 289 

= 0.82, p < 0.01, RMSE = 0.14; Voxel-Based method R2 = 0.39, slope = 2.76, p < 0.01, RMSE = 0.88; 2D Intensity 290 

Image method R2 = 0.35, slope = 0.36, p < 0.01, RMSE = 0.39, respectively; Figure 4a). The 2D Intensity Image 291 

method and LiDAR Pulse method consistently underestimated PAI compared to DHP, whilst the Voxel-Based 292 

method underestimated in plots with lower PAIDHP and overestimated in plots with higher PAIDHP. The Voxel-293 

Based method’s high PAI values compared to other methods is likely due to its use of multiple co-registered scans 294 

reducing occlusion effects prevalent in single scan data.   295 

To assess the effect of plot structure on variation in TLS derived PAI, we compared PAITLS estimates  CAI (Figure 296 

4b). We found a significant positive relationship between CAI and PAI estimated using each of the LiDAR Pulse 297 

method, the Voxel-Based method, and DHP (SMA; LiDAR Pulse method R2 = 0.79, slope = 1.69, p < 0.01; Voxel-298 

Based method R2 = 0.76, slope = 5.72, p < 0.01; 2D Intensity Image method R2 = 0.15, slope = 0.76, p < 0.05; 299 

DHP R2 = 0.46, slope = 2.07, p < 0.01, respectively; Figure 4b), where the 2D Intensity Image method shows 300 

signs of saturation at medium CAI values (Figure 4b).   301 

 302 
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Figure 4: Comparison of plot level PAITLS vs PAIDHP, and CAI vs PAI estimates for all 33 plots. (a) The correlation 303 

between DHP derived PAI and PAI derived using 2D Intensity Image R2 = 0.35, slope = 0.36, p < 0.01, RMSE = 0.39 304 

(circle), LiDAR Pulse R2 = 0.66, slope = 0.82, p < 0.01, RMSE = 0.14 (triangle) and Voxel-Based R2 = 0.39, slope = 2.76, 305 

p < 0.01, RMSE = 0.88 (cross) methods (b) The correlation between TLS derived CAI and PAI derived using DHP R2 306 

= 0.46, slope = 2.07, p < 0.01 (square), 2D Intensity Image R2 = 0.15, slope = 0.76, p < 0.05 (circle) LiDAR Pulse R2 = 307 

0.79, slope = 1.69, p < 0.01 (triangle) and Voxel-Based R2 = 0.76, slope = 5.72, p < 0.01  (cross) methods. Lines show 308 

statistically significant relationships fitted using SMA (p < 0.01). Dashed line in panel (a) represents 1:1 relationship.  309 

3.4 Influence of species, tree height and CAI on α  310 

To understand drivers of variance in α, we used individual tree PAI and WAI, calculated using the Voxel-Based 311 

method to test the relationship between species and α, and height/ CAI and α. We found that more drought tolerant 312 

species generally had higher α values than less drought tolerant species (Table B1; Figure 5), however, confidence 313 

intervals were wide and overlapping, suggesting that species is not a strong predictor of variation in α. We found 314 

a statistically significant negative effect of height (p < 0.001; Table B2; Figure 6a) and positive effect of CAI (p 315 

< 0.01 – 0.05; Table B2; Figure 6b) on α for all species apart from P. sylvestris. α decreased more rapidly with 316 

height and increased less rapidly with CAI for oaks than pines. Statistically significant ICC values were higher 317 

for P. nigra (ICC = 0.211; Table B2) than P. pinaster, Q. faginea and Q. ilex (ICC = 0.036; 0.060; 0.070, 318 

respectively), showing that more α variation is explained by the random plot effect in P. nigra than the other 319 

species. P. pinaster has a wider confidence interval (Figure 5), possibly explained by its lower sample size. To 320 

understand drivers of variance in WAI we carried out additional analysis to test the relationship between WAI 321 

and species, height, CAI, and PAI, and presented these results in Appendix C (Figure C3; Tables C3, C4).  322 
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Figure 5: Linear mixed model derived α values (φ, equation 1) for all 2472 individual trees of species P. sylvestris, P. 323 
nigra, Q. faginea, Q. ilex and P. pinaster. Error bars represent 95% confidence intervals. Species are listed left to right 324 
from low – high drought tolerance, with the exception of P. pinaster, for which drought tolerance index has not been 325 
calculated in the literature. Drought tolerance rankings are taken from Niinemets and Valladares (2006). 326 

Figure 6: Variation in α for each species: Pinus nigra, P. pinaster, Q. faginea and Q. ilex with (a) height and (b) plot 327 
CAI. Lines represent statistically significant linear mixed models (equation 2; significance levels from p < 0.001 to p < 328 
0.05). Ribbons represent 95% confidence intervals. The model for P. sylvestris was not statistically significant.  329 

 330 

 331 

 332 
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4. Discussion  333 

4.1 Comparison of approaches to deriving PAI from remote sensed data 334 

We found substantial differences in PAI values estimated from TLS and DHP and from different TLS processing 335 

methods (Figures 3 and 4). Further, differences between TLS methods varied across plot structure, with the 336 

greatest differences between methods in plots with high CAI, and therefore high canopy density. Although 337 

previous studies have presented TLS as an improvement over DHP due to its independence of illumination and 338 

sky conditions during the data acquisition phase, and ability to resolve fine-scale canopy elements and gaps 339 

(Calders et al., 2018; Grotti et al., 2020; Zhu et al., 2018), we have shown that there is large variability between 340 

TLS processing methods in Mediterranean forests. Rigorous intercomparison of approaches, ideally using 341 

standard benchmarking TLS datasets, and destructive sampling, would improve trust and reliability of TLS 342 

algorithms. 343 

We found the LiDAR Pulse method (Jupp et al., 2008) to have the best agreement with DHP for both whole plot 344 

and single scan PAI estimates. In contrast to previous studies comparing  PAITLS with PAIDHP  (Calders et al., 345 

2018; Grotti et al., 2020; Woodgate et al., 2015), we found that the LiDAR Pulse and 2D Intensity Image methods 346 

underestimated PAI compared to DHP, except at very low PAI values (PAITLS < 0.5). Quantification of PAI from 347 

DHP may introduce additional sources of error, for example, its relatively lower resolution compared to TLS 348 

could lead to mixed pixels that have a greater chance of misclassification of sky as vegetation (Jonckheere et al., 349 

2004). This effect could be enhanced in a Mediterranean forest as trees in drier climates tend to have smaller 350 

leaves (Peppe et al., 2011), leading to more small canopy gaps that TLS may resolve where DHP cannot. Further, 351 

although we took steps to reduce the error introduced at DHP data acquisition and processing steps, including 352 

using automatic thresholding and collecting images with multiple exposures, DHP processing requires both model 353 

and user assumptions that can impact results. For example, PAIDHP estimates are highly sensitive to camera 354 

exposure; increasing one stop of exposure can result in 3 – 28% difference in PAI and use of automatic exposure 355 

can result in up to 70% error (Zhang et al., 2005).  356 

We found the Voxel-Based method overestimated PAI values compared to the other methods at the whole plot 357 

level. This is likely due to the method’s use of co-registered scans, rather than averaged single scan PAI values, 358 

since co-registered scans will reduce occlusion effects prevalent in single scan data that could to lead to an 359 

underestimation of PAI (Wilkes et al., 2017). The Voxel-Based method is, however, sensitive to voxel size (Li et 360 

al., 2016), and larger voxels lead to larger PAI estimates as they are unable to capture all of the intricate details of 361 

canopy structure; we chose a voxel size of 0.05 m to match the minimum distance between points in our 362 

downsampled dataset. However, the Voxel-Based method is a memory intensive approach to calculating PAI, and 363 

smaller voxels have higher memory requirements. We picked this data resolution, and therefore voxel size, to 364 

balance the need to capture fine-scale canopy details against memory requirements for running the method on 365 

many large plot point clouds. Voxel size could have been chosen based on estimates’ match to DHP, but this 366 

would assume (1) that DHP estimates are most accurate, and (2) that DHP data are always available, limiting the 367 

wider applicability of our findings. Understanding which method is over- or underestimating would require a 368 

destructively sampled dataset for validation, which was not possible for this study (or most ecosystems). However, 369 

other studies using voxel approaches have found that although these produce high LAI values for individual trees, 370 

these are underestimates compared with destructive samples (Li et al., 2016). Regardless, PAI and LAI estimates 371 
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using a Voxel-Based approach are highly dependent on voxel size (Li et al., 2016), and future work should test 372 

the influence of voxel size on PAI estimates, using destructive samples in a range of environments. 373 

The relationship between the LiDAR Pulse method  and TLS derived CAI had the highest R2, demonstrating that 374 

the method is well suited to measuring PAI across the range of plot CAI values used in this study. Although the 375 

2D Intensity Image method can tackle the significant challenges presented by edge effects and partial beam 376 

interceptions, particularly present in phase-shift systems (Grotti et al., 2020), our results suggest this method has 377 

a lower performance ability, with saturation occurring sooner than all other methods in dense forests (Figures 3 378 

and 4). The 2D Intensity Image method uses the same raw single scan data as the LiDAR Pulse method, so the 379 

better performance from the latter is likely due to the method’s use of vertically resolved gap fraction; both the 380 

LiDAR Pulse method and Voxel-Based method account for the vertical structure of the canopy by summing 381 

vertical slices through the canopy. 382 

4.2 α variation between species and plot 383 

We used the Voxel-Based method to investigate individual tree α variation between species and across structure, 384 

as this was the only approach we compared that could be applied to single tree point clouds which are leaf-wood 385 

separated. We found α values obtained were within the range of values obtained from destructive approaches (0.1 386 

– 0.6, Gower et al., 1997). The drought and shade intolerant P. nigra showed stronger variability in α across plots 387 

(higher ICC value, Table B2) than other species, suggesting its wood – leaf ratio may be more sensitive to site 388 

factors. However, as the plots measured in this study vary in both abiotic conditions (altitude, aspect, slope, 389 

wetness) as well as species composition, stem density and canopy cover, there may be other drivers of variation 390 

in α values.  391 

We found some evidence that species with higher drought tolerance had higher α values (Figure 5; Table B1), 392 

however, confidence intervals were wide, suggesting a weak relationship. There is evidence that trees that tolerate 393 

water limited environments have a lower leaf area (Battaglia et al., 1998; Mencuccini and Grace, 1995), so higher 394 

α values may reflect maintenance of homeostasis of leaf water use through adjustment of wood to leaf area ratio 395 

(Carter and White, 2009; Gazal et al., 2006). The potential for a tree to lose water is mostly regulated through leaf 396 

traits including stomatal conductance and leaf area, and both stand (Battaglia et al., 1998; Specht and Specht, 397 

1989) and individual tree (Mencuccini, 2003) water use have been found to scale linearly with LAI, with drought 398 

often mitigated through leaf shedding (López et al., 2021). 399 

4.3 Tree stature and stand density drives α variation 400 

Although species had a weak relationship with α, tree height and plot CAI had a statistically significant 401 

relationship with α (p < 0.001 – p < 0.05) for all species, showing the importance of local stand structure on leaf 402 

and woody allocation. We found that α scaled negatively with height for all species apart from P. sylvestris, 403 

suggesting that in this environment, taller trees generally have a lower proportion of wood to plant area index than 404 

shorter ones. P. sylvestris, which is at the edge of its geographical range and physiological limits (Castro-Díez et 405 

al., 1997; Owen et al., 2021), showed no significant relationship between height and α. We found that α scaled 406 

positively with plot level CAI for all species apart from P. sylvestris, that is, trees growing in denser plots have a 407 

higher α. This supports theory that trees growing in dense forests are competing for resources, reducing individual 408 

tree leaf area (Jump et al., 2017). The negative relationships between height and α and positive relationships 409 
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between CAI and α relationships in our model suggest that trees may initially invest in vertical growth to reach 410 

the canopy level, and once there invest in lateral growth, with more leaf area, to increase light capture. This 411 

supports theory that trees grow to outcompete neighbouring individuals for light capture (Purves and Pacala, 2008) 412 

and evidence that both lateral growth and LAI are reduced beneath closed canopies (Beaudet and Messier, 1998; 413 

Canham, 1988).  414 

Wood may be harder to accurately classify than leaves in TLS data (Vicari et al., 2019), resulting in a higher 415 

occurrence of false positives in wood clouds, potentially leading to an overestimation in WAI, and therefore 416 

underestimation of α, especially in trees with small leaves which are prevalent in dry, Mediterranean environments 417 

(Peppe et al., 2011). The problem of misclassification will increase in taller trees due to TLS beam divergence, 418 

occlusion and larger beam footprint at further distances (Vicari et al., 2019), suggesting that WAI overestimation 419 

could be more pronounced in tall trees. Although our dense scanning strategy (Owen et al., 2021) was designed 420 

to mitigate some of these effects, these effects mean our findings may underestimate the slope of the negative 421 

relationship between α and tree height. Conversely, the increasing leaf-to-wood ratio could potentially be 422 

explained by a greater number of empty voxels caused by occlusion in large trees. However, we took significant 423 

steps to reduce occlusion, employing a 10 m scanning strategy that was developed in a dense tropical forest 424 

(Wilkes et al., 2017).  425 

4.4 Correcting for non-photosynthetic elements in LAI estimates using TLS 426 

The value of TLS data to estimate individual tree PAI, WAI and subsequently α, demonstrates their potential to 427 

corrective factors for non-photosynthetic components in ground based remote sensing measurements of LAI. 428 

Properly correcting for WAI in LAI estimates is of global importance as small errors in ground based 429 

measurements propagate through to large scale satellite observations generating large errors in global vegetation 430 

models (Calders et al., 2018). The work presented here provides a foundation for future work combining multi-431 

source and multi-scale remote sensing datasets to correct largescale LAI products. Our results echo others’ in 432 

finding that the prevalence of woody material in the tree canopy, and therefore α, is dynamic and varies by species 433 

as well as senescence, crown health and, in the case of deciduous forests, leaf phenology (Gower et al., 1999). 434 

The use of single α value in a plot or region (Olivas et al., 2013; Woodgate et al., 2016), invariant of species, size 435 

and forest structure, to convert PAI to LAI is therefore problematic (Niu et al., 2021). Our study demonstrates the 436 

importance of taking species mix and structural variation into account when correcting for non-photosynthetic 437 

material in ground-based LAI estimates. 438 

5. Conclusions  439 

We tested three methods for estimating PAI using Terrestrial Laser Scanning data and compared these against 440 

traditional DHP measurements. We found large variation between PAI values estimated from each TLS method 441 

and DHP, demonstrating that care should be taken when deriving PAI from ground based remote sensing methods. 442 

Although the LiDAR Pulse method was found to have the best agreement with both single scan and whole plot 443 

PAI values measured by DHP, the Voxel-Based method allowed separate analysis of the key metric used to correct 444 

for the effect of WAI in LAI measurements, α, in individual trees. We recommend the LiDAR Pulse method as a 445 

fast and effective method for PAI estimation independent of illumination conditions. Whilst the Voxel-Based 446 

method may be used to analyse individual tree α and determine ecological drivers of variation, work remains to 447 
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determine the validity of these approaches, in particular correct voxel size choice. We found that α varies by 448 

species, height and stand density, showing the importance of accurately correcting for WAI on the individual tree 449 

level and the utility of TLS to do so. 450 

The variation in our results for the different methods used to derive PAI from TLS data show that there is some 451 

way to go before TLS derived vegetation indices can be interpreted as robust and reliable. Validation using 452 

destructive samples and further intercomparison studies of methods are needed to demonstrate the advantages of 453 

TLS, and use of benchmarking datasets should be standard. DHP is a faster, cheaper and more widely accessible 454 

method for PAI estimation, and while TLS promises to alleviate potential bias in DHP estimates, results are highly 455 

methods dependent. Our results demonstrate the challenges that stand in the way of large scale adoption of TLS 456 

for vegetation indices monitoring.  457 

6. Appendices  458 

6.1 Appendix A 459 

Figure A1: Map of plot locations within two field sites in central Spain (Cuellar, left and Alto Tajo, right). Red points 460 

show plot locations on high-resolution digital terrain models enhanced with hillshading shown in greyscale (Owen., 461 

2021). 462 

 463 

 464 

 465 

 466 

 467 
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6.2 Appendix B 468 

Table B1: species – α linear mixed model (equation 1) showing relationship between tree species and α for all 2472 469 
individual trees. Species are listed from low – high drought tolerance, with the exception of P. pinaster, for which 470 
drought tolerance index has not been calculated in the literature. 95% CI are the 95% confidence intervals.  471 

 472 

Table B2: height – α linear mixed models for each species (equation 2) showing relationship between tree height and 473 
plot CAI and α for all 2472 individual trees. Species are listed from low – high estimated α.  Significance codes: p < 474 
0.001 ‘***’; p < 0.01 ‘**’; p < 0.05 ‘*’; not significant ‘ns’. 95% CI are the 95% confidence intervals and ICC is the 475 
intra-class correlation coefficient. 476 

Species b (eq. 2) (95% CI) c (eq. 2) (95% CI) ICC 

P. sylvestris -0.002ns (-0.004, 0.000) 0.134ns (0.010 0.259) 0.151 

P. nigra -0.005*** (-0.006, -0.004) 0.164** (0.063, 0.263) 0.211 

Q. faginea -0.008*** (-0.010, -0.007) 0.058* (0.016, 0.101) 0.060 

Q. ilex  -0.015*** (-0.020, -0.011) 0.113** (0.050, 0.179) 0.070 

P. pinaster -0.006*** (-0.008, -0.004) 0.317* (0.177, 0.453) 0.036 

 477 

6.3 Appendix C 478 

𝑊𝐴𝐼 = 𝑚𝑠𝑝𝑒𝑐𝑖𝑒𝑠     (C1) 479 

𝑊𝐴𝐼 = 𝑚 ℎ𝑒𝑖𝑔ℎ𝑡 + 𝑏     (C2) 480 

𝑊𝐴𝐼 = 𝑚 𝐶𝐴𝐼 + 𝑏         (C3) 481 

𝑊𝐴𝐼 = 𝑚 𝑃𝐴𝐼 + 𝑏         (C4) 482 

Where WAI is the wood area index, species, height, CAI  and PAI are the tree species, tree height, crown area 483 

index of the plot in which the tree is growing and tree plant area index respectively and m and b are parameters to 484 

be fit.  485 

Species a (eq. 1) 95% CI  

P. sylvestris  0.144 0.131, 0.158 

P. nigra  0.138 0.127, 0.149 

Q. faginea  0.149 0.140, 0.157 

Q. ilex   0.155 0.146, 0.166 

P. pinaster  0.168 0.145, 0.192   
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  486 

Figure C2: Linear model derived WAI values (m, equation C1) for all 2472 individual trees of species P. sylvestris, P. 487 
nigra, Q. faginea, Q. ilex and P. pinaster. Error bars represent 95% confidence intervals. Species are listed from low – 488 
high drought tolerance, with the exception of P. pinaster, for which drought tolerance index has not been calculated in 489 
the literature. Between-species differences in WAI are likely primarily driven by differences in average tree height. 490 

Table C3: Linear model (equation C1) showing relationship between tree species and WAI for all 2471 individual trees. 491 
Significance codes: p < 0.001 ‘***’; p < 0.01 ‘**’; p < 0.05 ‘*’; not significant ‘ns’. 95% CI are the 95% confidence 492 
intervals. 493 

Species m (eq. 1) 95% CI 

P.nigra 0.57*** 0.56, 0.59 

P. pinaster 0.69*** 0.66, 0.73 

P. sylvestris 0.56(ns) 0.54, 0.59 

Q. faginea  0.39*** 0.37, 0.41 

Q. ilex 0.37*** 0.34, 0.39 

 494 

Table C4: Linear models (equations C2, C3, C4) predicting WAI as a function of tree height, CAI (density) and PAI 495 
Significance codes: p < 0.001 ‘***’; p < 0.01 ‘**’; p < 0.05 ‘*’; not significant ‘ns’. 95% CI are the 95% confidence 496 

intervals. 497 
 

m (eq. 2, 3, 4) (95% CI) b (eq. 2, 3, 4) (95% CI) R2 

Tree Height  0.024*** (0.023, 0.026) 0.27*** (0.25, 0.28) 0.27 

CAI 0.390*** (0.336, 0.443) 0.29*** (0.26, 0.31) 0.78 

PAI 0.112*** (0.106, 0.118) 0.12*** (0.10, 0.14)  0.35 

 498 

7. Code availability  499 

See https://github.com/will-flynn/tls_dhp_pai.git for all processing and modelling code.  500 

https://github.com/will-flynn/tls_dhp_pai.git
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9. Author contribution 503 

All authors designed the study. HJFO and WRMF collected and processed TLS and DHP data; WRMF performed 504 

formal analysis with guidance from all authors. WRMF led the writing with input from all authors. All authors 505 

contributed critically to drafts and gave final approval for publication.  506 

10. Competing interests  507 

The authors declare that they have no conflict of interest. 508 

11. Acknowledgements  509 

WRMF was funded through a London NERC DTP PhD studentship. ERL, HJFO and SWDG were funded through 510 

the UKRI Future Leaders Fellowship awarded to ERL (MR/T019832/1).  511 

References  512 

Baeten, L., Verheyen, K., Wirth, C., Bruelheide, H., Bussotti, F., Finér, L., Jaroszewicz, B., Selvi, F., 513 

Valladares, F., Allan, E., Ampoorter, E., Auge, H., Avăcăriei, D., Barbaro, L., Bărnoaiea, I., Bastias, C. C., 514 

Bauhus, J., Beinhoff, C., Benavides, R., Benneter, A., Berger, S., Berthold, F., Boberg, J., Bonal, D., 515 

Brüggemann, W., Carnol, M., Castagneyrol, B., Charbonnier, Y., Chećko, E., Coomes, D., Coppi, A., Dalmaris, 516 

E., Dănilă, G., Dawud, S. M., de Vries, W., De Wandeler, H., Deconchat, M., Domisch, T., Duduman, G., 517 

Fischer, M., Fotelli, M., Gessler, A., Gimeno, T. E., Granier, A., Grossiord, C., Guyot, V., Hantsch, L., 518 

Hättenschwiler, S., Hector, A., Hermy, M., Holland, V., Jactel, H., Joly, F.-X., Jucker, T., Kolb, S., Koricheva, 519 

J., Lexer, M. J., Liebergesell, M., Milligan, H., Müller, S., Muys, B., Nguyen, D., Nichiforel, L., Pollastrini, M., 520 

Proulx, R., Rabasa, S., Radoglou, K., Ratcliffe, S., Raulund-Rasmussen, K., Seiferling, I., Stenlid, J., Vesterdal, 521 

L., von Wilpert, K., Zavala, M. A., Zielinski, D., and Scherer-Lorenzen, M.: A novel comparative research 522 

platform designed to determine the functional significance of tree species diversity in European forests, 523 

Persepect. Plant. Ecol., 15, 281–291, https://doi.org/10.1016/j.ppees.2013.07.002, 2013. 524 

Baret, F., Weiss, M., Lacaze, R., Camacho, F., Makhmara, H., Pacholcyzk, P., and Smets, B.: GEOV1: LAI and 525 

FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: 526 

Principles of development and production, Remote Sens. Environ., 137, 299–309, 527 

https://doi.org/10.1016/j.rse.2012.12.027, 2013. 528 

Bates, D., Mächler, M., Bolker, B., and Walker, S.: Fitting Linear Mixed-Effects Models Using lme4, J. Sat. 529 

Softw., 67, https://doi.org/10.18637/jss.v067.i01, 2015. 530 

Battaglia, M., Cherry, M. L., Beadle, C. L., Sands, P. J., and Hingston, A.: Prediction of leaf area index in 531 

eucalypt plantations: effects of water stress and temperature, Tree Physiol., 18, 521–528, 532 

https://doi.org/10.1093/treephys/18.8-9.521, 1998. 533 

Beaudet, M. and Messier, C.: Growth and morphological responses of yellow birch, sugar maple, and beech 534 

seedlings growing under a natural light gradient, Can. J. Forest Res., 28, 1007–1015, 535 

https://doi.org/10.1139/x98-077, 1998. 536 

Béland, M., Baldocchi, D. D., Widlowski, J.-L., Fournier, R. A., and Verstraete, M. M.: On seeing the wood 537 

from the leaves and the role of voxel size in determining leaf area distribution of forests with terrestrial LiDAR, 538 

Agr. Forest Meterol., 184, 82–97, https://doi.org/10.1016/j.agrformet.2013.09.005, 2014. 539 

Breda, N. J. J.: Ground-based measurements of leaf area index: a review of methods, instruments and current 540 

controversies, J. Exp. Bot., 54, 2403–2417, https://doi.org/10.1093/jxb/erg263, 2003. 541 

Burt, A., Disney, M., and Calders, K.: Extracting individual trees from lidar point clouds using treeseg, Methods 542 

Ecol. Evol., 10, 438–445, https://doi.org/10.1111/2041-210X.13121, 2019. 543 



20 

 

Calders, K., Armston, J., Newnham, G., Herold, M., and Goodwin, N.: Implications of sensor configuration and 544 

topography on vertical plant profiles derived from terrestrial LiDAR, Agr. Forest Meterol., 194, 104–117, 545 

https://doi.org/10.1016/j.agrformet.2014.03.022, 2014. 546 

Calders, K., Origo, N., Disney, M., Nightingale, J., Woodgate, W., Armston, J., and Lewis, P.: Variability and 547 

bias in active and passive ground-based measurements of effective plant, wood and leaf area index, Agr. Forest 548 

Meterol., 252, 231–240, https://doi.org/10.1016/j.agrformet.2018.01.029, 2018. 549 

Calders, K., Adams, J., Armston, J., Bartholomeus, H., Bauwens, S., Bentley, L. P., Chave, J., Danson, F. M., 550 

Demol, M., Disney, M., Gaulton, R., Krishna Moorthy, S. M., Levick, S. R., Saarinen, N., Schaaf, C., Stovall, 551 

A., Terryn, L., Wilkes, P., and Verbeeck, H.: Terrestrial laser scanning in forest ecology: Expanding the 552 

horizon, Remote Sensing of Environment, 251, 112102, https://doi.org/10.1016/j.rse.2020.112102, 2020. 553 

Canham, C. D.: Growth and Canopy Architecture of Shade-Tolerant Trees: Response to Canopy Gaps, Ecology, 554 

69, 786–795, https://doi.org/10.2307/1941027, 1988. 555 

Carter, J. L. and White, D. A.: Plasticity in the Huber value contributes to homeostasis in leaf water relations of 556 

a mallee Eucalypt with variation to groundwater depth, Tree Physiol., 29, 1407–1418, 557 

https://doi.org/10.1093/treephys/tpp076, 2009. 558 

Caspersen, J. P., Vanderwel, M. C., Cole, W. G., and Purves, D. W.: How Stand Productivity Results from Size- 559 

and Competition-Dependent Growth and Mortality, PLoS ONE, 6, e28660, 560 

https://doi.org/10.1371/journal.pone.0028660, 2011. 561 

Castro-Díez, P., Villar-Salvador, P., Pérez-Rontomé, C., Maestro-Martínez, M., and Montserrat-Martí, G.: Leaf 562 

morphology and leaf chemical composition in three Quercus (Fagaceae) species along a rainfall gradient in NE 563 

Spain, Trees, 11, 127–134, https://doi.org/10.1007/PL00009662, 1997. 564 

Chen, J. M. and Black, T. A.: Defining leaf area index for non-flat leaves, Plant Cell Environ., 15, 421–429, 565 

https://doi.org/10.1111/j.1365-3040.1992.tb00992.x, 1992. 566 

Coomes, D. A., Holdaway, R. J., Kobe, R. K., Lines, E. R., and Allen, R. B.: A general integrative framework 567 

for modelling woody biomass production and carbon sequestration rates in forests, Journal of Ecology, 100, 42–568 

64, https://doi.org/10.1111/j.1365-2745.2011.01920.x, 2012. 569 

Disney, M.: Terrestrial LiDAR: a three-dimensional revolution in how we look at trees, New Phytol., 222, 570 

1736–1741, https://doi.org/10.1111/nph.15517, 2018. 571 

Flynn, W. R. M., Owen, H. J. F., Grieve, S. W. D., and Lines, E. R.: DHP images collected from Alto Tajo and 572 

Cuellar in Spain. (V1), https://doi.org/10.5281/ZENODO.7628072, 2023. 573 

Gazal, R. M., Scott, R. L., Goodrich, D. C., and Williams, D. G.: Controls on transpiration in a semiarid riparian 574 

cottonwood forest, Agr. Forest Meterol., 137, 56–67, https://doi.org/10.1016/j.agrformet.2006.03.002, 2006. 575 

Gower, S. T., Vogel, J. G., Norman, J. M., Kucharik, C. J., Steele, S. J., and Stow, T. K.: Carbon distribution 576 

and aboveground net primary production in aspen, jack pine, and black spruce stands in Saskatchewan and 577 

Manitoba, Canada, J. Geophys. Res., 102, 29029–29041, https://doi.org/10.1029/97JD02317, 1997. 578 

Gower, S. T., Kucharik, C. J., and Norman, J. M.: Direct and Indirect Estimation of Leaf Area Index, fAPAR, 579 

and Net Primary Production of Terrestrial Ecosystems, Remote Sens. Environ., 70, 29–51, 580 

https://doi.org/10.1016/S0034-4257(99)00056-5, 1999. 581 

Grotti, M., Calders, K., Origo, N., Puletti, N., Alivernini, A., Ferrara, C., and Chianucci, F.: An intensity, image-582 

based method to estimate gap fraction, canopy openness and effective leaf area index from phase-shift terrestrial 583 

laser scanning, Agr. Forest Meterol., 280, 107766, https://doi.org/10.1016/j.agrformet.2019.107766, 2020. 584 

Hardwick, S. R., Toumi, R., Pfeifer, M., Turner, E. C., Nilus, R., and Ewers, R. M.: The relationship between 585 

leaf area index and microclimate in tropical forest and oil palm plantation: Forest disturbance drives changes in 586 

microclimate, Agr. Forest Meterol., 201, 187–195, https://doi.org/10.1016/j.agrformet.2014.11.010, 2015. 587 



21 

 

Hijmans, R. J.: raster: Geographic Data Analysis and Modeling R package version 3.5-21, https://CRAN.R-588 

project.org/package=raster., 2022. 589 

Hosoi, F. and Omasa, K.: Voxel-Based 3-D Modeling of Individual Trees for Estimating Leaf Area Density 590 

Using High-Resolution Portable Scanning Lidar, IEE T. Geosci. Remote, 44, 3610–3618, 591 

https://doi.org/10.1109/TGRS.2006.881743, 2006. 592 

Itakura, K. and Hosoi, F.: Voxel-based leaf area estimation from three-dimensional plant images, J. Agric. 593 

Meteorol., 75, 211–216, https://doi.org/10.2480/agrmet.d-19-00013, 2019. 594 

Jonckheere, I., Fleck, S., Nackaerts, K., Muys, B., Coppin, P., Weiss, M., and Baret, F.: Review of methods for 595 

in situ leaf area index determination, Agr. Forest Meterol., 121, 19–35, 596 

https://doi.org/10.1016/j.agrformet.2003.08.027, 2004. 597 

Jonckheere, I. G. C., Muys, B., and Coppin, P.: Allometry and evaluation of in situ optical LAI determination in 598 

Scots pine: a case study in Belgium, Tree Physiol., 25, 723–732, https://doi.org/10.1093/treephys/25.6.723, 599 

2005. 600 

Jucker, T., Bouriaud, O., Avacaritei, D., Dănilă, I., Duduman, G., Valladares, F., and Coomes, D. A.: 601 

Competition for light and water play contrasting roles in driving diversity-productivity relationships in Iberian 602 

forests, J. Ecol., 102, 1202–1213, https://doi.org/10.1111/1365-2745.12276, 2014. 603 

Jump, A. S., Ruiz-Benito, P., Greenwood, S., Allen, C. D., Kitzberger, T., Fensham, R., Martínez-Vilalta, J., 604 

and Lloret, F.: Structural overshoot of tree growth with climate variability and the global spectrum of drought-605 

induced forest dieback, Glob. Change Biol., 23, 3742–3757, https://doi.org/10.1111/gcb.13636, 2017. 606 

Jupp, D. L. B., Culvenor, D. S., Lovell, J. L., Newnham, G. J., Strahler, A. H., and Woodcock, C. E.: Estimating 607 

forest LAI profiles and structural parameters using a ground-based laser called ’Echidna(R), Tree Physiol., 29, 608 

171–181, https://doi.org/10.1093/treephys/tpn022, 2008. 609 

Kamoske, A. G., Dahlin, K. M., Stark, S. C., and Serbin, S. P.: Leaf area density from airborne LiDAR: 610 

Comparing sensors and resolutions in a temperate broadleaf forest ecosystem, Forest Ecol. Manag., 433, 364–611 

375, https://doi.org/10.1016/j.foreco.2018.11.017, 2019. 612 

Kuusk, V., Niinemets, Ü., and Valladares, F.: A major trade-off between structural and photosynthetic 613 

investments operative across plant and needle ages in three Mediterranean pines, Tree Physiol., 38, 543–557, 614 

https://doi.org/10.1093/treephys/tpx139, 2018. 615 

Leblanc, S. G. and Chen, J. M.: A practical scheme for correcting multiple scattering effects on optical LAI 616 

measurements, Agr. Forest Meterol., 110, 125–139, https://doi.org/10.1016/S0168-1923(01)00284-2, 2001. 617 

Lecigne, B., Delagrange, S., and Messier, C.: Exploring trees in three dimensions: VoxR, a novel voxel-based R 618 

package dedicated to analysing the complex arrangement of tree crowns, Ann. Bot-London, 121, 589–601, 619 

https://doi.org/10.1093/aob/mcx095, 2018. 620 

Li, S., Dai, L., Wang, H., Wang, Y., He, Z., and Lin, S.: Estimating Leaf Area Density of Individual Trees 621 

Using the Point Cloud Segmentation of Terrestrial LiDAR Data and a Voxel-Based Model, Remote Sens-Basel, 622 

9, 1202, https://doi.org/10.3390/rs9111202, 2017. 623 

Li, Y., Guo, Q., Tao, S., Zheng, G., Zhao, K., Xue, B., and Su, Y.: Derivation, Validation, and Sensitivity 624 

Analysis of Terrestrial Laser Scanning-Based Leaf Area Index, Can. J. Remote Sens., 42, 719–729, 625 

https://doi.org/10.1080/07038992.2016.1220829, 2016. 626 

Lines, E. R., Fischer, F. J., Owen, H. J. F., and Jucker, T.: The shape of trees: Reimagining forest ecology in 627 

three dimensions with remote sensing, J. Ecol., 110, 1730–1745, https://doi.org/10.1111/1365-2745.13944, 628 

2022. 629 

Long, J. N. and Smith, F. W.: Leaf area - sapwood area relations of lodgepole pine as influenced by stand 630 

density and site index., Can. J. Forest Res., 18, 247–250, 1988. 631 



22 

 

López, R., Cano, F. J., Martin-StPaul, N. K., Cochard, H., and Choat, B.: Coordination of stem and leaf traits 632 

define different strategies to regulate water loss and tolerance ranges to aridity, New Phytol., 230, 497–509, 633 

https://doi.org/10.1111/nph.17185, 2021. 634 

Lovell, J. L., Jupp, D. L. B., van Gorsel, E., Jimenez-Berni, J., Hopkinson, C., and Chasmer, L.: Foliage Profiles 635 

from Ground Based Waveform and Discrete Point Lidar, SilviLaser, 1–9, 2011. 636 

Ma, L., Zheng, G., Eitel, J. U. H., Magney, T. S., and Moskal, L. M.: Determining woody-to-total area ratio 637 

using terrestrial laser scanning (TLS), Agr. Forest Meterol., 228–229, 217–228, 638 

https://doi.org/10.1016/j.agrformet.2016.06.021, 2016. 639 

Madrigal-González, J., Herrero, A., Ruiz-Benito, P., and Zavala, M. A.: Resilience to drought in a dry forest: 640 

Insights from demographic rates, Forest Ecol. Manag., 389, 167–175, 641 

https://doi.org/10.1016/j.foreco.2016.12.012, 2017. 642 

Magnani, F., Mencuccini, M., and Grace, J.: Age‐related decline in stand productivity: the role of structural 643 

acclimation under hydraulic constraints, Plant Cell Environ., 23, 251–263, https://doi.org/10.1046/j.1365-644 

3040.2000.00537.x, 2000. 645 

Mencuccini, M.: The ecological significance of long-distance water transport: short-term regulation, long-term 646 

acclimation and the hydraulic costs of stature across plant life forms, Plant Cell Environ., 26, 163–182, 647 

https://doi.org/10.1046/j.1365-3040.2003.00991.x, 2003. 648 

Mencuccini, M. and Grace, J.: Climate influences the leaf area/sapwood area ratio in Scots pine, Tree Physiol., 649 

15, 1–10, https://doi.org/10.1093/treephys/15.1.1, 1995. 650 

Monsi, M. and Saeki, T.: On the Factor Light in Plant Communities and its Importance for Matter Production, 651 

Ann. Bot-London, 95, 549–567, https://doi.org/10.1093/aob/mci052, 1953. 652 

Nakagawa, S., Johnson, P. C. D., and Schielzeth, H.: The coefficient of determination R2 and intra-class 653 

correlation coefficient from generalized linear mixed-effects models revisited and expanded, J. R. Soc. 654 

Interface, 14, 20170213, https://doi.org/10.1098/rsif.2017.0213, 2017. 655 

Niinemets, Ü. and Valladares, F.: Tolerance to shade, drought, and waterlogging of temperate northern 656 

hemisphere trees and shrubs, Ecol. Monogr., 76, 521–547, https://doi.org/10.1890/0012-657 

9615(2006)076[0521:TTSDAW]2.0.CO;2, 2006. 658 

Niu, X., Fan, J., Luo, R., Fu, W., Yuan, H., and Du, M.: Continuous estimation of leaf area index and the 659 

woody-to-total area ratio of two deciduous shrub canopies using fisheye webcams in a semiarid loessial region 660 

of China, Ecol. Indic., 125, 107549, https://doi.org/10.1016/j.ecolind.2021.107549, 2021. 661 

Olivas, P. C., Oberbauer, S. F., Clark, D. B., Clark, D. A., Ryan, M. G., O’Brien, J. J., and Ordoñez, H.: 662 

Comparison of direct and indirect methods for assessing leaf area index across a tropical rain forest landscape, 663 

Agr. Forest Meterol., 177, 110–116, https://doi.org/10.1016/j.agrformet.2013.04.010, 2013. 664 

Owen, H. J. F., Flynn, W. R. M., and Lines, E. R.: Competitive drivers of inter‐specific deviations of crown 665 

morphology from theoretical predictions measured with Terrestrial Laser Scanning, J. Ecol., 109, 2612–2628, 666 

https://doi.org/10.1111/1365-2745.13670, 2021. 667 

Owen, H. J. F., Flynn, W. R. M., and Lines, E. R.: Individual TLS tree clouds collected from both Alto Tajo and 668 

Cuellar in Spain., 2022. 669 

Peppe, D. J., Royer, D. L., Cariglino, B., Oliver, S. Y., Newman, S., Leight, E., Enikolopov, G., Fernandez‐670 

Burgos, M., Herrera, F., Adams, J. M., Correa, E., Currano, E. D., Erickson, J. M., Hinojosa, L. F., Hoganson, J. 671 

W., Iglesias, A., Jaramillo, C. A., Johnson, K. R., Jordan, G. J., Kraft, N. J. B., Lovelock, E. C., Lusk, C. H., 672 

Niinemets, Ü., Peñuelas, J., Rapson, G., Wing, S. L., and Wright, I. J.: Sensitivity of leaf size and shape to 673 

climate: global patterns and paleoclimatic applications, New Phytol., 190, 724–739, 674 

https://doi.org/10.1111/j.1469-8137.2010.03615.x, 2011. 675 



23 

 

Pfeifer, M., Gonsamo, A., Disney, M., Pellikka, P., and Marchant, R.: Leaf area index for biomes of the Eastern 676 

Arc Mountains: Landsat and SPOT observations along precipitation and altitude gradients, Remote Sens. 677 

Environ., 118, 103–115, https://doi.org/10.1016/j.rse.2011.11.009, 2012. 678 

Phillips, N., Bond, B. J., McDowell, N. G., Ryan, M. G., and Schauer, A.: Leaf area compounds height-related 679 

hydraulic costs of water transport in Oregon White Oak trees, Funct. Ecol., 17, 832–840, 680 

https://doi.org/10.1111/j.1365-2435.2003.00791.x, 2003. 681 

Purves, D. and Pacala, S.: Predictive Models of Forest Dynamics, Science, 320, 1452–1453, 682 

https://doi.org/10.1126/science.1155359, 2008. 683 

Ridler, T. W. and Calvard, S.: Picture Thresholding Using an Iterative Selection Method, IEEE T. Syst. Man. 684 

Cyb., 8, 630–632, https://doi.org/10.1109/TSMC.1978.4310039, 1978. 685 

Sea, W. B., Choler, P., Beringer, J., Weinmann, R. A., Hutley, L. B., and Leuning, R.: Documenting 686 

improvement in leaf area index estimates from MODIS using hemispherical photos for Australian savannas, 687 

Agr. Forest Meterol., 151, 1453–1461, https://doi.org/10.1016/j.agrformet.2010.12.006, 2011. 688 

Specht, R. L. and Specht, A.: Canopy structure in Eucalyptus-dominated communities in Australia along 689 

climatic gradients, Canopy structure in Eucalyptus-dominated communities in Australia along climatic 690 

gradients, 10, 191–213, 1989. 691 

Vicari, M. B., Disney, M., Wilkes, P., Burt, A., Calders, K., and Woodgate, W.: Leaf and wood classification 692 

framework for terrestrial LiDAR point clouds, Methods Ecol. Evol., 10, 680–694, https://doi.org/10.1111/2041-693 

210X.13144, 2019. 694 

Warton, D. I., Wright, I. J., Falster, D. S., and Westoby, M.: Bivariate line-fitting methods for allometry, Biol. 695 

Rev., 81, 259–291, https://doi.org/10.1017/S1464793106007007, 2006. 696 

Warton, D. I., Duursma, R. A., Falster, D. S., and Taskinen, S.: smatr 3 - an R package for estimation and 697 

inference about allometric lines:  The smatr 3 - an R package , Methods Ecol. Evol., 3, 257–259, 698 

https://doi.org/10.1111/j.2041-210X.2011.00153.x, 2012. 699 

Weiss, M., Baret, F., Smith, G. J., Jonckheere, I., and Coppin, P.: Review of methods for in situ leaf area index 700 

(LAI) determination, Agr. Forest Meterol., 121, 37–53, https://doi.org/10.1016/j.agrformet.2003.08.001, 2004. 701 

Whitehead, D.: The Estimation of Foliage Area from Sapwood Basal Area in Scots Pine, Forestry, 51, 137–149, 702 

https://doi.org/10.1093/forestry/51.2.137, 1978. 703 

Wilkes, P., Lau, A., Disney, M., Calders, K., Burt, A., Gonzalez de Tanago, J., Bartholomeus, H., Brede, B., and 704 

Herold, M.: Data acquisition considerations for Terrestrial Laser Scanning of forest plots, Remote Sensing of 705 

Environment, 196, 140–153, https://doi.org/10.1016/j.rse.2017.04.030, 2017. 706 

Woodgate, W., Jones, S. D., Suarez, L., Hill, M. J., Armston, J. D., Wilkes, P., Soto-Berelov, M., Haywood, A., 707 

and Mellor, A.: Understanding the variability in ground-based methods for retrieving canopy openness, gap 708 

fraction, and leaf area index in diverse forest systems, Agr. Forest Meterol., 205, 83–95, 709 

https://doi.org/10.1016/j.agrformet.2015.02.012, 2015. 710 

Woodgate, W., Armston, J. D., Disney, M., Jones, S. D., Suarez, L., Hill, M. J., Wilkes, P., and Soto-Berelov, 711 

M.: Quantifying the impact of woody material on leaf area index estimation from hemispherical photography 712 

using 3D canopy simulations, Agr. Forest Meterol., 226–227, 1–12, 713 

https://doi.org/10.1016/j.agrformet.2016.05.009, 2016. 714 

Zhang, Y., Chen, J. M., and Miller, J. R.: Determining digital hemispherical photograph exposure for leaf area 715 

index estimation, Agr. Forest Meterol., 133, 166–181, https://doi.org/10.1016/j.agrformet.2005.09.009, 2005. 716 

Zheng, G., Moskal, L. M., and Kim, S.-H.: Retrieval of Effective Leaf Area Index in Heterogeneous Forests 717 

With Terrestrial Laser Scanning, IEEE T. Geosci. Remote, 51, 777–786, 718 

https://doi.org/10.1109/TGRS.2012.2205003, 2013. 719 



24 

 

Zhu, X., Skidmore, A. K., Wang, T., Liu, J., Darvishzadeh, R., Shi, Y., Premier, J., and Heurich, M.: Improving 720 

leaf area index (LAI) estimation by correcting for clumping and woody effects using terrestrial laser scanning, 721 

Agr. Forest Meterol., 263, 276–286, https://doi.org/10.1016/j.agrformet.2018.08.026, 2018. 722 

 723 


