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Abstract. Accurate measurement of vegetation density metrics including plant, wood and leaf area indices (PAI,
WAL and LAI) is key to monitoring and modelling carbon storage and uptake in forests. Traditional passive sensor
approaches, such as Digital Hemispherical Photography (DHP), cannot separate leaf and wood material, nor
individual trees, and require many assumptions in processing. Terrestrial Laser Scanning (TLS) data offer new
opportunities to improve understanding of tree and canopy structure. Multiple methods have been developed to
derive PAI and LAI from TLS data, but there is little consensus on the best approach, nor are methods

benchmarked as standard.

Using TLS data collected in 33 plots containing 2472 trees of five species in Mediterranean forests, we compare
three TLS methods (LiDAR Pulse, 2D Intensity Image and Voxel-Based) to derive PAI and compare with co-
located DHP. We then separate leaf and wood in individual tree point clouds to calculate the ratio of wood to total
plant area (o), a metric to correct for non-photosynthetic material in LAI estimates. We use individual tree TLS

point clouds to estimate how o varies with species, tree height and stand density.

We find the LiDAR Pulse method agrees most closely with DHP, but is limited to single scan data so cannot
determine individual tree properties, including o. The Voxel-Based method shows promise for ecological studies
as it can be applied to individual tree point clouds. Using the Voxel-Based method, we show that species explain

some variation in o, however, height and plot density were better predictors.

Our findings highlight the value of TLS data to improve fundamental understanding of tree form and function,
but also the importance of rigorous testing of TLS data processing methods at a time when new approaches are
being rapidly developed. New algorithms need to be compared against traditional methods, and existing
algorithms, using common reference data. Whilst promising, our results show that metrics derived from TLS data
are not yet reliably calibrated and validated to the extent they are ready to replace traditional approaches for large

scale monitoring of PAI and LALI.
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1 Introduction

Leaf Area Index (LAI), defined as half the amount of green leaf area per unit ground area (Chen and Black, 1992),
determines global evapotranspiration, phenological patterns and canopy photosynthesis, and is therefore an
essential climate variable (ECV), as well as a key input in dynamic global vegetation models (Sea et al., 2011;
Weiss et al., 2004). Accurate measurements of leaf, wood and plant area indices (LAI, WAI and PAI) have
historically been derived from labour intensive destructive sampling (Baret et al., 2013; Jonckheere et al., 2004),
so over large spatial or temporal scales these can only be measured indirectly, typically with remote sensing.
Large-scale remote sensing, using spaceborne and airborne instruments, has been widely used to estimate LAI
over large areas (Pfeifer et al., 2012), but requires calibration and validation using in situ measurements to
constrain information retrieval (Calders et al., 2018). Non-destructive in situ vegetation index estimates have
historically been made by measuring light transmission below the canopy and using simplifying assumptions
about canopy structure to estimate the amount of intercepting material (e.g. Beer-Lambert’s law; Monsi and Saeki,
1953). The most common method, Digital Hemispherical Photography (DHP; Figure 1a), requires both model
assumptions and subjective user choices during data acquisition and processing in order to estimate both PAI and
LAI (Breda, 2003). DHP images are processed by separating sky from canopy, but not photosynthetic from non-
photosynthetic vegetative material, so additional assumptions are needed to calculate either LAI or WAI
(Jonckheere et al., 2004; Pfeifer et al., 2012). Separation of LAl from PAI can be achieved by removing or
masking branches and stems from hemispherical images (e.g. Sea et al., 2011; Woodgate et al., 2016), but is not
reliable when leaves are occluded by woody components (Hardwick et al., 2015). An alternative approach is to
take separate DHP measurements in both leaf on and leaf off conditions, and derive empirical wood to plant ratios
(WAI/PAI, a) (Leblanc and Chen, 2001), but this is not always practical, for example in evergreen forests. The
difficulty of separation means that studies often omit correcting for the effect of WAI on optical PAI
measurements altogether (Woodgate et al., 2016), but since woody components in the forest canopy can account
for more than 30% of PAI (Ma et al., 2016) this can introduce overestimation. Further, although DHP estimates
of LAI or PAI are valuable both for ecosystem monitoring and developing satellite LAI products (Hardwick et
al., 2015; Pfeifer et al., 2012), they are limited to sampling only at a neighbourhood or plot level (Weiss et al.,

2004), and cannot be used to measure individual tree LAl except for open grown trees (Béland et al., 2014).

The ratio of wood to total plant area, a, is known to be dynamic, changing in response to abiotic and biotic
conditions. For example, the Huber value (sapwood to leaf area ratio, a related measure to o) may vary according
to water availability (Carter and White, 2009). Leaf area may therefore be indicative of the drought tolerance level
of a tree, with more drought tolerant species displaying a lower leaf area, reducing the hydraulic conductance of
the whole tree and therefore increasing its drought tolerance (Niinemets and Valladares, 2006). o has been
hypothesised to increase with the size of a tree in response to the increased hydraulic demand associated with
greater hydraulic resistance of tall trees (Magnani et al., 2000) and higher transpiration rates of larger LAI
(Battaglia et al., 1998; Phillips et al., 2003). Stand density may also impact o (Long and Smith, 1988; Whitehead,
1978), as increased stand level water use scales linearly with LAI (Battaglia et al., 1998; Specht and Specht, 1989),
reducing water availability to individual trees competing for the same resources (Jump et al., 2017). Large scale
quantification of o or Huber value, however, is difficult as studies usually rely on a small number of destructively
sampled trees (e.g. Carter and White, 2009; Magnani et al., 2000), litterfall traps (e.g. Phillips et al., 2003) or
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masking hemispherical images (e.g. Sea et al., 2011; Woodgate et al., 2016). These approaches are only applicable
on a small to medium scale, and in the case of image masking, cannot differentiate between individuals. Variation

in a, for example by species and or stand structure, is therefore largely unknown.

1.1 TLS methods for calculating PAI, LAl and WAI

Terrestrial Laser Scanning (TLS) generates high-resolution 3D measurements of whole forests and individual
trees (Burt et al., 2018; Disney, 2018), leading to the development of completely new monitoring approaches to
understand the structure and function of ecosystems (Lines et al., 2022). Unlike traditional passive sensors, TLS
can estimate PAI, WAL, and LAI for both whole plots and individual tree point clouds (Calders et al., 2018), and
is unaffected by illumination conditions. This has led to the development of several methods for processing TLS
data to extract the key metrics PAI, WAI and LAI (e.g. Hosoi and Omasa, 2006; Jupp et al., 2008; Zheng et al.,
2013). However, intercomparison studies of algorithms and processing approaches to derive the same metrics
from different TLS methods are lacking. TLS methods for extracting PAI, LAl and WAI can be broadly
categorised into two types: (1) LIiDAR return counting, using single scan data (e.g., the LiDAR Pulse method;
Jupp et al., 2008, and 2D Intensity Image method; Zheng et al., 2013) and (2) point cloud voxelisation, usually

using co-registered scans (e.g., the Voxel-Based method; Hosoi and Omasa, 2006).

The LiDAR Pulse method (Jupp et al., 2008; Figure 1b) estimates gap fraction (Pgap) using single scan data, as a
function of the total number of outgoing LiDAR pulses from the sensor and the number of pulses that are
intercepted by the canopy. This method, which eliminates illumination impacts associated with the use of DHP
(Caldersetal., 2014), has been implemented in the python module, PyLidar (www.pylidar.org) and the R package,
rTLS (Guzman, et al. 2021). Using the LiDAR Pulse method, Calders et al. (2018) compared PAI estimates from
two ground-based passive sensors (LICOR LAI-2000 and DHP) with TLS data collected with a RIEGL VZ-400
TLS in a deciduous woodland, and found the two passive sensors underestimated PAI values compared to TLS,

with differences dependent on DHP processing and leaf on/off conditions.

The 2D Intensity Image method (Zheng et al., 2013; Figure 1c), also uses raw single scan TLS point clouds, but,
unlike the LiDAR Pulse method, converts LiDAR returns into 2D panoramas where pixel values represent return
intensity. PAI is estimated by classifying pixels as sky or vegetation, based on their intensity value, to estimate
Pgap, and then applying Beer-Lambert’s law. Like the LiDAR Pulse method, this approach has been shown to
generate higher PAI estimates than DHP (Calders et al., 2018; Woodgate et al., 2015; Grotti et al., 2020), with
differences attributed to the greater pixel resolution and viewing distance of TLS resolving more small canopy
details (Grotti et al., 2020).

The Voxel-Based method (Figure 1d) estimates PAI by segmenting a point cloud into voxels and either simulating
radiative transfer within each cube (Béland et al., 2014; Kamoske et al., 2019), or classifying voxels as either
containing vegetation or not, and dividing vegetation voxels by the total number of voxels (Hosoi and Omasa,
2006; Itakura and Hosoi, 2019; Li et al., 2017). Crucially, this method may be applied to multiple co-registered
scan point clouds and so can be used to calculate PAI for both whole plots and individual, segmented TLS trees.
However, PAI estimates derived using the voxel method are highly dependent on voxel size (Calders et al., 2020).
Using a radiative transfer approach, Béland et al. (2014) demonstrated that voxel size is dependent on canopy

clumping, radiative transfer model assumptions and occlusion effects, making a single, fixed choice of voxel size


http://www.pylidar.org/

110  for all ecosystem types, scanners or datasets impossible. To test various approaches to selecting voxel size using
111 avoxel classification approach, Li et al. (2016) matched voxel size to point cloud resolution, individual tree leaf
112 size, and minimum beam distance and tested against destructive samples, finding that voxel size matched to point
113 cloud resolution had the closest PAI values to destructive samples. The LiDAR Pulse method and 2D Intensity
114 Image method both use single scan data. However, to generate robust estimates of canopy properties that avoid
115  errors from occlusion effects, multiple co-registered scans taken from different locations are likely needed (Wilkes
116 et al., 2017). Further, both these methods require raw unfiltered data to accurately measure the ratio of pulses

117 emitted from the scanner and number of pulses that are intercepted by vegetation. This means “noisy” points

(b)

118 caused by backscattered pulses (Wilkes et al., 2017) are included in analyses, potentially leading to higher PAI
119  estimates. However, the LiDAR Pulse and 2D Intensity Image methods may introduce fewer estimation errors
120 compared to DHP, which is influenced by differences in sky illumination conditions and camera exposure (Weiss
121 etal., 2004).
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Figure 1: Visual representation of the four methods for PAI and WAI estimation used in this study: (a) a binarised
digital hemispherical photograph (DHP), (b) TLS raw single scan point cloud, for the LiDAR Pulse method (Jupp et
al., 2008). Image shows a top-down view of raw point cloud and greyscale represents low (grey) and high (black) Z
values, (c) TLS 2D intensity image for the 2D Intensity Image method (Zheng et al., 2013), (d) Voxelised co-registered
whole plot point cloud for the Voxel-Based method (Hosoi and Omasa, 2006), showing a representative schematic of
cube voxels with edge length of 1m, voxelised using the R package VoxR (Lecigne et al., 2018). Solid black voxels are
classified as containing vegetation (filled) and voxels outlined with grey lines are voxels classified as empty.

1.2 Scope and aims

The aims of this study are twofold: the first aim is to compare three TLS methods for estimating PAI with

traditional DHP. The second aim of this study is to use TLS to understand drivers of individual tree o variation.

In this study we use a dataset of 528 co-located DHP and high-resolution TLS scans from 33 forest plots to
compare DHP derived PAI (PAlpnp) with estimates from three methods to estimate PAI from TLS data (PAlt.s):
the LiDAR Pulse method; the 2D Intensity Image method and the Voxel-Based method (Figure 1). We use a dataset
collected from a network of pine/oak forest plots in Spain (Owen et al., 2021) and ask (1) are the three TLS
methods able to reproduce PAlpnp estimates at single scan and whole plot level? (2) does o, calculated from the
Voxel-Based method on individual tree point clouds, vary with species and tolerance to drought? and (3) does o

scale with height and stand density?
2. Methods

2.1 Study site

We collected TLS and DHP data from 29 plots in Alto Tajo Natural Park (40°41'N, 02°03'W; FunDIV —
Functional Diversity plots; see Baeten et al. (2013) for a detailed description of the plots) and four plots in Cuellar
(41°23'N 4°21'W) in June - July 2018 (see Owen et al. (2021) for full details) (Figure Al). Plots contained two
oak species: semi-deciduous Q. faginea and evergreen Q. ilex, and three pine species: P. nigra, P. pinaster and P.

sylvestris. P. sylvestris is the least drought tolerant species, followed by P. nigra, Q. faginea, Q. ilex; shade
tolerance follows the same ranking (Niinemets and Valladares, 2006; Owen et al., 2021). Although not
quantitatively ranked, P. pinaster has been shown to be very drought tolerant, appearing in drier areas than the
other species (Madrigal-Gonzalez et al., 2017). The area is characterised by a Mediterranean climate (altitudinal
range 840 — 1400 m.a.s.l.) (Jucker et al., 2014; Madrigal-Gonzalez et al., 2017). In addition to the five main canopy

tree species, plots contained an understory of Juniperus thurifera and Buxus sempervirens (Kuusk et al., 2018).

2.2 Field protocol

In each of the 33 plots of size 30 x 30 m, we collected TLS scans on a 10 m grid, making 16 scan locations
following Wilkes et al. (2017) to minimise occlusion effects associated with insufficient scans. We used a Leica
HDS6200 TLS set to super high resolution (3.1 x 3.1mm resolution at 10 m with a beam divergence of <5 mm at
50 m; scan time 6m 44 s; see Owen et al. (2021)). At each of the 528 scan locations and following the protocol in
Pfeifer et al. (2012), we captured co-located DHP images with three exposure settings (automatic and + one stop
exposure compensation), levelling a Canon EOS 6D full frame DSLR sensor with a Sigma EX DG F3.5 fisheye
lens, mounted on a Vanguard Alta Pro 263AT tripod.


https://tools.wmflabs.org/geohack/geohack.php?pagename=Alto_Tajo_Nature_Reserve&params=40_41_N_02_03_W_type:landmark
https://tools.wmflabs.org/geohack/geohack.php?pagename=Cu%C3%A9llar&params=41_23_N_4_21_W_type:city(9584)_region:ES-SG
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2.3 Calculation of single scan and whole plot PAI using DHP data

For each of the red-green-blue (RGB) DHP images we extracted the blue band for image thresholding, as this best
represents sky/vegetation contrast (Pfeifer et al., 2012). For each plot, we picked the exposure setting that best
represented sky/ vegetation difference based on pixel brightness histograms of four sample locations indicative of
the plot. We carried out automatic image thresholding using the Ridler and Calvard method (1978), to create a
binary image of sky and vegetation, avoiding subjective user pixel classification (Jonckheere et al., 2005). We
calculated PAI from the binary image, limiting the field of view to a 5° band centred on the hinge angle of 57.5°
(55° — 60°). The hinge angle has a path length through the canopy twice the canopy height, so the band around it
is an area of significant spatial averaging taken as representative of canopy structure of the area (Calders et al.,
2018; Jupp et al., 2008). From the binarised hinge angle band we calculated Py as the number of sky pixels
divided by the total number of pixels and PAI using an inverse Beer-Lambert law equation (Monsi and Saeki,
1953). We calculated whole plot PAI as the arithmetic mean of the 16 plot scan location PAI estimates. As this
value does not correct for canopy clumping, it is better described as effective PAI, rather than true PAI (Woodgate
etal., 2015). However, as the TLS and DHP methods we apply here account for canopy clumping differently, we
compared effective values and here-on refer to effective PAI as PAI (Calders et al., 2018). DHP images used in

this study are freely available (see Flynn et al., 2023).

2.4 Calculation of single scan and whole plot PAI from TLS data

To calculate PAI using the LiDAR Pulse method (Jupp et al., 2008), we calculated Pgys, for a single scan (Figure
1b) by summing all returned laser pulses and dividing by the number of total outgoing pulses, following Lovell et
al. (2011; see Eq. 7 in that study), and then estimated PAI following Jupp et al. (2008; see Eq. 18 in that study),
setting the sensor range to 5° around the hinge angle as before (55° — 60°). Single scan PAI was taken as the
cumulative sum of PAI values estimated by vertically dividing the hinge region into 0.25 m intervals (Calders et
al., 2014). We implemented the LiDAR Pulse method using the open-source R (R Core Team, 2020) package,
rTLS (Guzmén and Hernandez, 2021).

To calculate PAI using the 2D Intensity Image method (Zheng et al., 2013), we converted 3D TLS point cloud
data from all 528 scan locations into polar coordinates, scaled intensity values to cover the full 0-255 range (Figure
1c) and rasterised into a 2D intensity image using the open-source R package, raster (Hijmans, 2022). We cut the
2D intensity image to a 5° band around the hinge angle (55 °— 60°) and classified sky and vegetation pixels in each
image using the Ridler and Calvard method (1978). We calculated Pgyap as the number of pixels classified as sky
divided by the total number of pixels and derived PAI with an inverse Beer-Lambert law equation (Monsi and
Saeki, 1953).

Following the same approach as applied to our DHP data, we calculated whole plot PAI for the LiDAR Pulse and

2D Intensity Image methods as the arithmetic mean of the 16 plot scan location PAI estimates.

To calculate PAI using the Voxel-Based method, we followed a voxel classification approach (Hosoi and Omasa,
2006), downsampling the point cloud to 0.05 m to aid computation time and matching the voxel size to the
resolution of the point cloud, following Li et al. (2016), who showed that matching the voxel size to the point
cloud point to point minimum distance (resolution) increases accuracy as small canopy gaps are not included in

voxels classified as vegetation. We chose to use a voxel classification approach (rather than a radiative transfer
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based one) as this method is widely applicable to a range of TLS systems and levels of processing, as well as
providing explicit guidance on voxel size selection, which is known to impact derived PAI estimates (Li et al.,
2016). We re-combined individually segmented trees, filtered for noise using a height-dependent statistical filter
(see Owen et al., 2021) back into whole plot point clouds and voxelised them using the open source R package,
VoxR (Lecigne et al., 2018), with a full grid covering the minimum to maximum XYZ ranges of the plot. We
classified any voxel containing > 0 points as vegetation (“filled”), and empty voxels as gaps. We then split the
voxelised point cloud vertically into slices one voxel high. Within each slice, the contact frequency is calculated
as the fraction of filled to total number of voxels. We then multiplied the contact frequency by a correction factor
for leaf inclination, set at 1.1 (Li et al., 2017), and whole plot PAI was calculated as the sum of all slices’ contact

frequencies.

2.5 Calculation of individual tree PAI, WAI and o using the voxel-based method

Figure 2: Visualisation of the workflow for applying the Voxel-Based method to estimate individual-tree PAI, WAI and
a. (a) Individual tree point cloud; (b) separated leaf off (wood) individual tree point cloud; (c) voxelised individual tree
point cloud; (d) voxelised wood cloud. Coloured voxels (green represents leaf and brown represents wood) are filled
voxels and grey lines are empty voxels. Empty voxels occupy the space within the projected crown area of the tree.
Image shows schematic of point cloud voxelised with cube voxels with edge length of 0.5 m. Panels (a) and (b) show
wood and leaf separation of an example P. sylvestris, carried out using TLSeparation (Vicari et al., 2019). Point cloud
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voxelisation was carried out using modified functions from R package VoxR (Lecigne et al., 2018). Note that our method
used voxel sizes at the resolution of the cloud (0.05 m), but here we present an image with larger voxels to ease visual
interpretation.

As the only method using multiple co-registered scans, the Voxel-Based method is only method compared in this
study capable of deriving PAI, WAI and LAI of segmented individual tree point clouds. We estimated PAI and
WA for 2472 individual trees segmented from co-registered point clouds following a similar method to the whole
plot point cloud. We used individual tree point clouds downsampled to 0.05 m, to aid computation time, and
segmented using the automated tree segmentation program treeseg (Burt et al., 2019), implemented in C++, by
Owen et al. (2021) for that study. Individual segmented tree data used in this study are freely available (see Owen
etal., 2022).

To estimate PAI, WAI and a for each tree, we used individual tree point clouds wood — leaf separated by Owen
et al. (2021) using the open source Python library TLSeparation (Vicari et al., 2019), and then used the separated
wood point clouds to calculate WAI. TLSeparation assigns points as either leaf or wood, iteratively looking at a
predetermined number of nearest neighbours (knn). The knn of each iteration is directly dependent on point cloud
density, since high density point clouds will require higher a knn (Vicari et al., 2019). The utility package in

TLSeparation was used to automatically detect the optimum knn for each tree point cloud.

To voxelise individual tree complete (Figure 2a) and wood only (Figure 2b) point clouds, we used a modified
approach based on Lecigne et al. (2018), voxelising within the projected crown area of the whole tree point cloud
(Figure 2c) to calculate PAL. In the same way as for PAI, we calculated WAI using the separated wood point cloud

within the projected crown area of the whole tree (Figure 2d; using the whole crown and not just the wood point
cloud), and derived a for each tree as WAI / pa ) allowing a comparison with existing literature estimating o for a

range of ecosystems, (Sea et al., 2011; Woodgate et al., 2016).

2.6 Statistical Analyses

We tested the relationships between PAl+r s and PAlpnp estimates using Standardised Major Axis (SMA) using
the open source R (R Core Team, 2020) package, smatr (Warton et al., 2012). SMA is an approach to estimating
a line of best fit where we are not able to predict one variable from another (Warton et al., 2006); we chose SMA
because we do not have a ‘true’ validation dataset, so avoid assuming either DHP or any of the TLS methods
produces the most accurate results. For each TLS method, we assessed the relationship with DHP using the
coefficient of determination and RMSE. We chose to compare PAI values rather than WAI or LAI as to do so
would mean an additional correction for non-photosynthetic elements, which each method does in different ways,
so introducing further source of uncertainty and limiting our ability to fairly compare processing approaches. To
further understand observed drivers of variance in PAI, we tested the relationship between PAI and whole plot
crown area index, CAl, a proxy measure of stand density and local competition (Caspersen et al., 2011; Coomes
et al., 2012). We calculated CAl as the sum of TLS-derived projected crown area, divided by the plot area (Owen
etal., 2021).

To test if a differs by species, we used linear mixed models (LMMSs) in the R package, Ime4 (Bates et al., 2015).
We included an intercept only random plot effect to account for local effects on a:
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a’iysj = Qs + PlOtJ, (1)

here, ai is o of an individual of species s, in plot j, and ¢ is the parameter to be fit. To test the effect of stand
structure and tree height on o, we fit relationships separately for each species, again including a random plot

effect:

ai,S}' = Qs + bS Hi + Cs CAI] + PlOtSj' (2)

here H; is the height of the tree, CAl; is the crown area index for the plot, with other parameters as before.

For each species” model (equation 2), we calculated the intra-class correlation coefficient (ICC). The ICC, similar
to coefficient of determination, quantifies the amount of variance explained by the random effect in a linear mixed
model (Nakagawa et al., 2017).

3. Results

3.1 Comparison of plant area index estimated by DHP and single scan TLS

Of the two single scan TLS methods tested (LiDAR Pulse method and 2D Intensity Image method), we found that
the relationship between PAI estimated using the LiDAR Pulse method and PAlppp, had a higher R? than the 2D
Intensity Image method (SMA; LiDAR Pulse method R? = 0.50, slope = 0.73, p < 0.001, RMSE = 0.14, and 2D
Intensity Image method R? = 0.22, slope = 0.38, p < 0.001, RMSE = 0.39, respectively, Figure 3a). At larger PAI
values, both TLS methods underestimated PAI relative to DHP (Figure 3b). We found statistically significant
negative correlations between residuals and DHP for both methods (SMA,; 2D Intensity Image method residuals
R?=0.85, slope = —0.88, p < 0.01; LiDAR Pulse method residuals R? = 0.47, slope = -0.70, p < 0.01; Figure 3b).
The 2D Intensity Image method showed larger underestimation at higher PAlpnp values, suggesting this method

may saturate sooner for higher PAI values than either DHP or the LiDAR Pulse method (Figure 3b).
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Figure 3: Comparison of single scan PAltLs and PAlpnp estimates, for all 528 scan locations (16 per plot). (a) The
correlation between DHP derived PAI with PAI derived using the 2D Intensity Image method R? = 0.22, slope = 0.38,
p < 0.001, RMSE = 0.39 (circles), and LiDAR Pulse method R?= 0.50, slope = 0.73, p < 0.001, RMSE = 0.14 (triangles).
Dashed line in panel (a) represents 1:1 relationship. (b) The difference between PAltLs and PAlpnp estimates for the
2D Intensity Image method, and LiDAR Pulse method. Dashed line in panel (b) represents 0. Solid lines show
statistically significant relationships fitted using SMA (p < 0.01).

3.2 Comparison of whole plot plant area index estimated using TLS and DHP and the effect of plot structure
on PAI

We found statistically significant correlations between whole plot PAl+.s values and PAlpwpe for all three TLS
methods (Figure 4). As for single scans, the LiDAR Pulse method showed the closest agreement to PAlpwp, here
compared to both the Voxel-Based and 2D Intensity Image methods (SMA,; LiDAR Pulse method R? = 0.66, slope
=0.82, p<0.01, RMSE = 0.14; Voxel-Based method R? = 0.39, slope = 2.76, p < 0.01, RMSE = 0.88; 2D Intensity
Image method R?= 0.35, slope = 0.36, p < 0.01, RMSE = 0.39, respectively; Figure 4a). The 2D Intensity Image
method and LiDAR Pulse method consistently underestimated PAI compared to DHP, whilst the Voxel-Based
method underestimated in plots with lower PAlpne and overestimated in plots with higher PAlpnp. The Voxel-
Based method’s high PAI values compared to other methods is likely due to its use of multiple co-registered scans

reducing occlusion effects prevalent in single scan data.

To assess the effect of plot structure on variation in TLS derived PAI, we compared PAlt.s estimates CAI (Figure
4b). We found a significant positive relationship between CAl and PAI estimated using each of the LiDAR Pulse
method, the Voxel-Based method, and DHP (SMA; LiDAR Pulse method R? = 0.79, slope = 1.69, p < 0.01; Voxel-
Based method R? = 0.76, slope = 5.72, p < 0.01; 2D Intensity Image method R2 = 0.15, slope = 0.76, p < 0.05;
DHP R? = 0.46, slope = 2.07, p < 0.01, respectively; Figure 4b), where the 2D Intensity Image method shows

signs of saturation at medium CAI values (Figure 4b).
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Figure 4: Comparison of plot level PAlTLs vs PAlpbrp, and CAI vs PAI estimates for all 33 plots. (a) The correlation
between DHP derived PAI and PAI derived using 2D Intensity Image R?= 0.35, slope = 0.36, p < 0.01, RMSE = 0.39
(circle), LIDAR Pulse R? = 0.66, slope = 0.82, p < 0.01, RMSE = 0.14 (triangle) and Voxel-Based R? = 0.39, slope = 2.76,
p < 0.01, RMSE = 0.88 (cross) methods (b) The correlation between TLS derived CAl and PAI derived using DHP R?
= 0.46, slope = 2.07, p < 0.01 (square), 2D Intensity Image R? = 0.15, slope = 0.76, p < 0.05 (circle) LiDAR Pulse R? =
0.79, slope = 1.69, p < 0.01 (triangle) and Voxel-Based R? = 0.76, slope = 5.72, p < 0.01 (cross) methods. Lines show
statistically significant relationships fitted using SMA (p < 0.01). Dashed line in panel (a) represents 1:1 relationship.

3.4 Influence of species, tree height and CAl on a

To understand drivers of variance in a, we used individual tree PAI and WA, calculated using the Voxel-Based
method to test the relationship between species and a, and height/ CAl and a. We found that more drought tolerant
species generally had higher a values than less drought tolerant species (Table B1; Figure 5), however, confidence
intervals were wide and overlapping, suggesting that species is not a strong predictor of variation in a. We found
a statistically significant negative effect of height (p < 0.001; Table B2; Figure 6a) and positive effect of CAI (p
< 0.01 - 0.05; Table B2; Figure 6b) on a for all species apart from P. sylvestris. o decreased more rapidly with
height and increased less rapidly with CAI for oaks than pines. Statistically significant ICC values were higher
for P. nigra (ICC = 0.211; Table B2) than P. pinaster, Q. faginea and Q. ilex (ICC = 0.036; 0.060; 0.070,
respectively), showing that more o variation is explained by the random plot effect in P. nigra than the other
species. P. pinaster has a wider confidence interval (Figure 5), possibly explained by its lower sample size. To
understand drivers of variance in WAI we carried out additional analysis to test the relationship between WAI

and species, height, CAl, and PAI, and presented these results in Appendix C (Figure C3; Tables C3, C4).
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Figure 5: Linear mixed model derived a values (¢, equation 1) for all 2472 individual trees of species P. sylvestris, P.
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Figure 6: Variation in a for each species: Pinus nigra, P. pinaster, Q. faginea and Q. ilex with (a) height and (b) plot

CAI. Lines represent statistically significant linear mixed models (equation 2; significance levels from p <0.001 to p <
0.05). Ribbons represent 95% confidence intervals. The model for P. sylvestris was not statistically significant.
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4. Discussion

4.1 Comparison of approaches to deriving PAI from remote sensed data

We found substantial differences in PAI values estimated from TLS and DHP and from different TLS processing
methods (Figures 3 and 4). Further, differences between TLS methods varied across plot structure, with the
greatest differences between methods in plots with high CAI, and therefore high canopy density. Although
previous studies have presented TLS as an improvement over DHP due to its independence of illumination and
sky conditions during the data acquisition phase, and ability to resolve fine-scale canopy elements and gaps
(Calders et al., 2018; Grotti et al., 2020; Zhu et al., 2018), we have shown that there is large variability between
TLS processing methods in Mediterranean forests. Rigorous intercomparison of approaches, ideally using
standard benchmarking TLS datasets, and destructive sampling, would improve trust and reliability of TLS

algorithms.

We found the LiDAR Pulse method (Jupp et al., 2008) to have the best agreement with DHP for both whole plot
and single scan PAI estimates. In contrast to previous studies comparing PAlr.s with PAlpne (Calders et al.,
2018; Grotti et al., 2020; Woodgate et al., 2015), we found that the LiDAR Pulse and 2D Intensity Image methods
underestimated PAI compared to DHP, except at very low PAI values (PAlt s < 0.5). Quantification of PAI from
DHP may introduce additional sources of error, for example, its relatively lower resolution compared to TLS
could lead to mixed pixels that have a greater chance of misclassification of sky as vegetation (Jonckheere et al.,
2004). This effect could be enhanced in a Mediterranean forest as trees in drier climates tend to have smaller
leaves (Peppe et al., 2011), leading to more small canopy gaps that TLS may resolve where DHP cannot. Further,
although we took steps to reduce the error introduced at DHP data acquisition and processing steps, including
using automatic thresholding and collecting images with multiple exposures, DHP processing requires both model
and user assumptions that can impact results. For example, PAlpnp estimates are highly sensitive to camera
exposure; increasing one stop of exposure can result in 3 — 28% difference in PAI and use of automatic exposure

can result in up to 70% error (Zhang et al., 2005).

We found the Voxel-Based method overestimated PAI values compared to the other methods at the whole plot
level. This is likely due to the method’s use of co-registered scans, rather than averaged single scan PAI values,
since co-registered scans will reduce occlusion effects prevalent in single scan data that could to lead to an
underestimation of PAI (Wilkes et al., 2017). The Voxel-Based method is, however, sensitive to voxel size (Li et
al., 2016), and larger voxels lead to larger PAI estimates as they are unable to capture all of the intricate details of
canopy structure; we chose a voxel size of 0.05 m to match the minimum distance between points in our
downsampled dataset. However, the Voxel-Based method is a memory intensive approach to calculating PAI, and
smaller voxels have higher memory requirements. We picked this data resolution, and therefore voxel size, to
balance the need to capture fine-scale canopy details against memory requirements for running the method on
many large plot point clouds. Voxel size could have been chosen based on estimates’ match to DHP, but this
would assume (1) that DHP estimates are most accurate, and (2) that DHP data are always available, limiting the
wider applicability of our findings. Understanding which method is over- or underestimating would require a
destructively sampled dataset for validation, which was not possible for this study (or most ecosystems). However,
other studies using voxel approaches have found that although these produce high LAI values for individual trees,

these are underestimates compared with destructive samples (Li et al., 2016). Regardless, PAI and LAI estimates
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using a Voxel-Based approach are highly dependent on voxel size (Li et al., 2016), and future work should test

the influence of voxel size on PAI estimates, using destructive samples in a range of environments.

The relationship between the LiDAR Pulse method and TLS derived CAI had the highest R?, demonstrating that
the method is well suited to measuring PAI across the range of plot CAl values used in this study. Although the
2D Intensity Image method can tackle the significant challenges presented by edge effects and partial beam
interceptions, particularly present in phase-shift systems (Grotti et al., 2020), our results suggest this method has
a lower performance ability, with saturation occurring sooner than all other methods in dense forests (Figures 3
and 4). The 2D Intensity Image method uses the same raw single scan data as the LiDAR Pulse method, so the
better performance from the latter is likely due to the method’s use of vertically resolved gap fraction; both the
LiDAR Pulse method and Voxel-Based method account for the vertical structure of the canopy by summing

vertical slices through the canopy.

4.2 o variation between species and plot

We used the Voxel-Based method to investigate individual tree o variation between species and across structure,
as this was the only approach we compared that could be applied to single tree point clouds which are leaf-wood
separated. We found a values obtained were within the range of values obtained from destructive approaches (0.1
— 0.6, Gower et al., 1997). The drought and shade intolerant P. nigra showed stronger variability in a across plots
(higher ICC value, Table B2) than other species, suggesting its wood — leaf ratio may be more sensitive to site
factors. However, as the plots measured in this study vary in both abiotic conditions (altitude, aspect, slope,
wetness) as well as species composition, stem density and canopy cover, there may be other drivers of variation

in a values.

We found some evidence that species with higher drought tolerance had higher o values (Figure 5; Table B1),
however, confidence intervals were wide, suggesting a weak relationship. There is evidence that trees that tolerate
water limited environments have a lower leaf area (Battaglia et al., 1998; Mencuccini and Grace, 1995), so higher
a values may reflect maintenance of homeostasis of leaf water use through adjustment of wood to leaf area ratio
(Carter and White, 2009; Gazal et al., 2006). The potential for a tree to lose water is mostly regulated through leaf
traits including stomatal conductance and leaf area, and both stand (Battaglia et al., 1998; Specht and Specht,
1989) and individual tree (Mencuccini, 2003) water use have been found to scale linearly with LAI, with drought

often mitigated through leaf shedding (Lopez et al., 2021).

4.3 Tree stature and stand density drives a variation

Although species had a weak relationship with o, tree height and plot CAl had a statistically significant
relationship with o (p < 0.001 — p < 0.05) for all species, showing the importance of local stand structure on leaf
and woody allocation. We found that o scaled negatively with height for all species apart from P. sylvestris,
suggesting that in this environment, taller trees generally have a lower proportion of wood to plant area index than
shorter ones. P. sylvestris, which is at the edge of its geographical range and physiological limits (Castro-Diez et
al., 1997; Owen et al., 2021), showed no significant relationship between height and a. We found that o scaled
positively with plot level CAl for all species apart from P. sylvestris, that is, trees growing in denser plots have a
higher a. This supports theory that trees growing in dense forests are competing for resources, reducing individual

tree leaf area (Jump et al., 2017). The negative relationships between height and a and positive relationships
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between CAI and a relationships in our model suggest that trees may initially invest in vertical growth to reach
the canopy level, and once there invest in lateral growth, with more leaf area, to increase light capture. This
supports theory that trees grow to outcompete neighbouring individuals for light capture (Purves and Pacala, 2008)
and evidence that both lateral growth and LAI are reduced beneath closed canopies (Beaudet and Messier, 1998;
Canham, 1988).

Wood may be harder to accurately classify than leaves in TLS data (Vicari et al., 2019), resulting in a higher
occurrence of false positives in wood clouds, potentially leading to an overestimation in WAI, and therefore
underestimation of a, especially in trees with small leaves which are prevalent in dry, Mediterranean environments
(Peppe et al., 2011). The problem of misclassification will increase in taller trees due to TLS beam divergence,
occlusion and larger beam footprint at further distances (Vicari et al., 2019), suggesting that WAI overestimation
could be more pronounced in tall trees. Although our dense scanning strategy (Owen et al., 2021) was designed
to mitigate some of these effects, these effects mean our findings may underestimate the slope of the negative
relationship between o and tree height. Conversely, the increasing leaf-to-wood ratio could potentially be
explained by a greater number of empty voxels caused by occlusion in large trees. However, we took significant
steps to reduce occlusion, employing a 10 m scanning strategy that was developed in a dense tropical forest
(Wilkes et al., 2017).

4.4 Correcting for non-photosynthetic elements in LAI estimates using TLS

The value of TLS data to estimate individual tree PAI, WAI and subsequently o, demonstrates their potential to
corrective factors for non-photosynthetic components in ground based remote sensing measurements of LAI.
Properly correcting for WAI in LAI estimates is of global importance as small errors in ground based
measurements propagate through to large scale satellite observations generating large errors in global vegetation
models (Calders et al., 2018). The work presented here provides a foundation for future work combining multi-
source and multi-scale remote sensing datasets to correct largescale LAI products. Our results echo others’ in
finding that the prevalence of woody material in the tree canopy, and therefore a, is dynamic and varies by species
as well as senescence, crown health and, in the case of deciduous forests, leaf phenology (Gower et al., 1999).
The use of single a value in a plot or region (Olivas et al., 2013; Woodgate et al., 2016), invariant of species, size
and forest structure, to convert PAI to LAI is therefore problematic (Niu et al., 2021). Our study demonstrates the
importance of taking species mix and structural variation into account when correcting for non-photosynthetic

material in ground-based LAI estimates.

5. Conclusions

We tested three methods for estimating PAI using Terrestrial Laser Scanning data and compared these against
traditional DHP measurements. We found large variation between PAI values estimated from each TLS method
and DHP, demonstrating that care should be taken when deriving PAI from ground based remote sensing methods.
Although the LiDAR Pulse method was found to have the best agreement with both single scan and whole plot
PAI values measured by DHP, the Voxel-Based method allowed separate analysis of the key metric used to correct
for the effect of WAI in LAI measurements, a, in individual trees. We recommend the LiDAR Pulse method as a
fast and effective method for PAI estimation independent of illumination conditions. Whilst the Voxel-Based

method may be used to analyse individual tree a and determine ecological drivers of variation, work remains to

15



448
449
450

451
452
453
454
455
456
457

458

459

460
461
462
463
464
465
466
467

determine the validity of these approaches, in particular correct voxel size choice. We found that a varies by
species, height and stand density, showing the importance of accurately correcting for WAI on the individual tree
level and the utility of TLS to do so.

The variation in our results for the different methods used to derive PAI from TLS data show that there is some
way to go before TLS derived vegetation indices can be interpreted as robust and reliable. Validation using
destructive samples and further intercomparison studies of methods are needed to demonstrate the advantages of
TLS, and use of benchmarking datasets should be standard. DHP is a faster, cheaper and more widely accessible
method for PAI estimation, and while TLS promises to alleviate potential bias in DHP estimates, results are highly
methods dependent. Our results demonstrate the challenges that stand in the way of large scale adoption of TLS

for vegetation indices monitoring.
6. Appendices

6.1 Appendix A
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Figure Al: Map of plot locations within two field sites in central Spain (Cuellar, left and Alto Tajo, right). Red points
show plot locations on high-resolution digital terrain models enhanced with hillshading shown in greyscale (Owen.,
2021).
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468 6.2 Appendix B

469 Table B1: species — a linear mixed model (equation 1) showing relationship between tree species and a for all 2472
470 individual trees. Species are listed from low — high drought tolerance, with the exception of P. pinaster, for which
471 drought tolerance index has not been calculated in the literature. 95% CI are the 95% confidence intervals.

Species a(eq. 1) 95% ClI

P. sylvestris 0.144 0.131, 0.158
P. nigra 0.138 0.127,0.149
Q. faginea 0.149 0.140, 0.157
Q. ilex 0.155 0.146, 0.166
P. pinaster 0.168 0.145, 0.192

472

473 Table B2: height — o linear mixed models for each species (equation 2) showing relationship between tree height and
474 plot CAI and o for all 2472 individual trees. Species are listed from low — high estimated a. Significance codes: p <
475 0.001 “**#°; p < 0.01 “**’; p < 0.05 “*’; not significant ‘">*. 95% CI are the 95% confidence intervals and ICC is the
476 intra-class correlation coefficient.

Species b (eq. 2) (95% CI) c (eq. 2) (95% CI) ICC

P. sylvestris -0.002" (-0.004, 0.000) 0.134™ (0.010 0.259) 0.151
P. nigra -0.005*** (-0.006, -0.004) 0.164** (0.063, 0.263) 0.211
Q. faginea -0.008*** (-0.010, -0.007) 0.058* (0.016, 0.101) 0.060
Q. ilex -0.015*** (-0.020, -0.011) 0.113** (0.050, 0.179) 0.070
P. pinaster -0.006*** (-0.008, -0.004) 0.317* (0.177, 0.453) 0.036

477

478 6.3 Appendix C

479 WAI = Mgpeeies  (C1)

480 WAI = mheight +b (C2)
481  WAI=mCAI+b (C3)
482 WAl =mPAI+b (C4)

483  Where WAL is the wood area index, species, height, CAl and PAI are the tree species, tree height, crown area
484 index of the plot in which the tree is growing and tree plant area index respectively and m and b are parameters to
485 be fit.
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Figure C2: Linear model derived WAI values (m, equation C1) for all 2472 individual trees of species P. sylvestris, P.
nigra, Q. faginea, Q. ilex and P. pinaster. Error bars represent 95% confidence intervals. Species are listed from low —
high drought tolerance, with the exception of P. pinaster, for which drought tolerance index has not been calculated in
the literature. Between-species differences in WAI are likely primarily driven by differences in average tree height.

Table C3: Linear model (equation C1) showing relationship between tree species and WAI for all 2471 individual trees.
Significance codes: p < 0.001 “***°; p < 0.01 “**°; p < 0.05 “*’; not significant ‘">. 95% CI are the 95% confidence
intervals.

Species m (eq. 1) 95% ClI

P.nigra 0.57*** 0.56, 0.59
P. pinaster 0.69*** 0.66, 0.73
P. sylvestris 0.56() 0.54, 0.59
Q. faginea 0.39*** 0.37,0.41
Q. ilex 0.37*** 0.34,0.39

Table C4: Linear models (equations C2, C3, C4) predicting WAI as a function of tree height, CAl (density) and PAI
Significance codes: p < 0.001 “***°; p < 0.01 “**°; p < 0.05 “*’; not significant ‘">. 95% CI are the 95% confidence
intervals.

m (eg. 2, 3, 4) (95% CI) b (eq. 2, 3, 4) (95% CI) R?

Tree Height 0.024*** (0.023,0.026)  0.27*** (0.25, 0.28) 0.27
CAI 0.390%** (0.336,0.443)  0.29%** (0.26, 0.31) 0.78
PAI 0.112%** (0.106,0.118)  0.12*** (0.10, 0.14) 0.35

7. Code availability
See https://github.com/will-flynn/tls_dhp_pai.git for all processing and modelling code.
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8. Data availability
See Owen et al. (2022) for individual segmented tree data and Flynn et al. (2023) for thresholded DHP images.
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