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Abstract. Accurate measurement of vegetation density metrics including plant, wood and leaf area indices (PAI, 10 

WAI and LAI) is key to monitoring and modelling carbon storage and uptake in forests. Traditional passive sensor 11 

approaches, such as Digital Hemispherical Photography (DHP), cannot separate leaf and wood material, nor 12 

individual trees, and require many assumptions in processing. Terrestrial Laser Scanning (TLS) data offer new 13 

opportunities to improve understanding of tree and canopy structure. Multiple methods have been developed to 14 

derive PAI and LAI from TLS data, but there is little consensus on the best approach, nor are methods 15 

benchmarked as standard.  16 

Using TLS data collected in 33 plots containing 2472 trees of five species in Mediterranean forests, we compare 17 

three TLS methods (LiDAR Pulse, 2D Intensity Image and Voxel-Based) to derive PAI and compare with co-18 

located DHP. We then separate leaf and wood in individual tree point clouds to calculate the ratio of wood to total 19 

plant area (α), a metric to correct for non-photosynthetic material in LAI estimates. We use individual tree TLS 20 

point clouds to estimate how α varies with species, tree height and stand density.  21 

We find the LiDAR Pulse method agrees most closely with DHP, but is limited to single scan data so cannot 22 

determine individual tree properties, including α. The Voxel-Based method shows promise for ecological studies 23 

as it can be applied to individual tree point clouds. Using the Voxel-Based method, we show that species explain 24 

some variation in α, however, height and plot density were better predictors. 25 

Our findings highlight the value of TLS data to improve fundamental understanding of tree form and function, 26 

but also the importance of rigorous testing of TLS data processing methods at a time when new approaches are 27 

being rapidly developed. New algorithms need to be compared against traditional methods, and existing 28 

algorithms, using common reference data. Whilst promising, our results show that metrics derived from TLS data 29 

are not yet reliably calibrated and validated to the extent they are ready to replace traditional approaches for large 30 

scale monitoring of PAI and LAI.   31 
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1 Introduction 33 

Terrestrial Laser Scanning (TLS) generates high-resolution 3D measurements of whole forests and individual 34 

trees (Burt et al., 2018; Disney, 2018), leading to the development of completely new monitoring approaches to 35 

understand the structure and function of ecosystems (Lines et al., 2022). Unlike traditional passive sensors, TLS 36 

can estimate plant, wood and leaf area indices (PAI; WAI; LAI) for both whole plots and individual tree point 37 

clouds (Calders et al., 2018), and is unaffected by illumination conditions. This has led to the development of 38 

several methods for processing TLS data to extract the key metrics PAI, WAI and LAI (e.g. Hosoi and Omasa, 39 

2006; Jupp et al., 2008; Zheng et al., 2013). However, intercomparison studies of algorithms and processing 40 

approaches to derive the same metrics from different TLS methods are lacking. 41 

Leaf Area Index (LAI), defined as half the amount of green leaf area per unit ground area (Chen and Black, 1992), 42 

determines global evapotranspiration, phenological patterns and canopy photosynthesis, and is therefore an 43 

essential climate variable (ECV), as well as a key input in dynamic global vegetation models (Sea et al., 2011; 44 

Weiss et al., 2004). Accurate measurements of leaf, wood and plant area indices (LAI, WAI and PAI) have 45 

historically been derived from labour intensive destructive sampling (Baret et al., 2013; Jonckheere et al., 2004), 46 

so over large spatial or temporal scales these can only be measured indirectly, typically with remote sensing. 47 

Large-scale remote sensing, using spaceborne and airborne instruments, has been widely used to estimate LAI 48 

over large areas (Pfeifer et al., 2012), but requires calibration and validation using in situ measurements to 49 

constrain information retrieval (Calders et al., 2018). Non-destructive in situ vegetation index estimates have 50 

historically been made by measuring light transmission below the canopy and using simplifying assumptions 51 

about canopy structure to estimate the amount of intercepting material (e.g. Beer-Lambert’s law; Monsi and Saeki, 52 

1953). The most common method, Digital Hemispherical Photography (DHP; Figure 1a), requires both model 53 

assumptions and subjective user choices during data acquisition and processing in order to estimate both PAI and 54 

LAI (Breda, 2003). DHP images are processed by separating sky from canopy, but not photosynthetic from non-55 

photosynthetic vegetative material, so additional assumptions are needed to calculate either LAI or WAI 56 

(Jonckheere et al., 2004; Pfeifer et al., 2012). Separation of LAI from PAI can be achieved by removing or 57 

masking branches and stems from hemispherical images (e.g. Sea et al., 2011; Woodgate et al., 2016), but is not 58 

reliable when leaves are occluded by woody components (Hardwick et al., 2015). An alternative approach is to 59 

take separate DHP measurements in both leaf on and leaf off conditions, and derive empirical wood to plant ratios 60 

(WAI/PAI, α) (Leblanc and Chen, 2001), but this is not always practical, for example in evergreen forests. The 61 

difficulty of separation means that studies often omit correcting for the effect of WAI on optical PAI 62 

measurements altogether (Woodgate et al., 2016), but since woody components in the forest canopy can account 63 

for more than 30% of PAI (Ma et al., 2016) this can introduce overestimation. Further, although DHP estimates 64 

of LAI or PAI are valuable both for ecosystem monitoring and developing satellite LAI products (Hardwick et 65 

al., 2015; Pfeifer et al., 2012), they are limited to sampling only at a neighbourhood or plot level (Weiss et al., 66 

2004), and cannot be used to measure individual tree LAI except for open grown trees (Béland et al., 2014).  67 

The ratio of wood to total plant area, α, is known to be dynamic, changing in response to abiotic and biotic 68 

conditions. For example, the Huber value (sapwood to leaf area ratio, a related measure to α) may vary according 69 

to water availability (Carter and White, 2009). Leaf area may therefore be indicative of the drought tolerance level 70 

of a tree, with more drought tolerant species displaying a lower leaf area, reducing the hydraulic conductance of 71 
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the whole tree and therefore increasing its drought tolerance (Niinemets and Valladares, 2006). α has been 72 

hypothesised to increase with the size of a tree in response to the increased hydraulic demand associated with 73 

greater hydraulic resistance of tall trees (Magnani et al., 2000) and higher transpiration rates of larger LAI 74 

(Battaglia et al., 1998; Phillips et al., 2003). Stand density may also impact α (Long and Smith, 1988; Whitehead, 75 

1978), as increased stand level water use scales linearly with LAI (Battaglia et al., 1998; Specht and Specht, 1989), 76 

reducing water availability to individual trees competing for the same resources (Jump et al., 2017).  Large scale 77 

quantification of α or Huber value, however, is difficult as studies usually rely on a small number of destructively 78 

sampled trees (e.g. Carter and White, 2009; Magnani et al., 2000), litterfall traps (e.g. Phillips et al., 2003) or 79 

masking hemispherical images (e.g. Sea et al., 2011; Woodgate et al., 2016). These approaches are only applicable 80 

on a small to medium scale, and in the case of image masking, cannot differentiate between individuals. Variation 81 

in α, for example by species and or stand structure, is therefore largely unknown. 82 

1.12 TLS methods for calculating PAI, LAI and WAI 83 

Terrestrial Laser Scanning (TLS) generates high-resolution 3D measurements of whole forests and individual 84 

trees (Burt et al., 2018; Disney, 2018), leading to the development of completely new monitoring approaches to 85 

understand the structure and function of ecosystems (Lines et al., 2022). Unlike traditional passive sensors, TLS 86 

can estimate plant, wood and leaf area indices (PAI,; WAI,; and LAI) for both whole plots and individual tree 87 

point clouds (Calders et al., 2018), and is unaffected by illumination conditions. This has led to the development 88 

of several methods for processing TLS data to extract the key metrics PAI, WAI and LAI (e.g. Hosoi and Omasa, 89 

2006; Jupp et al., 2008; Zheng et al., 2013). However, intercomparison studies of algorithms and processing 90 

approaches to derive the same metrics from different TLS methods are lacking. 91 

TLS methods for extracting PAI, LAI and WAI can be broadly categorised into two types: (1) LiDAR return 92 

counting, using single scan data (e.g., the LiDAR Pulse method; Jupp et al., 2008, and 2D Intensity Image method; 93 

Zheng et al., 2013) and (2) point cloud voxelisation, usually using co-registered scans (e.g., the Voxel-Based 94 

method; Hosoi and Omasa, 2006).  95 

The LiDAR Pulse method (Jupp et al., 2008; Figure 1b) estimates gap fraction (Pgap) using single scan data, as a 96 

function of the total number of outgoing LiDAR pulses from the sensor and the number of pulses that are 97 

intercepted by the canopy. This method, which eliminates illumination impacts associated with the use of DHP 98 

(Calders et al., 2014), has been implemented in the python module, PyLidar (www.pylidar.org) and the R package, 99 

rTLS (Guzman, et al. 2021). Using the LiDAR Pulse method, Calders et al. (2018) compared PAI estimates from 100 

two ground-based passive sensors (LiCOR LAI-2000 and DHP) with TLS data collected with a RIEGL VZ-400 101 

TLS in a deciduous woodland, and found the two passive sensors underestimated PAI values compared to TLS, 102 

with differences dependent on DHP processing and leaf on/off conditions. 103 

The 2D Intensity Image method (Zheng et al., 2013; Figure 1c), also uses raw single scan TLS point clouds, but, 104 

unlike the LiDAR Pulse method, converts LiDAR returns into 2D panoramas where pixel values represent return 105 

intensity. PAI is estimated by classifying pixels as sky or vegetation, based on their intensity value, to estimate 106 

Pgap, and then applying Beer-Lambert’s law. Like the LiDAR Pulse method, this approach has been shown to 107 

generate higher PAI estimates than DHP (Calders et al., 2018; Woodgate et al., 2015; Grotti et al., 2020), with 108 

http://www.pylidar.org/
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differences attributed to the greater pixel resolution and viewing distance of TLS resolving more small canopy 109 

details (Grotti et al., 2020). 110 

The Voxel-Based method (Figure 1d) estimates PAI by segmenting a point cloud into voxels and either simulating 111 

radiative transfer within each cube (Béland et al., 2014; Kamoske et al., 2019), or classifying voxels as either 112 

containing vegetation or not, and dividing vegetation voxels by the total number of voxels (Hosoi and Omasa, 113 

2006; Itakura and Hosoi, 2019; Li et al., 2017). Crucially, this method may be applied to multiple co-registered 114 

scan point clouds and so can be used to calculate PAI for both whole plots and individual, segmented TLS trees. 115 

However, PAI estimates derived using the voxel method are highly dependent on voxel size (Calders et al., 2020). 116 

Using a radiative transfer approach, Béland et al., (2014) demonstrated that voxel size is dependent on canopy 117 

clumping, radiative transfer model assumptions and occlusion effects, making a single, fixed choice of voxel size 118 

for all ecosystem types , scanners or datasets impossible. To test various approaches to selecting voxel size using 119 

a voxel classification approach, Li et al., (2016) matched voxel size to point cloud resolution, individual tree leaf 120 

size, and minimum beam distance and tested against destructive samples, finding that voxel size matched to point 121 

cloud resolution had the closest PAI values to destructive samples.  122 
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The LiDAR Pulse method and 2D Intensity Image method both use single scan data. However, to generate robust 123 

estimates of canopy properties that avoid errors from occlusion effects, multiple co-registered scans taken from 124 

different locations are likely needed (Wilkes et al., 2017). Further, both these methods require raw unfiltered data 125 

to accurately measure the ratio of pulses emitted from the scanner and number of pulses that are intercepted by 126 

vegetation. This means “noisy” points caused by backscattered pulses (Wilkes et al., 2017) are included in 127 

analyses, potentially leading to higher PAI estimates. However, the LiDAR Pulse and 2D Intensity Image methods 128 

may introduce fewer estimation errors compared to DHP, which is influenced by differences in sky illumination 129 

conditions and camera exposure (Weiss et al., 2004).  130 

 131 

 132 

Figure 1: Visual representation of the four methods for PAI and WAI estimation used in this study: (a) a binarised 133 
digital hemispherical photograph (DHP), (b) TLS raw single scan point cloud, for the LiDAR Pulse method (Jupp et 134 
al., 2008). Image shows a top-down view of raw point cloud and greyscale represents low (grey) and high (black) Z 135 
values, (c) TLS 2D intensity image for the 2D Intensity Image method (Zheng et al., 2013), (d) Voxelised co-registered 136 
whole plot point cloud for the Voxel-Based method (Hosoi and Omasa, 2006), showing a representative schematic of 137 
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cube voxels with edge length of 1m, voxelised using the R package VoxR (Lecigne et al., 2018). Solid black voxels are 138 
classified as containing vegetation (filled) and voxels outlined with grey lines are voxels classified as empty.  139 

1.23 Scope and aims 140 

The aims of this study are twofold: the first aim is to compare three TLS methods for estimating PAI with 141 

traditional DHP. The second aim of this study is to use TLS to understand drivers of individual tree α variation.  142 

In this study we use a dataset of 528 co-located DHP and high-resolution TLS scans from 33 forest plots to 143 

compare DHP derived PAI (PAIDHP) with estimates from three methods to estimate PAI from TLS data (PAITLS): 144 

the LiDAR Pulse method; the 2D Intensity Image method and the Voxel-Based method (Figure 1). We use a dataset 145 

collected from a network of pine/oak forest plots in Spain (Owen et al., 2021) and ask (1) are the three TLS 146 

methods able to reproduce PAIDHP estimates at single scan and whole plot level? (2) does α, calculated from the 147 

Voxel-Based method on individual tree point clouds, vary with species and tolerance to drought? and (3) does α 148 

scale with height and stand density? 149 

2. Methods  150 

2.1 Study site 151 

We collected TLS and DHP data from 29 plots in Alto Tajo Natural Park (40°41′N, 02°03′W; FunDIV – 152 

Functional Diversity plots; see Baeten et al., (2013) for a detailed description of the plots) and four plots in Cuellar 153 

(41°23′N 4°21′W) in June - July 2018 (see Owen et al., (2021) for full details) (Figure A1). Plots contained two 154 

oak species: semi-deciduous Q. faginea and evergreen Q. ilex, and three pine species: P. nigra, P. pinaster and P. 155 

sylvestris. P. sylvestris is the least drought tolerant species, followed by P. nigra, Q. faginea, Q. ilex; shade 156 

tolerance follows the same ranking (Niinemets and Valladares, 2006; Owen et al., 2021). Although not 157 

quantitatively ranked, P. pinaster has been shown to be very drought tolerant, appearing in drier areas than the 158 

other species (Madrigal-González et al., 2017). The area is characterised by a Mediterranean climate (altitudinal 159 

range 840 – 1400 m.a.s.l.) (Jucker et al., 2014; Madrigal-González et al., 2017). In addition to the five main canopy 160 

tree species, plots contained an understory of Juniperus thurifera and Buxus sempervirens (Kuusk et al., 2018). 161 

2.2 Field protocol  162 

In each of the 33 plots of size 30 x 30 m, plots we collected TLS scans on a 10 m grid, making 16 scan locations 163 

following Wilkes et al., (2017) to minimise occlusion effects associated with insufficient scans. We used a Leica 164 

HDS6200 TLS set to super high resolution (3.1 x 3.1mm resolution at 10 m with a beam divergence of ≤ 5 mm at 165 

50 m; scan time 6m 44 s; see Owen et al., (2021)). At each of the 528 scan locations and following the protocol 166 

in Pfeifer et al., (2012), we captured co-located DHP images with three exposure settings (automatic and ± one 167 

stop exposure compensation), levelling a Canon EOS 6D full frame DSLR sensor with a Sigma EX DG F3.5 168 

fisheye lens, mounted on a Vanguard Alta Pro 263AT tripod. 169 

2.3 Calculation of single scan and whole plot PAI using DHP data 170 

For each of the red-green-blue (RGB) DHP images we extracted the blue band for image thresholding, as this best 171 

represents sky/vegetation contrast (Pfeifer et al., 2012). For each plot, we picked the exposure setting that best 172 

represented sky/ vegetation difference based on pixel brightness histograms of four sample locations indicative of 173 

the plot. We carried out automatic image thresholding using the Ridler and Calvard method (1978), to create a 174 

https://tools.wmflabs.org/geohack/geohack.php?pagename=Alto_Tajo_Nature_Reserve&params=40_41_N_02_03_W_type:landmark
https://tools.wmflabs.org/geohack/geohack.php?pagename=Cu%C3%A9llar&params=41_23_N_4_21_W_type:city(9584)_region:ES-SG
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binary image of sky and vegetation, avoiding subjective user pixel classification (Jonckheere et al., 2005). We 175 

calculated PAI from the binary image, limiting the field of view to a 5o band centred on the hinge angle of 57.5o 176 

(55o – 60o). The hinge angle has a path length through the canopy twice the canopy height, so the band around it 177 

is an area of significant spatial averaging taken as representative of canopy structure of the area (Calders et al., 178 

2018; Jupp et al., 2008). From the binarised hinge angle band we calculated Pgap as the number of sky pixels 179 

divided by the total number of pixels and PAI using an inverse Beer-Lambert law equation (Monsi and Saeki, 180 

1953). We calculated whole plot PAI as the arithmetic mean of the 16 plot scan location PAI estimates. As this 181 

value does not correct for canopy clumping, it is better described as effective PAI, rather than true PAI (Woodgate 182 

et al., 2015). However, as the TLS and DHP methods we apply here account for canopy clumping differently, we 183 

compared effective values and here-on refer to effective PAI as PAI (Calders et al., 2018). DHP images used in 184 

this study are freely available (see Flynn et al., 2023). 185 

2.4 Calculation of single scan and whole plot PAI from TLS data 186 

To calculate PAI using the LiDAR Pulse method (Jupp et al., 2008), we calculated Pgap for a single scan (Figure 187 

1b) by summing all returned laser pulses and dividing by the number of total outgoing pulses, following Lovell et 188 

al. (2011; see Eq. 7 in that study), and then estimated PAI following Jupp et al. (2008; see Eq. 18 in that study), 189 

setting the sensor range to 5o around the hinge angle as before (55o – 60o). Single scan PAI was taken as the 190 

cumulative sum of PAI values estimated by vertically dividing the hinge region into 0.25 cm intervals (Calders et 191 

al., 2014). We implemented the LiDAR Pulse method using the open-source R (R Core Team, 2020) package, 192 

rTLS (Guzmán and Hernandez, 2021).  193 

To calculate PAI using the 2D Intensity Image method (Zheng et al., 2013), we converted 3D TLS point cloud 194 

data from all 528 scan locations into polar coordinates, scaled intensity values to cover the full 0-255 range (Figure 195 

1c) and rasterised into a 2D intensity image using the open-source R package, raster (Hijmans, 2022). We cut the 196 

2D intensity image to a 5o band around the hinge angle (55 o – 60o) and classified sky and vegetation pixels in each 197 

image using the Ridler and Calvard method (1978). We calculated Pgap as the number of pixels classified as sky 198 

divided by the total number of pixels and derived PAI with an inverse Beer-Lambert law equation (Monsi and 199 

Saeki, 1953). 200 

Following the same approach as applied to our DHP data, we calculated whole plot PAI for the LiDAR Pulse and 201 

2D Intensity Image methods as the arithmetic mean of the 16 plot scan location PAI estimates. 202 

To calculate PAI using the Voxel-Based method, we followed a voxel classification approach (Hosoi and Omasa, 203 

2006), downsampling the point cloud to 0.05 m to aid computation time and matching the voxel size to the 204 

resolution of the point cloud, following Li et al., (2016), who showed that matching the voxel size to the point 205 

cloud point to point minimum distance (resolution) increases accuracy as small canopy gaps are not included in 206 

voxels classified as vegetation.  We chose to use a voxel classification approach (rather than a radiative transfer 207 

based one) as this method is widely applicable to a range of TLS systems and levels of processing, as well as 208 

providing explicit guidance on voxel size selection, which is known to impact derived PAI estimates (Li et al., 209 

2016). We re-combined individually segmented trees, filtered for noise using a height-dependent statistical filter 210 

(see Owen et al., 2021) back into whole plot point clouds and voxelised them using the open source R package, 211 

VoxR (Lecigne et al., 2018), with a full grid covering the minimum to maximum XYZ ranges of the plot. We 212 
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classified any voxel containing > 0 points as vegetation (“filled”), and empty voxels as gaps. We then split the 213 

voxelised point cloud vertically into slices one voxel high. Within each slice, the contact frequency is calculated 214 

as the fraction of filled to total number of voxels. We then multiplied the contact frequency by a correction factor 215 

for leaf inclination, set at 1.1 (Li et al., 2017), and whole plot PAI was calculated as the sum of all slices’ contact 216 

frequencies. 217 

2.5 Calculation of individual tree PAI, WAI and α using the voxel-based method 218 

Figure 2: Visualisation of the workflow for applying the Voxel-Based method to estimate individual-tree PAI, WAI and 219 

α. (a) Individual tree point cloud; (b) separated leaf off (wood) individual tree point cloud; (c) voxelised individual tree 220 

point cloud; (d) voxelised wood cloud. Coloured voxels (green represents leaf and brown represents wood) are filled 221 

voxels and grey lines are empty voxels. Empty voxels occupy the space within the projected crown area of the tree. 222 

Image shows schematic of point cloud voxelised with cube voxels with edge length of 0.5 m. Panels (a) and (b) show 223 

wood and leaf separation of an example P. sylvestris, carried out using TLSeparation (Vicari et al., 2019). Point cloud 224 

voxelisation was carried out using modified functions from R package VoxR (Lecigne et al., 2018). Note that our method 225 

used voxel sizes at the resolution of the cloud (0.05 cm), but here we present an image with larger voxels to ease visual 226 

interpretation. 227 

As the only method using multiple co-registered scans, the Voxel-Based method is only method compared in this 228 

study capable of deriving PAI, WAI and LAI of segmented individual tree point clouds. We estimated PAI and 229 

WAI for 2472 individual trees segmented from co-registered point clouds following a similar method to the whole 230 
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plot point cloud. We used individual tree point clouds downsampled to 0.05 m, to aid computation time, and  231 

segmented using the automated tree segmentation program treeseg (Burt et al., 2019), implemented in C++,  by 232 

Owen et al., (2021) for that study.  Individual segmented tree data used in this study are freely available (see Owen 233 

et al., 2022).   234 

To estimate PAI, WAI and α for each tree, we  used individual tree point clouds wood – leaf separated by Owen 235 

et al., (2021) using the open source Python library TLSeparation (Vicari et al., 2019), and then used the separated 236 

wood point clouds to calculate WAI. TLSeparation assigns points as either leaf or wood, iteratively looking at a 237 

predetermined number of nearest neighbours (knn). The knn of each iteration is directly dependent on point cloud 238 

density, since high density point clouds will require higher a knn (Vicari et al., 2019). The utility package in 239 

TLSeparation was used to automatically detect the optimum knn for each tree point cloud.  240 

To voxelise individual tree complete (Figure 2a) and wood only (Figure 2b) point clouds, we used a modified 241 

approach based on Lecigne et al., (2018), voxelising within the projected crown area of the whole tree point cloud 242 

(Figure 2c) to calculate PAI. In the same way as for PAI, we calculated WAI using the separated wood point cloud 243 

within the projected crown area of the whole tree (Figure 2d; using the whole crown and not just the wood point 244 

cloud), and derived α for each tree as 𝑊𝐴𝐼
𝑃𝐴𝐼⁄ , allowing a comparison with existing literature estimating α for a 245 

range of ecosystems, (Sea et al., 2011; Woodgate et al., 2016). 246 

2.6 Statistical Analyses  247 

We tested the relationships between PAITLS and PAIDHP estimates using Standardised Major Axis (SMA) using 248 

the open source R (R Core Team, 2020) package, smatr (Warton et al., 2012). SMA is an approach to estimating 249 

a line of best fit where we are not able to predict one variable from another (Warton et al., 2006); we chose SMA 250 

because we do not have a ‘true’ validation dataset, so avoid assuming either DHP or any of the TLS methods 251 

produces the most accurate results. For each TLS method, we assessed the relationship with DHP using the 252 

coefficient of determination and RMSE. We chose to compare PAI values rather than WAI or LAI as to do so 253 

would mean an additional correction for non-photosynthetic elements, which each method does in different ways, 254 

so introducing further source of uncertainty and limiting our ability to fairly compare processing approaches. To 255 

further understand observed drivers of variance in PAI, we tested the relationship between PAI and whole plot 256 

crown area index, CAI, a proxy measure of stand density and local competition (Caspersen et al., 2011; Coomes 257 

et al., 2012). We calculated CAI as the sum of TLS-derived projected crown area, divided by the plot area (Owen 258 

et al., 2021).  259 

 260 

To test if α differs by species, we used linear mixed models (LMMs) in the R package, lme4 (Bates et al., 2015). 261 

We included an intercept only random plot effect to account for local effects on α: 262 

 263 

𝛼𝑖,𝑠𝑗 =  𝜑𝑎𝑠 + 𝑃𝑙𝑜𝑡𝑗 ,                                                                                                                   (1) 264 

 265 
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here, αi is α of an individual of species s, in plot j, and φas is the parameter to be fit. To test the effect of stand 266 

structure and tree height on α, we fit relationships separately for each species, again including a random plot 267 

effect:  268 

 269 

𝛼𝑖,𝑠𝑗 =  𝜑𝑎𝑠 + 𝑏𝑠 𝐻𝑖 + 𝑐𝑠 𝐶𝐴𝐼𝑗 + 𝑃𝑙𝑜𝑡𝑠𝑗.                                                                                      (2) 270 

 271 

here Hi is the height of the tree, CAIj is the crown area index for the plot, with other parameters as before.  272 

For each species’ model (equation 2), we calculated the intra-class correlation coefficient (ICC). The ICC, similar 273 

to coefficient of determination, quantifies the amount of variance explained by the random effect in a linear mixed 274 

model (Nakagawa et al., 2017). 275 

3. Results  276 

3.1 Comparison of plant area index estimated by DHP and single scan TLS 277 

Of the two single scan TLS methods tested (LiDAR Pulse method and 2D Intensity Image method), we found that 278 

the relationship between PAI estimated using the LiDAR Pulse method and PAIDHP, had a higher R2 than the 2D 279 

Intensity Image method (SMA; LiDAR Pulse method R2 = 0.50, slope = 0.73, p < 0.001, RMSE = 0.14, and 2D 280 

Intensity Image method R2 = 0.22, slope = 0.38, p < 0.001, RMSE = 0.39, respectively, Figure 3a). At larger PAI 281 

values, both TLS methods underestimated PAI relative to DHP (Figure 3b). We found statistically significant 282 

negative correlations between residuals and DHP for both methods (SMA; 2D Intensity Image method residuals 283 

R2 = 0.85, slope = −-0.88, p < 0.01; LiDAR Pulse method residuals R2 = 0.47, slope = -0.70, p < 0.01; Figure 3b). 284 

The 2D Intensity Image method showed larger underestimation at higher PAIDHP values, suggesting this method 285 

may saturate sooner for higher PAI values than either DHP or the LiDAR Pulse method (Figure 3b). 286 

 287 
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Figure 3: Comparison of single scan PAITLS and PAIDHP estimates, for all 528 scan locations (16 per plot). (a) The 288 

correlation between DHP derived PAI with PAI derived using the 2D Intensity Image method R2 = 0.22, slope = 0.38, 289 

p < 0.001, RMSE = 0.39 (circles), and LiDAR Pulse method R2 = 0.50, slope = 0.73, p < 0.001, RMSE = 0.14 (triangles). 290 

Dashed line in panel (a) represents 1:1 relationship. (b) The difference between PAITLS and PAIDHP estimates for the 291 

2D Intensity Image method, and LiDAR Pulse method. Dashed line  in panel (b) represents 0. Solid lLines show 292 

statistically significant relationships fitted using SMA (p < 0.01). 293 

3.2 Comparison of whole plot plant area index estimated using TLS and DHP and the effect of plot structure 294 

on PAI 295 

We found statistically significant correlations between whole plot PAITLS values and PAIDHP for all three TLS 296 

methods (Figure 4). As for single scans, the LiDAR Pulse method showed the closest agreement to PAIDHP, here 297 

compared to both the Voxel-Based and 2D Intensity Image methods (SMA; LiDAR Pulse method R2 = 0.66, slope 298 

= 0.82, p < 0.01, RMSE = 0.14; Voxel-Based method R2 = 0.39, slope = 2.76, p < 0.01, RMSE = 0.88; 2D Intensity 299 

Image method R2 = 0.35, slope = 0.36, p < 0.01, RMSE = 0.39, respectively; Figure 4a). The 2D Intensity Image 300 

method and LiDAR Pulse method consistently underestimated PAI compared to DHP, whilst the Voxel-Based 301 

method underestimated in plots with lower PAIDHP and overestimated in plots with higher PAIDHP. The Voxel-302 

Based method’s high PAI values compared to other methods is likely due to its use of multiple co-registered scans 303 

reducing occlusion effects prevalent in single scan data.   304 

To assess the effect of plot structure on variation in TLS derived PAI, we compared PAITLS estimates to TLS 305 

estimated crown area index (CAI, m2 projected crown area per m2 ground area,  CAI (Figure 4b). We found a 306 

significant positive relationship between CAI and PAI estimated using each of the LiDAR Pulse method, the 307 

Voxel-Based method, and DHP (SMA; LiDAR Pulse method R2 = 0.79, slope = 1.69, p < 0.01; Voxel-Based 308 

method R2 = 0.76, slope = 5.72, p < 0.01; 2D Intensity Image method R2 = 0.15, slope = 0.76, p < 0.05; DHP R2 309 

= 0.46, slope = 2.07, p < 0.01, respectively; Figure 4b), where the 2D Intensity Image method shows signs of 310 

saturation at medium CAI values (Figure 4b).   311 

 312 

Figure 4: Comparison of plot level PAITLS vs PAIDHP, and CAI vs PAI estimates for all 33 plots. (a) The correlation 313 

between DHP derived PAI and PAI derived using 2D Intensity Image R2 = 0.35, slope = 0.36, p < 0.01, RMSE = 0.39 314 
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(circle), LiDAR Pulse R2 = 0.66, slope = 0.82, p < 0.01, RMSE = 0.14 (triangle) and Voxel-Based R2 = 0.39, slope = 2.76, 315 

p < 0.01, RMSE = 0.88 (cross) methods (b) The correlation between TLS derived CAI and PAI derived using DHP R2 316 

= 0.46, slope = 2.07, p < 0.01 (square), 2D Intensity Image R2 = 0.15, slope = 0.76, p < 0.05 (circle) LiDAR Pulse R2 = 317 

0.79, slope = 1.69, p < 0.01 (triangle) and Voxel-Based R2 = 0.76, slope = 5.72, p < 0.01  (cross) methods. Lines show 318 

statistically significant relationships fitted using SMA (p < 0.01). Dashed line in panel (a) represents 1:1 relationship.  319 

3.4 Influence of species, tree height and CAI on α  320 

To understand drivers of variance in α, we used individual tree PAI and WAI, calculated using the Voxel-Based 321 

method to test the relationship between species and α, and height/ CAI and α. We found that more drought tolerant 322 

species generally had higher α values than less drought tolerant species (Table B1; Figure 5), however, confidence 323 

intervals were wide and overlapping, suggesting that species is not a strong predictor of variation in α. We found 324 

a statistically significant negative effect of height (p < 0.001; Table B2; Figure 6a) and positive effect of CAI (p 325 

< 0.01 – 0.05; Table B2; Figure 6b) on α for all species apart from P. sylvestris. α decreased more rapidly with 326 

height and increased less rapidly with CAI for oaks than pines. Statistically significant ICC values were higher 327 

for P. nigra (ICC = 0.211; Table B2) than P. pinaster, Q. faginea and Q. ilex (ICC = 0.036; 0.060; 0.070, 328 

respectively), showing that more α variation is explained by the random plot effect in P. nigra than the other 329 

species. P. pinaster has a wider confidence interval (Figure 5), possibly explained by its lower sample size. To 330 

understand drivers of variance in WAI we carried out additional analysis to test the relationship between WAI 331 

and species, height, CAI, and PAI, and presented these results in Appendix C (Figure C3; Tables C3, C4).  332 



13 

 

Figure 5: Linear mixed model derived α values (φa, equation 1) for all 2472 individual trees of species P. sylvestris, P. 333 
nigra, Q. faginea, Q. ilex and P. pinaster. Error bars represent 95% confidence intervals. Species are listed left to right 334 
from low – high drought tolerance, with the exception of P. pinaster, for which drought tolerance index has not been 335 
calculated in the literature. Drought tolerance rankings are taken from Niinemets and Valladares, (2006). 336 

Figure 6: Variation in α for each species: Pinus nigra, P. pinaster, Q. faginea and Q. ilex with (a) height and (b) plot 337 
CAI. Lines represent statistically significant linear mixed models (equation 2; significance levels from p < 0.001 to p < 338 
0.05). Ribbons represent 95% confidence intervals. The model for P. sylvestris was not statistically significant.  339 

 340 

 341 

 342 
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4. Discussion  343 

4.1 Comparison of approaches to deriving PAI from remote sensed data 344 

We found substantial differences in PAI values estimated from TLS and DHP and from different TLS processing 345 

methods (Figures 3 and 4). Further, differences between TLS methods varied across plot structure (CAI), with the 346 

greatest differences between methods in plots with high CAI, and therefore high canopy density. Although 347 

previous studies have presented TLS as an improvement over DHP due to its independence of illumination and 348 

sky conditions during the data acquisition phase, and ability to resolve fine-scale canopy elements and gaps 349 

(Calders et al., 2018; Grotti et al., 2020; Zhu et al., 2018), we have shown that there is large variability between 350 

TLS processing methods in Mediterranean forests. Rigorous intercomparison of approaches, ideally using 351 

standard benchmarking TLS datasets, and destructive sampling, would improve trust and reliability of TLS 352 

algorithms. 353 

We found the LiDAR Pulse method (Jupp et al., 2008) to have the best agreement with DHP for both whole plot 354 

and single scan PAI estimates. In contrast to previous studies comparing  PAITLS with PAIDHP  (Calders et al., 355 

2018; Grotti et al., 2020; Woodgate et al., 2015), we found that the LiDAR Pulse and 2D Intensity Image methods 356 

underestimated PAI compared to DHP, except at very low PAI values (PAITLS < 0.5). Quantification of PAI from 357 

DHP may introduce additional sources of error, for example, its relatively lower resolution compared to TLS 358 

could lead to mixed pixels that have a greater chance of misclassification of sky as vegetation (Jonckheere et al., 359 

2004). This effect could be enhanced in a Mediterranean forest as trees in drier climates tend to have smaller 360 

leaves (Peppe et al., 2011), leading to more small canopy gaps that TLS may resolve where DHP cannot. Further, 361 

although we took steps to reduce the error introduced at DHP data acquisition and processing steps, including 362 

using automatic thresholding and collecting images with multiple exposures, DHP processing requires both model 363 

and user assumptions that can impact results. For example, PAIDHP estimates are highly sensitive to camera 364 

exposure; increasing one stop of exposure can result in 3 – 28% difference in PAI and use of automatic exposure 365 

can result in up to 70% error (Zhang et al., 2005).  366 

We found the Voxel-Based method overestimated PAI values compared to the other methods at the whole plot 367 

level. This is likely due to the method’s use of co-registered scans, rather than averaged single scan PAI values, 368 

since co-registered scans will reduce occlusion effects prevalent in single scan data that could to lead to an 369 

underestimation of PAI (Wilkes et al., 2017). The Voxel-Based method is, however, sensitive to voxel size (Li et 370 

al., 2016), and larger voxels lead to larger PAI estimates as they are unable to capture all of the intricate details of 371 

canopy structure fill small canopy gaps; we chose a voxel size of 0.05 m to match the minimum distance between 372 

points in our downsampled dataset. However, the Voxel-Based method is a memory intensive approach to 373 

calculating PAI, and smaller voxels have higher memory requirements. We picked this data resolution, and 374 

therefore voxel size, to balance the need to capture fine-scale canopy details against memory requirements for 375 

running the method on many large plot point clouds. Voxel size could have been chosen based on estimates’ 376 

match to DHP, but this would assume (1) that DHP estimates are most accurate, and (2) that DHP data are always 377 

available, limiting the wider applicability of our findings. Understanding which method is over- or 378 

underestimating would require a destructively sampled dataset for validation, which was not possible for this 379 

study (or most ecosystems). However, other studies using voxel approaches have found that although these 380 

produce high LAI values for individual trees, these are underestimates compared with destructive samples (Li et 381 
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al., 2016). Regardless, PAI and LAI estimates using a Voxel-Based approach are highly dependent on voxel size 382 

(Li et al., 2016), and future work should test the influence of voxel size on PAI estimates, using destructive 383 

samples in a range of environments. 384 

The relationship between the LiDAR Pulse method  and TLS derived CAI had the highest R2, demonstrating that 385 

the method is well suited to measuring PAI across the range of plot CAI values used in this study. Although the 386 

2D Intensity Image method can tackle the significant challenges presented by edge effects and partial beam 387 

interceptions, particularly present in phase-shift systems (Grotti et al., 2020), our results suggest this method has 388 

a lower performance ability, with saturation occurring sooner than all other methods in dense forests (Figures 3 389 

and 4). The 2D Intensity Image method uses the same raw single scan data as the LiDAR Pulse method, so the 390 

better performance from the latter is likely due to the method’s use of vertically resolved gap fraction; both the 391 

LiDAR Pulse method and Voxel-Based method account for the vertical structure of the canopy by summing 392 

vertical slices through the canopy. 393 

4.2 α variation between species and plot 394 

We used the Voxel-Based method to investigate individual tree α variation between species and across structure, 395 

as this was the only approach we compared that could be applied to single tree point clouds which are leaf-wood 396 

separated. We found α values obtained were within the range of values obtained from destructive approaches (0.1 397 

– 0.6, Gower et al., 1997). The drought and shade intolerant P. nigra showed stronger variability in α across plots 398 

(higher ICC value, Table B2) than other species, suggesting its wood – leaf ratio may be more sensitive to site 399 

factors. However, as the plots measured in this study vary in both abiotic conditions (altitude, aspect, slope, 400 

wetness) as well as species composition, stem density and canopy cover, there may be other drivers of variation 401 

in α values.  402 

We found some evidence that species with higher drought tolerance had higher α values (Figure 5; Table B1), 403 

however, confidence intervals were wide, suggesting a weak relationship. There is evidence that trees that tolerate 404 

water limited environments have a lower leaf area (Battaglia et al., 1998; Mencuccini and Grace, 1995), so higher 405 

α values may reflect maintenance of homeostasis of leaf water use through adjustment of wood to leaf area ratio 406 

(Carter and White, 2009; Gazal et al., 2006). The potential for a tree to lose water is mostly regulated through leaf 407 

traits including stomatal conductance and leaf area, and both stand (Battaglia et al., 1998; Specht and Specht, 408 

1989) and individual tree (Mencuccini, 2003) water use have been found to scale linearly with LAI, with drought 409 

often mitigated through leaf shedding (López et al., 2021). 410 

4.3 Tree stature and stand density drives α variation 411 

Although species had a weak relationship with α, tree height and plot CAI had a statistically significant 412 

relationship with α (p < 0.001 – p < 0.05) for all species, showing the importance of local stand structure on leaf 413 

and woody allocation. We found that α scaled negatively with height for all species apart from P. sylvestris, 414 

suggesting that in this environment, taller trees generally have a lower proportion of wood to plant area index than 415 

shorter ones. P. sylvestris, which is at the edge of its geographical range and physiological limits (Castro-Díez et 416 

al., 1997; Owen et al., 2021), showed no significant relationship between height and α. We found that α scaled 417 

positively with plot level CAI for all species apart from P. sylvestris, that is, trees growing in denser plots have a 418 

higher α. This supports theory that trees growing in dense forests are competing for resources, reducing individual 419 
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tree leaf area (Jump et al., 2017). The negative relationships between height and– α and positive relationships 420 

between CAI and– α relationships in our model suggest that trees may initially invest in vertical growth to reach 421 

the canopy level, and once there invest in lateral growth, with more leaf area, to increase light capture. This 422 

supports theory that trees grow to outcompete neighbouring individuals for light capture (Purves and Pacala, 2008) 423 

and evidence that both lateral growth and LAI are reduced beneath closed canopies (Beaudet and Messier, 1998; 424 

Canham, 1988).  425 

Wood may be harder to accurately classify than leaves in TLS data (Vicari et al., 2019), resulting in a higher 426 

occurrence of false positives in wood clouds, potentially leading to an overestimation in WAI, and therefore 427 

underestimation of α, especially in trees with small leaves which are prevalent in dry, Mediterranean environments 428 

(Peppe et al., 2011). The problem of misclassification will increase in taller trees due to TLS beam divergence, 429 

occlusion and larger beam footprint at further distances (Vicari et al., 2019), suggesting that WAI overestimation 430 

could be more pronounced in tall trees. Although our dense scanning strategy (Owen et al., 2021) was designed 431 

to mitigate some of these effects, these effects mean our findings may underestimate the slope of the negative 432 

relationship between α and tree height. Conversely, the increasing leaf-to-wood ratio could potentially be 433 

explained by a greater number of empty voxels caused by occlusion in large trees. However, we took significant 434 

steps to reduce occlusion, employing a 10 m scanning strategy that was developed in a dense tropical forest 435 

(Wilkes et al., 2017).  436 

4.4 Correcting for non-photosynthetic elements in LAI estimates using TLS 437 

The value of TLS data to estimate individual tree PAI, WAI and subsequently α, demonstrates their potential to 438 

corrective factors for non-photosynthetic components in ground based remote sensing measurements of LAI. 439 

Properly correcting for WAI in LAI estimates is of global importance as small errors in ground based 440 

measurements propagate through to large scale satellite observations generating large errors in global vegetation 441 

models (Calders et al., 2018). The work presented here provides a foundation for future work combining multi-442 

source and multi-scale remote sensing datasets to correct largescale LAI products. Our results echo others’ in 443 

finding that the prevalence of woody material in the tree canopy, and therefore α, is dynamic and varies by species 444 

as well as senescence, crown health and, in the case of deciduous forests, leaf phenology (Gower et al., 1999). 445 

The use of single α value in a plot or region (Olivas et al., 2013; Woodgate et al., 2016), invariant of species, size 446 

and forest structure, to convert PAI to LAI is therefore problematic (Niu et al., 2021). Our study demonstrates the 447 

importance of taking species mix and structural variation into account when correcting for non-photosynthetic 448 

material in ground-based LAI estimates. 449 

5. Conclusions  450 

We tested three methods for estimating PAI using Terrestrial Laser Scanning data and compared these against 451 

traditional DHP measurements. We found large variation between PAI values estimated from each TLS method 452 

and DHP, demonstrating that care should be taken when deriving PAI from ground based remote sensing methods. 453 

Although the LiDAR Pulse method was found to have the best agreement with both single scan and whole plot 454 

PAI values measured by DHP, the Voxel-Based method allowed separate analysis of the key metric used to correct 455 

for the effect of WAI in LAI measurements, α, in individual trees. We recommend the LiDAR Pulse method as a 456 

fast and effective method for PAI estimation independent of illumination conditions. Whilst the Voxel-Based 457 
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method may be used to analyse individual tree α and determine ecological drivers of variation, work remains to 458 

determine the validity of these approaches, in particular correct voxel size choice. We found that α varies by 459 

species, height and stand density, showing the importance of accurately correcting for WAI on the individual tree 460 

level and the utility of TLS to do so. 461 

The variation in our results for the different methods used to derive PAI from TLS data show that there is some 462 

way to go before TLS derived vegetation indices can be interpreted as robust and reliable. Validation using 463 

destructive samples and further intercomparison studies of methods are needed to demonstrate the advantages of 464 

TLS, and use of benchmarking datasets should be standard. DHP is a faster, cheaper and more widely accessible 465 

method for PAI estimation, and while TLS promises to alleviate potential bias in DHP estimates, results are highly 466 

methods dependent. Our results demonstrate the challenges that stand in the way of large scale adoption of TLS 467 

for vegetation indices monitoring.  468 
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