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Abstract. Accurate measurement of vegetation density metrics including plant, wood and leaf area indices (PAI, 10 

WAI and LAI) is key to monitoring and modelling carbon storage and uptake in forests. Traditional passive sensor 11 

approaches, such as Digital Hemispherical Photography (DHP), cannot separate leaf and wood material, nor 12 

individual trees, and require many assumptions in processing. Terrestrial Laser Scanning (TLS) data offer new 13 

opportunities to improve understanding of tree and canopy structure. Multiple methods have been developed to 14 

derive PAI and LAI from TLS data, but there is little consensus on the best approach, nor are methods 15 

benchmarked as standard.  16 

Using TLS data collected in 33 plots containing 2472 trees of five species in Mediterranean forests, we compare 17 

three TLS methods (LiDAR Pulse, 2D Intensity Image and Voxel-Based) to derive PAI and compare with co-18 

located DHP. We then separate leaf and wood in individual tree point clouds to calculate the ratio of wood to total 19 

plant area (α), a metric to correct for non-photosynthetic material in LAI estimates. We use individual tree TLS 20 

point clouds to estimate how α varies with species, tree height and stand density.  21 

We find the LiDAR Pulse method agrees most closely with DHP, but is limited to single scan data so cannot 22 

determine individual tree properties, including α. The Voxel-Based method shows promise for ecological studies 23 

as it can be applied to individual tree point clouds. Using the Voxel-Based method, we show that species explain 24 

some variation in α, however, height and plot density were stronger  better predictors. 25 

Our findings highlight the value of TLS data to improve fundamental understanding of tree form and function, 26 

but also the importance of rigorous testing of TLS data processing methods at a time when new approaches are 27 

being rapidly developed. New algorithms need to be compared against traditional methods, and existing 28 

algorithms, using common reference data. Whilst promising, our results show that metrics derived from TLS data 29 

are not yet reliably calibrated and validated to the extent they are ready to replace traditional approaches for large 30 

scale monitoring of PAI and LAI.   31 
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1 Introduction 33 

Terrestrial Laser Scanning (TLS) generates high-resolution 3D measurements of whole forests and individual 34 

trees (Burt et al., 2018; Disney, 2018), leading to the development of completely new monitoring approaches to 35 

understand the structure and function of ecosystems (Lines et al., 2022). Unlike traditional passive sensors, TLS 36 

can estimate plant, wood and leaf area indices (PAI; WAI; LAI) for both whole plots and individual tree point 37 

clouds (Calders et al., 2018), and is unaffected by illumination conditions. This has led to the development of 38 

several methods for processing TLS data to extract the key metrics PAI, WAI and LAI (e.g. Hosoi and Omasa, 39 

2006; Jupp et al., 2008; Zheng et al., 2013). However, intercomparison studies of algorithms and processing 40 

approaches to derive the same metrics from different TLS methods are lacking. 41 

Leaf Area Index (LAI), defined as half the amount of green leaf area per unit ground area (Chen and Black, 1992), 42 

determines global evapotranspiration, phenological patterns and canopy photosynthesis, and is therefore an 43 

essential climate variable (ECV), as well as a key input in dynamic global vegetation models (Sea et al., 2011; 44 

Weiss et al., 2004). Accurate measurements of LAI, WAI and PAI have historically been derived from labour 45 

intensive destructive sampling (Baret et al., 2013; Jonckheere et al., 2004), so over large spatial or temporal scales 46 

these can only be measured indirectly, typically with remote sensing. Large-scale remote sensing, using 47 

spaceborne and airborne instruments, has been widely used to estimate LAI over large areas (Pfeifer et al., 2012), 48 

but requires calibration and validation using in situ measurements to constrain information retrieval (Calders et 49 

al., 2018). Non-destructive in situ vegetation index estimates have historically been made by measuring light 50 

transmission below the canopy and using simplifying assumptions about canopy structure to estimate the amount 51 

of intercepting material (e.g. Beer-Lambert law; Monsi and Saeki, 1953). The most common method, Digital 52 

Hemispherical Photography (DHP; Figure 1a), requires both model assumptions and subjective user choices 53 

during data acquisition and processing in order to estimate both PAI and LAI (Breda, 2003). DHP images are 54 

processed by separating sky from canopy, but not photosynthetic from non-photosynthetic vegetative material, so 55 

additional assumptions are needed to calculate either LAI or WAI (Jonckheere et al., 2004; Pfeifer et al., 2012). 56 

Separation of LAI from PAI can be achieved by removing or masking branches and stems from hemispherical 57 

images (e.g. Sea et al., 2011; Woodgate et al., 2016), but is not reliable when leaves are occluded by woody 58 

components (Hardwick et al., 2015). An alternative approach is to take separate DHP measurements in both leaf 59 

on and leaf off conditions, and derive empirical wood to plant ratios (WAI/PAI, α) (Leblanc and Chen, 2001), but 60 

this is not always practical, for example in evergreen forests. The difficulty of separation means that studies often 61 

omit correcting for the effect of WAI on optical PAI measurements altogether (Woodgate et al., 2016), but since 62 

woody components in the forest canopy can account for more than 30% of PAI (Ma et al., 2016) this can introduce 63 

overestimation. Further, although DHP estimates of LAI or PAI are valuable both for ecosystem monitoring and 64 

developing satellite LAI products (Hardwick et al., 2015; Pfeifer et al., 2012), they are limited to sampling only 65 

at a neighbourhood or plot level , (Weiss et al., 2004), and cannot be used to measure individual tree LAI except 66 

for open grown trees (Béland et al., 2014).  67 

The ratio of wood to total plant area, α, is known to be dynamic, changing in response to abiotic and biotic 68 

conditions. For example, the Huber value (sapwood to leaf area ratio, a related measure to α) may vary according 69 

to water availability (Carter and White 2009). Leaf area may therefore be indicative of the drought tolerance level 70 

of a tree, with more drought tolerant species displaying a lower leaf area, reducing the hydraulic conductance of 71 
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the whole tree and therefore increasing its drought tolerance (Niinemets and Valladares, 2006). α has been 72 

hypothesised to increase with the size of a tree in response to the increased hydraulic demand associated with 73 

greater hydraulic resistance of tall trees (Magnani et al., 2000) and higher transpiration rates of larger LAI 74 

(Battaglia et al., 1998; Phillips et al., 2003). Stand density may also impact α (Long and Smith, 1988; Whitehead, 75 

1978), as increased stand level water use scales linearly with LAI (Battaglia et al., 1998; Specht and Specht, 1989), 76 

reducing water availability to individual trees competing for the same resources (Jump et al., 2017).  Large scale 77 

quantification of α or Huber value, however, is difficult as studies usually rely on a small number of destructively 78 

sampled trees (e.g. Carter and White, 2009; Magnani et al., 2000), litterfall traps (e.g. Phillips et al., 2003) or 79 

masking hemispherical images (e.g. Sea et al., 2011; Woodgate et al., 2016). These approaches are only applicable 80 

on a small to medium scale, and in the case of image masking, cannot differentiate between individuals. Variation 81 

in α, for example by species and or stand structure, is therefore largely unknown. 82 

1.2 TLS methods for calculating PAI, LAI and WAI 83 

TLS methods for extracting PAI, LAI and WAI can be broadly categorised into two types: (1) LiDAR return 84 

counting, using single scan data (e.g., the LiDAR Pulse method; Jupp et al., 2008, and 2D Intensity Image method; 85 

Zheng et al., 2013) and (2) point cloud voxelisation, usually using co-registered scans (e.g., the Voxel-Based 86 

method; Hosoi and Omasa, 2006).  87 

The LiDAR Pulse method (Jupp et al., 2008; Figure 1b) estimates gap fraction (PgapPgap) using single scan data, 88 

as a function of the total number of outgoing LiDAR pulses from the sensor and the number of pulses that are 89 

intercepted by the canopy. This method, which eliminates illumination impacts associated with the use of DHP 90 

(Calders et al., 2014), has been implemented in the python module, PyLidar (www.pylidar.org) and the R package, 91 

rTLS (Guzman, et al. 2021). Using the LiDAR Pulse method, Calders et al. (2018) compared TLS PAI PAI 92 

estimates from two ground-based passive sensors (LiCOR LAI-2000 and DHP) with TLS data collected with a 93 

RIEGL VZ-400 TLS in a deciduous woodland, and found the two passive sensors underestimated PAI values 94 

compared to TLS, with differences dependent on DHP processing and leaf on/off conditions. 95 

The 2D Intensity Image method (Zheng et al., 2013; Figure 1c), also uses raw single scan TLS point clouds, but, 96 

unlike the LiDAR Pulse method, this approach converts LiDAR returns into 2D panoramas where pixel values 97 

represent return intensity. PAI is estimated by classifying pixels as sky or vegetation, based on their intensity 98 

value, to estimate PgapPgap, and then applying Beer-Lambert’s law. As for Like the LiDAR Pulse method, this 99 

approach has been shown to generate higher PAI estimates than DHP (Calders et al., 2018; Woodgate et al., 2015; 100 

Grotti et al., 2020), with differences attributed to the greater pixel resolution and viewing distance of TLS 101 

resolving more small canopy details (Grotti et al., 2020). 102 

The Voxel-Based method (Figure 1d) estimates PAI by segmenting a point cloud into voxels and either simulating 103 

radiative transfer within each cube (Béland et al., 2014; Kamoske et al., 2019), or classifying voxels as either 104 

containing vegetation or not, and dividing vegetation voxels by the total number of voxels (Hosoi and Omasa, 105 

2006; Itakura and Hosoi, 2019; Li et al., 2017). Crucially, this method may be applied to multiple co-registered 106 

scan point clouds and so can be used to calculate PAI for both whole plots and individual, segmented TLS trees. 107 

However, PAI estimates derived using the voxel method are highly dependent on voxel size (Calders et al., 2020). 108 

Using a radiative transfer approach, Béland et al., (2014) demonstrated that voxel size is dependent on canopy 109 
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clumping, radiative transfer model assumptions and occlusion effects, making a single, fixed choice of voxel size 110 

for all ecosystem types , scanners or datasets impossible. To test various approaches to selecting voxel size using 111 

a voxel classification approach, (Li et al., (2016) matched voxel size to point cloud resolution, individual tree leaf 112 

size, and minimum beam distance and tested against destructive samples, finding that voxel size matched to point 113 

cloud resolution had the closest PAI values to destructive samples.  114 

The LiDAR Pulse method and 2D Intensity Image method both use single scan data. However, to generate robust 115 

estimates of canopy properties that avoid errors from occlusion effects, multiple co-registered scans taken from 116 

different locations are likely needed (Wilkes et al., 2017). Further, both these methods require raw unfiltered data 117 

to accurately measure the ratio of pulses emitted from the scanner and number of pulses that are intercepted by 118 

vegetation. This means “noisy” points caused by backscattered pulses (Wilkes et al., 2017) are included in 119 

analyses, potentially leading to higher PAI estimates. However, the LiDAR Pulse and 2D Intensity Image methods 120 

may introduce fewer estimation errors compared to DHP, which is influenced by differences in sky illumination 121 

conditions and camera exposure (Weiss et al., 2004).  122 

 123 
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 124 

Figure 1: Visual representation of the four Mmethods for PAI and WAI estimation applied used in this study: (a) a 125 
binarised digital hemispherical photograph (DHP), (b) TLS raw single scan point cloud, used within for the LiDAR 126 
Pulse method (Jupp et al., 2008). Image shows a top-down view of raw point cloud and greyscale represents low (grey) 127 
and high (black) Z values, (c) TLS 2D intensity image for the 2D Intensity Image method (Zheng et al., 2013), (d) 128 
Voxelised co-registered whole plot point cloud for the Voxel-Based method (Hosoi and Omasa, 2006), showing a 129 
representative schematic of cube voxels with edge length of 1m, voxelised using the R package VoxR (Lecigne et al., 130 
2018). Solid black voxels are classified as containing vegetation (filled) and voxels outlined with grey lines are voxels 131 
classified as empty.  132 

1.3 Scope and aims 133 

The aims of this study are twofold: the first aim is to compare three TLS methods for estimating PAI with 134 

traditional DHP. The second aim of this study is to use TLS to understand drivers of individual tree α variation.  135 

In this study we use a dataset of 528 co-located DHP and high-resolution TLS scans from 33 forest plots to 136 

compare DHP derived PAI (PAIDHP) with estimates from three methods to estimate PAI from TLS data (PAITLS): 137 

the LiDAR Pulse method; the 2D Intensity Image method and the Voxel-Based method (Figure 1). We use a dataset 138 

collected from a network of pine/oak forest plots in Spain (Owen et al., 2021) and ask (1) are the three TLS 139 

methods able to reproduce DHP PAIPAIDHP estimates at single scan and whole plot level? (2) does α, calculated 140 

from the Voxel-Based method on individual tree point clouds, vary with species and tolerance to drought? and (3) 141 

does α scale with height and stand density? 142 

2. Methods  143 

2.1 Study site 144 

We collected TLS and DHP data from 29 plots in Alto Tajo Natural Park (40°41′N 02°03′W; FunDIV – Functional 145 

Diversity plots; see Baeten et al., (2013) for a detailed description of the plots) and four plots in Cuellar 146 

(41°23′N 4°21′W) in June - July 2018 (see Owen et al., (2021) for full details) (Figure A1). Plots contained two 147 

oak species: semi-deciduous Q. faginea and evergreen Q. ilex, and three pine species: P. nigra, P. pinaster and P. 148 

sylvestris. P. sylvestris is the least drought tolerant species, followed by P. nigra, Q. faginea, Q. ilex; shade 149 

tolerance follows the same ranking (Niinemets and Valladares, 2006; Owen et al., 2021). Although not 150 

quantitatively ranked, P. pinaster has been shown to be very drought tolerant, appearing in drier areas than the 151 

other species (Madrigal-González et al., 2017). The area is characterised by a Mediterranean climate (altitudinal 152 

gradient range 840 – 1400 m.a.s.l.) (Jucker et al., 2014; Madrigal-González et al., 2017). In addition to the five 153 

main canopy tree species, plots contained an understory of Juniperus thurifera and Buxus sempervirens (Kuusk 154 

et al., 2018). 155 

2.2 Field protocol  156 

In each of the 33 30 x 30 m plots we collected TLS scans on a 10 m grid, making 16 scan locations following 157 

Wilkes et al., (2017) to minimise occlusion effects associated with insufficient scans. We used a Leica HDS6200 158 

TLS set to super high resolution (3.1 x 3.1mm resolution at 10 m with a beam divergence of ≤ 5 mm at 50 m; scan 159 

time 6m 44 s; see Owen et al., (2021)). At each of the 528 scan locations and following the protocol in Pfeifer et 160 

al., (2012), we captured co-located DHP images with three exposure settings (automatic and ± one stop exposure 161 

compensation), levelling a Canon EOS 6D full frame DSLR sensor with a Sigma EX DG F3.5 fisheye lens, 162 

mounted on a Vanguard Alta Pro 263AT tripod. 163 

https://tools.wmflabs.org/geohack/geohack.php?pagename=Alto_Tajo_Nature_Reserve&params=40_41_N_02_03_W_type:landmark
https://tools.wmflabs.org/geohack/geohack.php?pagename=Cu%C3%A9llar&params=41_23_N_4_21_W_type:city(9584)_region:ES-SG
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2.3 Calculation of single scan and whole plot PAI using DHP data 164 

For each of the red-green-blue (RGB) DHP images we extracted the blue band for image thresholding, as this best 165 

represents sky/vegetation contrast (Pfeifer et al., 2012). For each plot, we picked the exposure setting that best 166 

represented sky/ vegetation difference based on pixel brightness histograms of four sample locations indicative of 167 

the plot. We carried out automatic image thresholding using the Ridler and Calvard method (1978), to create a 168 

binary image of sky and vegetation, avoiding subjective user pixel classification (Jonckheere et al., 2005). We 169 

calculated PAI from the binary image, limiting the field of view to a 5o band centred on the hinge angle of 57.5o 170 

(55o – 60o). The hinge angle has a path length through the canopy twice the canopy height, so the band around it 171 

is an area of significant spatial averaging taken as representative of canopy structure of the area (Calders et al., 172 

2018; Jupp et al., 2008). From the binarised hinge angle band we calculated gap fractionPgap as the number of sky 173 

pixels divided by the total number of pixels and PAI using an inverse Beer-Lambert law equation (Monsi and 174 

Saeki, 1953). We calculated whole plot PAI as the arithmetic mean of the 16 within plot scan location PAI 175 

estimates. As this value does not correct for canopy clumping, it is better described as effective PAI, rather than 176 

true PAI (Woodgate et al., 2015). However, as the TLS and DHP methods we apply here account for canopy 177 

clumping differently, we compared effective values and here-on refer to effective PAI as PAI (Calders et al., 178 

2018). DHP images used in this study are freely available (see Flynn et al., 2023). 179 

2.4 Calculation of single scan and whole plot PAI from TLS data 180 

To calculate PAI using the LiDAR Pulse method (Jupp et al., 2008), we calculated the gap fraction (Pgap) for a 181 

single scan (Figure 1b) by summing all returned laser pulses and dividing by the number of total outgoing pulses, 182 

following Lovell et al. (2011; see Eq. 7 in that study), and then estimated PAI following Jupp et al. (2008; see Eq. 183 

18 in that study), setting the sensor range to 5o around the hinge angle as before (55o – 60o). Single scan PAI was 184 

taken as the cumulative sum of PAI values estimated by vertically dividing the hinge region into 25 cm intervals 185 

(Calders et al., 2014). We implemented the LiDAR Pulse method using the open-source R (R Core Team, 2020) 186 

package, rTLS (Guzmán and Hernandez, 2021).  187 

To calculate PAI using the 2D Intensity Image method (Zheng et al., 2013), we converted 3D TLS point cloud 188 

data from all 528 scan locations into polar coordinates, and scaled intensity values to cover the full 0-255 range 189 

(Figure 1c) and rasterised into a 2D intensity image using the open-source R package, raster (Hijmans, 2022). We 190 

cut the 2D intensity image to a 5o band around the hinge angle (55 o – 60o) and classified sky and vegetation pixels 191 

in each image using the Ridler and Calvard method (1978). We calculated Pgap as the number of pixels classified 192 

as sky divided by the total number of pixels and derived PAI with an inverse Beer-Lambert law equation (Monsi 193 

and Saeki, 1953). 194 

Following the same approach as applied to our DHP data, we calculated whole plot PAI for the LiDAR Pulse and 195 

2D Intensity Image methods as the arithmetic mean of within the 16 plot single scan location PAI estimates. 196 

To calculate PAI using the Voxel-Based method, we followed a voxel classification approach (Hosoi and Omasa, 197 

2006), downsampling the point cloud to 0.05 m to aid computation time and matching the voxel size to the 198 

resolution of the point cloud (0.05 m), following (Li et al., (2016), who showed that matching the voxel size to 199 

the point cloud point to point minimum distance (resolution) increases accuracy as small canopy gaps are not 200 

included in voxels classified as vegetation.  We chose to use a voxel classification approach (rather than a radiative 201 
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transfer based one) as this method is widely applicable to a range of TLS systems and levels of processing, as well 202 

as providing explicit guidance on voxel size selection, which is known to impact derived PAI estimates (Li et al., 203 

2016). We re-combined individually segmented trees, filtered for noise using a height-dependent statistical filter 204 

(see Owen et al., 2021) back into whole plot point clouds and voxelised them using the open source R package, 205 

VoxR (Lecigne et al., 2018), with a full grid covering the minimum to maximum XYZ ranges of the plot. We 206 

classified any voxel containing > 0 points as vegetation (“filled”), and empty voxels as gaps. We then split the 207 

voxelised point cloud vertically into slices one voxel high. Within each slice, the contact frequency is calculated 208 

as the fraction of filled to total number of voxels. We then multiplied the contact frequency by a correction factor 209 

for leaf inclination, set at 1.1 (Li et al., 2017), and whole plot PAI was calculated as the sum of all slices’ contact 210 

frequencies. 211 

2.5 Calculation of individual tree PAI, WAI and α using the voxel-based method 212 

Figure 2: Visualisation of the workflow for applying the Voxel-Based method to estimate individual-tree PAI, WAI and 213 

α. (a) Individual tree point cloud; (b) separated leaf off (wood) individual tree point cloud; (c) voxelised individual tree 214 

point cloud; (d) voxelised wood cloud. Solid black Coloured voxels (green represents leaf and brown represents wood) 215 

are filled voxels and grey lines are empty voxels. Empty voxels occupy the space within the projected crown area of the 216 

tree. Image shows schematic of point cloud voxelised with cube voxels with edge length of 0.5 m. Panels (a) and (b) 217 

show Wwood and leaf separation of an example P. sylvestris, was carried out using TLSeparation (Vicari et al., 2019). 218 
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Point cloud voxelisation was carried out using modified functions from R package VoxR (Lecigne et al., 2018). Note 219 

that our method used voxel sizes at the resolution of the cloud (5 cm), but here we present an image with larger voxels 220 

to ease visual interpretation. 221 

As the only method using multiple co-registered scans, the Voxel-Based method is only method compared in this 222 

study we found capable of deriving PAI, WAI and LAI of segmented individual tree point clouds estimating 223 

individual tree leaf and wood properties. We estimated PAI and WAI for 2472 individual trees segmented from 224 

co-registered point clouds following a similar method to the whole plot point cloud. We used individual tree point 225 

clouds downsampled to 0.05 m, to aid computation time, and extracted segmented individual trees using the 226 

automated tree segmentation program treeseg (Burt et al., 2019), implemented in C++, see by Owen et al., (2021) 227 

for that study. full details, and Individual segmented tree data used in this study are freely available (see Owen et 228 

al., 2022)(Owen et al., 2022). for individual segmented tree data.  229 

To estimate PAI, WAI and α for each tree, we first separated leaf from wood points in  used individual tree point 230 

clouds wood – leaf separated by (Owen et al., (2021) using the open source Python library TLSeparation (Vicari 231 

et al., 2019), and then used the separated wood only point clouds to calculate WAI. TLSeparation classifies  232 

assigns points as as either leaf or wood, iteratively looking at a predetermined number of nearest neighbours (knn). 233 

The knn of each iteration is directly dependent on point cloud density, since high density point clouds will require 234 

higher a knn (Vicari et al., 2019). We used tThe utility package in TLSeparation was used to automatically detect 235 

the optimum knn for each tree point cloud.  236 

To voxelise individual tree complete (Figure 2a) and wood only (Figure 2b) point clouds, we used a modified 237 

approach based on Lecigne et al., (2018), voxelising within the projected crown area of the whole tree point cloud 238 

(Figure 2c) to calculate PAI. In the same way as for PAI, wWe calculated WAI using the separated wood point 239 

cloud within the projected crown area of the whole tree (Figure 2d; using the whole crown and not just the wood 240 

point cloud), and derived α for each tree as 𝑊𝐴𝐼
𝑃𝐴𝐼⁄ , allowing a comparison with existing literature estimating 241 

α for a range of ecosystems, (Sea et al., 2011; Woodgate et al., 2016). 242 

2.6 Statistical Analyses  243 

We tested the relationships between TLS PAIPAITLS and DHP PAIPAIDHP estimates using Standardised Major 244 

Axis (SMA) using the open source R (R Core Team, 2020) package, smatr (Warton et al., 2012). SMA is an 245 

approach to estimating a line of best fit where we are not able to predict one variable from another (Warton et al., 246 

2006); we chose SMA because we do not have a ‘true’ validation dataset, so avoid assuming either DHP or any 247 

of the TLS methods produces the most accurate results. For each TLS method, we assessed the relationship with 248 

DHP using the coefficient of determination and RMSE. We chose to compare PAI values rather than WAI or LAI 249 

as to do so would mean an additional correction for non-photosynthetic elements, which each method does in 250 

different ways, so introducing further source of uncertainty and limiting our ability to fairly compare processing 251 

approaches. To further understand observed drivers of variance in PAI, we tested the relationship between PAI 252 

and TLS estimated whole plot crown area index, CAI, a proxy measure of stand density and local competition 253 

(Caspersen et al., 2011; Coomes et al., 2012). We calculated CAI as the sum of TLS-derived projected crown 254 

area, divided by the plot area (Owen et al., 2021), and indicative measure of stand density, using SMA.  255 

 256 
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To test if α differs by species, we used linear mixed models (LMMs) in the R package, lme4 (Bates et al., 2015). 257 

We included an intercept only random plot effect to account for local effects on α: 258 

 259 

𝛼𝑖,𝑠𝑗 =  𝑎𝑠 + 𝑃𝑙𝑜𝑡𝑗                                                                                                                    (1) 260 

 261 

here, αi is α of an individual of species s, in plot j, and as is the parameter to be fit. To test the effect of stand 262 

structure and tree height on α, we fit relationships separately for each species, again including a random plot 263 

effect:  264 

 265 

𝛼𝑖,𝑠𝑗 =  𝑎𝑠 +  𝑏𝑠 𝐻𝑖 + 𝑐𝑠 𝐶𝐴𝐼𝑗 + 𝑃𝑙𝑜𝑡𝑠𝑗                                                                                       (2) 266 

 267 

here Hi is the height of the tree, CAIj is the crown area index for the plot, with other parameters as before.  268 

For each species’ model (equation 2), we calculated the intra-class correlation coefficient (ICC). The ICC, similar 269 

to coefficient of determination, quantifies the amount of variance explained by the random effect in a linear mixed 270 

model (Nakagawa et al., 2017). 271 

3. Results  272 

3.1 Comparison of plant area index estimated by DHP and single scan TLS 273 

Of the two single scan TLS methods tested (LiDAR Pulse method and 2D Intensity Image method), we found that 274 

the relationship between PAI estimated using the LiDAR Pulse method and more strongly agreed with DHP 275 

PAIPAIDHP, but there was also significant correlation for had a higher R2 than the 2D Intensity Image method 276 

(SMA; LiDAR Pulse method R2 = 0.50, slope = 0.73, p<0.001, RMSE = 0.14, and 2D Intensity Image method R2 277 

= 0.22, slope = 0.38, p<0.001, RMSE = 0.39, respectively, Figure 3a). At larger PAI values, both TLS methods 278 

underestimated PAI relative to DHP compared with DHP (Figure 3b). We found statistically significant negative 279 

correlations between residuals and DHP for both methods (SMA; 2D Intensity Image method residuals R2 = 0.85, 280 

slope = -0.88, p<0.01; LiDAR Pulse method residuals R2 = 0.47, slope = -0.70, p<0.01; Figure 3b). The 2D 281 

Intensity Image method showed larger underestimation at higher DHP PAIPAIDHP values, suggesting this method 282 

may saturate sooner for higher PAI values than either both DHP or and the LiDAR Pulse method at higher PAI 283 

values (Figure 3b). 284 
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 285 

Figure 3: Comparison of single scan TLS PAIPAITLS and DHP PAIPAIDHP estimates, for all 528 scan locations (16 per 286 
plot). (a) The correlation between DHP derived PAI with PAI derived using the 2D Intensity Image method R2 = 0.22, 287 
slope = 0.38, p<0.001, RMSE = 0.39 (circles), and LiDAR Pulse method R2 = 0.50, slope = 0.73, p<0.001, RMSE = 0.14 288 
(triangles). Dashed line in panel (a) represents 1:1 relationship. (b) The difference between TLS PAITLS and DHP 289 
PAIPAIDHP estimates for the 2D Intensity Image method, and LiDAR Pulse method. (Ddashed line at in panel (b) 290 
represents 0). Lines show statistically significant relationships fitted using SMA (p<0.01). 291 

3.2 Comparison of whole plot plant area index estimated using TLS and DHP and the effect of plot structure 292 

on PAI 293 

We found statistically significant correlations between whole plot TLS whole plot PAITLS values and DHP 294 

PAIPAIDHP for all three TLS methods (Figure 4). As for single scans (Figure 3), the LiDAR Pulse method showed 295 

the closest agreement to DHP PAIPAIDHP, here compared to both the Voxel-Based and 2D Intensity Image 296 

methods (SMA; LiDAR Pulse method R2 = 0.66, slope = 0.82, p<0.01, RMSE = 0.14; Voxel-Based method R2 = 297 

0.39, slope = 2.76, p<0.01, RMSE = 0.88; 2D Intensity Image method R2 = 0.35, slope = 0.36, p<0.01, RMSE = 298 

0.39, respectively; Figure 4a). The 2D Intensity Image method and LiDAR Pulse method consistently 299 

underestimated PAI compared to DHP, whilst the Voxel-Based method underestimated in plots with lower DHP 300 

PAIPAIDHP and overestimated in plots with higher DHP PAIPAIDHP. The Voxel-Based method’s high PAI values 301 

compared to other methods is likely due to its use of multiple co-registered scans reducing occlusion effects 302 

prevalent in single scan data.   303 

To assess the effect of plot structure on variation in TLS derived PAI, we compared TLS PAIPAITLS estimates to 304 

TLS estimated crown area index (CAI, m2 projected crown area per m2 ground area, Figure 4b). We found a 305 

significant positive relationship between CAI and PAI estimated using each of the LiDAR Pulse method, the 306 

Voxel-Based method, and DHP (SMA; LiDAR Pulse method R2 = 0.79, slope = 1.69, p<0.01; Voxel-Based method 307 

R2 = 0.76, slope = 5.72, p<0.01; 2D Intensity Image method R2 = 0.15, slope = 0.76, p<0.05; DHP R2 = 0.46, 308 

slope = 2.07, p<0.01, respectively; Figure 4b), where the 2D Intensity Image method shows signs of appears to 309 

saturatione at medium CAI values (Figure 4b).   310 
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 311 

Figure 4: Comparison of plot level TLS PAIPAITLS vs and DHP PAIPAIDHP, and CAI vs PAI estimates for all 33 plots. 312 

(a) The correlation between DHP derived PAI and PAI derived using 2D Intensity Image R2 = 0.35, slope = 0.36, p<0.01, 313 

RMSE = 0.39 (circle), LiDAR Pulse R2 = 0.66, slope = 0.82, p<0.01, RMSE = 0.14 (triangle) and Voxel-Based R2 = 0.39, 314 

slope = 2.76, p<0.01, RMSE = 0.88 (cross) methods (b) The correlation between TLS derived CAI and PAI derived 315 

using DHP R2 = 0.46, slope = 2.07, p<0.01 (square), 2D Intensity Image R2 = 0.15, slope = 0.76, p<0.05 (circle) LiDAR 316 

Pulse R2 = 0.79, slope = 1.69, p<0.01 (triangle) and Voxel-Based R2 = 0.76, slope = 5.72, p<0.01  (cross) methods. Lines 317 

show statistically significant relationships fitted using SMA (p<0.01). Dashed line in panel (a) represents 1:1 318 

relationship.  319 

 320 

3.4 Influence of species, tree height and CAI on α  321 

To understand drivers of variance in α, we used individual tree PAI and WAI, calculated using the Voxel-Based 322 

method to test the relationship between species and α, and height/ CAI and α. We found that more drought tolerant 323 

species generally had higher α values than less drought tolerant species (Table BA1; Figure 5), however, 324 

confidence intervals were wide and overlapping, suggesting that species is not a strong predictor of variation in 325 

α. We found a statistically significant negative effect of height (p<0.001; Table BA2; Figure 6a) and positive 326 

effect of CAI (p<0.01 – 0.05; Table BA2; Figure 6b) on α for all species apart from P. sylvestris. α decreased 327 

more rapidly with height and increased less rapidly with CAI for oaks than pines. Statistically significant ICC 328 

values were higher for P. nigra (ICC = 0.211; Table BA2) than P. pinaster, Q. faginea and Q. ilex (ICC = 0.036; 329 

0.060; 0.070, respectively), showing that more α variation is explained by the random plot effect in P. nigra than 330 

the other species. P. pinaster has a wider confidence interval (Figure 5), possibly explained by its lower sample 331 
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size. To understand drivers of variance in WAI we carried out additional analysis to test the relationship between 332 

WAI and species, height, CAI and PAI, and presented these results in Appendix C (Figure C3; Tables C3, C4).  333 

Figure 5: Linear mixed model derived α values (a, equation 1) for all 2472 individual trees of species P. sylvestris, P. 334 
nigra, Q. faginea, Q. ilex and P. pinaster. Error bars represent 95% confidence intervals. Species are listed left to right 335 
from low – high drought tolerance, with the exception of P. pinaster, for which drought tolerance index has not been 336 
calculated in the literature. Drought tolerance rankings are taken from (Niinemets and Valladares, (2006).  337 

Figure 6: Variation in α for each species: Pinus nigra, P. pinaster, Q. faginea and Q. ilex with (a) height and (b) plot 338 
CAI. Lines represent statistically significant linear mixed models (equation 2; significance levels from p < 0.001 to p < 339 
0.05). Ribbons represent 95% confidence intervals. The model for P. sylvestris was not statistically significant.  340 

 341 

 342 
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 343 

4. Discussion  344 

4.1 Comparison of approaches to deriving PAI from remote sensed data 345 

We found substantial differences in PAI values estimated from TLS and DHP and from different TLS processing 346 

methods (Figures 3 and 4). Further, differences between TLS methods varied across plot structure (CAI), with the 347 

greatest differences between methods in plots with high CAI, and therefore high canopy density. Although 348 

previous studies have presented TLS as an improvement over DHP due to its independence of illumination and 349 

sky conditions during the data acquisition phase, and ability to resolve fine-scale canopy elements and gaps 350 

(Calders et al., 2018; Grotti et al., 2020; Zhu et al., 2018), we have shown that there is large variability between 351 

TLS processing methods in Mediterranean forests. Rigorous intercomparison of approaches, ideally using 352 

standard benchmarking TLS datasets, and destructive sampling, would improve trust and reliability of TLS 353 

algorithms. 354 

4.2 The LiDAR Pulse and 2D Intensity Image method derived PAI estimates were lower than those derived 355 

from DHP and the Voxel-Based method 356 

We found the LiDAR Pulse method (Jupp et al., 2008) to have the best agreement with DHP for both whole plot 357 

and single scan PAI estimates. In contrast to previous studies comparing  PAITLS with– PAIDHP comparisons 358 

(Calders et al., 2018; Grotti et al., 2020; Woodgate et al., 2015), we found that the LiDAR Pulse and 2D Intensity 359 

Image methods underestimated PAI compared to DHP, except at very low PAI values (PAITLS < 0.5). 360 

Quantification of PAI from DHP may introduce additional sources of error, for example, its relatively lower 361 

resolution compared to TLS could lead to mixed pixels that have a greater chance of misclassification of sky as 362 

vegetation (Jonckheere et al., 2004). This effect could be enhanced in a Mediterranean forest as trees in drier 363 

climates tend to have smaller leaves (Peppe et al., 2011), leading to more small canopy gaps that TLS may resolve 364 

where DHP cannot. Further, although we took steps to reduce the error introduced at DHP data acquisition and 365 

processing steps, including using automatic thresholding and collecting images with multiple exposures, DHP 366 

processing requires both model and user assumptions that can impact results. For example, DHP PAIPAIDHP 367 

estimates are highly sensitive to camera exposure; increasing one stop of exposure can result in 3 – 28% difference 368 

in PAI and use of automatic exposure can result in up to 70% error (Zhang et al., 2005).  369 

We found the Voxel-Based method overestimated PAI values compared to the other methods at the whole plot 370 

level. This is likely due to the method’s use of co-registered scans, rather than averaged single scan PAI values, 371 

since co-registered scans will reduce occlusion effects prevalent in single scan data that could to lead to an 372 

underestimation of PAI (Wilkes et al., 2017). The Voxel-Based method is, however, sensitive to voxel size (Li et 373 

al., 2016), and larger voxels lead to larger PAI estimates as they fill small canopy gaps; we chose a voxel size of 374 

0.05 m to match the minimum distance between points in our downsampled dataset. However, the Voxel-Based 375 

method is a memory intensive approach to calculating PAI, and smaller voxels have higher memory requirements. 376 

We picked this data resolution, and therefore voxel size, to balance the need to capture fine-scale canopy details 377 

against memory requirements for running the method on many large plot point cloudss. Voxel size could have 378 

been chosen based on estimates’ match to DHP, but this would assume (1) that DHP estimates are most accurate, 379 

and (2) that DHP data are always available, limiting the wider applicability of our findings. Understanding which 380 

method is over- or underestimating would require a destructively sampled dataset for validation, which was not 381 
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possible for this study (or most ecosystems). However, other studies using voxel approaches have found that 382 

although these produce high LAI values for individual trees, these are underestimates compared with destructive 383 

samples (Li et al., 2016). Regardless, PAI and LAI estimates using a Voxel-Based approach are highly dependent 384 

on voxel size (Béland et al., 2014) (Li et al., 2016), and future work should test the influence of voxel size on PAI 385 

estimates, using destructive samples in a range of environments. 386 

4.3 Relationship between PAI and CAI varied according to method and sensor 387 

The relationship between the LiDAR Pulse method had the strongest relationship (defined as highest R2) with and 388 

TLS derived CAI had the highest R2, demonstrating that the method is well suited to measuring PAI across the 389 

range of plot CAI values used in this study. Although the 2D Intensity Image method can tackle the significant 390 

challenges presented by edge effects and partial beam interceptions, particularly present in phase-shift systems 391 

(Grotti et al., 2020), our results suggest this method has a lower performance ability, with saturation occurring 392 

sooner than all other methods in dense forests (Figures 3 and 4). The 2D Intensity Image method uses the same 393 

raw single scan data as the LiDAR Pulse method, so the better performance from the latter is likely due to the 394 

method’s use of vertically resolved gap fraction; both the LiDAR Pulse method and Voxel-Based method account 395 

for the vertical structure of the canopy by summing vertical slices through the canopy. 396 

4.24 α variation between species and plot 397 

We used the Voxel-Based method to investigate individual tree α variation between species and across structure, 398 

as this was the only approach we comparedidentified that could be applied to single tree point clouds which are 399 

leaf-wood separated. We found α values obtained were within the range of values obtained from destructive 400 

approaches (0.1 – 0.6, Gower et al., 1997). The drought and shade intolerant P. nigra showed stronger variability 401 

in α across plots (higher ICC value, Table BA2) than other species, suggesting its wood – leaf ratio may be more 402 

sensitive to site factors. However, as the plots measured in this study vary in both abiotic conditions (altitude, 403 

aspect, slope, wetness) as well as species composition, stem density and canopy cover, there may be other drivers 404 

of variation in α values.  405 

We found some evidence that species with higher drought tolerance had higher α values (Figure 5; Table BA1), 406 

however, confidence intervals were wide, suggesting a weak relationship. There is evidence that trees that tolerate 407 

water limited environments have a lower leaf area (Battaglia et al., 1998; Mencuccini and Grace, 1995), so higher 408 

α values may reflect maintenance of homeostasis of leaf water use through adjustment of wood to leaf area ratio 409 

(Carter and White, 2009; Gazal et al., 2006). The potential for a tree to lose water is mostly regulated through leaf 410 

traits including stomatal conductance and leaf area, and both stand (Battaglia et al., 1998; Specht and Specht, 411 

1989) and individual tree (Mencuccini, 2003) water use have been found to scale linearly with LAI, with drought 412 

often mitigated through leaf shedding (López et al., 2021). 413 

4.35 Tree stature and stand density drives α variation 414 

Although species had a weak relationship withexplain some variation in α, tree height and plot CAI were stronger  415 

predictorshad a statistically significant relationship with α (p<0.001 – p<0.05) for all species, showing the 416 

importance of local stand structure on leaf and woody allocation. We found that α scaled negatively with height 417 

for all species apart from P. sylvestris, suggesting that in this environment, taller trees generally have a lower 418 

proportion of wood to plant area index than shorter ones. P. sylvestris, which is at the edge of its geographical 419 
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range and physiological limits (Castro-Díez et al., 1997; Owen et al., 2021), showed no significant relationship 420 

between height and α. We found that α scaled positively with plot level CAI for all species apart from P. sylvestris, 421 

that is, trees growing in denser plots have a higher α. This supports theory that trees growing in dense forests are 422 

competing for resources, reducing individual tree leaf area (Jump et al., 2017). The negative height – α and positive 423 

CAI – α relationships in our model suggest that trees may initially invest in vertical growth to reach the canopy 424 

level, and once there invest in lateral growth, with more leaf area, to increase light capture. This supports theory 425 

that trees grow to outcompete neighbouring individuals for light capture (Purves and Pacala, 2008) and evidence 426 

that both lateral growth and LAI are reduced beneath closed canopies (Beaudet and Messier, 1998; Canham, 427 

1988).  428 

Wood may be harder to accurately classify than leaves in TLS data (Vicari et al., 2019), resulting in a higher 429 

occurrence of false positives in wood clouds, potentially leading to an overestimation in WAI, and therefore 430 

underestimation of α, especially in trees with small leaves which are prevalent in dry, Mediterranean environments 431 

(Peppe et al., 2011). The problem of misclassification will increase in taller trees due to TLS beam divergence, 432 

occlusion and larger beam footprint at further distances (Vicari et al., 2019), suggesting that WAI overestimation 433 

could be more pronounced in tall trees. Although our dense scanning strategy (Owen et al., 2021) was designed 434 

to mitigate some of these effects, these effects mean it is possible our findings may could underestimate the slope 435 

of the negative relationship between α and tree height.  436 

4.46 Correcting for non-photosynthetic elements in LAI estimates using TLS 437 

The value of TLS data to estimate individual tree PAI, WAI and subsequently α, demonstrates their potential to 438 

corrective factors for non-photosynthetic components in ground based remote sensing measurements of LAI. 439 

Properly correcting for WAI in LAI estimates is of global importance as small errors in ground based 440 

measurements propagate through to large scale satellite observations generating large errors in global vegetation 441 

models (Calders et al., 2018). The work presented here provides a foundation for future work combining multi-442 

source and multi-scale remote sensing datasets to correct large-scale LAI products. Our results echo others’ in 443 

finding that the prevalence of woody material in the tree canopy, and therefore α, is dynamic and varies by species 444 

as well as senescence, crown health and, in the case of deciduous forests, leaf phenology (Gower et al., 1999). 445 

The use of single α value in a plot or region (Olivas et al., 2013; Woodgate et al., 2016), invariant of species, size 446 

and forest structure, to convert PAI to LAI is therefore problematic (Niu et al., 2021). Our study demonstrates the 447 

importance of taking species mix and structural variation into account when correcting for non-photosynthetic 448 

material in ground-based LAI estimates. 449 

5. Conclusions  450 

We tested three methods for estimating PAI using Terrestrial Laser Scanning data and compared these against 451 

traditional DHP measurements. We found large variation between PAI values estimated from each TLS method 452 

and DHP, demonstrating that care should be taken when deriving PAI from ground based remote sensing methods. 453 

Although the LiDAR Pulse method was found to have the best agreement with both single scan and whole plot 454 

PAI values measured by DHP, the Voxel-Based method allowed separate analysis of the key metric used to correct 455 

for the effect of WAI in LAI measurements, α, in individual trees. We recommend the LiDAR Pulse method as a 456 

fast and effective method for PAI estimation independent of illumination conditions. Whilst the Voxel-Based 457 
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method may be used to analyse individual tree α and determine ecological drivers of variation, work remains to 458 

determine the validity of these approaches, in particular correct voxel size choice. We found that α varies by 459 

species, height and stand density, showing the importance of accurately correcting for WAI on the individual tree 460 

level and the utility of TLS to do so. 461 

The variation in our results for the different methods used to derive PAI from TLS data show that there is some 462 

way to go before TLS derived vegetation indices can be interpreted as robust and reliable. Validation using 463 

destructive samples and further intercomparison studies of methods are needed to demonstrate the advantages of 464 

TLS, and use of benchmarking datasets should be standard. DHP is a faster, cheaper and more widely accessible 465 

method for PAI estimation, and while TLS promises to alleviate potential bias in DHP estimates, results are highly 466 

methods dependent. Our results demonstrate the challenges that stand in the way of large scale adoption of TLS 467 

for vegetation indices monitoring.  468 
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