We thank reviewer for acknowledging the impact of this paper and their comments which we
have discussed below and think have significantly improved the manuscript.

2.11think this article's first and foremost improvement point is that the research goal
is not clear and in-depth enough.

We apologise for a lack of clarity here, and agree that the twin goals of methodology
comparison and ecological insight are not presented in as clear a manner as they could be.
We have edited the wording in section 1.3 to improve their readability and enhance the
communication of their importance (L132-133):

“The aims of this study are twofold: the first aim is to compare three TLS methods for
estimating PAI with traditional DHP. The second aim of this study is to use TLS to
understand drivers of individual tree a variation.”

2.2 The presentation of the results is not complete, which makes it difficult for readers
to capture their needed information, such as the WAI variation trend (functions)
among 5 tree species related to their height and density.

We apologise that our analysis of WAI was not clear to the reviewer. We chose to compare
methods based on PAI estimates, and not WAI or LAI, to avoid introducing additional
processing steps and complexity and therefore to more directly compare the chosen
methodological approaches. Differences in PAI between different TLS and DHP estimates
can be attributed to differences in processing approaches, whereas comparison of WAI
introduces additional error from separation approaches.

To improve clarity, we have added the following (L241-242):

“We chose to compare PAI values rather than WAI or LAl as each method corrects for non-
photosynthetic elements in different ways and would introduce bias, limiting the ability to
directly compare metrics.”

See also our response to comment 2.4 below.

2.3 Referring to the DHP results, authors evaluated the error of WAI and PAIl analyzed
by point clouds. | would like to know if the authors use the TLS data to improve
the LAl evaluation accuracy. TLS can support assessing the single tree and plot-
level WAl more accurately.

We agree completely that the combination of TLS and DHP might improve analyses, and
this has been developed in methods not tested in this paper (e.g. Kamoske et al., 2019).

Here we did not use the two datasets together, preferring instead to retain the ability to
compare them as independent estimates of the indices of interest. We note that neither
should be viewed as the ‘truth’, and therefore using them in combination could introduce
additional biases that would be challenging to disentangle. Nevertheless, others could use
our data to perform the analyses suggested.

2.4 More importantly, whether the WAI of different Mediterranean trees has similarities
between the same species, as well as providing specific information (maybe list in
thematic tables to show the relationship among species, tree height, density, and
PAI), will make readers benefit greatly. | think the measured data of this study can



support this research goal, while they are not fully presented in the current
edition.

Although these are not the focus of this study, we agree that additional information could
prove useful to some readers. We thank the reviewer for their suggestion of including WAI
analysis, which we think has significantly improved the manuscript. We have added Figure
C2 and Tables C3, C4 to the supplementary information and refer to this in the main
manuscript, section 3.4 (L320 — 322):

“To understand drivers of variance in WAI we carried out additional analysis to test the
relationship between WAI and species, height, CAl and PAI, and presented these results in
Appendix C.”

2.51n addition, the presentation of the results is incomplete. | did not find the location,
site conditions and tree species appearance of the measured plots shown in the
manuscript.

We apologise for this omission. This information is presented in the cited study Owen et al.
(2021), but we have added a detailed site map to the supplementary materials, Figure B1,
which is referred to in L145 of the main text.

Please see also our response to comment 2.14

2.6 The segmentation results of different tree species and the statistical information
on PAl and WAI of trees grown in different site conditions were also not provided.

We thank the reviewer for their comment and apologise for lack of clarity around the
segmentation process. Individual tree segmentation was carried out by the authors for a
separate study (Owen et al., 2021). We have amended section 2.5 (L218 — 222) to clarify the
segmentation process and have signposted (Owen et al., 2021).

Please see also our response to comment 2.17.

2.7 In addition, critical mathematical functions and quantitative conclusions are also
lacking in the current edition.

We apologise for this lack of completeness. We are not entirely clear to which functions the
reviewer refers, but for reasons of clarity and brevity we chose to primarily describe the
various processing methods we used rather than repeat their original descriptions, which are
extensive within the cited literature. Where equations have been used from other studies, we
have cited the original equation number along with the paper in-text (but see response to 2.8
below).

2.8 1 suggest authors reconsider whether it is necessary to study the CAl. This
parameter can be easily analyzed using remote sensing images without using
TLS.

In this study we used CAl as a proxy measure of stand density (L248), which was a
necessary within our model to both understand and correct for the effect of stand density on
wood to plant ratio, a. Controlling for stand density (using CAl as a proxy) is important as
trees growing in dense plots have lower water availability per tree (see L75-77). We chose to
use CAl as Owen et al., (2021) showed that the metric is also indicative of plot-level
competition and the metric accounts for crown overlap which cannot be estimated from



imagery in closed forests. Furthermore, Coomes et al., (2012) showed CAI to be better than
traditional metrics such as basal area, as it is more intuitive to non-specialists and strongly
predicts productivity.

We apologise for the lack of clarity when describing this metric and its intended use in the
study, which was also commented on by reviewer 1 (comment 1.7).

We have therefore amended our description of the key metric, CAl, for quantifying stand
density and local competition in section 2.6 L245-248:

“To further understand observed drivers of variance in PAl, we tested the relationship
between PAIl and TLS estimated whole plot crown area index, CAl, calculated as the sum of
projected crown area divided by the plot area (Owen et al., 2021), and a proxy measure of
stand density and local competition (Caspersen et al., 2011; Coomes et al., 2012), using
SMA.”

2.9 Furthermore, is it applicable to use a fixed voxel size when analyzing WAI? After
all, different tree species have various canopy shapes and branch structure
features. Adaptive adjusting the voxel size according to the point cloud density
and the branch distribution trend may be more reasonable.

We thank the reviewer for their comment on voxel size and agree that finding an appropriate
voxel size a complex problem (discussed extensively in the response to the other reviewer).
We chose the method of voxel classification rather than a radiative transfer approach as it
has a definitive method for choosing voxel size based on matching the voxel size to the
resolution of the point cloud, which was tested against voxel sizes based on individual tree
leaf size, and distance of beam, using destructive samples in Li et al., (2016). Using a
radiative transfer approach, the methodology for choosing the “correct” voxel size is not
clear, and others’ work (and our own additional, unpublished analyses) has shown that
estimated PAI values are highly sensitive to voxel size choice.

We have amended our discussion of voxel size in section 1.2 to reflect the contentious
debate around voxel size choice, L108-113:

“However, PAl estimates derived using the voxel method are highly dependent on voxel size
(Calders et al., 2020). Using a radiative transfer approach, Béland et al., (2014)
demonstrated that voxel size is conditional on canopy clumping, radiative transfer model
assumptions and occlusion effects, making a single, fixed choice of voxel size within
methods for all datasets impossible. To test various approaches to selecting voxel size using
a voxel classification approach, Li et al., (2016) matched voxel size to point cloud resolution,
individual tree leaf size, and minimum beam distance and tested against destructive
samples, finding that voxel size matched to point cloud resolution had the closest PAI values
to destructive samples.”

To clarify our justification for use of a voxel classification approach over a radiative transfer
approach, also commented on by reviewer 1, we have added to section 2.4 (L197-199):

"We chose a voxel classification approach as this method is widely applicable to a range of
TLS systems and levels of processing as well as providing explicit guidance on voxel size
selection, which is known to impact derived PAI estimates (Li et al., 2016).”

2.10 Optimizing the TLS-based WAI assessment methods, summarizing the
regulation of interspecific WAI variation, and using these rules to improve the LAI



assessment will make this article more attractive to better support research in
related fields.

We thank the reviewer for their suggestion of including analysis of interspecific WAI
variation, which we think is a valuable addition to the paper, and refer to our response to
previous comments (2.2, 2.4, 2.11), where we have included these new analyses.

Here, we've focussed on interspecific variation in alpha and PAI, rather than WAI and LA,
but recognise that there would be value in such an additional set of analyses. We agree that
developing new methods to correct for WAI in LAl estimates using approaches assessed in
this paper would make for exciting work, however we think that to do this well we would
require further testing and validation, ideally using destructive samples or multitemporal leaf
on/leaf off remote sensing data, which is beyond the scope of this paper.

The following are some detailed points. | hope they will help improve the current
edition.

2.11 | suggest authors clarify their research goal in the initial section of the
manuscript. As areader, | am more interested in how to use TLS to analyze WAI.
However, authors did not briefly introduce the WAI extraction methods in the
abstract but focused on comparing point cloud extraction methods of PAl and LAI.

We apologise for the lack of clarity in explaining our research goals. As in our response to
comment 2.1, we have restated our primary and secondary research goals in section 1.3
(L132-133).

We thank the reviewer for their suggestion of analysing WAI, which we think has significantly
improved the manuscript. As for comment 2.4, we have now included this analysis. We have
chosen to keep the focus on comparing a, as this value is widely discussed in the literature.
We have added a statement to this effect (L234-235):

“To allow a comparison with existing literature estimating a, (Sea et al., 2011; Woodgate et
al., 2016) we focused on a values.”

2.12 They focused on the wood to total plant area (a). | wonder if it is feasible to
measure the plant area because of the occlusion effect during scanning. TLS may
be more suitable for analyzing WAL.

We apologise not clearly stating the reasons for comparing PAI rather than WAI. All remote
sensing methods evaluated in this paper (three TLS methods and DHP) more directly
measure PAI than WAI or LAl as sensors are measuring the whole plant. Correcting for
wood/ leaf to derive WAI/ LAI requires additional processing steps, which vary according to
sensor (wood/ leaf separation algorithms for TLS and image masking for DHP, as these
systems are not deciduous, and therefore leaf-off scans can’t be made), introducing bias and
limiting our ability to compare output. We have added a statement to this effect to section 2.6
(L241-242):

“We chose to compare PAI values rather than WAI or LAl as each method corrects for non-
photosynthetic elements in different ways and would introduce bias, limiting the ability to
directly compare metrics.”

Please see also our response to comment 2.2



We agree that occlusion is a known problem with TLS data in closed canopy forests,
however we have minimised the potential occlusion effects by following a dense scanning
strategy following the widely cited Wilkes et al., (2017).

2.13 Section 1.3 It will be more interesting to add some research topics on
integrating the fine-scale WAI (or a) assessed based on TLS to correct the large-
scale LAl extracted from the multi-source remote sensing images. Based on the
high-quality field dataset, it should be feasible to use this research in optimizing
the large-scale LAI distribution evaluation.

We agree this is an exciting idea and could be the focus of follow-on work. We think that the
work presented and, as the reviewer points out, our dataset provides a foundation for a more
robust comparison of LAI and new insights from multi-source RS datasets, but that this
would be an additional methodological development beyond the scope of our current study.

Following your suggestion, we have added a comment to this effect on L429-430:

“The work presented here provides a foundation for future work combining multi-source and
multi-scale remote sensing datasets to correct largescale LAl products.”

2.14 In Sections 2.1 and 2.2, the location map of study plots and some images
showing the scene of plots should be provided. The pictures of tree species also
need to be added to show their phenotypic characteristics, which is beneficial to
evaluate their drought tolerance (L323-324).

We agree with the reviewer that a location map of the study plots would be beneficial to the
manuscript and thank them for the suggestion. We have therefore added a new figure, B1 to
Appendix B showing the locations of plots within the two field sites, Alto Tajo and Cuellar in
central Spain.

We believe that the plots used in this study are well studied and documented in the literature
and therefore a detailed description of individual plot characteristics would repeat information
already available. We have added signposting to this is section 2.1 (L143-144):

“We collected TLS and DHP data from 29 plots in Alto Tajo Natural Park (40°41'N 02°03'W.
FunDIV plots; see Baeten et al., (2013) for detailed description of plots)”

The five focus species of this manuscript are widely studied and known species and
therefore believe that adding individual images of each species is unnecessary.

2.15 L 191 When setting this threshold (> 0 points) to identify the filled voxels, did
you filter noisy points out from the tree TLS datasets? It is not easy to identify and
filter all noise in TLS data. | am worried the noise would lead to a lower Py and
cause inaccurate LAl and PAI.

We apologise for not making explicit the noise filtering process of our data. We denoised
individual-tree point clouds using height dependant statistical filtering as outlined in Owen et
al., (2021), and combined individual tree point clouds into whole plots. We have added a
statement to this effect to section 2.4 (L199-200):

“We re-combined individually segmented trees, filtered for noise using a height-dependent
statistical filter (see Owen et al., 2021) back into whole plot point clouds”


https://tools.wmflabs.org/geohack/geohack.php?pagename=Alto_Tajo_Nature_Reserve&params=40_41_N_02_03_W_type:landmark

While any remaining noise may indeed lead to lower Pgap, we followed standard processing
procedure for this voxel classification method outlined in Hosoi and Omasa, (2006) and
tested using destructive samples in Li et al., (2016). Similarly, we followed standard protocol
in the published literature for the other two methods (LIDAR Pulse and 2D intensity Image),
and therefore consider that our work is a fair representation of each methods’ ability to
accurately derive PAI and allows a comparison of each methods’ merits and drawbacks.

2.16 L203-204 Some structure features of woody and foliage materials can be
analyzed based on the pointset-, height bin-, and patch-based models. Please
revise this sentence.

We apologise for the lack of clarity in this statement, and thank the reviewer for their
suggestion. What we meant to say was that the voxel-based approach was the only method
compared in this study capable of analysing PAIl, WAI and LAl of segmented individual tree
point clouds. We have reworded to make this clear and L215-216 now reads:

“As the only method using multiple co-registered scans, the Voxel-Based method is the only
method compared in this study capable of deriving PAI, WAI and LAI of segmented
individual tree point clouds.”

2.17 L206 The principle of TLS segmentation methods needs to be briefly
introduced before the voxelization step. It is beneficial to improve the readability
of the manuscript.

We thank the reviewer for their suggestion of providing an explanation of the segmentation
process. Trees were not segmented for this paper; we used data that had already been
segmented by the authors for a separate study (Owen et al., 2021), and we apologise for the
lack of clarity. We have amended the description of tree segmentation in section 2.5 (L218 —
221):

“We used individual tree point clouds downsampled to 0.05 m, to aid computation time, and
segmented using the automated tree segmentation program treeseg (Burt et al., 2019),
implemented in C++, by Owen et al., (2021) for that study. Individual segmented tree data
are available in Owen et al., (2022).”

2.18 L216 How to analyze the WAI after voxelizing woody point clouds? Some
details should be introduced, which is key to calculating E* .

We thank the reviewer for their comment and apologise for the lack of clarity in our methods
for calculating individual tree WAI. Individual tree WAI was calculated in the same way (voxel
classification method) as individual tree PAI, but using the wood-only cloud from the wood —
leaf separation step. We have changed L232-233 in section 2.5:

“In the same way as for PAI, we calculated WAI using the separated wood point cloud within
the projected crown area of the whole tree (Figure 2d; using the whole crown and not just
the wood point cloud)”

2.19 L225 Why explore the relationship between PAIl and CAl in this study? The CAI
assessment seems to deviate from the research topic, as it is not highly related to
LAl and WAI but to the crown projection area, except the canopy gap area.
Moreover, using images for CAl analysis is sufficient.

We apologise for not clearly stating our justification for the use of CAl in this study. CAl is
used in this study as an indicative measure of both stand density and local competition, and



is included to both explore how PAl is affected by competition, but also to correct for
anticipated competitive affects that would otherwise impact our conclusions on species’
differences in alpha. We thank the reviewer for their comment, and have amended our
manuscript section 2.6 (L245 — 248).

Please see also our response to comment 2.8.

In closed canopies or canopies with crown overlap imagery would not capture CAl, since
CAl is calculated using the sum of all projected crown area, not only that visible from
imagery. We used TLS to measure CAl as CAl estimates are generated from the sum of all
tree crown projected area and so requires individual tree measurements, either from
segmented TLS or from ground measurements.

2.20 L245 As shown in Figure 3, PAl estimated using the LiDAR Pulse method more
strongly agreed with DHP PAI than the Intensity Image method. However, | found
their correlation (R?) is not particularly significant.

We believe this is a misreading of our meaning, and therefore apologise for not using clear
language in reporting our statistical results. We have therefore amended section 3.1 (L266-
268):

“Of the two single scan TLS methods tested (LIDAR Pulse method and 2D Intensity Image
method), we found that the relationship between PAI estimated using the LIDAR Pulse
method and DHP PAI, had a higher R? than the 2D Intensity Image method”

2.21 L248 Please carefully recheck the description of the results is correct
according to Figure 3. As shown in Figure 3a, the Pulse-based method
overestimates the PAI, while the intensity-based method underestimates the PAI.

We apologise for the lack of clarity in explaining these results and meant to say that both
methods underestimate relative to DHP at larger values. We have therefore amended the
sentence in section 3.1 (L270 -271):

“At larger PAl values, relative to DHP, both TLS methods underestimated PAl compared with
DHP (Figure 3b).”

2.22 L264 You did not label Voxel-Based PAI in Figure 3. Do you mean the TLS PAI

We apologise for the lack of clarity in this sentence. Section 3.2, L286 is referring to whole
plot plant area index (Figure 4), which does include Voxel-Based PAI. We have now
removed the reference to Figure 3 from this sentence.

2.23 L269 Maybe you did not set a suitable threshold when defining blank voxels.
Merely my speculation!

We thank the reviewer for their speculation on why we may be experiencing overestimation
from Voxel-Based PAI estimates. We followed standard protocol as described in the
published literature for the Voxel-Based, LIDAR Pulse and 2D Intensity Images methods,
which has allowed us to draw a fair comparison between derived PAI values from each
method. Although threshold values could be influencing PAI estimates, we have made a
'best choice’ to classify non-zero point containing voxels as vegetation and believe that,
while important research, further exploration of threshold values would be beyond the scope
of this study.



Please see also response to comment 2.15.
2.24 L2822 and 257 You forget to mark the 1:1 dash line in these figures.

This graph (Figure 4b) presents the variation in PAIl against CAl in order to understand how
competition and stand density affects PAI so we would not assume a 1:1 relationship.
Dashed line on Figure 3b is at 0 to highlight systematic variation in the residuals.

We apologise for the lack of clarity and have amended L308 to make this clearer:
“Dashed line in panel a represents 1:1 relationship”

In Figure 3b, the dashed line represents 0, as this panel is showing the relationship between
TLS residuals and DHP PAI. We apologise for the lack of clarity and have amended L280:

“Dashed line in panel a represents 1:1 relationship.”
And L281:
“dashed line in panel b represents 0”

2.25 Although authors used the published woody-and-foliage separation methods,
it is necessary to display some examples of TLS separation results scanned from
diverse plots grown with different species. Due to the lack of validation data, it
may be challenging to evaluate the segmentation accuracy. However, presenting
the separation results is still available to support visual evaluation.

We agree that showing an example visual assessment of wood/ leaf separation is beneficial
to the reader and have included an example of a wood/ leaf separated P. sylvestris in Figure
2, panels a and b. We have now included signposting in the figure caption, L212-213:

“Panels a and b show wood and leaf separation of an example P. sylvestris, carried out
using TLSeparation (Vicari et al., 2019).”

We also note that wood — leaf separation was carried out by the authors for a separate
published study (Owen et al., 2021). We apologise for the lack of clarity and have changed
our description of the wood — leaf separation process accordingly in section 2.5 (L223-225).
Please see our response to comment 2.33 below.

2.26 Itis not easy to accurately separate the branch and leaf point clouds of trees
except those of broadleaf. More importantly, | am worried about whether it is
applicable to use the same voxel size to calculate the WAI of different tree species,
which is crucial to the conclusion.

Although we agree it may theoretically be more difficult to separate wood and leaf in
needleleaf trees, we note that TLSeparation was developed with applicability to both types of
trees, with separation difficulties attributable to scanning strategy rather than separation
algorithm (Vicari et al., 2019b). We note that this problem was minimised to the best of our
ability in our dataset, as we followed a dense scanning strategy as outlined in Wilkes et al.,
(2017). As for comment 2.25 above, we have included an example visual assessment of a
wood — leaf separated (needleleaf) P. sylvestris and included signposting in L212-213:



“Panels a and b show wood and leaf separation of an example P. sylvestris, carried out
using TLSeparation (Vicari et al., 2019).”

2.27 L294-297 These sentences are not clear. How to assess tree-specific drought
tolerance? You would better add some description about its evaluation methods
and list the metrics to evaluate the drought tolerance of different tree species in
this figure and the related references.

We agree the source of drought tolerance rankings needs to be clear and apologise for
omitting this in the figure caption. Drought tolerance are taken from the widely-cited
Niinemets and Valladares, (2006). We have amended L326:

“Drought tolerance rankings are taken from Niinemets and Valladares, (2006)”

2.28 In section 4.1, why did you discuss the plot-scale CAl variation? The topic of
this section is comparing diverse approaches to deriving PAI.

We apologise for the lack of clarity around the role of CAl in this study. As CAl was used as
an indicative measure of stand density and local competition, it was discussed in this section
as plots with higher CAIl (and therefore greater stem density) showed greater variation in
estimated PAI values from each method/ sensor. We note that we have now updated our
description of CAl and its role in this study in section 2.6 (L245 — 248) and hope that the
discussion in section 4.1 is now more clear.

Please see also our response to comment 2.8.

2.29 Thetitle of Section 4.2 is a phenomenon that you need to analyze. Sections 4.2
and 4.3 still belong to Section 4.1 to discuss the LiDAR-extracted metrics with that
of DHP.

The titles of sections 4.2 and 4.3 were intended to emphasise findings of particular interest
and relevant to the initial aims of this manuscript. We agree, however, with the reviewer that
these sections belong with 4.1 and have removed these section titles to make this more
clear.

2.30 L320 According to the field data and Figure 3, what is a very low PAl value?
Providing a quantitative indicator will significantly improve the manuscript's
readability than using adjective words.

We thank the reviewer for the comment and agree that more quantitative language would
improve the manuscript. We have therefore amended L342 to say:

“except at very low PAl values (PAlrs < 0.5).”
2.31 L348 The highest R does not show a strong correlation.

We thank the reviewer for their comment and agree that we have not used clear statistical
language. We have therefore changed the wording in L377 — 378:

“The relationship between the LIDAR Pulse method and TLS derived CAl had the highest
RZu



2.32 L374 This sentence is not clear. “Although species explain some variation in a,
tree height and plot CAl were stronger predictors for all species....” According to
the principle of these parameters, it is hard for me to agree that CAl and WAI have
a strong correlation.

We agree with the reviewer that we have not used clear statistical language. We have
therefore changed this sentence in section 4.5 (L403):

“Although species had a weak relationship with a, tree height and plot CAl had a statistically
significant relationship with a (p<0.001 — p<0.05) for all species, showing the importance of
local stand structure on leaf and woody allocation.”

2.33 L390-392 This is an interesting point. | prefer you to provide some figures and
statistical information to prove your finding, especially in different plots with
variable growing patterns (growing density, CAl, and WAI related to the tree
species, as you mentioned in the Conclusion section). It is beneficial to deepen
this study topic.

We thank the reviewer for finding this point interesting and their suggestion of including
quantitative results of wood — leaf separation. The discussion point the reviewer refers to is a
reference to the published paper describing the wood — leaf separation algorithm. Due to the
lack of validation data, evaluating quantitatively the effectiveness of the wood — leaf
separation algorithm over the different tree sizes/ growing conditions is not possible for this
study.

We note that the wood leaf separation process was carried out by the authors, for a separate
study (Owen et al., 2021), in which the results are discussed in more detail and segmented
tree files made available online, cited as Owen et al., (2022). We apologise for the lack of
clarity here and have reworded our description of the wood — leaf separation process in
section 2.5 (L223-229):

“To estimate PAI, WAI and a for each tree, we used individual tree point clouds wood — leaf
separated by Owen et al., (2021) using the open source Python library TLSeparation (Vicari
et al., 2019a), and then used the separated wood point clouds to calculate WAL
TLSeparation assigns points as either leaf or wood, iteratively looking at a predetermined
number of nearest neighbours (knn). The knn of each iteration is directly dependent on point
cloud density, since high density point clouds will require higher a knn (Vicari et al., 2019a).
The utility package in TLSeparation was used to automatically detect the optimum knn for
each tree point cloud.”

2.34 L 3981 agree that correcting WAI can improve the LAl assessment. The TLS-
extracted data can support calibrating LAl based on WAI and PAI. The WAI may be
similar among single trees of the same tree species. According to your results, the
WAI shows a more evident relationship to tree height and stand density. | think the
assessed WAI and plot-level PAl can be used to correct regional LAI for the plot or
large-scale forests that were growing with limited tree species.

We agree with the reviewer that interspecific WAI values will be of interest to some readers
and thank the reviewer for their suggestion, which we think has significantly improved our
manuscript. We have included these additional analyses in Appendix C as also discussed in
response to comments 2.4 and 2.10. We hope this work sparks further research on
improving LAl estimates at large scale.

10



Some text errors that needed to be corrected are listed as follows:
Thank you for pointing out these errors.

e Do not use an abbreviation in the title of your manuscript, as many readers in
other fields do not know the meaning of TLS.

We agree with the reviewer that abbreviations should not be used in titles and have
amended our title accordingly.

e | suggest authors unify the reference format throughout their manuscript.
Different citation formats appear in the same paragraph may confuse readers.

We thank the reviewer for their comment and have checked and corrected referencing
throughout.

e L135 What are FunDIV plots?
Added “Functional Diversity”

e L1421 do not understand “altitudinal gradient 840 — 1400 m.a.s.l.”.
Changed to “altitudinal range”

e L167 compare —i¥az compared
Changed to “compared”

¢ L169 and 180 Please note the font size of the subscript in the Pgap. This
abbreviation can also be used in line 162.

Changed to subscript and moved abbreviation to first use.

e L176 Please add a comma to this sentence.
Comma added

o L199 Where are the solid black voxels in Figure 2?

Changed to “Coloured voxels (green represents leaf and brown represents wood) are filled
voxels and grey lines are empty voxels.”

e L209 wood only point clouds?

11



Change to “separated wood cloud”

e L210 TLSeparation classifies points as leaf or wood? This sentence is not
clear.

Changed to “TLSeparation assigns points as either leaf or wood”
e L219 TLS PAIl and DHP PAI? (Using PAlrs and PAlpwe instead)
Changed throughout.
e L234 Please add a comma to this sentence.
Comma added.
o L 246-248, L264-265 You can mark these metrics in the insets of Figure 3.

We think it is important to refer to statistical results in the main text of the manuscript for
emphasis, however have included them in the figure captions as well for completeness.

e Points in Figure 3 can be denoted as different marks or colors, such as circles
or crosses, red or blue, to make this chart clearer (like the style of Figure 4).

Changed to circles and triangles.

¢ L262 Please unify the term throughout the manuscript. | think TLS whole plot
PAl means TLS PAI(PAIls).

Changed to “whole plot PAlt.s”
e L274-276 You would better mark these metrics in the subfigures of Figure 4.

We think it is important to refer to statistical results in the main text of the manuscript,
however have included them in the figure captions as well for completeness.

e In Figures 3 and 4, please delete the unit of PAI. The PAI, LAl and WAI are all
ratio-type parameters (no need to denote unit).

Removed units and changed axis labels to new subscript (PAlrLs/ PAlowp)
e L318 TLS — DHP comparisons?
Changed to “studies comparing PAlr.s with PAlpre”

e Inthis article, authors used lots of open-source software to support their
analysis. | suggest they list all applicable packages and download links to
make readers easy to use these tools.

We thank the reviewer for their suggestion of providing a summary of all open-source
software used for this manuscript. We have cited all the software used in text and in the
reference list at the end of the manuscript. We believe that citing packages in the main bod,
readers are able to get a more detailed and contextualised explanation of the use in

individual software packages.
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e Please carefully check the format of all references according to the manuscript
preparation guidelines and the latest published papers in Biogeosciences. The
current reference format needs to be optimized.
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Abstract. Accurate measurement of vegetation density metrics including plant, wood and leaf area indices (PAI,
WAL and LAI) is key to monitoring and modelling carbon storage and uptake in forests. Traditional passive sensor
approaches, such as Digital Hemispherical Photography (DHP), cannot separate leaf and wood material, nor
individual trees, and require many assumptions in processing. Terrestrial Laser Scanning (TLS) data offer new
opportunities to improve understanding of tree and canopy structure. Multiple methods have been developed to
derive PAI and LAI from TLS data, but there is little consensus on the best approach, nor are methods

benchmarked as standard.

Using TLS data collected in 33 plots containing 2472 trees of five species in Mediterranean forests, we compare
three TLS methods (LiDAR Pulse, 2D Intensity Image and Voxel-Based) to derive PAI and compare with co-
located DHP. We then separate leaf and wood in individual tree point clouds to calculate wood to total plant area
(o), a metric to correct for non-photosynthetic material in LAl estimates. We use individual tree TLS point clouds

to estimate how a varies with species, tree height and stand density.

We find the LiDAR Pulse method agrees most closely with DHP, but is limited to single scan data so cannot
determine individual tree a. The Voxel-Based method shows promise for ecological studies as it can be applied to
individual tree point clouds. Using the Voxel-Based method, we show that species explain some variation in a,

however, height and density were-stronger- better predictors.

Our findings highlight the value of TLS data to improve fundamental understanding of tree form and function,
but also the importance of rigorous testing of TLS data processing methods at a time when new approaches are
being rapidly developed. New algorithms need to be compared against traditional methods, and existing
algorithms, using common reference data. Whilst promising, our results show that metrics derived from TLS data
are not yet reliably calibrated and validated to the extent they are ready to replace traditional approaches for large

scale monitoring of PAI and LAI.
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1 Introduction

Terrestrial Laser Scanning (TLS) generates high-resolution 3D measurements of whole forests and individual
trees (Burt et al., 2018; Disney, 2018), leading to the development of completely new monitoring approaches to
understand the structure and function of ecosystems (Lines et al., 2022). Unlike traditional passive sensors, TLS
can estimate plant, wood and leaf area indices (PAI; WAI; LAI) for both whole plots and individual tree point
clouds (Calders et al., 2018), and is unaffected by illumination conditions. This has led to the development of
several methods for processing TLS data to extract the key metrics PAI, WAI and LAI (e.g. Hosoi and Omasa,
2006; Jupp et al., 2008; Zheng et al., 2013). However, intercomparison of algorithms and processing approaches

to derive the same metrics from different TLS methods are lacking.

Leaf Area Index (LAI), defined as half the amount of green leaf area per unit ground area (Chen and Black, 1992),
determines global evapotranspiration, phenological patterns and canopy photosynthesis, and is therefore an
essential climate variable (ECV), as well as a key input in dynamic global vegetation models (Sea et al., 2011;
Weiss et al., 2004). Accurate measurements of LAI, WAI and PAI have historically been derived from labour
intensive destructive sampling (Baret et al., 2013; Jonckheere et al., 2004), so over large spatial or temporal scales
these can only be measured indirectly, typically with remote sensing. Large-scale remote sensing, using
spaceborne and airborne instruments, has been widely used to estimate LAI over large areas (Pfeifer et al., 2012),
but requires calibration and validation using in situ measurements to constrain information retrieval (Calders et
al., 2018). Non-destructive in situ vegetation index estimates have historically been made by measuring light
transmission below the canopy and using simplifying assumptions about canopy structure to estimate the amount
of intercepting material (e.g. Beer-Lambert law; Monsi and Saeki, 1953). The most common method, Digital
Hemispherical hotography (DHP; Figure 1a), requires both model assumptions and subjective user choices during
data acquisition and processing in order to estimate both PAI and LAI (Breda, 2003). DHP images are processed
by separating sky from canopy, but not photosynthetic from non-photosynthetic vegetative material, so additional
assumptions are needed to calculate either LAl or WAI (Jonckheere et al., 2004; Pfeifer et al., 2012). Separation
of LAI from PAI can be achieved by removing or masking branches and stems from hemispherical images (e.g.
Sea et al., 2011; Woodgate et al., 2016), but is not reliable when leaves are occluded by woody components
(Hardwick et al., 2015). An alternative approach is to take separate DHP measurements in both leaf on and leaf
off conditions, and derive empirical wood to plant ratios (WAI/PAI, ) (Leblanc and Chen, 2001), but this is not
always practical, for example in evergreen forests. The difficulty of separation means that studies often omit
correcting for the effect of WAI on optical PAl measurements altogether (Woodgate et al., 2016), but since woody
components in the forest canopy can account for more than 30% of PAI (Ma et al., 2016) this can introduce
overestimation. Further, although DHP estimates of LAl or PAI are valuable both for ecosystem monitoring and
developing satellite LAl products (Hardwick et al., 2015; Pfeifer et al., 2012), they are limited to sampling only
at a neighbourhood or plot level , Weiss et al., 2004), and cannot be used to measure individual tree LAl except

for open grown trees (Béland et al., 2014).

The ratio of wood to total plant area, a, is known to be dynamic, changing in response to abiotic and biotic
conditions. For example, the Huber value (sapwood to leaf area ratio, a related measure to o) may vary according
to water availability (Carter and White 2009). Leaf area may therefore be indicative of the drought tolerance level

of a tree, with more drought tolerant species displaying a lower leaf area, reducing the hydraulic conductance of
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the whole tree and therefore increasing its drought tolerance (Niinemets and Valladares, 2006). o has been
hypothesised to increase with the size of a tree in response to the increased hydraulic demand associated with
greater hydraulic resistance of tall trees (Magnani et al., 2000) and higher transpiration rates of larger LAI
(Battaglia et al., 1998; Phillips et al., 2003). Stand density may also impact o (Long and Smith, 1988; Whitehead,
1978), as increased stand level water use scales linearly with LAI (Battaglia et al., 1998; Specht and Specht, 1989),
reducing water availability to individual trees competing for the same resources (Jump et al., 2017). Large scale
quantification of a or Huber value, however, is difficult as studies usually rely on a small number of destructively
sampled trees (e.g. Carter and White, 2009; Magnani et al., 2000), litterfall traps (e.g. Phillips et al., 2003) or
masking hemispherical images (e.g. Sea et al., 2011; Woodgate et al., 2016). These approaches are only applicable
on a small to medium scale, and in the case of image masking, cannot differentiate between individuals. Variation

in o, for example by species and or stand structure, is therefore largely unknown.

1.2 TLS methods for calculating PAI, LAl and WAI

TLS methods for extracting PAI, LAI and WAI can be broadly categorised into two types: (1) LiDAR return
counting, using single scan data (e.g., the LIDAR Pulse method; Jupp et al., 2008, and 2D Intensity Image method;
Zheng et al., 2013) and (2) point cloud voxelisation, usually using co-registered scans (e.g., the Voxel-Based
method; Hosoi and Omasa, 2006).

The LiDAR Pulse method (Jupp et al., 2008; Figure 1b) estimates gap fraction (PgapPgap) using single scan data,
as a function of the total number of outgoing LiDAR pulses from the sensor and the number of pulses that are
intercepted by the canopy. This method, which eliminates illumination impacts associated with the use of DHP
(Calders et al., 2014), has been implemented in the python module, PyLidar (www.pylidar.org) and the R package,
rTLS (Guzman, et al. 2021). Using the LIiDAR Pulse method, Calders et al. (2018) compared FLS-PALPAI
estimates from two ground-based passive sensors (LICOR LAI-2000 and DHP) with TLS data collected with a
RIEGL VZ-400 TLS in a deciduous woodland, and found the two passive sensors underestimated PAI values

compared to TLS, with differences dependent on DHP processing and leaf on/off conditions.

The 2D Intensity Image method (Zheng et al., 2013; Figure 1c), also uses raw single scan TLS point clouds, but
unlike the LiDAR Pulse method, this approach converts LiDAR returns into 2D panoramas where pixel values
represent intensity. PAI is estimated by classifying pixels as sky or vegetation, based on their intensity value, to
estimate PgapPgap, and then applying Beer-Lambert’s law. As for the LiDAR Pulse method, this approach has
been shown to generate higher PAI estimates than DHP (Calders et al., 2018; Woodgate et al., 2015; Grotti et al.,
2020), with differences attributed to the greater pixel resolution and viewing distance of TLS resolving more small
canopy details (Grotti et al., 2020).

The Voxel-Based method (Figure 1d) estimates PAI by segmenting a point cloud into voxels and either simulating
radiative transfer within each cube (Béland et al., 2014; Kamoske et al., 2019), or classifying voxels as either
containing vegetation or not, and dividing vegetation voxels by the total number of voxels (Hosoi and Omasa,
2006; Itakura and Hosoi, 2019; Li et al., 2017). Crucially, this method may be applied to multiple co-registered
scan point clouds and so can be used to calculate PAI for both whole plots and individual, segmented TLS trees.

However, PAI estimates derived using the voxel method are highly dependent on voxel size (Calders et al., 2020).

Using a radiative transfer approach, Béland et al., (2014) demonstrated that voxel size is dependent on canopy
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clumping, radiative transfer model assumptions and occlusion effects, making a single, fixed choice of voxel size

within methods for all datasets impossible. To test various approaches to selecting voxel size using a voxel

classification approach, {Li et al., (2016) matched voxel size to point cloud resolution, individual tree leaf size,

and minimum beam distance and tested against destructive samples, finding that voxel size matched to point cloud

resolution had the closest PAI values to destructive samples.

The LiDAR Pulse method and 2D Intensity Image method both use single scan data. However, to generate robust
estimates of canopy properties that avoid errors from occlusion effects, multiple co-registered scans taken from
different locations are likely needed (Wilkes et al., 2017). Further, both these methods require raw unfiltered data
to accurately measure the ratio of pulses emitted from the scanner and number of pulses that are intercepted by
vegetation. This means “noisy” points caused by backscattered pulses (Wilkes et al., 2017) are included in
analyses, potentially leading to higher PAI estimates. However, the LIDAR Pulse and 2D Intensity Image methods
may introduce fewer estimation errors compared DHP, which is influenced by differences in sky illumination

conditions and camera exposure (Weiss et al., 2004).
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Figure 1: Methods for PAI estimation applied in this study: (a) a binarised digital hemispherical photograph (DHP),
(b) TLS raw single scan point cloud, used within the LiDAR Pulse method (Jupp et al., 2008). Image shows a top-down
view of raw point cloud and greyscale represents low (grey) and high (black) Z values, (c) TLS 2D intensity image for
the 2D Intensity Image method (Zheng et al., 2013), (d) Voxelised co-registered whole plot point cloud for the Voxel-
Based method (Hosoi and Omasa, 2006), showing a representative schematic of cube voxels with edge length of 1m,
voxelised using the R package VoxR (Lecigne et al., 2018). Solid black voxels are classified as containing vegetation
(filled) and voxels outlined with grey lines are voxels classified as empty.

1.3 Scope and aims

The aims of this study are twofold: the first aim is to compare three TLS methods for estimating PAI with

traditional DHP. The second aim of this study is to use TLS to drivers of individual tree o variation.,

In this study we use a dataset of 528 co-located DHP and high-resolution TLS scans from 33 forest plots to
compare DHP derived PAI_(PAlptp) with estimates from three methods to estimate PAI from TLS data (PAl1.s):
the LiDAR Pulse method; the 2D Intensity Image method and the Voxel-Based method (Figure 1). We use a dataset
collected from a network of pine/oak forest plots in Spain (Owen et al., 2021) and ask (1) are the three TLS
methods able to reproduce BHP-PAIPAIpp estimates at single scan and whole plot level? (2) does a, calculated
from the Voxel-Based method on individual tree point clouds, vary with species and tolerance to drought; and (3)

does o scale with height and stand density?
2. Methods

2.1 Study site

We collected TLS and DHP data from 29 plots in Alto Tajo Natural Park (40°41'N 02°03'W; FunDIV (Functional
Diversity) plots; see Baeten et al., (2013) for detailed description of plots) and four plots in Cuellar
(41°23'N 4°21'W) in June - July 2018 (see Owen et al., (2021) for full details) (Figure B1). Plots contained two
oak species: semi-deciduous Q. faginea and evergreen Q. ilex, and three pine species: P. nigra, P. pinaster and P.

sylvestris. P. sylvestris is the least drought tolerant species, followed by P. nigra, Q. faginea, Q. ilex; shade
tolerance follows the same ranking (Niinemets and Valladares, 2006; Owen et al., 2021). Although not
quantitatively ranked, P. pinaster has been shown to be very drought tolerant, appearing in drier areas than the
other species (Madrigal-Gonzélez et al., 2017). The area is characterised by a Mediterranean climate (altitudinal
gradient range 840 — 1400 m.a.s.l.) (Jucker et al., 2014; Madrigal-Gonzalez et al., 2017). In addition to the five
main canopy tree species, plots contained an understory of Juniperus thurifera and Buxus sempervirens (Kuusk
etal., 2018).

2.2 Field protocol

In each of the 33 30 x 30 m plots we collected TLS scans on a 10 m grid, making 16 scan locations following
Wilkes et al., (2017) to minimise occlusion effects associated with insufficient scans. We used a Leica HDS6200
TLS set to super high resolution (3.1 x 3.1mm resolution at 10 m with a beam divergence of <5 mm at 50 m; scan
time 6m 44 s; see Owen et al., (2021)). At each of the 528 scan locations and following the protocol in Pfeifer et
al., (2012), we captured co-located DHP images with three exposure settings (automatic and + one stop exposure
compensation), levelling a Canon EOS 6D full frame DSLR sensor with a Sigma EX DG F3.5 fisheye lens,
mounted on a Vanguard Alta Pro 263AT tripod.
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2.3 Calculation of single scan and whole plot PAI using DHP data

For each of the red-green-blue (RGB) DHP images we extracted the blue band for image thresholding, as this best
represents sky/vegetation contrast (Pfeifer et al., 2012). For each plot, we picked the exposure setting that best
represented sky/ vegetation difference based on pixel brightness histograms of four sample locations indicative of
the plot. We carried out automatic image thresholding using the Ridler and Calvard method (1978), to create a
binary image of sky and vegetation, avoiding subjective user pixel classification (Jonckheere et al., 2005). We
calculated PAI from the binary image, limiting the field of view to a 5° band centred on the hinge angle of 57.5°
(55° — 60°). The hinge angle has a path length through the canopy twice the canopy height, so the band around it
is an area of significant spatial averaging taken as representative of canopy structure of the area (Calders et al.,
2018; Jupp et al., 2008). From the binarised hinge angle band we calculated gap-fractionP ., as the number of sky
pixels divided by the total number of pixels and PAI using an inverse Beer-Lambert law equation (Monsi and
Saeki, 1953). We calculated whole plot PAI as the arithmetic mean within plot scan location PAI. As this value
does not correct for canopy clumping, it is better described as effective PAI, rather than true PAI (Woodgate et
al., 2015). However, as the TLS and DHP methods we apply here account for canopy clumping differently, we
compared effective values and here-on refer to effective PAI as PAI (Calders et al., 2018).

2.4 Calculation of single scan and whole plot PAI from TLS data

To calculate PAI using the LIDAR Pulse method (Jupp et al., 2008), we calculated the gap-fraction{Pgap} for a
single scan (Figure 1b) by summing all returned laser pulses and dividing by the number of total outgoing pulses,
following Lovell et al. (2011; see Eq. 7 in that study), and then estimated PAI following Jupp et al. (2008; see Eq.
18 in that study), setting the sensor range to 5° around the hinge angle as before (55° — 60°). Single scan PAI was
taken as the cumulative sum of PAI values estimated by vertically dividing the hinge region into 25 cm intervals
(Calders et al., 2014). We implemented the LiDAR Pulse method using the open-source R (R Core Team, 2020)
package, rTLS (Guzman and Hernandez, 2021).

To calculate PAI using the 2D Intensity Image method (Zheng et al., 2013), we converted 3D TLS point cloud
data from all 528 scan locations into polar coordinates,-and scaled intensity values to cover the full 0-255 range
(Figure 1c) and rasterised into a 2D intensity image using the open-source R package, raster (Hijmans, 2022). We
cut the 2D intensity image to a 5° band around the hinge angle (55°—60°) and classified sky and vegetation pixels
in each image using the Ridler and Calvard method (1978). We calculated Pgap as the number of pixels classified
as sky divided by the total number of pixels and derived PAI with an inverse Beer-Lambert law equation (Monsi
and Saeki, 1953).

Following the same approach as applied to our DHP data, we calculated whole plot PAI for the LiDAR Pulse and

2D Intensity Image methods as the arithmetic mean of within plot single scan PAI estimates.

To calculate PAI using the Voxel-Based method, we followed a voxel classification approach (Hosoi and Omasa,
2006), downsampling the point cloud to 0.05 m to aid computation time and matching the voxel size to the
resolution of the point cloud-(0-65-m), following (Li et al., (2016), who showed that matching the voxel size to

the point cloud point to point minimum distance (resolution) increases accuracy as small canopy gaps are not

included in voxels classified as vegetation. We chose a voxel classification approach as this method is widely

applicable to a range of TLS systems and levels of processing as well as providing explicit guidance on voxel size
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selection, which is known to impact derived PAI estimates (Li et al., 2016). We re-combined individually

segmented trees, filtered for noise using a height-dependent statistical filter (see Owen et al., 2021) back into

whole plot point clouds and voxelised them using the open source R package, VoxR (Lecigne et al., 2018), with a
full grid covering the minimum to maximum XYZ ranges of the plot. We classified any voxel containing > 0
points as vegetation (“filled”), and empty voxels as gaps. We then split the voxelised point cloud into slices one
voxel high. Within each slice, the contact frequency is calculated as the fraction of filled to total number of voxels.
We then multiplied the contact frequency by a correction factor for leaf inclination, setat 1.1 (Li et al., 2017), and

whole plot PAI was calculated as the sum of all slices” contact frequencies.

2.5 Calculation of individual tree PAL, WAI and a using the voxel-based method

(b)

Figure 2: Visualisation of the workflow for applying the Voxel-Based method to estimate individual-tree PAI, WAI and
. (a) Individual tree point cloud; (b) separated leaf off (wood) individual tree point cloud; (c) voxelised individual tree
point cloud; (d) voxelised wood cloud. Selid-black-Coloured voxels_(green represents leaf and brown represents wood)
are filled voxels and grey lines are empty voxels. Empty voxels occupy the space within the projected crown area of the
tree. Image shows schematic of point cloud voxelised with cube voxels with edge length of 0.5 m. Panels a and b show
Wwood and leaf separation_of an example P. sylvestris,-was carried out using TLSeparation (Vicari et al., 2019). Point
cloud voxelisation was carried out using modified functions from R package VoxR (Lecigne et al., 2018).
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As the only method using multiple co-registered scans, the Voxel-Based method is only method compared in this
study we-found-capable of deriving PAI, WAI and LAI of segmented individual tree point clouds-estimating
individual-tree-leaf-and-woed-properties. We estimated PAI and WAI for 2472 individual trees segmented from

co-registered point clouds following a similar method to the whole plot point cloud. We used individual tree point

clouds downsampled to 0.05 m, to aid computation time, and extracted segmented individual-trees-using the

automated tree segmentation program treeseg (Burt et al., 2019), implemented in C++, see by Owen et al., (2021)
for_that study. full-details;-and_Individual segmented tree data are available in Owen et al., (2022). for-individuat
segmented tree data.

To estimate PAI, WAI and o for each tree, we first-separated-leaf-from-woed-peintsin- used individual tree point

clouds wood — leaf separated by {Owen et al., (2021) using the open source Python library TLSeparation (Vicari

et al., 2019), and then used the_separated wood-erty point clouds to calculate WAI. TLSeparation elassifies

assigns points-as as either leaf or wood, iteratively looking at a predetermined number of nearest neighbours (knn).

The knn of each iteration is directly dependent on point cloud density, since high density point clouds will require
higher a knn (Vicari et al., 2019). We-used-tThe utility package in TLSeparation was used to automatically detect

the optimum knn for each tree point cloud.

To voxelise individual tree complete (Figure 2a) and wood only (Figure 2b) point clouds, we used a modified
approach based on Lecigne et al., (2018), voxelising within the projected crown area of the whole tree point cloud

(Figure 2c) to calculate PAI._In the same way as for PAI, w\e calculated WAI using the separated wood point

cloud within the projected crown area of the whole tree (Figure 2d; using the whole crown and not just the wood

point cloud), and derived o for each tree as WAI/PAI' To allow a comparison with existing literature estimating

o. (Seaetal., 2011; Woodgate et al., 2016) we focused on a values.

2.6 Statistical Analyses

We tested the relationships between F=S-PAIPAIr s and BHP-PAIPAIpHe estimates using Standardised Major

Axis (SMA) using the open source R (R Core Team, 2020) package, smatr (Warton et al., 2012). SMA is an
approach to estimating a line of best fit where we are not able to predict one variable from another (Warton et al.,
2006); we chose SMA because we do not have a ‘true’ validation dataset, so avoid assuming either DHP or any
of the TLS methods produces the most accurate results. For each TLS method, we assessed the relationship with

DHP using the coefficient of determination and RMSE. We chose to compare PAI values rather than WAI or LAI

as each method corrects for non-photosynthetic elements in different ways and would introduce bias, limiting the

ability to directly compare metrics. To further understand observed drivers of variance in PAI, we tested the

relationship between PAI and TLS estimated whole plot crown area index, CAl, calculated as the sum of projected
crown area; divided by the plot area (Owen et al., 2021), and-indicative- and a proxy measure of stand density and
local competition (Caspersen et al., 2011; Coomes et al., 2012), using SMA.

To test if a differs by species, we used linear mixed models (LMMs) in the R package, Ime4 (Bates et al., 2015).

We included an intercept only random plot effect to account for local effects on a:

a;sj = as + Plot; (1)
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here, i is a of an individual of species s, in plot j, and as is the parameter to be fit. To test the effect of stand
structure and tree height on o, we fit relationships separately for each species, again including a random plot

effect:

@;sj = as + bg H; + ¢; CAL; + Plotg; )

here Hi is the height of the tree, CAl; is the crown area index for the plot, with other parameters as before.

For each species’ model (equation 2), we calculated the intra-class correlation coefficient (ICC). The ICC, similar
to coefficient of determination, quantifies the amount of variance explained by the random effect in a linear mixed
model (Nakagawa et al., 2017).

3. Results

3.1 Comparison of plant area index estimated by DHP and single scan TLS

Of the two single scan TLS methods tested (LiDAR Pulse method and 2D Intensity Image method), we found that
the relationship between PAI estimated using the LiDAR Pulse method_and rere-strongly—agreed-with-DHP

(SMA; LiDAR Pulse method R?= 0.50, slope = 0.73, p<0.001, RMSE = 0.14, and 2D Intensity Image method R?
=0.22, slope = 0.38, p<0.001, RMSE = 0.39, respectively, Figure 3a). At larger PAI values, relative to DHP, both
TLS methods underestimated PAI compared-with-DHP-(Figure 3b). We found statistically significant negative
correlations between residuals and DHP for both methods (SMA,; 2D Intensity Image method residuals R? = 0.85,
slope = -0.88, p<0.01; LiDAR Pulse method residuals R? = 0.47, slope = -0.70, p<0.01; Figure 3b). The 2D

Intensity Image method showed larger underestimation at higher BHP-PAIPAIp1p values, suggesting this method

may saturate sooner than both DHP and the LiDAR Pulse method at higher PAI values (Figure 3b).
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Figure 3: Comparison of single scan F=S-PAIPALr s and BHP-PAIPAIpHp estimates, for all 528 scan locations (16 per

plot). (a) The correlation between DHP derived PAI with PAI derived using the 2D Intensity Image method R? = 0.22
slope = 0.38, p<0.001, RMSE = 0.39 (circles), and LiDAR Pulse method R?= 0.50, slope = 0.73, p<0.001, RMSE = 0.14
(triangles). Dashed line_in panel a represents 1:1 relationship. (b) The difference between-FLS PAlris and BHP
PAIPAIpHe estimates for the 2D Intensity Image method, and LiDAR Pulse method (dashed line at in panel b represents
0). Lines show statistically significant relationships fitted using SMA (p<0.01).

3.2 Comparison of whole plot plant area index estimated using TLS and DHP and the effect of plot structure
on PAI

We found statistically significant correlations between_whole plot FLS-whele—plet-PAlrs values and BHP
PAIPAIpp for all three TLS methods. As for single scans-{Figure-3), the LIDAR Pulse method showed the closest
agreement to BHP-PAIPAIpHp, here compared to both the Voxel-Based and 2D Intensity Image methods (SMA,;
LiDAR Pulse method R? = 0.66, slope = 0.82, p<0.01, RMSE = 0.14; Voxel-Based method R? = 0.39, slope = 2.76,
p<0.01, RMSE = 0.88; 2D Intensity Image method R?= 0.35, slope = 0.36, p<0.01, RMSE = 0.39, respectively;
Figure 4a). The 2D Intensity Image method and LiDAR Pulse method consistently underestimated PAI compared
to DHP, whilst the Voxel-Based method underestimated in plots with lower BHRP-PAIPAIpHe and overestimated
in plots with higher BHP-PAIPAIpHp. The Voxel-Based method’s high PAI values compared to other methods is

likely due to its use of multiple co-registered scans reducing occlusion effects prevalent in single scan data.

To assess the effect of plot structure on variation in TLS derived PAI, we compared F-S-PAIPAIT s estimates to
TLS estimated crown area index (CAl, m? projected crown area per m? ground area, Figure 4b). We found a
significant positive relationship between CAI and PAI estimated using each of the LiDAR Pulse method, the
Voxel-Based method, and DHP (SMA; LiDAR Pulse method R? = 0.79, slope = 1.69, p<0.01; Voxel-Based method
R? = 0.76, slope = 5.72, p<0.01; 2D Intensity Image method R2 = 0.15, slope = 0.76, p<0.05; DHP R? = 0.46,
slope =2.07, p<0.01, respectively; Figure 4b), where the 2D Intensity Image method appears to saturate at medium
CAl values (Figure 4b).

24

Formatted:

Subscript

Formatted:

Subscript

Font: 9 pt, Bold

Formatted:

Font: 9 pt, Bold

Formatted:

[
[
{ Formatted:
[
[

Subscript

(D D | W

{ Formatted:

Subscript

[ Formatted:

Subscript

[ Formatted:

Subscript

[ Formatted:

Subscript

[ Formatted:

Subscript




302

303
304
305
306
307
308
309

310

311
312
313
314
315
316
317
318
319
320
321

2D Intensity :
4 ? L'DA”::TY g ¥ 41/ 2Dintenstyimage
/ VI | - / LiDAR Pulse
oxe
/ Voxel

DHP

PAlys
~
PAI

05 1.0 1.5 0'2 D‘»: 0'6

Figure 4: Comparison of plot level F=S-PAIPAlr s and BHP-PAIPAIpHe, and CAl vs PAI estimates for all 33 plots. (a)

The correlation between DHP derived PAI and PAI derived using 2D Intensity Image R? = 0.35, slope = 0.36, p<0.01,
RMSE = 0.39 (circle), LIDAR Pulse R? = 0.66, slope = 0.82, p<0.01, RMSE = 0.14 (triangle) and Voxel-Based R? = 0.39,
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slope = 2.76, p<0.01, RMSE = 0.88 (cross) methods (b) The correlation between TLS derived CAl and PAI derived
using DHP_R? = 0.46, slope = 2.07, p<0.01 (square), 2D Intensity Image R? = 0.15, slope = 0.76, p<0.05 (circle) LiDAR
Pulse R? = 0.79, slope = 1.69, p<0.01 (triangle) and Voxel-Based R? = 0.76, slope = 5.72, p<0.01 (cross) methods. Lines
show statistically significant relationships fitted using SMA (p<0.01). Dashed line_in panel a represents 1:1 relationship.

3.4 Influence of species, tree height and CAl on a

To understand drivers of variance in o, we used individual tree PAIl and WAI, calculated using the Voxel-Based
method to test the relationship between species and o, and height/ CAl and o. We found that more drought tolerant
species generally had higher o values than less drought tolerant species (Table Al; Figure 5), however, confidence
intervals were wide and overlapping, suggesting that species is not a strong predictor of variation in o.. We found
a statistically significant negative effect of height (p<0.001; Table A2; Figure 6a) and positive effect of CAl
(p<0.01 — 0.05; Table A2; Figure 6b) on « for all species apart from P. sylvestris. o decreased more rapidly with
height and increased less rapidly with CAl for oaks than pines. Statistically significant ICC values were higher
for P. nigra (ICC = 0.211; Table A2) than P. pinaster, Q. faginea and Q. ilex (ICC = 0.036; 0.060; 0.070,
respectively), showing that more o variation is explained by the random plot effect in P. nigra than the other

species. P. pinaster has a wider confidence interval (Figure 5), possibly explained by its lower sample size. To
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understand drivers of variance in WAI we carried out additional analysis to test the relationship between WAI

and species, height, CAl and PAI, and presented these results in Appendix C.
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Figure 5: Linear mixed model derived a values (a, equation 1) for all 2472 individual trees of species P. sylvestris, P.
nigra, Q. faginea, Q. ilex and P. pinaster. Error bars represent 95% confidence intervals. Species are listed from low —
high drought tolerance, with the exception of P. pinaster, for which drought tolerance index has not been calculated in
the literature. Drought tolerance rankings are taken from ¢(Niinemets and Valladares, (2006)
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Figure 6: Variation in a for each species: Pinus nigra, P. pinaster, Q. faginea and Q. ilex with (a) height and (b) plot
CAl. Lines represent statistically significant linear mixed models (equation 2; p < 0.001 — p < 0.05). Ribbons represent
95% confidence intervals. The model for P. sylvestris was not statistically significant.
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4. Discussion

4.1 Comparison of approaches to deriving PAI from remote sensed data

We found substantial differences in PAI values estimated from TLS and DHP and from different TLS processing
methods (Figures 3 and 4). Further, differences between TLS methods varied across plot structure (CAI), with the
greatest differences between methods in plots with high CAl, and therefore high canopy density. Although
previous studies have presented TLS as an improvement over DHP due to its independence of illumination and
sky conditions during the data acquisition phase, and ability to resolve fine-scale canopy elements and gaps
(Calders et al., 2018; Grotti et al., 2020; Zhu et al., 2018), we have shown that there is large variability between
TLS processing methods in Mediterranean forests. Rigorous intercomparison of approaches, ideally using

standard benchmarking TLS datasets, and destructive sampling, would improve trust and reliability of TLS

algorithms.

We found the LiDAR Pulse method (Jupp et al., 2008) to have the best agreement with DHP for both whole plot
and single scan PAI estimates. In contrast to previous studies comparing PAlms with— PAlprp eomparisens
(Calders et al., 2018; Grotti et al., 2020; Woodgate et al., 2015), we found that the LiDAR Pulse and 2D Intensity
Image methods underestimated PAI compared to DHP, except at very low PAIl values (PAlrs < 0.5).

Quantification of PAI from DHP may introduce additional sources of error, for example, its relatively lower

resolution compared to TLS could lead to mixed pixels that have a greater chance of misclassification of sky as
vegetation (Jonckheere et al., 2004). This effect could be enhanced in a Mediterranean forest as trees in drier
climates tend to have smaller leaves (Peppe et al., 2011), leading to more small canopy gaps that TLS may resolve
where DHP cannot. Further, although we took steps to reduce the error introduced at DHP data acquisition and
processing steps, including using automatic thresholding and collecting images with multiple exposures, DHP
processing requires both model and user assumptions that can impact results. For example, BHP-PAIPAIpLp
estimates are highly sensitive to camera exposure; increasing one stop of exposure can result in 3 — 28% difference

in PAI and use of automatic exposure can result in up to 70% error (Zhang et al., 2005).

We found the Voxel-Based method overestimated PAI values compared to the other methods at the whole plot
level. This is likely due to the method’s use of co-registered scans, rather than averaged single scan PAI values,
since co-registered scans will reduce occlusion effects prevalent in single scan data that could to lead to an
underestimation of PAI (Wilkes et al., 2017). The Voxel-Based method is, however, sensitive to voxel size (Li et
al., 2016), and larger voxels lead to larger PAI estimates as they fill small canopy gaps; we chose a voxel size of
0.05 m to match the minimum distance between points in our downsampled dataset. However, the Voxel-Based
method is a memory intensive approach to calculating PAI, and smaller voxels have higher memory requirements.
We picked this data resolution, and therefore voxel size, to balance the need to capture fine-scale canopy details
against memory requirements for running many large plots. Voxel size could have been chosen based on
estimates’ match to DHP, but this would assume (1) that DHP estimates are most accurate, and (2) that DHP data
are always available, limiting the wider applicability of our findings. Understanding which method is over or

underestimating would require a destructively sampled dataset for validation, which was not possible for this
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study (or most ecosystems). However, other studies using voxel approaches have found that although these
produce high LAI values for individual trees, these are underestimates compared with destructive samples (Li et
al., 2016). Regardless, PAI and LAI estimates using a Voxel-Based approach are highly dependent on voxel size
{Béland-et-al-2014) (Li et al., 2016), and future work should test the influence of voxel size on PAI estimates,

using destructive samples in a range of environments.

Relationship between PAI and CAl varied according to method and senso

The relationship between the LIDAR Pulse method had-the strongest-relationship-{defined-as-highestR?)-with and
TLS derived CAI_had the highest R?, demonstrating that the method is well suited to measuring PAI across the

range of plot CAl values used in this study. Although the 2D Intensity Image method can tackle the significant
challenges presented by edge effects and partial beam interceptions, particularly present in phase-shift systems
(Grotti et al., 2020), our results suggest this method has a lower performance ability, with saturation occurring
sooner than all other methods in dense forests (Figures 3 and 4). The 2D Intensity Image method uses the same
raw single scan data as the LiDAR Pulse method, so the better performance from the latter is likely due to the
method’s use of vertically resolved gap fraction; both the LiDAR Pulse method and Voxel-Based method account

for the vertical structure of the canopy by summing vertical slices through the canopy.

4.4 g variation between species and plot

We used the Voxel-Based method to investigate individual tree o variation between species and across structure,
as this was the only approach we comparedidentified that could be applied to single tree point clouds. We found
o values obtained were within the range of values obtained from destructive approaches (0.1 — 0.6, Gower et al.,
1997). The drought and shade intolerant P. nigra showed stronger variability in o across plots (higher ICC value,
Table A2) than other species, suggesting its wood — leaf ratio may be more sensitive to site factors. However, as
the plots measured in this study vary in both abiotic conditions (altitude, aspect, slope, wetness) as well as species

composition, stem density and canopy cover, there may be other drivers of variation in a values.

We found some evidence that species with higher drought tolerance had higher o values (Figure 5; Table A1),
however, confidence intervals were wide, suggesting a weak relationship. There is evidence that trees that tolerate
water limited environments have a lower leaf area (Battaglia et al., 1998; Mencuccini and Grace, 1995), so higher
a values may reflect maintenance of homeostasis of leaf water use through adjustment of wood to leaf area ratio
(Carter and White, 2009; Gazal et al., 2006). The potential for a tree to lose water is mostly regulated through leaf
traits including stomatal conductance and leaf area, and both stand (Battaglia et al., 1998; Specht and Specht,
1989) and individual tree (Mencuccini, 2003) water use have been found to scale linearly with LAI, with drought

often mitigated through leaf shedding (Lo6pez et al., 2021).

4.5 Tree stature and stand density drives o variation

Although species had a weak relationship withexplain-seme-variation-in a, tree height and plot CAl were-stronger
predictorshad a statistically significant relationship with o (p<0.001 — p<0.05) for all species, showing the

importance of local stand structure on leaf and woody allocation. We found that a scaled negatively with height
for all species apart from P. sylvestris, suggesting that in this environment, taller trees generally have a lower
proportion of wood to plant area index than shorter ones. P. sylvestris, which is at the edge of its geographical

range and physiological limits (Castro-Diez et al., 1997; Owen et al., 2021), showed no significant relationship
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between height and a.. We found that o scaled positively with plot level CAl for all species apart from P. sylvestris,
that is, trees growing in denser plots have a higher o. This supports theory that trees growing in dense forests are
competing for resources, reducing individual tree leaf area (Jump et al., 2017). The negative height — a and positive
CAIl — a relationships in our model suggest that trees may initially invest in vertical growth to reach the canopy
level, and once there invest in lateral growth, with more leaf area, to increase light capture. This supports theory
that trees grow to outcompete neighbouring individuals for light capture (Purves and Pacala, 2008) and evidence
that both lateral growth and LAI are reduced beneath closed canopies (Beaudet and Messier, 1998; Canham,
1988).

Wood may be harder to accurately classify than leaves in TLS data (Vicari et al., 2019), resulting in a higher
occurrence of false positives in wood clouds, potentially leading to an overestimation in WAI, and therefore
underestimation of o, especially in trees with small leaves which are prevalent in dry, Mediterranean environments
(Peppe et al., 2011). The problem of misclassification will increase in taller trees due to TLS beam divergence,
occlusion and larger beam footprint at further distances (Vicari et al., 2019), suggesting that WAI overestimation
could be more pronounced in tall trees. Although our dense scanning strategy (Owen et al., 2021) was designed
to mitigate some of these effects, it is possible our findings could underestimate the slope of the negative

relationship between o and tree height.

4.6 Correcting for non-photosynthetic elements in LAI estimates using TLS

The value of TLS data to estimate individual tree PAIl, WAI and subsequently a, demonstrates their potential to
corrective factors for non-photosynthetic components in ground based remote sensing measurements of LAL.
Properly correcting for WAI in LAI estimates is of global importance as small errors in ground based
measurements propagate through to large scale satellite observations generating large errors in global vegetation

models (Calders et al., 2018)._The work presented here provides a foundation for future work combining multi-

source and multi-scale remote sensing datasets to correct large-scale LAl products. Our results echo others’ in

finding that the prevalence of woody material in the tree canopy, and therefore a, is dynamic and varies by species
as well as senescence, crown health and, in the case of deciduous forests, leaf phenology (Gower et al., 1999).
The use of single a value in a plot or region (Olivas et al., 2013; Woodgate et al., 2016), invariant of species, size
and forest structure, to convert PAI to LAl is therefore problematic (Niu et al., 2021). Our study demonstrates the
importance of taking species mix and structural variation into account when correcting for non-photosynthetic

material in ground-based LAI estimates.
5. Conclusions

We tested three methods for estimating PAI using Terrestrial Laser Scanning data and compared these against
traditional DHP measurements. We found large variation between PAI values estimated from each TLS method
and DHP, demonstrating that care should be taken when deriving PAI from ground based remote sensing methods.
Although the LiDAR Pulse method was found to have the best agreement with both single scan and whole plot
PAI values measured by DHP, the Voxel-Based method allowed separate analysis of the key metric used to correct
for the effect of WAI in LAI measurements, a, in individual trees. We recommend the LiDAR Pulse method as a
fast and effective method for PAI estimation independent of illumination conditions. Whilst the Voxel-Based

method may be used to analyse individual tree a and determine ecological drivers of variation, work remains to
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determine the validity of these approaches, in particular correct voxel size choice. We found that a varies by
species, height and stand density, showing the importance of accurately correcting for WAL on the individual tree
level and the utility of TLS to do so.

The variation in our results for the different methods used to derive PAI from TLS data show that there is some
way to go before TLS derived vegetation indices can be interpreted as robust and reliable. Validation using
destructive samples and further intercomparison studies of methods are needed to demonstrate the advantages of
TLS, and use of benchmarking datasets should be standard. DHP is a faster, cheaper and more widely accessible
method for PAI estimation, and while TLS promises to alleviate potential bias in DHP estimates, results are highly
methods dependent. Our results demonstrate the challenges that stand in the way of large scale adoption of TLS

for vegetation indices monitoring.

6. Code availability
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Appendix A

Table 1: species — a linear mixed model (equation 1) showing relationship between tree species and a for all 2472
individual trees. Species are listed from low — high drought tolerance, with the exception of P. pinaster, for which
drought tolerance index has not been calculated in the literature.

Species a(eq.1) 95% CI

P. sylvestris 0.144 0.131, 0.158
P. nigra 0.138 0.127, 0.149
Q. faginea 0.149 0.140, 0.157
Q. ilex 0.155 0.146, 0.166
P. pinaster 0.168 0.145,0.192

Table 2: height — a linear mixed models for each species (equation 2) showing relationship between tree height and plot
CAI and o for all 2472 individual trees. Species are listed from low — high estimated a. Significance codes: p < 0.001
o < 0.01 “**°5 p < 0.05 “*’; not significant "

Species b (eq. 2) (95% Cl) c(eq. 2) (95% CI) IcC

P. sylvestris -0.002" (-0.004, 0.000) 0.1347 (0.010 0.259) 0.151

P. nigra -0.005*** (-0.006, -0.004) 0.164** (0.063, 0.263) 0.211

Q. faginea -0.008*** (-0.010, -0.007) 0.058* (0.016, 0.101) 0.060

Q. ilex -0.015*** (-0.020, -0.011) 0.113** (0.050, 0.179) 0.070

P. pinaster -0.006*** (-0.008, -0.004) 0.317* (0.177, 0.453) 0.036
Appendix B
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Figure 1: Map of plot locations within two field sites in central Spain (Cuellar, left and Alto Tajo, right). Red points
show plot locations on high-resolution digital terrain models enhanced with hillshading shown in greyscale.
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Appendix C

WAL = Mgpecies + b (1)
WAI = Mygigne +b - (2)
WAI = mgy + b ©)]
WAI = mpy; + b )

Where WAL is the wood area index, species, height, CAl and PAI are the tree species, tree height, crown area
index of the plot in which the tree is growing and tree plant area index respectively and m and b are parameters to
be fit.

0.6

WAI

0.5

041 % %

Figure 2: Linear model derived WAI values (m, equation C1) for all 2472 individual trees of species P. sylvestris, P.
nigra, Q. faginea, Q. ilex and P. pinaster. Error bars represent 95% confidence intervals. Species are listed from low —
high drought tolerance, with the exception of P. pinaster, for which drought tolerance index has not been calculated in
the literature.

Table 3: Linear model (equation C1) showing relationship between tree species and WAI for all 2471 individual trees.
Significance codes: p <0.001 “***’; p <0.01 “**’; p < 0.05 **’; not significant ‘">

Species m (eq. 1) Std. Error P value
P.nigra 0.57 0.008 *E*

P. pinaster 0.69 0.018

P. sylvestris 0.56 0.014

Q. faginea 0.39 0.010 roxk

Q. ilex 0.37 0.013 *xk
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Table 4: Linear models (equations C2, C3, C4) predicting WAI as a function of tree height, CAI (density) and PAI
Significance codes: p <0.001 “***>; p <0.01 “**°; p < 0.05 “*’; not significant ‘">

m(eq. 2, 3, 4) R? P value
Tree Height 0.02 0.27 *E*
CAl 0.39 0.78 *oxk
PAI 0.11 0.35 kK
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