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We thank reviewer for acknowledging the impact of this paper and their comments which we 
have discussed below and think have significantly improved the manuscript.  

2.1 I think this article's first and foremost improvement point is that the research goal 
is not clear and in-depth enough.  

We apologise for a lack of clarity here, and agree that the twin goals of methodology 
comparison and ecological insight are not presented in as clear a manner as they could be. 
We have edited the wording in section 1.3 to improve their readability and enhance the 
communication of their importance (L132-133): 

“The aims of this study are twofold: the first aim is to compare three TLS methods for 
estimating PAI with traditional DHP. The second aim of this study is to use TLS to 
understand drivers of individual tree α variation.” 

2.2 The presentation of the results is not complete, which makes it difficult for readers 
to capture their needed information, such as the WAI variation trend (functions) 
among 5 tree species related to their height and density. 

We apologise that our analysis of WAI was not clear to the reviewer. We chose to compare 
methods based on PAI estimates, and not WAI or LAI, to avoid introducing additional 
processing steps and complexity and therefore to more directly compare the chosen 
methodological approaches. Differences in PAI between different TLS and DHP estimates 
can be attributed to differences in processing approaches, whereas comparison of WAI 
introduces additional error from separation approaches.  

To improve clarity, we have added the following (L241-242): 

“We chose to compare PAI values rather than WAI or LAI as each method corrects for non-
photosynthetic elements in different ways and would introduce bias, limiting the ability to 
directly compare metrics.” 

See also our response to comment 2.4 below. 

2.3 Referring to the DHP results, authors evaluated the error of WAI and PAI analyzed 
by point clouds. I would like to know if the authors use the TLS data to improve 
the LAI evaluation accuracy. TLS can support assessing the single tree and plot-
level WAI more accurately.  

We agree completely that the combination of TLS and DHP might improve analyses, and 
this has been developed in methods not tested in this paper (e.g. Kamoske et al., 2019).  

Here we did not use the two datasets together, preferring instead to retain the ability to 
compare them as independent estimates of the indices of interest. We note that neither 
should be viewed as the ‘truth’, and therefore using them in combination could introduce 
additional biases that would be challenging to disentangle. Nevertheless, others could use 
our data to perform the analyses suggested. 

2.4 More importantly, whether the WAI of different Mediterranean trees has similarities 
between the same species, as well as providing specific information (maybe list in 
thematic tables to show the relationship among species, tree height, density, and 
PAI), will make readers benefit greatly. I think the measured data of this study can 
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support this research goal, while they are not fully presented in the current 
edition. 

Although these are not the focus of this study, we agree that additional information could 
prove useful to some readers. We thank the reviewer for their suggestion of including WAI 
analysis, which we think has significantly improved the manuscript. We have added Figure 
C2 and Tables C3, C4 to the supplementary information and refer to this in the main 
manuscript, section 3.4 (L320 – 322): 

“To understand drivers of variance in WAI we carried out additional analysis to test the 
relationship between WAI and species, height, CAI and PAI, and presented these results in 
Appendix C.” 

2.5 In addition, the presentation of the results is incomplete. I did not find the location, 
site conditions and tree species appearance of the measured plots shown in the 
manuscript.  

We apologise for this omission. This information is presented in the cited study Owen et al. 
(2021), but we have added a detailed site map to the supplementary materials, Figure B1, 
which is referred to in L145 of the main text. 

Please see also our response to comment 2.14 

2.6 The segmentation results of different tree species and the statistical information 
on PAI and WAI of trees grown in different site conditions were also not provided.  

We thank the reviewer for their comment and apologise for lack of clarity around the 
segmentation process. Individual tree segmentation was carried out by the authors for a 
separate study (Owen et al., 2021). We have amended section 2.5 (L218 – 222) to clarify the 
segmentation process and have signposted (Owen et al., 2021). 

Please see also our response to comment 2.17. 

2.7 In addition, critical mathematical functions and quantitative conclusions are also 
lacking in the current edition. 

We apologise for this lack of completeness. We are not entirely clear to which functions the 
reviewer refers, but for reasons of clarity and brevity we chose to primarily describe the 
various processing methods we used rather than repeat their original descriptions, which are 
extensive within the cited literature. Where equations have been used from other studies, we 
have cited the original equation number along with the paper in-text (but see response to 2.8 
below).  

2.8 I suggest authors reconsider whether it is necessary to study the CAI. This 
parameter can be easily analyzed using remote sensing images without using 
TLS. 

In this study we used CAI as a proxy measure of stand density (L248), which was a 
necessary within our model to both understand and correct for the effect of stand density on 
wood to plant ratio, α. Controlling for stand density (using CAI as a proxy) is important as 
trees growing in dense plots have lower water availability per tree (see L75-77). We chose to 
use CAI as Owen et al., (2021) showed that the metric is also indicative of plot-level 
competition and the metric accounts for crown overlap which cannot be estimated from 



3 

 

imagery in closed forests. Furthermore, Coomes et al., (2012) showed CAI to be better than 
traditional metrics such as basal area, as it is more intuitive to non-specialists and strongly 
predicts productivity.  

We apologise for the lack of clarity when describing this metric and its intended use in the 
study, which was also commented on by reviewer 1 (comment 1.7).  

We have therefore amended our description of the key metric, CAI, for quantifying stand 
density and local competition in section 2.6 L245-248:  

“To further understand observed drivers of variance in PAI, we tested the relationship 
between PAI and TLS estimated whole plot crown area index, CAI, calculated as the sum of 
projected crown area divided by the plot area (Owen et al., 2021),  and a proxy measure of 
stand density and local competition (Caspersen et al., 2011; Coomes et al., 2012), using 
SMA.” 

2.9 Furthermore, is it applicable to use a fixed voxel size when analyzing WAI? After 
all, different tree species have various canopy shapes and branch structure 
features. Adaptive adjusting the voxel size according to the point cloud density 
and the branch distribution trend may be more reasonable. 

We thank the reviewer for their comment on voxel size and agree that finding an appropriate 
voxel size a complex problem (discussed extensively in the response to the other reviewer). 
We chose the method of voxel classification rather than a radiative transfer approach as it 
has a definitive method for choosing voxel size based on matching the voxel size to the 
resolution of the point cloud, which was tested against voxel sizes based on individual tree 
leaf size, and distance of beam, using destructive samples in Li et al., (2016). Using a 
radiative transfer approach, the methodology for choosing the “correct” voxel size is not 
clear, and others’ work (and our own additional, unpublished analyses) has shown that 
estimated PAI values are highly sensitive to voxel size choice.  

We have amended our discussion of voxel size in section 1.2 to reflect the contentious 
debate around voxel size choice, L108-113:  

“However, PAI estimates derived using the voxel method are highly dependent on voxel size 
(Calders et al., 2020). Using a radiative transfer approach, Béland et al., (2014) 
demonstrated that voxel size is conditional on canopy clumping, radiative transfer model 
assumptions and occlusion effects, making a single, fixed choice of voxel size within 
methods for all datasets impossible. To test various approaches to selecting voxel size using 
a voxel classification approach, Li et al., (2016) matched voxel size to point cloud resolution, 
individual tree leaf size, and minimum beam distance and tested against destructive 
samples, finding that voxel size matched to point cloud resolution had the closest PAI values 
to destructive samples.” 

To clarify our justification for use of a voxel classification approach over a radiative transfer 
approach, also commented on by reviewer 1, we have added to section 2.4 (L197-199):  

"We chose a voxel classification approach as this method is widely applicable to a range of 
TLS systems and levels of processing as well as providing explicit guidance on voxel size 
selection, which is known to impact derived PAI estimates (Li et al., 2016).” 

2.10 Optimizing the TLS-based WAI assessment methods, summarizing the 
regulation of interspecific WAI variation, and using these rules to improve the LAI 



4 

 

assessment will make this article more attractive to better support research in 
related fields.  

We thank the reviewer for their suggestion of including analysis of interspecific WAI 
variation, which we think is a valuable addition to the paper, and refer to our response to 
previous comments (2.2, 2.4, 2.11), where we have included these new analyses.  

Here, we’ve focussed on interspecific variation in alpha and PAI, rather than WAI and LAI, 
but recognise that there would be value in such an additional set of analyses. We agree that 
developing new methods to correct for WAI in LAI estimates using approaches assessed in 
this paper would make for exciting work, however we think that to do this well we would 
require further testing and validation, ideally using destructive samples or multitemporal leaf 
on/leaf off remote sensing data, which is beyond the scope of this paper.  

The following are some detailed points. I hope they will help improve the current 
edition. 

2.11 I suggest authors clarify their research goal in the initial section of the 
manuscript. As a reader, I am more interested in how to use TLS to analyze WAI. 
However, authors did not briefly introduce the WAI extraction methods in the 
abstract but focused on comparing point cloud extraction methods of PAI and LAI. 

We apologise for the lack of clarity in explaining our research goals. As in our response to 
comment 2.1, we have restated our primary and secondary research goals in section 1.3 
(L132-133). 

We thank the reviewer for their suggestion of analysing WAI, which we think has significantly 
improved the manuscript. As for comment 2.4, we have now included this analysis. We have 
chosen to keep the focus on comparing α, as this value is widely discussed in the literature. 
We have added a statement to this effect (L234-235): 

“To allow a comparison with existing literature estimating α, (Sea et al., 2011; Woodgate et 
al., 2016) we focused on α values.” 

2.12 They focused on the wood to total plant area (α). I wonder if it is feasible to 
measure the plant area because of the occlusion effect during scanning. TLS may 
be more suitable for analyzing WAI. 

We apologise not clearly stating the reasons for comparing PAI rather than WAI. All remote 
sensing methods evaluated in this paper (three TLS methods and DHP) more directly 
measure PAI than WAI or LAI as sensors are measuring the whole plant. Correcting for 
wood/ leaf to derive WAI/ LAI requires additional processing steps, which vary according to 
sensor (wood/ leaf separation algorithms for TLS and image masking for DHP, as these 
systems are not deciduous, and therefore leaf-off scans can’t be made), introducing bias and 
limiting our ability to compare output. We have added a statement to this effect to section 2.6 
(L241-242): 

“We chose to compare PAI values rather than WAI or LAI as each method corrects for non-
photosynthetic elements in different ways and would introduce bias, limiting the ability to 
directly compare metrics.” 

Please see also our response to comment 2.2 
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We agree that occlusion is a known problem with TLS data in closed canopy forests, 
however we have minimised the potential occlusion effects by following a dense scanning 
strategy following the widely cited Wilkes et al., (2017). 

2.13 Section 1.3 It will be more interesting to add some research topics on 
integrating the fine-scale WAI (or α) assessed based on TLS to correct the large-
scale LAI extracted from the multi-source remote sensing images. Based on the 
high-quality field dataset, it should be feasible to use this research in optimizing 
the large-scale LAI distribution evaluation. 

We agree this is an exciting idea and could be the focus of follow-on work. We think that the 
work presented and, as the reviewer points out, our dataset provides a foundation for a more 
robust comparison of LAI and new insights from multi-source RS datasets, but that this 
would be an additional methodological development beyond the scope of our current study.  

Following your suggestion, we have added a comment to this effect on L429-430: 

“The work presented here provides a foundation for future work combining multi-source and 
multi-scale remote sensing datasets to correct largescale LAI products.” 

2.14 In Sections 2.1 and 2.2, the location map of study plots and some images 
showing the scene of plots should be provided. The pictures of tree species also 
need to be added to show their phenotypic characteristics, which is beneficial to 
evaluate their drought tolerance (L323-324). 

We agree with the reviewer that a location map of the study plots would be beneficial to the 
manuscript and thank them for the suggestion. We have therefore added a new figure, B1 to 
Appendix B showing the locations of plots within the two field sites, Alto Tajo and Cuellar in 
central Spain.  

We believe that the plots used in this study are well studied and documented in the literature 
and therefore a detailed description of individual plot characteristics would repeat information 
already available. We have added signposting to this is section 2.1 (L143-144): 

“We collected TLS and DHP data from 29 plots in Alto Tajo Natural Park (40°41′N 02°03′W; 
FunDIV plots; see Baeten et al., (2013) for detailed description of plots)” 

The five focus species of this manuscript are widely studied and known species and 
therefore believe that adding individual images of each species is unnecessary.  

2.15 L 191 When setting this threshold (> 0 points) to identify the filled voxels, did 
you filter noisy points out from the tree TLS datasets? It is not easy to identify and 
filter all noise in TLS data. I am worried the noise would lead to a lower Pgap and 
cause inaccurate LAI and PAI. 

We apologise for not making explicit the noise filtering process of our data. We denoised 
individual-tree point clouds using height dependant statistical filtering as outlined in Owen et 
al., (2021), and combined individual tree point clouds into whole plots. We have added a 
statement to this effect to section 2.4 (L199-200): 

“We re-combined individually segmented trees, filtered for noise using a height-dependent 
statistical filter (see Owen et al., 2021) back into whole plot point clouds” 

https://tools.wmflabs.org/geohack/geohack.php?pagename=Alto_Tajo_Nature_Reserve&params=40_41_N_02_03_W_type:landmark
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While any remaining noise may indeed lead to lower Pgap, we followed standard processing 
procedure for this voxel classification method outlined in Hosoi and Omasa, (2006) and 
tested using destructive samples in Li et al., (2016). Similarly, we followed standard protocol 
in the published literature for the other two methods (LiDAR Pulse and 2D intensity Image), 
and therefore consider that our work is a fair representation of each methods’ ability to 
accurately derive PAI and allows a comparison of each methods’ merits and drawbacks. 

2.16 L203-204 Some structure features of woody and foliage materials can be 
analyzed based on the pointset-, height bin-, and patch-based models. Please 
revise this sentence. 

We apologise for the lack of clarity in this statement, and thank the reviewer for their 
suggestion. What we meant to say was that the voxel-based approach was the only method 
compared in this study capable of analysing PAI, WAI and LAI of segmented individual tree 
point clouds. We have reworded to make this clear and L215-216 now reads: 

“As the only method using multiple co-registered scans, the Voxel-Based method is the only 
method compared in this study capable of deriving PAI, WAI and LAI of segmented 
individual tree point clouds.” 

2.17 L206 The principle of TLS segmentation methods needs to be briefly 
introduced before the voxelization step. It is beneficial to improve the readability 
of the manuscript. 

We thank the reviewer for their suggestion of providing an explanation of the segmentation 
process. Trees were not segmented for this paper; we used data that had already been 
segmented by the authors for a separate study (Owen et al., 2021), and we apologise for the 
lack of clarity. We have amended the description of tree segmentation in section 2.5 (L218 – 
221): 

“We used individual tree point clouds downsampled to 0.05 m, to aid computation time, and   
segmented using the automated tree segmentation program treeseg (Burt et al., 2019), 
implemented in C++,  by Owen et al., (2021) for that study.  Individual segmented tree data 
are available in Owen et al., (2022).” 

2.18 L216 How to analyze the WAI after voxelizing woody point clouds? Some 
details should be introduced, which is key to calculating É‘ . 

We thank the reviewer for their comment and apologise for the lack of clarity in our methods 
for calculating individual tree WAI. Individual tree WAI was calculated in the same way (voxel 
classification method) as individual tree PAI, but using the wood-only cloud from the wood – 
leaf separation step. We have changed L232-233 in section 2.5: 

“In the same way as for PAI, we calculated WAI using the separated wood point cloud within 
the projected crown area of the whole tree (Figure 2d; using the whole crown and not just 
the wood point cloud)” 

2.19 L225 Why explore the relationship between PAI and CAI in this study? The CAI 
assessment seems to deviate from the research topic, as it is not highly related to 
LAI and WAI but to the crown projection area, except the canopy gap area. 
Moreover, using images for CAI analysis is sufficient. 

We apologise for not clearly stating our justification for the use of CAI in this study. CAI is 
used in this study as an indicative measure of both stand density and local competition, and 
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is included to both explore how PAI is affected by competition, but also to correct for 
anticipated competitive affects that would otherwise impact our conclusions on species’ 
differences in alpha. We thank the reviewer for their comment, and have amended our 
manuscript section 2.6 (L245 – 248). 

Please see also our response to comment 2.8. 

In closed canopies or canopies with crown overlap imagery would not capture CAI, since 
CAI is calculated using the sum of all projected crown area, not only that visible from 
imagery. We used TLS to measure CAI as CAI estimates are generated from the sum of all 
tree crown projected area and so requires individual tree measurements, either from 
segmented TLS or from ground measurements.  

2.20 L245 As shown in Figure 3, PAI estimated using the LiDAR Pulse method more 
strongly agreed with DHP PAI than the Intensity Image method. However, I found 
their correlation (R2) is not particularly significant. 

We believe this is a misreading of our meaning, and therefore apologise for not using clear 
language in reporting our statistical results. We have therefore amended section 3.1 (L266-
268): 

“Of the two single scan TLS methods tested (LiDAR Pulse method and 2D Intensity Image 
method), we found that the relationship between PAI estimated using the LiDAR Pulse 
method and DHP PAI, had a higher R2 than the 2D Intensity Image method” 

2.21 L248 Please carefully recheck the description of the results is correct 
according to Figure 3. As shown in Figure 3a, the Pulse-based method 
overestimates the PAI, while the intensity-based method underestimates the PAI. 

We apologise for the lack of clarity in explaining these results and meant to say that both 
methods underestimate relative to DHP at larger values. We have therefore amended the 
sentence in section 3.1 (L270 -271): 

“At larger PAI values, relative to DHP, both TLS methods underestimated PAI compared with 
DHP (Figure 3b).”   

2.22 L264 You did not label Voxel-Based PAI in Figure 3. Do you mean the TLS PAI 

We apologise for the lack of clarity in this sentence. Section 3.2, L286 is referring to whole 
plot plant area index (Figure 4), which does include Voxel-Based PAI. We have now 
removed the reference to Figure 3 from this sentence.  

2.23 L269 Maybe you did not set a suitable threshold when defining blank voxels. 
Merely my speculation! 

We thank the reviewer for their speculation on why we may be experiencing overestimation 
from Voxel-Based PAI estimates. We followed standard protocol as described in the 
published literature for the Voxel-Based, LiDAR Pulse and 2D Intensity Images methods, 
which has allowed us to draw a fair comparison between derived PAI values from each 
method. Although threshold values could be influencing PAI estimates, we have made a 
'best choice’ to classify non-zero point containing voxels as vegetation and believe that, 
while important research, further exploration of threshold values would be beyond the scope 
of this study.  
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Please see also response to comment 2.15. 

2.24 L282 and 257 You forget to mark the 1:1 dash line in these figures. 

This graph (Figure 4b) presents the variation in PAI against CAI in order to understand how 
competition and stand density affects PAI so we would not assume a 1:1 relationship. 
Dashed line on Figure 3b is at 0 to highlight systematic variation in the residuals. 

We apologise for the lack of clarity and have amended L308 to make this clearer: 

“Dashed line in panel a represents 1:1 relationship” 

In Figure 3b, the dashed line represents 0, as this panel is showing the relationship between 
TLS residuals and DHP PAI. We apologise for the lack of clarity and have amended L280: 

“Dashed line in panel a represents 1:1 relationship.” 

And L281: 

“dashed line in panel b represents 0” 

2.25 Although authors used the published woody-and-foliage separation methods, 
it is necessary to display some examples of TLS separation results scanned from 
diverse plots grown with different species. Due to the lack of validation data, it 
may be challenging to evaluate the segmentation accuracy. However, presenting 
the separation results is still available to support visual evaluation. 

We agree that showing an example visual assessment of wood/ leaf separation is beneficial 
to the reader and have included an example of a wood/ leaf separated P. sylvestris in Figure 
2, panels a and b. We have now included signposting in the figure caption, L212-213: 

“Panels a and b show wood and leaf separation of an example P. sylvestris, carried out 
using TLSeparation (Vicari et al., 2019).” 

We also note that wood – leaf separation was carried out by the authors for a separate 
published study (Owen et al., 2021). We apologise for the lack of clarity and have changed 
our description of the wood – leaf separation process accordingly in section 2.5 (L223-225). 
Please see our response to comment 2.33 below.  

2.26 It is not easy to accurately separate the branch and leaf point clouds of trees 
except those of broadleaf. More importantly, I am worried about whether it is 
applicable to use the same voxel size to calculate the WAI of different tree species, 
which is crucial to the conclusion. 

Although we agree it may theoretically be more difficult to separate wood and leaf in 
needleleaf trees, we note that TLSeparation was developed with applicability to both types of 
trees, with separation difficulties attributable to scanning strategy rather than separation 
algorithm (Vicari et al., 2019b). We note that this problem was minimised to the best of our 
ability in our dataset, as we followed a dense scanning strategy as outlined in Wilkes et al., 
(2017). As for comment 2.25 above, we have included an example visual assessment of a 
wood – leaf separated (needleleaf) P. sylvestris and included signposting in L212-213: 
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“Panels a and b show wood and leaf separation of an example P. sylvestris, carried out 
using TLSeparation (Vicari et al., 2019).” 

2.27 L294-297 These sentences are not clear. How to assess tree-specific drought 
tolerance? You would better add some description about its evaluation methods 
and list the metrics to evaluate the drought tolerance of different tree species in 
this figure and the related references. 

We agree the source of drought tolerance rankings needs to be clear and apologise for 
omitting this in the figure caption. Drought tolerance are taken from the widely-cited 
Niinemets and Valladares, (2006). We have amended L326: 

“Drought tolerance rankings are taken from Niinemets and Valladares, (2006)” 

2.28 In section 4.1, why did you discuss the plot-scale CAI variation? The topic of 
this section is comparing diverse approaches to deriving PAI. 

We apologise for the lack of clarity around the role of CAI in this study. As CAI was used as 

an indicative measure of stand density and local competition, it was discussed in this section 

as plots with higher CAI (and therefore greater stem density) showed greater variation in 

estimated PAI values from each method/ sensor. We note that we have now updated our 

description of CAI and its role in this study in section 2.6 (L245 – 248) and hope that the 

discussion in section 4.1 is now more clear.  

Please see also our response to comment 2.8. 

2.29 The title of Section 4.2 is a phenomenon that you need to analyze. Sections 4.2 
and 4.3 still belong to Section 4.1 to discuss the LiDAR-extracted metrics with that 
of DHP. 

The titles of sections 4.2 and 4.3 were intended to emphasise findings of particular interest 
and relevant to the initial aims of this manuscript. We agree, however, with the reviewer that 
these sections belong with 4.1 and have removed these section titles to make this more 
clear.  

 
2.30 L320 According to the field data and Figure 3, what is a very low PAI value? 

Providing a quantitative indicator will significantly improve the manuscript's 
readability than using adjective words. 

We thank the reviewer for the comment and agree that more quantitative language would 
improve the manuscript. We have therefore amended L342 to say: 

“except at very low PAI values (PAITLS < 0.5).” 

2.31 L348 The highest R2 does not show a strong correlation. 

We thank the reviewer for their comment and agree that we have not used clear statistical 
language. We have therefore changed the wording in L377 – 378: 

“The relationship between the LiDAR Pulse method and TLS derived CAI had the highest 
R2” 
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2.32 L374 This sentence is not clear. “Although species explain some variation in α, 
tree height and plot CAI were stronger predictors for all species….” According to 
the principle of these parameters, it is hard for me to agree that CAI and WAI have 
a strong correlation. 

We agree with the reviewer that we have not used clear statistical language. We have 
therefore changed this sentence in section 4.5 (L403): 

“Although species had a weak relationship with α, tree height and plot CAI had a statistically 
significant relationship with α (p<0.001 – p<0.05) for all species, showing the importance of 
local stand structure on leaf and woody allocation.” 

2.33 L390-392 This is an interesting point. I prefer you to provide some figures and 
statistical information to prove your finding, especially in different plots with 
variable growing patterns (growing density, CAI, and WAI related to the tree 
species, as you mentioned in the Conclusion section). It is beneficial to deepen 
this study topic. 

We thank the reviewer for finding this point interesting and their suggestion of including 
quantitative results of wood – leaf separation. The discussion point the reviewer refers to is a 
reference to the published paper describing the wood – leaf separation algorithm. Due to the 
lack of validation data, evaluating quantitatively the effectiveness of the wood – leaf 
separation algorithm over the different tree sizes/ growing conditions is not possible for this 
study. 

We note that the wood leaf separation process was carried out by the authors, for a separate 
study (Owen et al., 2021), in which the results are discussed in more detail and segmented 
tree files made available online, cited as Owen et al., (2022). We apologise for the lack of 
clarity here and have reworded our description of the wood – leaf separation process in 
section 2.5 (L223-229):  

“To estimate PAI, WAI and α for each tree, we  used individual tree point clouds wood – leaf 
separated by Owen et al., (2021) using the open source Python library TLSeparation (Vicari 
et al., 2019a), and then used the separated wood point clouds to calculate WAI. 
TLSeparation assigns points as either leaf or wood, iteratively looking at a predetermined 
number of nearest neighbours (knn). The knn of each iteration is directly dependent on point 
cloud density, since high density point clouds will require higher a knn (Vicari et al., 2019a). 
The utility package in TLSeparation was used to automatically detect the optimum knn for 
each tree point cloud.” 

2.34 L 398 I agree that correcting WAI can improve the LAI assessment. The TLS-
extracted data can support calibrating LAI based on WAI and PAI. The WAI may be 
similar among single trees of the same tree species. According to your results, the 
WAI shows a more evident relationship to tree height and stand density. I think the 
assessed WAI and plot-level PAI can be used to correct regional LAI for the plot or 
large-scale forests that were growing with limited tree species. 

We agree with the reviewer that interspecific WAI values will be of interest to some readers 
and thank the reviewer for their suggestion, which we think has significantly improved our 
manuscript. We have included these additional analyses in Appendix C as also discussed in 
response to comments 2.4 and 2.10. We hope this work sparks further research on 
improving LAI estimates at large scale. 

 



11 

 

 

 

 

 

Some text errors that needed to be corrected are listed as follows: 

Thank you for pointing out these errors. 

• Do not use an abbreviation in the title of your manuscript, as many readers in 
other fields do not know the meaning of TLS. 

We agree with the reviewer that abbreviations should not be used in titles and have 
amended our title accordingly.  

• I suggest authors unify the reference format throughout their manuscript. 
Different citation formats appear in the same paragraph may confuse readers. 

We thank the reviewer for their comment and have checked and corrected referencing 
throughout. 

• L135 What are FunDIV plots? 

Added “Functional Diversity” 

• L142 I do not understand “altitudinal gradient 840 – 1400 m.a.s.l.”. 

Changed to “altitudinal range”  

• L167 compare –ï¼ž  compared 

Changed to “compared” 

• L169 and 180 Please note the font size of the subscript in the Pgap. This 
abbreviation can also be used in line 162. 

Changed to subscript and moved abbreviation to first use.  

• L176 Please add a comma to this sentence. 

Comma added 

• L199 Where are the solid black voxels in Figure 2? 

Changed to “Coloured voxels (green represents leaf and brown represents wood) are filled 
voxels and grey lines are empty voxels.” 

• L209 wood only point clouds? 
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Change to “separated wood cloud”  

• L210 TLSeparation classifies points as leaf or wood? This sentence is not 
clear. 

Changed to “TLSeparation assigns points as either leaf or wood” 

• L219 TLS PAI and DHP PAI? (Using PAITLS and PAIDHP instead) 

Changed throughout. 

• L234 Please add a comma to this sentence.   

Comma added. 

• L246-248, L264-265 You can mark these metrics in the insets of Figure 3. 

We think it is important to refer to statistical results in the main text of the manuscript for 
emphasis, however have included them in the figure captions as well for completeness.  

• Points in Figure 3 can be denoted as different marks or colors, such as circles 
or crosses, red or blue, to make this chart clearer (like the style of Figure 4). 

Changed to circles and triangles.  

• L262 Please unify the term throughout the manuscript. I think TLS whole plot 
PAI means TLS PAI(PAITLS). 

Changed to “whole plot PAITLS” 

• L274-276 You would better mark these metrics in the subfigures of Figure 4. 

We think it is important to refer to statistical results in the main text of the manuscript, 
however have included them in the figure captions as well for completeness.  

• In Figures 3 and 4, please delete the unit of PAI. The PAI, LAI and WAI are all 
ratio-type parameters (no need to denote unit). 

Removed units and changed axis labels to new subscript (PAITLS / PAIDHP) 

• L318 TLS – DHP comparisons? 

Changed to “studies comparing PAITLS with PAIDHP” 

• In this article, authors used lots of open-source software to support their 
analysis. I suggest they list all applicable packages and download links to 
make readers easy to use these tools. 

We thank the reviewer for their suggestion of providing a summary of all open-source 
software used for this manuscript. We have cited all the software used in text and in the 
reference list at the end of the manuscript. We believe that citing packages in the main bod, 
readers are able to get a more detailed and contextualised explanation of the use in 
individual software packages. 
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• Please carefully check the format of all references according to the manuscript 
preparation guidelines and the latest published papers in Biogeosciences. The 
current reference format needs to be optimized. 

We thank the reviewer for their comment and have checked the reference format.  

 

References  

Baeten, L., Verheyen, K., Wirth, C., Bruelheide, H., Bussotti, F., Finér, L., Jaroszewicz, B., 
Selvi, F., Valladares, F., Allan, E., Ampoorter, E., Auge, H., Avăcăriei, D., Barbaro, L., 
Bărnoaiea, I., Bastias, C. C., Bauhus, J., Beinhoff, C., Benavides, R., Benneter, A., Berger, 
S., Berthold, F., Boberg, J., Bonal, D., Brüggemann, W., Carnol, M., Castagneyrol, B., 
Charbonnier, Y., Chećko, E., Coomes, D., Coppi, A., Dalmaris, E., Dănilă, G., Dawud, S. M., 
de Vries, W., De Wandeler, H., Deconchat, M., Domisch, T., Duduman, G., Fischer, M., 
Fotelli, M., Gessler, A., Gimeno, T. E., Granier, A., Grossiord, C., Guyot, V., Hantsch, L., 
Hättenschwiler, S., Hector, A., Hermy, M., Holland, V., Jactel, H., Joly, F.-X., Jucker, T., 
Kolb, S., Koricheva, J., Lexer, M. J., Liebergesell, M., Milligan, H., Müller, S., Muys, B., 
Nguyen, D., Nichiforel, L., Pollastrini, M., Proulx, R., Rabasa, S., Radoglou, K., Ratcliffe, S., 
Raulund-Rasmussen, K., Seiferling, I., Stenlid, J., Vesterdal, L., von Wilpert, K., Zavala, M. 
A., Zielinski, D., and Scherer-Lorenzen, M.: A novel comparative research platform designed 
to determine the functional significance of tree species diversity in European forests, 
Persepect. Plant. Ecol., 15, 281–291, https://doi.org/10.1016/j.ppees.2013.07.002, 2013. 

Caspersen, J. P., Vanderwel, M. C., Cole, W. G., and Purves, D. W.: How Stand Productivity 
Results from Size- and Competition-Dependent Growth and Mortality, PLoS ONE, 6, 
e28660, https://doi.org/10.1371/journal.pone.0028660, 2011. 

Coomes, D. A., Holdaway, R. J., Kobe, R. K., Lines, E. R., and Allen, R. B.: A general 
integrative framework for modelling woody biomass production and carbon sequestration 
rates in forests, Journal of Ecology, 100, 42–64, https://doi.org/10.1111/j.1365-
2745.2011.01920.x, 2012. 

Hosoi, F. and Omasa, K.: Voxel-Based 3-D Modeling of Individual Trees for Estimating Leaf 
Area Density Using High-Resolution Portable Scanning Lidar, IEE T. Geosci. Remote, 44, 
3610–3618, https://doi.org/10.1109/TGRS.2006.881743, 2006. 

Kamoske, A. G., Dahlin, K. M., Stark, S. C., and Serbin, S. P.: Leaf area density from 
airborne LiDAR: Comparing sensors and resolutions in a temperate broadleaf forest 
ecosystem, Forest Ecol. Manag., 433, 364–375, 
https://doi.org/10.1016/j.foreco.2018.11.017, 2019. 

Li, Y., Guo, Q., Tao, S., Zheng, G., Zhao, K., Xue, B., and Su, Y.: Derivation, Validation, and 
Sensitivity Analysis of Terrestrial Laser Scanning-Based Leaf Area Index, Can. J. Remote 
Sens., 42, 719–729, https://doi.org/10.1080/07038992.2016.1220829, 2016. 

Owen, H. J. F., Flynn, W. R. M., and Lines, E. R.: Competitive drivers of inter‐specific 
deviations of crown morphology from theoretical predictions measured with Terrestrial Laser 
Scanning, J. Ecol., 109, 2612–2628, https://doi.org/10.1111/1365-2745.13670, 2021. 

Vicari, M. B., Disney, M., Wilkes, P., Burt, A., Calders, K., and Woodgate, W.: Leaf and wood 
classification framework for terrestrial LiDAR point clouds, Methods Ecol. Evol., 10, 680–
694, https://doi.org/10.1111/2041-210X.13144, 2019a. 



14 

 

Vicari, M. B., Pisek, J., and Disney, M.: New estimates of leaf angle distribution from 
terrestrial LiDAR: Comparison with measured and modelled estimates from nine broadleaf 
tree species, Agricultural and Forest Meteorology, 264, 322–333, 
https://doi.org/10.1016/j.agrformet.2018.10.021, 2019b. 

Wilkes, P., Lau, A., Disney, M., Calders, K., Burt, A., Gonzalez de Tanago, J., Bartholomeus, 
H., Brede, B., and Herold, M.: Data acquisition considerations for Terrestrial Laser Scanning 
of forest plots, Remote Sens. Environ., 196, 140–153, 
https://doi.org/10.1016/j.rse.2017.04.030, 2017. 

 

 

  



15 

 

Quantifying vegetation indices using Terrestrial Laser 1 

Scanning: methodological complexities and ecological insights 2 

from a Mediterranean forest 3 

William Rupert Moore Flynn1, Harry Jon Foord Owen2, Stuart William David Grieve1,3 and 4 

Emily Rebecca Lines2  5 

1School of Geography, Queen Mary University of London, Mile End Rd, Bethnal Green, London E1 4NS 6 

2Department of Geography, University of Cambridge, Downing Place, Cambridge, CB2 3EN 7 

3Digital Environment Research Institute, Queen Mary University of London, New Road, London, E1 1HH 8 

Correspondence to: W. R. M. Flynn (w.r.m.flynn@qmul.ac.uk) 9 

Abstract. Accurate measurement of vegetation density metrics including plant, wood and leaf area indices (PAI, 10 

WAI and LAI) is key to monitoring and modelling carbon storage and uptake in forests. Traditional passive sensor 11 

approaches, such as Digital Hemispherical Photography (DHP), cannot separate leaf and wood material, nor 12 

individual trees, and require many assumptions in processing. Terrestrial Laser Scanning (TLS) data offer new 13 

opportunities to improve understanding of tree and canopy structure. Multiple methods have been developed to 14 

derive PAI and LAI from TLS data, but there is little consensus on the best approach, nor are methods 15 

benchmarked as standard.  16 

Using TLS data collected in 33 plots containing 2472 trees of five species in Mediterranean forests, we compare 17 

three TLS methods (LiDAR Pulse, 2D Intensity Image and Voxel-Based) to derive PAI and compare with co-18 

located DHP. We then separate leaf and wood in individual tree point clouds to calculate wood to total plant area 19 

(α), a metric to correct for non-photosynthetic material in LAI estimates. We use individual tree TLS point clouds 20 

to estimate how α varies with species, tree height and stand density.  21 

We find the LiDAR Pulse method agrees most closely with DHP, but is limited to single scan data so cannot 22 

determine individual tree α. The Voxel-Based method shows promise for ecological studies as it can be applied to 23 

individual tree point clouds. Using the Voxel-Based method, we show that species explain some variation in α, 24 

however, height and density were stronger  better predictors. 25 

Our findings highlight the value of TLS data to improve fundamental understanding of tree form and function, 26 

but also the importance of rigorous testing of TLS data processing methods at a time when new approaches are 27 

being rapidly developed. New algorithms need to be compared against traditional methods, and existing 28 

algorithms, using common reference data. Whilst promising, our results show that metrics derived from TLS data 29 

are not yet reliably calibrated and validated to the extent they are ready to replace traditional approaches for large 30 

scale monitoring of PAI and LAI.   31 

32 

mailto:w.r.m.flynn@qmul.ac.uk
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1 Introduction 33 

Terrestrial Laser Scanning (TLS) generates high-resolution 3D measurements of whole forests and individual 34 

trees (Burt et al., 2018; Disney, 2018), leading to the development of completely new monitoring approaches to 35 

understand the structure and function of ecosystems (Lines et al., 2022). Unlike traditional passive sensors, TLS 36 

can estimate plant, wood and leaf area indices (PAI; WAI; LAI) for both whole plots and individual tree point 37 

clouds (Calders et al., 2018), and is unaffected by illumination conditions. This has led to the development of 38 

several methods for processing TLS data to extract the key metrics PAI, WAI and LAI (e.g. Hosoi and Omasa, 39 

2006; Jupp et al., 2008; Zheng et al., 2013). However, intercomparison of algorithms and processing approaches 40 

to derive the same metrics from different TLS methods are lacking. 41 

Leaf Area Index (LAI), defined as half the amount of green leaf area per unit ground area (Chen and Black, 1992), 42 

determines global evapotranspiration, phenological patterns and canopy photosynthesis, and is therefore an 43 

essential climate variable (ECV), as well as a key input in dynamic global vegetation models (Sea et al., 2011; 44 

Weiss et al., 2004). Accurate measurements of LAI, WAI and PAI have historically been derived from labour 45 

intensive destructive sampling (Baret et al., 2013; Jonckheere et al., 2004), so over large spatial or temporal scales 46 

these can only be measured indirectly, typically with remote sensing. Large-scale remote sensing, using 47 

spaceborne and airborne instruments, has been widely used to estimate LAI over large areas (Pfeifer et al., 2012), 48 

but requires calibration and validation using in situ measurements to constrain information retrieval (Calders et 49 

al., 2018). Non-destructive in situ vegetation index estimates have historically been made by measuring light 50 

transmission below the canopy and using simplifying assumptions about canopy structure to estimate the amount 51 

of intercepting material (e.g. Beer-Lambert law; Monsi and Saeki, 1953). The most common method, Digital 52 

Hemispherical hotography (DHP; Figure 1a), requires both model assumptions and subjective user choices during 53 

data acquisition and processing in order to estimate both PAI and LAI (Breda, 2003). DHP images are processed 54 

by separating sky from canopy, but not photosynthetic from non-photosynthetic vegetative material, so additional 55 

assumptions are needed to calculate either LAI or WAI (Jonckheere et al., 2004; Pfeifer et al., 2012). Separation 56 

of LAI from PAI can be achieved by removing or masking branches and stems from hemispherical images (e.g. 57 

Sea et al., 2011; Woodgate et al., 2016), but is not reliable when leaves are occluded by woody components 58 

(Hardwick et al., 2015). An alternative approach is to take separate DHP measurements in both leaf on and leaf 59 

off conditions, and derive empirical wood to plant ratios (WAI/PAI, α) (Leblanc and Chen, 2001), but this is not 60 

always practical, for example in evergreen forests. The difficulty of separation means that studies often omit 61 

correcting for the effect of WAI on optical PAI measurements altogether (Woodgate et al., 2016), but since woody 62 

components in the forest canopy can account for more than 30% of PAI (Ma et al., 2016) this can introduce 63 

overestimation. Further, although DHP estimates of LAI or PAI are valuable both for ecosystem monitoring and 64 

developing satellite LAI products (Hardwick et al., 2015; Pfeifer et al., 2012), they are limited to sampling only 65 

at a neighbourhood or plot level , Weiss et al., 2004), and cannot be used to measure individual tree LAI except 66 

for open grown trees (Béland et al., 2014).  67 

The ratio of wood to total plant area, α, is known to be dynamic, changing in response to abiotic and biotic 68 

conditions. For example, the Huber value (sapwood to leaf area ratio, a related measure to α) may vary according 69 

to water availability (Carter and White 2009). Leaf area may therefore be indicative of the drought tolerance level 70 

of a tree, with more drought tolerant species displaying a lower leaf area, reducing the hydraulic conductance of 71 
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the whole tree and therefore increasing its drought tolerance (Niinemets and Valladares, 2006). α has been 72 

hypothesised to increase with the size of a tree in response to the increased hydraulic demand associated with 73 

greater hydraulic resistance of tall trees (Magnani et al., 2000) and higher transpiration rates of larger LAI 74 

(Battaglia et al., 1998; Phillips et al., 2003). Stand density may also impact α (Long and Smith, 1988; Whitehead, 75 

1978), as increased stand level water use scales linearly with LAI (Battaglia et al., 1998; Specht and Specht, 1989), 76 

reducing water availability to individual trees competing for the same resources (Jump et al., 2017).  Large scale 77 

quantification of α or Huber value, however, is difficult as studies usually rely on a small number of destructively 78 

sampled trees (e.g. Carter and White, 2009; Magnani et al., 2000), litterfall traps (e.g. Phillips et al., 2003) or 79 

masking hemispherical images (e.g. Sea et al., 2011; Woodgate et al., 2016). These approaches are only applicable 80 

on a small to medium scale, and in the case of image masking, cannot differentiate between individuals. Variation 81 

in α, for example by species and or stand structure, is therefore largely unknown. 82 

1.2 TLS methods for calculating PAI, LAI and WAI 83 

TLS methods for extracting PAI, LAI and WAI can be broadly categorised into two types: (1) LiDAR return 84 

counting, using single scan data (e.g., the LiDAR Pulse method; Jupp et al., 2008, and 2D Intensity Image method; 85 

Zheng et al., 2013) and (2) point cloud voxelisation, usually using co-registered scans (e.g., the Voxel-Based 86 

method; Hosoi and Omasa, 2006).  87 

The LiDAR Pulse method (Jupp et al., 2008; Figure 1b) estimates gap fraction (PgapPgap) using single scan data, 88 

as a function of the total number of outgoing LiDAR pulses from the sensor and the number of pulses that are 89 

intercepted by the canopy. This method, which eliminates illumination impacts associated with the use of DHP 90 

(Calders et al., 2014), has been implemented in the python module, PyLidar (www.pylidar.org) and the R package, 91 

rTLS (Guzman, et al. 2021). Using the LiDAR Pulse method, Calders et al. (2018) compared TLS PAI PAI 92 

estimates from two ground-based passive sensors (LiCOR LAI-2000 and DHP) with TLS data collected with a 93 

RIEGL VZ-400 TLS in a deciduous woodland, and found the two passive sensors underestimated PAI values 94 

compared to TLS, with differences dependent on DHP processing and leaf on/off conditions. 95 

The 2D Intensity Image method (Zheng et al., 2013; Figure 1c), also uses raw single scan TLS point clouds, but 96 

unlike the LiDAR Pulse method, this approach converts LiDAR returns into 2D panoramas where pixel values 97 

represent intensity. PAI is estimated by classifying pixels as sky or vegetation, based on their intensity value, to 98 

estimate PgapPgap, and then applying Beer-Lambert’s law. As for the LiDAR Pulse method, this approach has 99 

been shown to generate higher PAI estimates than DHP (Calders et al., 2018; Woodgate et al., 2015; Grotti et al., 100 

2020), with differences attributed to the greater pixel resolution and viewing distance of TLS resolving more small 101 

canopy details (Grotti et al., 2020). 102 

The Voxel-Based method (Figure 1d) estimates PAI by segmenting a point cloud into voxels and either simulating 103 

radiative transfer within each cube (Béland et al., 2014; Kamoske et al., 2019), or classifying voxels as either 104 

containing vegetation or not, and dividing vegetation voxels by the total number of voxels (Hosoi and Omasa, 105 

2006; Itakura and Hosoi, 2019; Li et al., 2017). Crucially, this method may be applied to multiple co-registered 106 

scan point clouds and so can be used to calculate PAI for both whole plots and individual, segmented TLS trees. 107 

However, PAI estimates derived using the voxel method are highly dependent on voxel size (Calders et al., 2020). 108 

Using a radiative transfer approach, Béland et al., (2014) demonstrated that voxel size is dependent on canopy 109 
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clumping, radiative transfer model assumptions and occlusion effects, making a single, fixed choice of voxel size 110 

within methods for all datasets impossible. To test various approaches to selecting voxel size using a voxel 111 

classification approach, (Li et al., (2016) matched voxel size to point cloud resolution, individual tree leaf size, 112 

and minimum beam distance and tested against destructive samples, finding that voxel size matched to point cloud 113 

resolution had the closest PAI values to destructive samples.  114 

The LiDAR Pulse method and 2D Intensity Image method both use single scan data. However, to generate robust 115 

estimates of canopy properties that avoid errors from occlusion effects, multiple co-registered scans taken from 116 

different locations are likely needed (Wilkes et al., 2017). Further, both these methods require raw unfiltered data 117 

to accurately measure the ratio of pulses emitted from the scanner and number of pulses that are intercepted by 118 

vegetation. This means “noisy” points caused by backscattered pulses (Wilkes et al., 2017) are included in 119 

analyses, potentially leading to higher PAI estimates. However, the LiDAR Pulse and 2D Intensity Image methods 120 

may introduce fewer estimation errors compared DHP, which is influenced by differences in sky illumination 121 

conditions and camera exposure (Weiss et al., 2004).  122 

 123 
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 124 

Figure 1: Methods for PAI estimation applied in this study: (a) a binarised digital hemispherical photograph (DHP), 125 
(b) TLS raw single scan point cloud, used within the LiDAR Pulse method (Jupp et al., 2008). Image shows a top-down 126 
view of raw point cloud and greyscale represents low (grey) and high (black) Z values, (c) TLS 2D intensity image for 127 
the 2D Intensity Image method (Zheng et al., 2013), (d) Voxelised co-registered whole plot point cloud for the Voxel-128 
Based method (Hosoi and Omasa, 2006), showing a representative schematic of cube voxels with edge length of 1m, 129 
voxelised using the R package VoxR (Lecigne et al., 2018). Solid black voxels are classified as containing vegetation 130 

(filled) and voxels outlined with grey lines are voxels classified as empty.  131 

1.3 Scope and aims 132 

The aims of this study are twofold: the first aim is to compare three TLS methods for estimating PAI with 133 

traditional DHP. The second aim of this study is to use TLS to drivers of individual tree α variation.  134 

In this study we use a dataset of 528 co-located DHP and high-resolution TLS scans from 33 forest plots to 135 

compare DHP derived PAI (PAIDHP) with estimates from three methods to estimate PAI from TLS data (PAITLS): 136 

the LiDAR Pulse method; the 2D Intensity Image method and the Voxel-Based method (Figure 1). We use a dataset 137 

collected from a network of pine/oak forest plots in Spain (Owen et al., 2021) and ask (1) are the three TLS 138 

methods able to reproduce DHP PAIPAIDHP estimates at single scan and whole plot level? (2) does α, calculated 139 

from the Voxel-Based method on individual tree point clouds, vary with species and tolerance to drought; and (3) 140 

does α scale with height and stand density? 141 

2. Methods  142 

2.1 Study site 143 

We collected TLS and DHP data from 29 plots in Alto Tajo Natural Park (40°41′N 02°03′W; FunDIV (Functional 144 

Diversity) plots; see Baeten et al., (2013) for detailed description of plots) and four plots in Cuellar 145 

(41°23′N 4°21′W) in June - July 2018 (see Owen et al., (2021) for full details) (Figure B1). Plots contained two 146 

oak species: semi-deciduous Q. faginea and evergreen Q. ilex, and three pine species: P. nigra, P. pinaster and P. 147 

sylvestris. P. sylvestris is the least drought tolerant species, followed by P. nigra, Q. faginea, Q. ilex; shade 148 

tolerance follows the same ranking (Niinemets and Valladares, 2006; Owen et al., 2021). Although not 149 

quantitatively ranked, P. pinaster has been shown to be very drought tolerant, appearing in drier areas than the 150 

other species (Madrigal-González et al., 2017). The area is characterised by a Mediterranean climate (altitudinal 151 

gradient range 840 – 1400 m.a.s.l.) (Jucker et al., 2014; Madrigal-González et al., 2017). In addition to the five 152 

main canopy tree species, plots contained an understory of Juniperus thurifera and Buxus sempervirens (Kuusk 153 

et al., 2018). 154 

2.2 Field protocol  155 

In each of the 33 30 x 30 m plots we collected TLS scans on a 10 m grid, making 16 scan locations following 156 

Wilkes et al., (2017) to minimise occlusion effects associated with insufficient scans. We used a Leica HDS6200 157 

TLS set to super high resolution (3.1 x 3.1mm resolution at 10 m with a beam divergence of ≤ 5 mm at 50 m; scan 158 

time 6m 44 s; see Owen et al., (2021)). At each of the 528 scan locations and following the protocol in Pfeifer et 159 

al., (2012), we captured co-located DHP images with three exposure settings (automatic and ± one stop exposure 160 

compensation), levelling a Canon EOS 6D full frame DSLR sensor with a Sigma EX DG F3.5 fisheye lens, 161 

mounted on a Vanguard Alta Pro 263AT tripod. 162 
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2.3 Calculation of single scan and whole plot PAI using DHP data 163 

For each of the red-green-blue (RGB) DHP images we extracted the blue band for image thresholding, as this best 164 

represents sky/vegetation contrast (Pfeifer et al., 2012). For each plot, we picked the exposure setting that best 165 

represented sky/ vegetation difference based on pixel brightness histograms of four sample locations indicative of 166 

the plot. We carried out automatic image thresholding using the Ridler and Calvard method (1978), to create a 167 

binary image of sky and vegetation, avoiding subjective user pixel classification (Jonckheere et al., 2005). We 168 

calculated PAI from the binary image, limiting the field of view to a 5o band centred on the hinge angle of 57.5o 169 

(55o – 60o). The hinge angle has a path length through the canopy twice the canopy height, so the band around it 170 

is an area of significant spatial averaging taken as representative of canopy structure of the area (Calders et al., 171 

2018; Jupp et al., 2008). From the binarised hinge angle band we calculated gap fractionPgap as the number of sky 172 

pixels divided by the total number of pixels and PAI using an inverse Beer-Lambert law equation (Monsi and 173 

Saeki, 1953). We calculated whole plot PAI as the arithmetic mean within plot scan location PAI. As this value 174 

does not correct for canopy clumping, it is better described as effective PAI, rather than true PAI (Woodgate et 175 

al., 2015). However, as the TLS and DHP methods we apply here account for canopy clumping differently, we 176 

compared effective values and here-on refer to effective PAI as PAI (Calders et al., 2018).  177 

2.4 Calculation of single scan and whole plot PAI from TLS data 178 

To calculate PAI using the LiDAR Pulse method (Jupp et al., 2008), we calculated the gap fraction (Pgap) for a 179 

single scan (Figure 1b) by summing all returned laser pulses and dividing by the number of total outgoing pulses, 180 

following Lovell et al. (2011; see Eq. 7 in that study), and then estimated PAI following Jupp et al. (2008; see Eq. 181 

18 in that study), setting the sensor range to 5o around the hinge angle as before (55o – 60o). Single scan PAI was 182 

taken as the cumulative sum of PAI values estimated by vertically dividing the hinge region into 25 cm intervals 183 

(Calders et al., 2014). We implemented the LiDAR Pulse method using the open-source R (R Core Team, 2020) 184 

package, rTLS (Guzmán and Hernandez, 2021).  185 

To calculate PAI using the 2D Intensity Image method (Zheng et al., 2013), we converted 3D TLS point cloud 186 

data from all 528 scan locations into polar coordinates, and scaled intensity values to cover the full 0-255 range 187 

(Figure 1c) and rasterised into a 2D intensity image using the open-source R package, raster (Hijmans, 2022). We 188 

cut the 2D intensity image to a 5o band around the hinge angle (55 o – 60o) and classified sky and vegetation pixels 189 

in each image using the Ridler and Calvard method (1978). We calculated Pgap as the number of pixels classified 190 

as sky divided by the total number of pixels and derived PAI with an inverse Beer-Lambert law equation (Monsi 191 

and Saeki, 1953). 192 

Following the same approach as applied to our DHP data, we calculated whole plot PAI for the LiDAR Pulse and 193 

2D Intensity Image methods as the arithmetic mean of within plot single scan PAI estimates. 194 

To calculate PAI using the Voxel-Based method, we followed a voxel classification approach (Hosoi and Omasa, 195 

2006), downsampling the point cloud to 0.05 m to aid computation time and matching the voxel size to the 196 

resolution of the point cloud (0.05 m), following (Li et al., (2016), who showed that matching the voxel size to 197 

the point cloud point to point minimum distance (resolution) increases accuracy as small canopy gaps are not 198 

included in voxels classified as vegetation.  We chose a voxel classification approach as this method is widely 199 

applicable to a range of TLS systems and levels of processing as well as providing explicit guidance on voxel size 200 
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selection, which is known to impact derived PAI estimates (Li et al., 2016). We re-combined individually 201 

segmented trees, filtered for noise using a height-dependent statistical filter (see Owen et al., 2021) back into 202 

whole plot point clouds and voxelised them using the open source R package, VoxR (Lecigne et al., 2018), with a 203 

full grid covering the minimum to maximum XYZ ranges of the plot. We classified any voxel containing > 0 204 

points as vegetation (“filled”), and empty voxels as gaps. We then split the voxelised point cloud into slices one 205 

voxel high. Within each slice, the contact frequency is calculated as the fraction of filled to total number of voxels. 206 

We then multiplied the contact frequency by a correction factor for leaf inclination, set at 1.1 (Li et al., 2017), and 207 

whole plot PAI was calculated as the sum of all slices’ contact frequencies. 208 

2.5 Calculation of individual tree PAI, WAI and α using the voxel-based method 209 

Figure 2: Visualisation of the workflow for applying the Voxel-Based method to estimate individual-tree PAI, WAI and 210 

α. (a) Individual tree point cloud; (b) separated leaf off (wood) individual tree point cloud; (c) voxelised individual tree 211 

point cloud; (d) voxelised wood cloud. Solid black Coloured voxels (green represents leaf and brown represents wood) 212 

are filled voxels and grey lines are empty voxels. Empty voxels occupy the space within the projected crown area of the 213 

tree. Image shows schematic of point cloud voxelised with cube voxels with edge length of 0.5 m. Panels a and b show 214 

Wwood and leaf separation of an example P. sylvestris, was carried out using TLSeparation (Vicari et al., 2019). Point 215 

cloud voxelisation was carried out using modified functions from R package VoxR (Lecigne et al., 2018). 216 
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As the only method using multiple co-registered scans, the Voxel-Based method is only method compared in this 217 

study we found capable of deriving PAI, WAI and LAI of segmented individual tree point clouds estimating 218 

individual tree leaf and wood properties. We estimated PAI and WAI for 2472 individual trees segmented from 219 

co-registered point clouds following a similar method to the whole plot point cloud. We used individual tree point 220 

clouds downsampled to 0.05 m, to aid computation time, and extracted segmented individual trees using the 221 

automated tree segmentation program treeseg (Burt et al., 2019), implemented in C++, see by Owen et al., (2021) 222 

for that study. full details, and Individual segmented tree data are available in Owen et al., (2022). for individual 223 

segmented tree data.  224 

To estimate PAI, WAI and α for each tree, we first separated leaf from wood points in  used individual tree point 225 

clouds wood – leaf separated by (Owen et al., (2021) using the open source Python library TLSeparation (Vicari 226 

et al., 2019), and then used the separated wood only point clouds to calculate WAI. TLSeparation classifies  227 

assigns points as as either leaf or wood, iteratively looking at a predetermined number of nearest neighbours (knn). 228 

The knn of each iteration is directly dependent on point cloud density, since high density point clouds will require 229 

higher a knn (Vicari et al., 2019). We used tThe utility package in TLSeparation was used to automatically detect 230 

the optimum knn for each tree point cloud.  231 

To voxelise individual tree complete (Figure 2a) and wood only (Figure 2b) point clouds, we used a modified 232 

approach based on Lecigne et al., (2018), voxelising within the projected crown area of the whole tree point cloud 233 

(Figure 2c) to calculate PAI. In the same way as for PAI, wWe calculated WAI using the separated wood point 234 

cloud within the projected crown area of the whole tree (Figure 2d; using the whole crown and not just the wood 235 

point cloud), and derived α for each tree as 𝑊𝐴𝐼
𝑃𝐴𝐼⁄ . To allow a comparison with existing literature estimating 236 

α, (Sea et al., 2011; Woodgate et al., 2016) we focused on α values. 237 

2.6 Statistical Analyses  238 

We tested the relationships between TLS PAIPAITLS and DHP PAIPAIDHP estimates using Standardised Major 239 

Axis (SMA) using the open source R (R Core Team, 2020) package, smatr (Warton et al., 2012). SMA is an 240 

approach to estimating a line of best fit where we are not able to predict one variable from another (Warton et al., 241 

2006); we chose SMA because we do not have a ‘true’ validation dataset, so avoid assuming either DHP or any 242 

of the TLS methods produces the most accurate results. For each TLS method, we assessed the relationship with 243 

DHP using the coefficient of determination and RMSE. We chose to compare PAI values rather than WAI or LAI 244 

as each method corrects for non-photosynthetic elements in different ways and would introduce bias, limiting the 245 

ability to directly compare metrics. To further understand observed drivers of variance in PAI, we tested the 246 

relationship between PAI and TLS estimated whole plot crown area index, CAI, calculated as the sum of projected 247 

crown area, divided by the plot area (Owen et al., 2021), and indicative  and a proxy measure of stand density and 248 

local competition (Caspersen et al., 2011; Coomes et al., 2012), using SMA.  249 

To test if α differs by species, we used linear mixed models (LMMs) in the R package, lme4 (Bates et al., 2015). 250 

We included an intercept only random plot effect to account for local effects on α: 251 

 252 

𝛼𝑖,𝑠𝑗 =  𝑎𝑠 + 𝑃𝑙𝑜𝑡𝑗                                                                                                                    (1) 253 
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 254 

here, αi is α of an individual of species s, in plot j, and as is the parameter to be fit. To test the effect of stand 255 

structure and tree height on α, we fit relationships separately for each species, again including a random plot 256 

effect:  257 

 258 

𝛼𝑖,𝑠𝑗 =  𝑎𝑠 +  𝑏𝑠 𝐻𝑖 + 𝑐𝑠 𝐶𝐴𝐼𝑗 + 𝑃𝑙𝑜𝑡𝑠𝑗                                                                                       (2) 259 

 260 

here Hi is the height of the tree, CAIj is the crown area index for the plot, with other parameters as before.  261 

For each species’ model (equation 2), we calculated the intra-class correlation coefficient (ICC). The ICC, similar 262 

to coefficient of determination, quantifies the amount of variance explained by the random effect in a linear mixed 263 

model (Nakagawa et al., 2017). 264 

3. Results  265 

3.1 Comparison of plant area index estimated by DHP and single scan TLS 266 

Of the two single scan TLS methods tested (LiDAR Pulse method and 2D Intensity Image method), we found that 267 

the relationship between PAI estimated using the LiDAR Pulse method and more strongly agreed with DHP 268 

PAIPAIDHP, but there was also significant correlation for had a higher R2 than the 2D Intensity Image method 269 

(SMA; LiDAR Pulse method R2 = 0.50, slope = 0.73, p<0.001, RMSE = 0.14, and 2D Intensity Image method R2 270 

= 0.22, slope = 0.38, p<0.001, RMSE = 0.39, respectively, Figure 3a). At larger PAI values, relative to DHP, both 271 

TLS methods underestimated PAI compared with DHP (Figure 3b). We found statistically significant negative 272 

correlations between residuals and DHP for both methods (SMA; 2D Intensity Image method residuals R2 = 0.85, 273 

slope = -0.88, p<0.01; LiDAR Pulse method residuals R2 = 0.47, slope = -0.70, p<0.01; Figure 3b). The 2D 274 

Intensity Image method showed larger underestimation at higher DHP PAIPAIDHP values, suggesting this method 275 

may saturate sooner than both DHP and the LiDAR Pulse method at higher PAI values (Figure 3b). 276 
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 277 

Figure 3: Comparison of single scan TLS PAIPAITLS and DHP PAIPAIDHP estimates, for all 528 scan locations (16 per 278 
plot). (a) The correlation between DHP derived PAI with PAI derived using the 2D Intensity Image method R2 = 0.22, 279 
slope = 0.38, p<0.001, RMSE = 0.39 (circles), and LiDAR Pulse method R2 = 0.50, slope = 0.73, p<0.001, RMSE = 0.14 280 
(triangles). Dashed line in panel a represents 1:1 relationship. (b) The difference between TLS PAITLS and DHP 281 
PAIPAIDHP estimates for the 2D Intensity Image method, and LiDAR Pulse method (dashed line at in panel b represents 282 
0). Lines show statistically significant relationships fitted using SMA (p<0.01). 283 

3.2 Comparison of whole plot plant area index estimated using TLS and DHP and the effect of plot structure 284 

on PAI 285 

We found statistically significant correlations between whole plot TLS whole plot PAITLS values and DHP 286 

PAIPAIDHP for all three TLS methods. As for single scans (Figure 3), the LiDAR Pulse method showed the closest 287 

agreement to DHP PAIPAIDHP, here compared to both the Voxel-Based and 2D Intensity Image methods (SMA; 288 

LiDAR Pulse method R2 = 0.66, slope = 0.82, p<0.01, RMSE = 0.14; Voxel-Based method R2 = 0.39, slope = 2.76, 289 

p<0.01, RMSE = 0.88; 2D Intensity Image method R2 = 0.35, slope = 0.36, p<0.01, RMSE = 0.39, respectively; 290 

Figure 4a). The 2D Intensity Image method and LiDAR Pulse method consistently underestimated PAI compared 291 

to DHP, whilst the Voxel-Based method underestimated in plots with lower DHP PAIPAIDHP and overestimated 292 

in plots with higher DHP PAIPAIDHP. The Voxel-Based method’s high PAI values compared to other methods is 293 

likely due to its use of multiple co-registered scans reducing occlusion effects prevalent in single scan data.   294 

To assess the effect of plot structure on variation in TLS derived PAI, we compared TLS PAIPAITLS estimates to 295 

TLS estimated crown area index (CAI, m2 projected crown area per m2 ground area, Figure 4b). We found a 296 

significant positive relationship between CAI and PAI estimated using each of the LiDAR Pulse method, the 297 

Voxel-Based method, and DHP (SMA; LiDAR Pulse method R2 = 0.79, slope = 1.69, p<0.01; Voxel-Based method 298 

R2 = 0.76, slope = 5.72, p<0.01; 2D Intensity Image method R2 = 0.15, slope = 0.76, p<0.05; DHP R2 = 0.46, 299 

slope = 2.07, p<0.01, respectively; Figure 4b), where the 2D Intensity Image method appears to saturate at medium 300 

CAI values (Figure 4b).   301 
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 302 

Figure 4: Comparison of plot level TLS PAIPAITLS and DHP PAIPAIDHP, and CAI vs PAI estimates for all 33 plots. (a) 303 

The correlation between DHP derived PAI and PAI derived using 2D Intensity Image R2 = 0.35, slope = 0.36, p<0.01, 304 

RMSE = 0.39 (circle), LiDAR Pulse R2 = 0.66, slope = 0.82, p<0.01, RMSE = 0.14 (triangle) and Voxel-Based R2 = 0.39, 305 

slope = 2.76, p<0.01, RMSE = 0.88 (cross) methods (b) The correlation between TLS derived CAI and PAI derived 306 

using DHP R2 = 0.46, slope = 2.07, p<0.01 (square), 2D Intensity Image R2 = 0.15, slope = 0.76, p<0.05 (circle) LiDAR 307 

Pulse R2 = 0.79, slope = 1.69, p<0.01 (triangle) and Voxel-Based R2 = 0.76, slope = 5.72, p<0.01  (cross) methods. Lines 308 

show statistically significant relationships fitted using SMA (p<0.01). Dashed line in panel a represents 1:1 relationship.  309 

 310 

3.4 Influence of species, tree height and CAI on α  311 

To understand drivers of variance in α, we used individual tree PAI and WAI, calculated using the Voxel-Based 312 

method to test the relationship between species and α, and height/ CAI and α. We found that more drought tolerant 313 

species generally had higher α values than less drought tolerant species (Table A1; Figure 5), however, confidence 314 

intervals were wide and overlapping, suggesting that species is not a strong predictor of variation in α. We found 315 

a statistically significant negative effect of height (p<0.001; Table A2; Figure 6a) and positive effect of CAI 316 

(p<0.01 – 0.05; Table A2; Figure 6b) on α for all species apart from P. sylvestris. α decreased more rapidly with 317 

height and increased less rapidly with CAI for oaks than pines. Statistically significant ICC values were higher 318 

for P. nigra (ICC = 0.211; Table A2) than P. pinaster, Q. faginea and Q. ilex (ICC = 0.036; 0.060; 0.070, 319 

respectively), showing that more α variation is explained by the random plot effect in P. nigra than the other 320 

species. P. pinaster has a wider confidence interval (Figure 5), possibly explained by its lower sample size. To 321 
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understand drivers of variance in WAI we carried out additional analysis to test the relationship between WAI 322 

and species, height, CAI and PAI, and presented these results in Appendix C.  323 

Figure 5: Linear mixed model derived α values (a, equation 1) for all 2472 individual trees of species P. sylvestris, P. 324 
nigra, Q. faginea, Q. ilex and P. pinaster. Error bars represent 95% confidence intervals. Species are listed from low – 325 
high drought tolerance, with the exception of P. pinaster, for which drought tolerance index has not been calculated in 326 
the literature. Drought tolerance rankings are taken from (Niinemets and Valladares, (2006)  327 

Figure 6: Variation in α for each species: Pinus nigra, P. pinaster, Q. faginea and Q. ilex with (a) height and (b) plot 328 
CAI. Lines represent statistically significant linear mixed models (equation 2; p < 0.001 – p < 0.05). Ribbons represent 329 
95% confidence intervals. The model for P. sylvestris was not statistically significant.  330 

 331 

 332 
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 333 

4. Discussion  334 

4.1 Comparison of approaches to deriving PAI from remote sensed data 335 

We found substantial differences in PAI values estimated from TLS and DHP and from different TLS processing 336 

methods (Figures 3 and 4). Further, differences between TLS methods varied across plot structure (CAI), with the 337 

greatest differences between methods in plots with high CAI, and therefore high canopy density. Although 338 

previous studies have presented TLS as an improvement over DHP due to its independence of illumination and 339 

sky conditions during the data acquisition phase, and ability to resolve fine-scale canopy elements and gaps 340 

(Calders et al., 2018; Grotti et al., 2020; Zhu et al., 2018), we have shown that there is large variability between 341 

TLS processing methods in Mediterranean forests. Rigorous intercomparison of approaches, ideally using 342 

standard benchmarking TLS datasets, and destructive sampling, would improve trust and reliability of TLS 343 

algorithms. 344 

4.2 The LiDAR Pulse and 2D Intensity Image method derived PAI estimates were lower than those derived 345 

from DHP and the Voxel-Based method 346 

We found the LiDAR Pulse method (Jupp et al., 2008) to have the best agreement with DHP for both whole plot 347 

and single scan PAI estimates. In contrast to previous studies comparing  PAITLS with– PAIDHP comparisons 348 

(Calders et al., 2018; Grotti et al., 2020; Woodgate et al., 2015), we found that the LiDAR Pulse and 2D Intensity 349 

Image methods underestimated PAI compared to DHP, except at very low PAI values (PAITLS < 0.5). 350 

Quantification of PAI from DHP may introduce additional sources of error, for example, its relatively lower 351 

resolution compared to TLS could lead to mixed pixels that have a greater chance of misclassification of sky as 352 

vegetation (Jonckheere et al., 2004). This effect could be enhanced in a Mediterranean forest as trees in drier 353 

climates tend to have smaller leaves (Peppe et al., 2011), leading to more small canopy gaps that TLS may resolve 354 

where DHP cannot. Further, although we took steps to reduce the error introduced at DHP data acquisition and 355 

processing steps, including using automatic thresholding and collecting images with multiple exposures, DHP 356 

processing requires both model and user assumptions that can impact results. For example, DHP PAIPAIDHP 357 

estimates are highly sensitive to camera exposure; increasing one stop of exposure can result in 3 – 28% difference 358 

in PAI and use of automatic exposure can result in up to 70% error (Zhang et al., 2005).  359 

We found the Voxel-Based method overestimated PAI values compared to the other methods at the whole plot 360 

level. This is likely due to the method’s use of co-registered scans, rather than averaged single scan PAI values, 361 

since co-registered scans will reduce occlusion effects prevalent in single scan data that could to lead to an 362 

underestimation of PAI (Wilkes et al., 2017). The Voxel-Based method is, however, sensitive to voxel size (Li et 363 

al., 2016), and larger voxels lead to larger PAI estimates as they fill small canopy gaps; we chose a voxel size of 364 

0.05 m to match the minimum distance between points in our downsampled dataset. However, the Voxel-Based 365 

method is a memory intensive approach to calculating PAI, and smaller voxels have higher memory requirements. 366 

We picked this data resolution, and therefore voxel size, to balance the need to capture fine-scale canopy details 367 

against memory requirements for running many large plots. Voxel size could have been chosen based on 368 

estimates’ match to DHP, but this would assume (1) that DHP estimates are most accurate, and (2) that DHP data 369 

are always available, limiting the wider applicability of our findings. Understanding which method is over or 370 

underestimating would require a destructively sampled dataset for validation, which was not possible for this 371 
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study (or most ecosystems). However, other studies using voxel approaches have found that although these 372 

produce high LAI values for individual trees, these are underestimates compared with destructive samples (Li et 373 

al., 2016). Regardless, PAI and LAI estimates using a Voxel-Based approach are highly dependent on voxel size 374 

(Béland et al., 2014) (Li et al., 2016), and future work should test the influence of voxel size on PAI estimates, 375 

using destructive samples in a range of environments. 376 

4.3 Relationship between PAI and CAI varied according to method and sensor 377 

The relationship between the LiDAR Pulse method had the strongest relationship (defined as highest R2) with and 378 

TLS derived CAI had the highest R2, demonstrating that the method is well suited to measuring PAI across the 379 

range of plot CAI values used in this study. Although the 2D Intensity Image method can tackle the significant 380 

challenges presented by edge effects and partial beam interceptions, particularly present in phase-shift systems 381 

(Grotti et al., 2020), our results suggest this method has a lower performance ability, with saturation occurring 382 

sooner than all other methods in dense forests (Figures 3 and 4). The 2D Intensity Image method uses the same 383 

raw single scan data as the LiDAR Pulse method, so the better performance from the latter is likely due to the 384 

method’s use of vertically resolved gap fraction; both the LiDAR Pulse method and Voxel-Based method account 385 

for the vertical structure of the canopy by summing vertical slices through the canopy. 386 

4.4 α variation between species and plot 387 

We used the Voxel-Based method to investigate individual tree α variation between species and across structure, 388 

as this was the only approach we comparedidentified that could be applied to single tree point clouds. We found 389 

α values obtained were within the range of values obtained from destructive approaches (0.1 – 0.6, Gower et al., 390 

1997). The drought and shade intolerant P. nigra showed stronger variability in α across plots (higher ICC value, 391 

Table A2) than other species, suggesting its wood – leaf ratio may be more sensitive to site factors. However, as 392 

the plots measured in this study vary in both abiotic conditions (altitude, aspect, slope, wetness) as well as species 393 

composition, stem density and canopy cover, there may be other drivers of variation in α values.  394 

We found some evidence that species with higher drought tolerance had higher α values (Figure 5; Table A1), 395 

however, confidence intervals were wide, suggesting a weak relationship. There is evidence that trees that tolerate 396 

water limited environments have a lower leaf area (Battaglia et al., 1998; Mencuccini and Grace, 1995), so higher 397 

α values may reflect maintenance of homeostasis of leaf water use through adjustment of wood to leaf area ratio 398 

(Carter and White, 2009; Gazal et al., 2006). The potential for a tree to lose water is mostly regulated through leaf 399 

traits including stomatal conductance and leaf area, and both stand (Battaglia et al., 1998; Specht and Specht, 400 

1989) and individual tree (Mencuccini, 2003) water use have been found to scale linearly with LAI, with drought 401 

often mitigated through leaf shedding (López et al., 2021). 402 

4.5 Tree stature and stand density drives α variation 403 

Although species had a weak relationship withexplain some variation in α, tree height and plot CAI were stronger  404 

predictorshad a statistically significant relationship with α (p<0.001 – p<0.05) for all species, showing the 405 

importance of local stand structure on leaf and woody allocation. We found that α scaled negatively with height 406 

for all species apart from P. sylvestris, suggesting that in this environment, taller trees generally have a lower 407 

proportion of wood to plant area index than shorter ones. P. sylvestris, which is at the edge of its geographical 408 

range and physiological limits (Castro-Díez et al., 1997; Owen et al., 2021), showed no significant relationship 409 
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between height and α. We found that α scaled positively with plot level CAI for all species apart from P. sylvestris, 410 

that is, trees growing in denser plots have a higher α. This supports theory that trees growing in dense forests are 411 

competing for resources, reducing individual tree leaf area (Jump et al., 2017). The negative height – α and positive 412 

CAI – α relationships in our model suggest that trees may initially invest in vertical growth to reach the canopy 413 

level, and once there invest in lateral growth, with more leaf area, to increase light capture. This supports theory 414 

that trees grow to outcompete neighbouring individuals for light capture (Purves and Pacala, 2008) and evidence 415 

that both lateral growth and LAI are reduced beneath closed canopies (Beaudet and Messier, 1998; Canham, 416 

1988).  417 

Wood may be harder to accurately classify than leaves in TLS data (Vicari et al., 2019), resulting in a higher 418 

occurrence of false positives in wood clouds, potentially leading to an overestimation in WAI, and therefore 419 

underestimation of α, especially in trees with small leaves which are prevalent in dry, Mediterranean environments 420 

(Peppe et al., 2011). The problem of misclassification will increase in taller trees due to TLS beam divergence, 421 

occlusion and larger beam footprint at further distances (Vicari et al., 2019), suggesting that WAI overestimation 422 

could be more pronounced in tall trees. Although our dense scanning strategy (Owen et al., 2021) was designed 423 

to mitigate some of these effects, it is possible our findings could underestimate the slope of the negative 424 

relationship between α and tree height.  425 

4.6 Correcting for non-photosynthetic elements in LAI estimates using TLS 426 

The value of TLS data to estimate individual tree PAI, WAI and subsequently α, demonstrates their potential to 427 

corrective factors for non-photosynthetic components in ground based remote sensing measurements of LAI. 428 

Properly correcting for WAI in LAI estimates is of global importance as small errors in ground based 429 

measurements propagate through to large scale satellite observations generating large errors in global vegetation 430 

models (Calders et al., 2018). The work presented here provides a foundation for future work combining multi-431 

source and multi-scale remote sensing datasets to correct large scale LAI products. Our results echo others’ in 432 

finding that the prevalence of woody material in the tree canopy, and therefore α, is dynamic and varies by species 433 

as well as senescence, crown health and, in the case of deciduous forests, leaf phenology (Gower et al., 1999). 434 

The use of single α value in a plot or region (Olivas et al., 2013; Woodgate et al., 2016), invariant of species, size 435 

and forest structure, to convert PAI to LAI is therefore problematic (Niu et al., 2021). Our study demonstrates the 436 

importance of taking species mix and structural variation into account when correcting for non-photosynthetic 437 

material in ground-based LAI estimates. 438 

5. Conclusions  439 

We tested three methods for estimating PAI using Terrestrial Laser Scanning data and compared these against 440 

traditional DHP measurements. We found large variation between PAI values estimated from each TLS method 441 

and DHP, demonstrating that care should be taken when deriving PAI from ground based remote sensing methods. 442 

Although the LiDAR Pulse method was found to have the best agreement with both single scan and whole plot 443 

PAI values measured by DHP, the Voxel-Based method allowed separate analysis of the key metric used to correct 444 

for the effect of WAI in LAI measurements, α, in individual trees. We recommend the LiDAR Pulse method as a 445 

fast and effective method for PAI estimation independent of illumination conditions. Whilst the Voxel-Based 446 

method may be used to analyse individual tree α and determine ecological drivers of variation, work remains to 447 
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determine the validity of these approaches, in particular correct voxel size choice. We found that α varies by 448 

species, height and stand density, showing the importance of accurately correcting for WAI on the individual tree 449 

level and the utility of TLS to do so. 450 

The variation in our results for the different methods used to derive PAI from TLS data show that there is some 451 

way to go before TLS derived vegetation indices can be interpreted as robust and reliable. Validation using 452 

destructive samples and further intercomparison studies of methods are needed to demonstrate the advantages of 453 

TLS, and use of benchmarking datasets should be standard. DHP is a faster, cheaper and more widely accessible 454 

method for PAI estimation, and while TLS promises to alleviate potential bias in DHP estimates, results are highly 455 

methods dependent. Our results demonstrate the challenges that stand in the way of large scale adoption of TLS 456 

for vegetation indices monitoring.  457 
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Appendix A 

Table 1: species – α linear mixed model (equation 1) showing relationship between tree species and α for all 2472 

individual trees. Species are listed from low – high drought tolerance, with the exception of P. pinaster, for which 

drought tolerance index has not been calculated in the literature.  

 

Table 2: height – α linear mixed models for each species (equation 2) showing relationship between tree height and plot 

CAI and α for all 2472 individual trees. Species are listed from low – high estimated α.  Significance codes: p < 0.001 

‘***’; p < 0.01 ‘**’; p < 0.05 ‘*’; not significant ‘ns’ 

Species b (eq. 2) (95% CI) c (eq. 2) (95% CI) ICC 

P. sylvestris -0.002ns (-0.004, 0.000) 0.134ns (0.010 0.259) 0.151 

P. nigra -0.005*** (-0.006, -0.004) 0.164** (0.063, 0.263) 0.211 

Q. faginea -0.008*** (-0.010, -0.007) 0.058* (0.016, 0.101) 0.060 

Q. ilex  -0.015*** (-0.020, -0.011) 0.113** (0.050, 0.179) 0.070 

P. pinaster -0.006*** (-0.008, -0.004) 0.317* (0.177, 0.453) 0.036 

 

Appendix B 

Figure 1: Map of plot locations within two field sites in central Spain (Cuellar, left and Alto Tajo, right). Red points 

show plot locations on high-resolution digital terrain models enhanced with hillshading shown in greyscale.  

 

 

Species a (eq. 1) 95% CI  

P. sylvestris  0.144 0.131, 0.158 

P. nigra  0.138 0.127, 0.149 

Q. faginea  0.149 0.140, 0.157 

Q. ilex   0.155 0.146, 0.166 

P. pinaster  0.168 0.145, 0.192   

Formatted
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Appendix C 

𝑊𝐴𝐼 = 𝑚𝑠𝑝𝑒𝑐𝑖𝑒𝑠 + 𝑏     (1) 

𝑊𝐴𝐼 = 𝑚ℎ𝑒𝑖𝑔ℎ𝑡 + 𝑏     (2) 

𝑊𝐴𝐼 = 𝑚𝐶𝐴𝐼 + 𝑏         (3) 

𝑊𝐴𝐼 = 𝑚𝑃𝐴𝐼 + 𝑏         (4) 

Where WAI is the wood area index, species, height, CAI  and PAI are the tree species, tree height, crown area 

index of the plot in which the tree is growing and tree plant area index respectively and m and b are parameters to 

be fit.  

Figure 2: Linear model derived WAI values (m, equation C1) for all 2472 individual trees of species P. sylvestris, P. 

nigra, Q. faginea, Q. ilex and P. pinaster. Error bars represent 95% confidence intervals. Species are listed from low – 

high drought tolerance, with the exception of P. pinaster, for which drought tolerance index has not been calculated in 

the literature. 

Table 3: Linear model (equation C1) showing relationship between tree species and WAI for all 2471 individual trees. 

Significance codes: p < 0.001 ‘***’; p < 0.01 ‘**’; p < 0.05 ‘*’; not significant ‘ns’ 

 

Species m (eq. 1) Std. Error P value  

P.nigra 0.57 0.008 *** 

P. pinaster 0.69 0.018 
 

P. sylvestris 0.56 0.014 
 

Q. faginea  0.39 0.010 *** 

Q. ilex 0.37 0.013 *** 
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Table 4: Linear models (equations C2, C3, C4) predicting WAI as a function of tree height, CAI (density) and PAI 

Significance codes: p < 0.001 ‘***’; p < 0.01 ‘**’; p < 0.05 ‘*’; not significant ‘ns’ 

 

 
m (eq. 2, 3, 4) R2 P value 

Tree Height  0.02 0.27 *** 

CAI 0.39 0.78 *** 

PAI 0.11 0.35 *** 

 

 


