
Causal deep learning models for studying the Earth system
Tobias Tesch1,2, Stefan Kollet1,2, and Jochen Garcke3,4

1Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich, 52425 Jülich, Germany
2Center for High-Performance Scientific Computing in Terrestrial Systems, Geoverbund ABC/J, Jülich, Germany
3Fraunhofer Center for Machine Learning and Fraunhofer SCAI, 53757 Sankt Augustin, Germany
4Institut für Numerische Simulation, Universität Bonn, 53115 Bonn, Germany

Correspondence: Tobias Tesch (t.tesch@fz-juelich.de)

Abstract. Earth is a complex non-linear dynamical system. Despite decades of research, and considerable scientific and

methodological progress, many processes and relations between Earth system variables remain poorly understood. Current

approaches for studying relations in the Earth system rely either on numerical simulations or statistical approaches. However,

there are several inherent limitations to existing approaches, including high computational costs, uncertainties in numerical

models, strong assumptions about linearity or locality, and the fallacy of correlation and causality. Here, we propose a novel5

methodology combining deep learning (DL) and principles of causality research in an attempt to overcome these limitations.

On the one hand, we employ the recent idea of training and analyzing DL models to gain new scientific insights into relations

between input and target variables. On the other hand, we use that a statistical model learns the causal effect of an input variable

on a target variable if suitable additional input variables are included. As an illustrative example, we apply the methodology to

study soil moisture-precipitation coupling in ERA5 climate reanalysis data across Europe. We demonstrate that, harnessing the10

great power and flexibility of DL models, the proposed methodology may yield new scientific insights into complex nonlinear

and non-local coupling mechanisms in the Earth system.

1 Introduction

The Earth system comprises many complex processes and non-linear relations between variables that are still not fully under-

stood. Considering for example soil moisture-precipitation coupling, i.e. the question how precipitation changes if soil moisture15

is changed, it is well-known that soil moisture affects the temperature and humidity profile of the atmosphere and thereby in-

fluences the development and onset of precipitation (Seneviratne et al., 2010; Santanello et al., 2018). However, because there

are several concurring pathways of soil moisture-precipitation coupling, it remains an open question whether an increase in

soil moisture leads to an increase or decrease in precipitation. Answering this question might lead to improved precipitation

predictions with numerical models.20

Approaches for studying relations in the Earth system may be broadly divided into approaches based on numerical simula-

tions (e.g. Koster, 2004; Seneviratne et al., 2006; Hartick et al., 2021), and statistical approaches (e.g. Taylor, 2015; Guillod

et al., 2015; Tuttle and Salvucci, 2016). Both classes of approaches have several inherent limitations. Approaches based on

numerical simulations usually have high computational costs and, even more importantly, rely on the correct representation of
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the considered relations in the numerical model. For example, precipitation in numerical models lacks accuracy due to several25

simplified parameterizations, thus, using these models to study soil moisture-precipitation coupling is problematic. On the

other hand, statistical approaches usually have much lower computational costs and can directly be applied to observational

data. However, current statistical approaches have strong limitations on their own, for example due to assumptions on linearity

or locality of considered relations and negligence of the difference between causality and correlation.

A recent statistical approach for studying relations in the Earth system is to train deep learning (DL) models to predict30

one Earth system variable given one or several others, and use methods from the realm of interpretable DL (Zhang and Zhu,

2018; Montavon et al., 2018; Gilpin et al., 2018; Molnar, 2019; Samek et al., 2021) to analyze the relations learned by the

models (Roscher et al., 2020). The approach has been applied in several recent studies (Ham et al., 2019; Gagne II et al.,

2019; McGovern et al., 2019; Toms et al., 2020; Ebert-Uphoff and Hilburn, 2020; Padarian et al., 2020), and the use of DL

models allows to overcome common assumptions in other statistical approaches like linearity or locality. So far, however, the35

difference between causality and correlation has been neglected in studies using this approach. Indeed, DL models might learn

various (spurious) correlations between input and target variables, while researchers striving for new scientific insights are

most interested in causal relations.

Therefore, in this work, we propose extending the approach by combining it with a result from causality research stating

that a statistical model may learn the causal effect of an input variable on a target variable if suitable additional input variables40

are included (Pearl, 2009; Shpitser et al., 2010). In the geosciences, this result has only recently received attention in the

work of (Massmann et al., 2021). In this work, it is combined with the methodology of training and analyzing DL models to

gain new scientific insights for the first time. Note that there are several other recent studies on causal inference methods in the

geosciences (e.g. Tuttle and Salvucci, 2016, 2017; Ebert-Uphoff and Deng, 2017; Green et al., 2017; Runge, 2018; Runge et al.,

2019; Barnes et al., 2019; Massmann et al., 2021). However, most of them focus on discovering causal dependencies between45

variables, while the proposed methodology assumes prior knowledge on causal dependencies and focuses on quantifying the

strength and sign of a particular causal dependency. As an illustrative example, we apply the proposed methodology to study

soil moisture-precipitation coupling in ERA5 climate reanalysis data across Europe. Other geoscientific questions that could

be addressed with the proposed methodology are, for example, soil moisture-temperature coupling (Seneviratne et al., 2006;

Schwingshackl et al., 2017; Schumacher et al., 2019) and soil moisture-atmospheric carbon dioxide coupling (Green et al.,50

2019; Humphrey et al., 2021).

This manuscript is structured as follows: Sect. 2 introduces the background on causality research and details the proposed

methodology. Sect. 3 presents the application to soil moisture-precipitation coupling and provides a comparison to other ap-

proaches. Finally, Sect. 4 contains several additional analyses to assess the statistical significance and correctness of results

obtained with the proposed methodology.55
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2 Methodology

To introduce the proposed methodology, which combines deep learning with a result from causality research, we first give a

basic introduction into the required concepts from causality research. Based on that, we describe how one can train a DL model

that reflects causality.

2.1 Background on causality60

If we could change the value of any Earth system variable, e.g. increase soil moisture in some area, this would potentially affect

numerous other Earth system variables, e.g. evaporation, temperature and precipitation. The variable that was changed thus has

a causal impact on the latter variables. Formally, the causal effect of some variable X ∈ Rd on another variable Y ∈ Rn is

the expected response of Y to changing the value of X . To determine this impact, one has to determine the expected value of

Y given that one sets X to some arbitrary value x. In the framework of Structural Causal Models (SCMs) introduced below,65

setting X to x is represented by a mathematical intervention operator do(X = x), and the sought value is referred to as the

post-intervention expected value E[Y |do(X = x)].

In some cases, E[Y |do(X = x)] can be determined experimentally by setting X to x while monitoring Y . For example, in

Earth System Modeling (ESM), one may be able to set X to x in numerical experiments. However, often it is impossible to

determine E[Y |do(X = x)] experimentally due to computational constraints or because of the lack of appropriate numerical70

models. Obviously, analog experiments are even harder to perform or impossible in case of large scale interactions in the Earth

system.

The framework of SCMs (Pearl, 2009) provides a deeper understanding of the notion E[Y |do(X = x)], and describes how

it can be determined without experimentally setting X to x. The framework is briefly introduced in the following. For a more

in-depth introduction we refer to (Pearl, 2009). An introduction to the framework in the context of geosciences is given in75

(Massmann et al., 2021).

2.1.1 Structural Causal Models

In the framework of SCMs, the considered system, e.g. the Earth system, is described by a causal graph and associated structural

equations. A causal graph is a directed acyclic graph, in which nodes represent the variables of the system and edges encode

the dependencies between these variables. For example, in the system described by Fig. 1a, variable Y depends on all other80

variables, although the lack of an edge from X to Y implies that X only affects Y indirectly via its impact on C2. Parents of

a considered variable (node) are all variables that have a direct effect on that variable, i.e. all variables with an edge pointing to

that variable. In the following the terms node and variable are used interchangeably.

Formally, a variable in the causal graph is determined by a function f , whose inputs are its parents and a random variable U

representing potential chaos and variables not included in the causal graph explicitly. For example, for the system in Fig. 1a,85

the four variables are determined by four functions fC1
,fC2

,fX ,fY :

C1 = fC1(UC1), X = fX(C1,UX), C2 = fC2(X,UC2), Y = fY (C1,C2,UY ). (1)
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Figure 1. Example for a causal graph (a) and corresponding causal graph for setting variable X to some arbitrary value x (b). The

grey circles are referred to as nodes of the graph, while the arrows are referred to as directed edges.

These equations are called structural equations. The random variables UC1 ,UC2 ,UX ,UY are assumed to be mutually

independent and give rise to a probability distribution P(C1,C2,X,Y ), which describes the probability of observing any

tuple of values (c1,c2,x,y). Integrating the product of Y and this probability distribution over all tuples (c1,c2,y) for some90

fixed value x, one obtains the expected value of Y given that one observes the value x of X , i.e.

E[Y |X = x] =

∫
c1,c2,y

y ·P[C1 = c1,C2 = c2,Y = y|X = x]. (2)

As stated above, to determine the causal effect of X on Y , one has to determine the expected value of Y given that one set

X to some arbitrary value x, i.e. the post-intervention expected value E[Y |do(X = x)]. By setting X to some arbitrary value

x, all dependencies of X on other variables are eliminated. Within the framework of SCMs, this corresponds to removing all95

edges in the causal graph pointing to X , and modifying the structural equation for X accordingly. For example, when studying

the causal effect of X on Y in Fig. 1a, the modified system is described by the causal graph in Fig. 1b with the associated

structural equations

C1 = fC1
(UC1), X = x, C2 = fC2

(X,UC2), Y = fY (C1,C2,UY ). (3)

Again, the random variables UC1 ,UC2 ,UY give rise to a probability distribution P(C1,C2,Y |do(X = x)), referred to as100

post-intervention probability distribution, and the corresponding post-intervention expected value E[Y |do(X = x)]. This ex-

pected value is used to determine the causal effect of X on Y and differs from the expected value for the original system,

E[Y |X = x]. For instance, in the example from Fig. 1, knowing X allows to draw conclusions about Y both in the original

system (Fig. 1a) as well as in the modified system (Fig. 1b), because X has a causal effect on Y (via its impact on C2).

However, in the original system, knowing X allows to draw additional conclusions about C1. This is the case although the105

edge in the causal graph points from C1 to X , i.e. C1 affects X , not vice versa. For example, if X was simply the sum of C1

and the random term UX , a high value of X would probably imply a high value of C1. These conclusions about C1 cannot

be drawn in the modified system, where the edge from C1 to X is removed. The knowledge about C1 allows to draw further

conclusions about Y because C1 also affects Y . Summarizing, due to the confounding influence of C1, knowing X reveals
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more about Y in the original system than in the modified system, which is why the original expected value E[Y |X = x] and110

the post-intervention expected value E[Y |do(X = x)] differ.

If we could observe the modified system, i.e. if we could experimentally set variable X to arbitrary values x, we could

approximate the post-intervention expected value E[Y |do(X = x)] by training a suitable (see Sect. 2.2.1) statistical model

on the observed tuples (x,y) to predict Y given X . However, in the cases considered in the proposed methodology, it is

impossible or undesirable to experimentally set X to x. Thus, we can only observe the original system and approximate the115

original expected value E[Y |X = x] by analogously training a statistical model on observed tuples (x,y) of the original

system. Consequently, we have to bridge the gap between the original expected value E[Y |X = x] and the post-intervention

expected value E[Y |do(X = x)].

2.1.2 Adjustment criteria

To bridge the gap between the original expected value E[Y |X = x] and the post-intervention expected value E[Y |do(X = x)],120

we must take into account variables other than X and Y . Indeed, in the example from Fig. 1, we showed that original and

post-intervention expected values differ because, in the original system, knowing X allows inferences about C1 that are not

possible in the modified system. However, if we actually knew C1, this would not be the case, thus, the original expected

value E[Y |X = x,C1 = c1] and the post-intervention expected value E[Y |do(X = x),C1 = c1] are identical. Analogously

to E[Y |X = x], the expected value E[Y |X = x,C1 = c1] can be approximated by observing the original system and training125

a statistical model on the observed tuples (x,y,c1) to predict Y given X and C1. Therefore, this equality allows to ap-

proximate the post-intervention expected value E[Y |do(X = x),C1 = c1] by only observing the original system and without

experimentally setting X to x.

In the proposed methodology, we exploit the fact that the equality

E[Y |X = x,{Cℓ = cℓ}kℓ=1] = E[Y |do(X = x),{Cℓ = cℓ}kℓ=1] (4)130

holds for any causal graph, thus allowing to determine the post-intervention expected value E[Y |do(X = x),{Cℓ = cℓ}kℓ=1]

from observations alone, if the additional variables Cℓ ∈ Rdℓ , ℓ= 1, . . . ,k, fulfil the following adjustment criteria (Shpitser

et al., 2010):

1. The variables {Cℓ}kℓ=1 block all non-causal paths from X to Y in the original causal graph.

2. No {Cℓ}kℓ=1 lies on a causal path from X to Y .135

Here, a path is any consecutive sequence of edges. A path between X and Y is causal from X to Y if all edges point

towards Y , and non-causal otherwise. A path is blocked by a set S = {Cℓ}kℓ=1 of nodes if either (i) the path contains at least

one edge-emitting node, i.e. a node with at least one adjacent edge pointing away from the node (. . .↔C→ . . .), that is in S

(e.g. the path X←C1→ Y in Fig. 1 is blocked by S if S contains C1); or (ii) the path contains at least one collision node,

i.e. a node with both adjacent edges pointing towards the node (. . .→C← . . .), which is outside S and has no descendants in140

S (e.g. the path X →C← Y is blocked if S does not contain C).
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The first adjustment criterion generalizes the example of C1 in Fig. 1, where adjusting for the edge-emitting node C1, i.e.

considering E[Y |X = x,C1 = c1] rather than E[Y |X = x], blocks the non-causal path X ←C1→ Y such that X is only

used to draw conclusions about Y via the causal path X→C2→ Y . In general, the criterion ensures that X is only used to

draw conclusions about Y via causal paths from X to Y and not via any non-causal path between X and Y .145

The second adjustment criterion ensures that no causal path from X to Y is blocked, such that the post-intervention expected

value E[Y |do(X = x),{Cℓ = cℓ}kℓ=1] actually reflects the causal effect of X on Y . For example, considering the causal path

X →C2→ Y in Fig. 1, C2 blocks the only causal path between X and Y . Thus, E[Y |do(X = x),C2 = c2] = E[Y |C2 =

c2] would indicate that there is no causal effect of X on Y .

Summarizing this section, we can approximate the post-intervention expected value E[Y |do(X = x),{Cℓ = cℓ}kℓ=1] from150

observations alone, if we can describe the considered system by a causal graph and find variables Cℓ ∈ Rdℓ , ℓ= 1, . . . ,k that

fulfil the above adjustment criteria. Describing the system by a causal graph requires knowledge on which variables are relevant

to the considered relation (represented by the nodes in the graph) and on the existence of causal dependencies between these

variables (represented by the edges in the graph). Nevertheless, it does not require knowledge on the sign or strength of these

dependencies, i.e. on the structural equations. Note that the parents of X in the causal graph always fulfil the adjustment155

criteria. In the proposed methodology, we exploit the post-intervention expected value E[Y |do(X = x),{Cℓ = cℓ}kℓ=1] to

determine the causal effect of X on Y as detailed in Sect. 2.2.2.

2.2 Steps of the methodology

The proposed methodology is as follows: given a complex relation between two variables X ∈ Rd and Y ∈ Rn, for example

soil moisture-precipitation coupling, we train a causal deep learning (DL) model to predict Y given X and additional input160

variables Cℓ ∈ Rdℓ , ℓ= 1, . . . ,k. In a second step, we perform a sensitivity analysis of the trained model to analyze how Y

would change if we changed X , i.e. to determine the causal effect of X on Y .

2.2.1 Training a causal DL model

DL models (LeCun et al., 2015; Reichstein et al., 2019) learn statistical associations between their input and target variables.

By training a causal DL model, we mean that we train a DL model that approximates for each input tuple (x,{cℓ}kℓ=1) the165

post-intervention expected value E[Y |do(X = x),{Cℓ = cℓ}kℓ=1], i.e. the model approximates the map

(x,{cℓ}kℓ=1)→ E[Y |do(X = x),{Cℓ = cℓ}kℓ=1]. (5)

To obtain a causal DL model, the loss function, model architecture and additional input variables {Cℓ}kℓ=1 have to be chosen

carefully. In particular, we choose a loss function that is minimized by the original expected value of Y given X and the other

input variables, i.e. by the map170

(x,{cℓ}kℓ=1)→ E[Y |X = x,{Cℓ = cℓ}kℓ=1]. (6)
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An example for such a loss function is the expected mean squared error,

(m : (X,{Cℓ}kℓ=1)→ Rn)→ E[(Y −m(x,{cℓ}kℓ=1))
2], (7)

which maps a function m : (X,{Cℓ}kℓ=1)→ Rn, representing the predictions of the DL model, to its expected mean squared

error (Miller et al., 1993). Furthermore, in terms of model architecture, we choose a differentiable DL model (e.g. a neural175

network) that can represent the potentially complicated function from Eq. 6. Finally, we choose additional input variables

{Cℓ}kℓ=1 that fulfil the adjustment criteria from Sect. 2.1.2, such that the maps from Eq. 5 and Eq. 6 become identical. The

choice of additional input variables requires prior knowledge on which variables are relevant for the considered relation, and

on the existence of causal dependencies between these variables. However, it does not require prior knowledge on the strength,

sign, or functional form of these dependencies (cf. Sect. 2.1.2), which can be obtained from the proposed methodology.180

2.2.2 Sensitivity analysis of the trained model

To determine the causal effect of X ∈ Rd on Y ∈ Rn, we consider partial derivatives of the map from Eq. 5, i.e.

sij(x,{cℓ}kℓ=1) =
∂E[Y i|do(X = x),{Cℓ = cℓ}kℓ=1]

∂Xj
, (8)

where i ∈ {1, . . . ,n}, j ∈ {1, . . . ,d}. These partial derivatives indicate how Y i is expected to change if we experimentally

varied the value of Xj by a small amount for given values X = x,{Cℓ = cℓ}kℓ=1. We approximate these derivatives by the185

corresponding partial derivatives of the DL model, i.e. by the derivative of the predicted Y i with respect to the input Xj ,

denoted qij(x,{cℓ}kℓ=1).

The target quantity in the proposed methodology is the expected value of sij(x,{cℓ}kℓ=1) with respect to the probability

distribution of X and {Cℓ = cℓ}kℓ=1, i.e. sij = Ex,{cℓ}k
ℓ=1

[sij(x,{cℓ}kℓ=1)]. This quantity, which we refer to as the causal

effect of X on Y , indicates how Y i is expected to change if we experimentally varied the value of Xj by a small amount. To190

approximate this quantity, we average the partial derivatives qij(x,{cℓ}kℓ=1) of the DL model over a large number of observed

tuples (x,{cℓ}kℓ=1). For instance, when studying soil moisture-precipitation coupling, we average qij(x,{cℓ}kℓ=1) over the T

samples from the test set, i.e. we consider

qij =
1

T

∑
(x,{cℓ}k

ℓ=1)∈test set

qij(x,{cℓ}kℓ=1). (9)

Note that one might also combine partial derivatives for different tuples (i, j), for example to analyze the impact of a change195

in Xj on the sum
∑n

i=1Y i. When studying soil moisture-precipitation coupling, we combine different partial derivatives to

study the local and regional impact of soil moisture changes on precipitation (see Sect. 3.4).

In theory, the proposed methodology identifies the causal effect of X on Y exactly. In practice, however, we make two

important approximations. First, due to the complexity of the Earth system, the additional input variables {Cℓ}kℓ=1 may not

strictly fulfil the adjustment criteria from Sect. 2.1.2, such that the map from Eq. 6 is only approximately identical to the map200

from Eq. 5. Second, the DL model only approximates the map from Eq. 6. Thus, the partial derivatives qij(x,{cℓ}kℓ=1) of
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the DL model only approximate the partial derivatives sij(x,{cℓ}kℓ=1) that we are interested in. We will come back to this in

Sects. 3.3 and 4.

3 Application to soil moisture-precipitation coupling

As an illustrative example, we apply the proposed methodology to study soil moisture-precipitation coupling, i.e. the ques-205

tion how precipitation changes if soil moisture is changed. Although it is well-known that soil moisture affects precipitation

(Seneviratne et al., 2010; Santanello et al., 2018), it remains unclear whether an increase in soil moisture results in an increase

or decrease in precipitation. This is due to several concurring pathways of soil moisture-precipitation coupling (see Fig. 2).

Improving our understanding of soil moisture-precipitation coupling is important to improve precipitation predictions with

numerical models.210

We apply the proposed methodology to study soil moisture-precipitation coupling across Europe at a short time scale of 3

to 4 hours. Namely, we train a causal DL model to predict precipitation P [t+4 h] ∈ R80×140 at 80× 140 target pixels across

Europe, given soil moisture SM [t] ∈ R120×180 and further input variables Cℓ[t] ∈ R120×180, e.g. antecedent precipitation,

that approximately fulfil the adjustment criteria from Sect. 2.1.2, at 120× 180 input pixels (see Fig. 3). In a second step, we

perform a sensitivity analysis of the trained model to analyze how the precipitation predictions change if the soil moisture input215

variable is changed. Note, the input region is larger than the target region because P [t+4 h] depends on input variables in a

surrounding region.

Figure 2. Concurring pathways of soil moisture-precipitation coupling. An increase in soil moisture can increase latent heat flux and

decrease sensible heat flux at the land surface (Seneviratne et al., 2010). This can increase precipitation via an increase in atmospheric water

content (a; Eltahir, 1998). At the same time, it can increase or decrease precipitation via boundary layer dynamics (b; Findell and Eltahir,

2003a, b; Gentine et al., 2013), or via effects of spatial heterogeneity in latent and sensible heat fluxes on mesoscale circulations (c; Eltahir,

1998; Adler et al., 2011; Taylor et al., 2011; Taylor, 2015).

3.1 Data

The data underlying our example are ERA5 hourly data (Hersbach et al., 2018) constituting an atmospheric reanalysis of the

past decades (1950 to today) provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). Reanalysis220
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Figure 3. Input and target regions in the example of soil moisture-precipitation coupling. The colored region represents the 120× 180

pixels input region, the red box the 80× 140 pixels target region. Note that the offset between input and target region is 20 pixels on each

side and distorted by the projection.

means simulation data and observations have been merged into a single description of the global climate and weather using

data assimilation technologies. ERA5 data contain hourly estimates for a large number of atmospheric, ocean-wave and land-

surface quantities on a regular latitude-longitude grid of 0.25 degrees (≈ 30 km). In this study, soil moisture refers to the ERA5

variable “volumetric soil water in the upper soil layer (0-7 cm)”. The target variable, precipitation P [t+4 h], represents an

accumulation of precipitation over the time interval [t+3 h, t+4 h]. In our analyses, we consider ERA5 data from 1979 to225

2019 across Europe. Because soil moisture-precipitation coupling in Europe is strongest during the summer months, we only

consider the months June, July and August. Further, we restrict our analyses to daytime processes considering precipitation

predictions, P [t+4 h], for times t+4 h between noon and 11 pm UTC.
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3.2 Loss function, model architecture and training

As described in Sect. 2.2.1, the loss function should be minimized by the expected value of precipitation P [t+4 h], given soil230

moisture SM [t] and the other input variables Cℓ[t], i.e. by the function (cf. Eq. 6)

(SM [t],{Cℓ[t]}kℓ=1)→ E[P [t+4 h]|SM [t],{Cℓ[t]}kℓ=1]. (10)

This holds true for the expected mean squared error from Eq. 7. Given N training time steps ti, associated values

(SM [ti],{Cℓ[ti]}kℓ=1,P [ti +4 h])Ni=1, and model predictions m(SM [ti],{Cℓ[ti]}kℓ=1)
N
i=1, the expected mean squared error

is approximated by the sum235

1

N

N∑
i=1

mean((P [ti +4 h]−m(SM [ti],{Cℓ[ti]}kℓ=1))
2). (11)

Here, the mean operator denotes the mean over the 80× 140 target pixels across Europe.

The employed DL model should be able to represent the presumably highly nonlinear function from Eq. 10. We choose a

convolutional neural network (CNN; LeCun et al., 2015) whose architecture is inspired by the U-Net architecture (see Fig. 4;

Ronneberger et al., 2015). Two concepts are important in applying CNNs in representing the function from Eq. 10. The first240

is the concept of receptive fields. Namely, the prediction of the model at some target location is fully determined by the input

variables in a surrounding region, the so-called receptive field. In our case, the size of the receptive field is ≤ 52× 52 pixels,

i.e. the precipitation prediction at a target location is fully determined by the input variables in a ≤ 52× 52 pixels surrounding

region.

The second concept is that of translation invariance. Translation invariance means that the function f̂ , which maps the input245

variables in the receptive field to a prediction, is identical for all target locations. In our case, due to the arithmetic details of

the considered model architecture (Dumoulin and Visin, 2016), the DL model is block translation invariant, i.e. the prediction

at a target location (i, j) is not determined by a single function f̂ for all target locations, but by one of 4× 4 fixed functions

f̂nk,n,k = 1, . . . ,4 depending on the values i mod 4 and j mod 4.

Both concepts, receptive field and translation invariance, are important features of CNNs, because they counteract overfitting,250

i.e. making (nearly) perfect predictions on the training data but not generalizing to unseen data. However, both concepts

constitute constraints that may prevent CNNs from representing the function from Eq. 10. Indeed, the translation invariance

requires including additional input variables {Cℓ}kℓ=1 that lead to spatial variability in soil moisture-precipitation coupling. We

will discuss this in Sect. 3.3. Note that we can mostly ignore the general constraint of receptive fields, because the lead time of

the predictions is only 4 h and the receptive field is large enough to take into account all relations between soil moisture and255

precipitation at that time scale.

Before training the model, we split our data into training, validation and test sets. Due to potential correlations between

subsequent time steps, an entirely random split would lead to high correlations between samples in training, validation and test

sets. To achieve independence between samples belonging to different sets, we randomly choose all samples from the years

2010 and 2016 for validation, all samples from the years 2012 and 2018 for testing and all samples from the remaining 37260

years for training. The test set is not used during the entire training and tuning process of the model.
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Figure 4. Model architecture in the example of soil moisture-precipitation coupling. The leftmost blue box represents the input to the

model, which consists of 12 variables (including soil moisture) at the 120×180 input pixels (see Fig. 3). This input is passed through multiple

sequential modules represented by the arrows. Each module performs simple mathematical operations on its respective inputs and produces

an output that is fed to the next module. This output is represented by the next blue box and, in general, differs in shape from the input,

as indicated by the grey upright and rotated numbers. For details on the mathematical operations we refer to (Ronneberger et al., 2015).

The rightmost blue box represents the output of the model, which consists of the precipitation prediction at the 80× 140 target pixels. The

combination of multiple simple modules allows the model to represent complex functions.

During training, the Adam optimizer (Kingma and Ba, 2017) is used to adapt the approximately 2.3 million, randomly

initialized weights of the model to minimize the mean squared error on the training set. In terms of implementation, we use

the Pytorch (Paszke et al., 2019) wrapper skorch (Tietz et al., 2017) with default parameters for training the model, set the

maximum number of epochs to 200; the learning rate in the Adam optimizer to 1e− 3; the batch size to 64; and patience for265

early stopping (i.e. the number of epochs after which training stops if the loss function evaluated on the validation set does not

improve by some threshold) to 30 epochs. During training, we further use data augmentation. Namely, we randomly rotate by

180◦(or not) and subsequently horizontally flip (or not) the considered region for each training sample and each training epoch

independently. Similar to the translation invariance of the model, this requires including input variables which lead to spatial

variability in soil moisture-precipitation coupling as discussed in the next section.270

3.3 Choice of input variables

The choice of additional input variables {Cℓ}kℓ=1 represents a crucial aspect of the proposed methodology for two reasons

(cf. Sect. 2.2.2). First, we need the additional input variables to (approximately) fulfil the adjustment criteria from Sect. 2.1.2,

such that the mapping of input variables (SM [t],{Cℓ[t]}kℓ=1) to E[P [t+4 h]|SM [t],{Cℓ[t]}kℓ=1] (cf. Eq. 10) is a good
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approximation of the map275

(SM [t],{Cℓ[t]}kℓ=1)→ E[P [t+4 h]|do(SM [t]),{Cℓ[t]}kℓ=1]. (12)

Second, the choice of additional input variables affects how accurately the CNN approximates the map from Eq. 10, and finally

the partial derivatives of this map with respect to SM [t] that are computed in the sensitivity analysis (see Sect. 3.4).

Choosing additional input variables that fulfil the adjustment criteria is usually based on a causal graph of the considered

system. However, a generally applicable causal graph of the Earth system does not exist. Thus, we make use of the fact that280

causal parents of SM [t] always fulfil the adjustment criteria, i.e. we look for a set of Earth system variables that is sufficient

to determine SM [t] while not being affected by SM [t]. Given the temporal resolution of the ERA5 data and the time scale

of our analysis, a reasonable example is the set of variables in the second column in Fig. 5.

Figure 5. Causal graph in the example of soil moisture-precipitation coupling. The dark grey nodes represent the chosen input variables,

while light grey nodes represent variables that are ignored in our analysis (see text). Land properties comprise the time-independent variables

topography, land-sea mask, and fractions of high and low vegetation cover. The state of the atmosphere at time t is represented by temperature

and dew point temperature at 2 m height at time t, as well as wind at 100 m height at time t. In addition to these variables, we included short-

and long-wave radiation at the land surface at time t. Note that the depicted causal graph only includes nodes and edges that are relevant for

the adjustment criteria from Sect. 2.1.2 (e.g. no edge from “other variables” to P [t−1 h, t], and no nodes on the causal path from SM [t] to

P [t+3 h, t+4 h], such as evaporation[t, t+3 h]).
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If we included all of these variables, the adjustment criteria would be met and the map from Eq. 10 would be identi-

cal to that from Eq. 12. Nevertheless, obtaining a good approximation of the map from Eq. 10 with our DL model would285

be difficult due to the strong correlation between SM [t− 1 h] and SM [t]. Furthermore, the strong correlation between

evaporation[t− 1 h, t] and evaporation[t, t+3 h] may prevent us from identifying any causal effect of SM [t] on P [t+4 h],

because evaporation[t, t+3 h] is a direct descendant of SM [t] on every causal path from SM [t] to P [t+4 h] (cf. motivation

of the second adjustment criterion in Sect. 2.1.2). Therefore, we decided to exclude SM [t− 1 h] and evaporation[t− 1 h, t].

Nevertheless, this leads to unblocked non-causal paths between SM [t] and P [t+4 h] via these variables (e.g. SM [t]←290

SM [t− 1 h]→ state of the atmosphere[t]→ P [t+4 h]). To block these paths, we include additional input variables that rep-

resent the state of the atmosphere at time t.

Approximating the map from Eq. 10 and its partial derivatives with respect to SM [t] gets more difficult with increasing

number of input variables. This is because additional input variables increase the complexity of this map, and the general risk

of overfitting. Therefore, and because SM [t− 1 h] and evaporation[t, t− 1 h] presumably affect the lower atmosphere more295

strongly than the higher atmosphere, we focus on variables representing the state of the lower atmosphere in this example.

The above considerations are valid for any model architecture and training procedure. In our example, we further must

take into account the translation invariance of the considered DL model, and the rotation and flipping of the region used for

data augmentation during the training procedure. Theoretically, in order to achieve invariance, the most accurate option is to

include latitude-longitude information as additional input variables. However, if we did so, the DL model would have to learn300

a different mapping for each location (i, j), and data augmentation in form of flipping and rotation of the region would not be

useful. Instead, we include short- and long-wave radiation at the land surface[t]. Thus, the above requirement is approximately

fulfilled and the model does not have to learn a different mapping for each location, which presumably leads to it learning a

better approximation of the map from Eq. 10.

The choice of input variables is where we insert prior knowledge in the proposed methodology (cf. Sect. 2.2.1). There305

is no unique choice of input variables, but several subjective decisions that have to be made. For example, above we could

have started from a different set of causal parents, e.g. going not one but several hours into the past from time t, but at least

theoretically that makes no difference (see Sect. 4). Starting from a set of causal parents and replacing variables strongly

correlated with X , as described above, seems to be a valid strategy for the choice of input variables, which is applicable to

many relations in the Earth system besides soil moisture-precipitation coupling. It is in line with the fact that causal parents310

always fulfil the adjustment criteria, and with the general finding from causality research that input variables strongly correlated

with X reduce the efficiency of statistical estimators of causal effects (Witte et al., 2020). The causal graph clearly conveys to

other scientists the assumptions underlying a specific application of the proposed methodology.

3.4 Sensitivity analysis

Given our trained DL model, we consider different combinations of partial derivatives of the model to study the local and315

regional effects of soil moisture changes on precipitation (cf. Sect. 2.2.2). We define the causal effect of a soil moisture change

at a pixel (i, j) on precipitation at the very same pixel as local effect or local soil moisture-precipitation coupling. Accordingly,
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we consider for each pixel (i, j) in the target region the partial derivative

qlocij =
∂pij(SM ,{Cℓ}kℓ=1)

∂SM ij
, (13)

where pij denotes the precipitation prediction of the DL model for pixel (i, j), and SM and {Cℓ}kℓ=1 are the input variables320

to the model. We average these derivatives over all input samples (SM ,{Cℓ}kℓ=1) from the test set denoted by qlocij .

Next to the local soil moisture-precipitation coupling, we define the regional effect or regional soil moisture-precipitation

coupling as the causal effect of a soil moisture change at a pixel (i, j) on precipitation in the entire target region. Accordingly,

we consider for each pixel (i, j) in the target region the sum of partial derivatives

qregij =

80∑
î=1

140∑
ĵ=1

∂pîĵ(SM ,{Cℓ}kℓ=1)

∂SM ij
. (14)325

Note that most of the derivatives in the sum are zero, because e.g. a change in soil moisture in Great Britain at time t does not

affect precipitation in Italy four hours later. Outside of a 52×52 pixels surrounding region, this is enforced by the architecture

of the DL model (cf. Sect. 3.2), and inside of this region, it is learned during training of the model. As for local soil moisture-

precipitation coupling, qregij denotes the average of qregij over all input samples from the test set.

To obtain robust results, we computed local and regional couplings for 10 instances of the DL model that were trained from330

different random weight initializations. Next, we averaged the obtained couplings (qlocij and qregij) over the 10 instances. The

results are shown in Fig. 6. Notably, the difference in sign between positive local and negative regional impact demonstrates the

importance of taking into account non-local effects of soil moisture-precipitation coupling, which are neglected by many other

approaches. Moreover, Fig. 6 indicates particularly strong local and regional couplings in mountainous regions and ridges. We

will further discuss the correctness of these results in Sect. 4.335

3.5 Comparison to other approaches

A common approach for studying relations in the Earth system is to consider the linear correlation between variables (Froide-

vaux et al., 2014; Welty and Zeng, 2018; Holgate et al., 2019). Here, we compare our results on regional soil moisture-

precipitation coupling to results obtained from a linear correlation analysis. For each location in the considered target region,

Fig. 7 shows the linear correlation coefficient of soil moisture SM [t] at that location and subsequent precipitation P [t+4 h]340

summed over the 15×15 pixels surrounding region. In contrast to our analysis of regional soil moisture-precipitation coupling,

the linear correlation analysis assumes linearity of relations between local soil moisture and regional precipitation, and neglects

the difference between causality and correlation. The obtained regional soil moisture-precipitation “coupling” in Fig. 7 then

also differs in sign and spatial pattern from the coupling in the right panel of Fig. 6, stressing the importance of accounting for

nonlinear effects and for the difference between causality and correlation in the proposed methodology.345

Another approach for studying soil moisture-precipitation coupling is to perform multiple numerical simulations that differ

only in initial soil moisture and to analyze the differences in precipitation between these simulations (Imamovic et al., 2017;

Baur et al., 2018; Leutwyler et al., 2021). This approach allows to evaluate the effects of soil moisture changes on precipitation
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Figure 6. Local and regional soil moisture-precipitation couplings. Left: Impact of local soil moisture changes (m3 water ·m−3 soil) on

local precipitation (mmh−1) for each pixel in the target region (in the text denoted by qlocij). Right: Impact of local soil moisture changes

on regional precipitation for each pixel in the target region (in the text denoted by qregij). For better comparability of local and regional

values, the unit mmh−1 for precipitation refers to a single pixel in both panels. Missing hatching indicates that the coupling reflects more

than random correlations between soil moisture and precipitation in the training data, artifacts of the DL training procedure, seasonality,

and the correlation between soil moisture and topography (see Sect. 4.2). The green and yellow elevation contour lines indicate 370 m and

750 m, respectively.

within the employed numerical model precisely. However, for some questions, it is computationally infeasible. For instance, in

this work, we used ERA5 data to analyze the effects of soil moisture changes at each of 120× 80 target pixels on subsequent350

precipitation in the target region. We averaged these effects over all time steps in two test years, constituting 2208 time steps.

Performing an analogous study based on numerical simulations would require at least 120 · 80 · 2208 = 21196800 4-hourly

simulations with the ECMWF Earth system model used to produce the considered ERA5 data. Each simulation would be ini-

tialized with the state of the reference simulation at one of the 2208 considered time steps, the only difference being that soil

moisture would be slightly increased or decreased at one of the 120× 80 target pixels. This corresponds to simulating approx-355

imately 10000 years with the ECMWF Earth system model and is computationally infeasible. Furthermore, an advantage of

the proposed methodology over approaches based on numerical simulations is that it can directly be applied to observational

data, if suitable observational data are available. In this case, the proposed methodology does not rely on any assumptions

incorporated into numerical models.
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Figure 7. Linear correlation coefficient of local soil moisture and regional precipitation. For each location, the linear correlation coeffi-

cient of soil moisture SM [t] at the location and subsequent precipitation P [t+4 h] summed over the 15× 15 pixels surrounding region of

the location is shown.

4 Additional analyses to verify the results360

To ensure that the proposed methodology provides reliable results, this section presents some additional analyses. Theoretically,

the proposed methodology determines the causal effect of X on Y exactly. However, in practice, we make two important

approximations (cf. Sect. 2.2.2). First, the additional input variables {Cℓ}kℓ=1 may not strictly fulfil the adjustment criteria

from Sect. 2.1.2, such that the mapping of input variables to the original expected value E[Y |X = x,{Cℓ = cℓ}kℓ=1] in Eq. 6

is only approximately identical to the mapping to the post-intervention expected value E[Y |do(X = x),{Cℓ = cℓ}kℓ=1] in365

Eq. 5. Second, the DL model represents only an approximation of the map from Eq. 6. Both errors are difficult to quantify,

because both maps are unknown.

For example, the performance of the DL model on the test set cannot indicate how well the DL model approximates the

map from Eq. 6, because the loss value for this map is not known. For instance, for a system described by the causal graph

X→ Y ←C and the structural equation Y =X+1000 ·C (where X and C vary in similar ranges), the adjustment criteria370

from Sect. 2.1.2 imply that it suffices to consider X as input variable in the proposed methodology. Nevertheless, even if the

trained DL model perfectly represented the map x→ E[Y |X = x], the associated loss value would be high as knowing X

does not reveal much about Y , which is mainly determined by C.

The results of the proposed methodology are the partial derivatives qij of the DL model computed in the sensitivity analysis.

Due to the above approximations, these derivatives are only approximations of the partial derivatives sij of the map from375

Eq. 5, which represent the causal effect of X on Y (cf. Sect. 2.2.2). However, even quantifying the two approximation errors

mentioned above would not give us a good estimate of the errors in these results. In this section, we propose several additional

analyses to build confidence in results obtained with the proposed methodology. Particularly, the proposed analyses show if
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results are statistically significant, i.e. reflect more than random correlations or artifacts of the DL training procedure (Sect. 4.1),

and if they reflect more than specific (known) correlations (Sect. 4.2). Moreover, the analyses proposed in Sect. 4.3 allow to380

identify (potentially unknown) spurious correlations in the results. Finally, we propose some further sanity checks in Sect. 4.4.

We illustrate the analyses with our results on soil moisture-precipitation coupling from Sect. 3.

For reference only, we provide here the normalized mean squared error on the test set (target variable normalized to mean

of 0 and standard deviation of 1 on the training set) for our application to soil moisture-precipitation coupling: it is 0.60 for

the DL model. For a persistence prediction, i.e. when predicting the input P [t] as target P [t+4 h], which is a simple baseline385

prediction, it is 1.54.

4.1 Statistical significance

To test whether results obtained with the proposed methodology are statistically significant, i.e. represent more than random

correlations between X and Y in the training data and random artifacts of the procedure for training the DL model, we

propose the following procedure. First, randomly permute X in the training data, thereby breaking all non-random correlations390

between X and Y . For example, in the application to soil moisture-precipitation coupling, permute soil moisture temporally

and spatially. Next, train a separate instance of the original DL model with a random initialization of model weights on the

modified training data. Repeat this procedure several times. If the original results deviate significantly from the results obtained

from this procedure, they are statistically significant.

Formally, we propose to interpret a result r ∈ R of the proposed methodology, e.g. local or regional soil moisture-precipitation395

coupling at some pixel (i, j) (cf. Sect. 3.4), as a sample of a random variable r̂ : Ω→ R, where Ω is the probability space

Ω= {Training data}×{Weight initialization of the DL model}. (15)

Thus, r̂ computes the considered result, e.g. local or regional soil moisture-precipitation coupling at pixel (i, j) according to

the proposed methodology, for any given sample ω ∈ Ω. We define the null hypothesis that r represents random correlations

between X and Y in the training data, or random artifacts of the procedure for training the DL model. To test this hypothesis,400

we create m samples ω1
0 , . . . ,ω

m
0 of Ω by the above described procedure of permuting X and randomly initializing the weights

of separate instances of the considered DL model. Moreover, we compute the associated values ri0 = r̂(ωi
0), i= 1, . . . ,m,

representing samples of r̂ under the null hypothesis.

If the original value r differs from these samples, we can reject the null hypothesis and conclude that r is statistically

significant. In particular, if m is large enough, we can reject the null hypothesis at some significance level α (e.g. α= 5 %), if405

the original value r lies outside the middle 100 %−α of the values r10, . . . , r
m
0 , i.e. if

r ̸∈ [percentile({r10, . . . , rm0 },α/2),percentile({r10, . . . , rm0 },100 %−α/2)]. (16)

However, because we have to train m DL models for this analysis, it may not be feasible to choose m large enough to get

reasonable approximations of these percentiles. In this case, we propose computing the mean µ and standard deviation σ

of the values r10, . . . , r
m
0 , assuming a normal distribution of r̂ under the null hypothesis, and rejecting the null hypothesis at410
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significance level α if r is not in the middle 100 %−α of the distribution N(µ,σ), i.e. if

r ̸∈ [percentile(N(µ,σ),α/2),percentile(N(µ,σ),100 %−α/2)]. (17)

4.2 Known spurious correlations

As mentioned above, the proposed methodology identifies the exact causal effect of X on Y in theory, but not necessarily

in practice, where results might reflect spurious correlations. In this section, we propose two analyses to test whether results415

obtained with the proposed methodology represent more than spurious correlations. The analyses apply whenever the spurious

correlations are known, and X can be permuted such that the considered correlations are preserved while other correlations

between X and Y break. For example, there exists a spurious correlation between SM [t] and P [t+4 h] via topography,

because topography affects both SM [t] and P [t+4 h] (SM [t]← topography→ P [t+4 h], cf. Sect. 2.1.1). Further, there

might exist a spurious correlation between SM [t] and P [t+4 h] via seasonality, e.g. if both soil moisture and precipitation420

were generally lower in August than in June. Both correlations are preserved if we permute soil moisture year-wise as illustrated

in Fig. 8. All other cases of spurious correlations are discussed in the next section, in particular unknown spurious correlations.

Figure 8. Modification of the training data for the year-wise permutation of SM [t]. The modification of the test data works analogously.

The first proposed analysis is identical to the analysis described in Sect. 4.1 except that X in the training data is not permuted

randomly, but such that the considered spurious correlations are preserved. If the original results deviate significantly from the

results obtained in this analysis, they are statistically significant and do not only represent the considered spurious correlations.425

In our example of soil moisture-precipitation coupling, we permuted SM [t] year-wise as illustrated in Fig. 8 and trained

m= 10 separate instances of the DL model. The analysis indicates that our results on soil moisture-precipitation coupling

are statistically significant and represent more than correlations between soil moisture and topography or seasonality (missing

hatching in Fig. 6). Intriguingly, the regional coupling is statistically significant (albeit weak) at most ocean locations, although

one would not expect the DL model to learn a systematic effect of soil moisture variations on precipitation at these locations,430

since soil moisture does not vary at these locations. Indeed, we set soil moisture to 1 m3 water per m3 at all ocean locations for

all time steps, while it is smaller than 0.75 at all non-ocean locations. We assume that the statistical significance of the regional

coupling at ocean locations is an artifact of the DL model architecture, which favours generalization between locations, ocean

and non-ocean.
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The second proposed analysis evaluates whether the original DL model learned useful information in terms of predictive435

performance on the relation between X and Y , apart from the considered spurious correlations. In the analysis, we train m

separate instances of the original DL model on the original training data. The m instances differ in the random initialization of

model weights (cf. Sect. 3.4). For each model instance, we compute the value of the loss function on the test set, obtaining m

values l1, . . . , lm ∈ R. Next, for each model instance separately, we randomly permute X in the test data such that the consid-

ered spurious correlations are preserved, and compute the value of the loss function on the modified test set, obtaining m values440

lperm
1 , . . . , lperm

m ∈ R. Finally, we use a permutation test (Hesterberg, 2014) to test if the expected value of the loss function is

smaller on the original test set than on the modified test set. If this is the case, the DL models learned something useful in terms

of predictive performance on the relation between X and Y , apart from the considered spurious correlations. In our example

of soil moisture-precipitation coupling, we trained m= 10 separate instances of the DL model. We considered the year-wise

permutation of soil moisture in the test data as described above. In this case, the analysis indicates at a confidence level of 99 %445

that the model learned useful information in terms of predictive performance on soil moisture-precipitation coupling, apart

from the correlations between soil moisture and topography or seasonality. However, for the validity of this analysis, it may be

limiting that there are only two test years in this example and thus only one possible permutation of years apart from the orig-

inal one. Therefore, we repeated the analysis and permuted soil moisture in the test data completely randomly in time. While

this does not preserve correlations between soil moisture and seasonality, it still preserves the correlation between soil moisture450

and topography. Furthermore, it ensures the validity of the analysis as there are a lot of possible permutations. In this case, the

analysis indicates at a confidence level of 99 % that the model learned useful information in terms of predictive performance

on soil moisture-precipitation coupling, apart from the correlation between soil moisture and topography. Note that even if

the first analysis indicates that some result reflects more than the considered correlations, it cannot exclude that the results are

partly affected by the considered spurious correlations. Analogously, if the second analysis indicates that the DL model learned455

useful information in terms of predictive performance on the relation between X and Y , apart from the considered spurious

correlations, it cannot exclude that the predictions are partly affected by the considered spurious correlations.

4.3 Further spurious correlations

In the previous section, we analysed specific spurious correlations, i.e. spurious correlations that were known, and for that X

could be permuted such that the spurious correlations are preserved, while other correlations between X and Y break. As460

an additional analysis to identify any spurious correlations reflected in obtained results, we propose a variant approach. The

concept of the approach is related to the ideas in (Tesch et al., 2021) and (Peters et al., 2016). It consists of training separate

instances of the original DL model (referred to as variant models) on modified prediction tasks (referred to as variant tasks)

for which it is assumed that causal relations between input and target variables either remain stable or vary in specific ways.

Subsequently, the results obtained from original and variant models are compared and it is evaluated whether they reflect the465

assumed stability or specific variations, respectively, of causal relations. If not, the original model or one of the variant models

(or all models) learned spurious correlations.
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For example, we may assume that the general (causal) mechanisms of soil moisture-precipitation coupling do not vary in

time or space. Then, if the couplings in Fig. 6 reflect the causal effect of soil moisture on precipitation, we should obtain the

same couplings from separate instances of the DL model that are trained only on470

– data from the first or second half of the training years,

– data from June, July or August, or

– the left or right half of the considered region.

On the other hand, if Fig. 6 reflected spurious correlations and these spurious correlations differed for the different subsets of

training data listed above, we should obtain different couplings from the different model instances.475

Appendix Figs. A1 to A3 show the local and regional couplings obtained from the different model instances trained on the

listed training subsets. As expected for the case that all instances learned the causal effect of soil moisture on precipitation,

all couplings are very similar to the ones shown in Fig. 6. Note however that this does not guarantee that they show causal

relations.

4.4 Task-specific sanity checks480

To further assess the correctness and increase trust in results obtained from the proposed methodology, we propose to perform

further, task-specific sanity checks. For instance, in our example of soil moisture-precipitation coupling, precipitation P can be

partitioned into convective precipitation Pcon (occurring at spatial scales smaller than the spatial resolution of the numerical

model) and large-scale precipitation Pls (occurring at larger spatial scales), such that P = Pcon +Pls. Accordingly, soil

moisture-precipitation coupling, SM -P coupling, can be decomposed into the sum of SM -Pcon coupling and SM -Pls485

coupling. As a sanity check for the results in Fig. 6, we applied the proposed methodology to obtain SM -Pcon coupling and

SM -Pls coupling by replacing P by Pcon and Pls, respectively, and compared the sum of the obtained couplings with Fig. 6.

Appendix Fig. A5 shows the sum of local and regional SM -Pcon and SM -Pls couplings, which are indeed very similar to

the couplings shown in Fig. 6.

Further, SM -P coupling can approximately be factorized into instantaneous (local) soil moisture-evaporation (SM -E)490

coupling times evaporation-precipitation (E-P ) coupling. As another sanity check for the results in Fig. 6, we applied the

proposed methodology to obtain SM -E coupling and E-P coupling by once replacing the target variable P by E and the

other time replacing the input variable SM by E. Appendix Fig. A7 shows the product of local SM -E and local and regional

E-P couplings. The obtained couplings are very similar to the couplings shown in Fig. 6, despite being slightly weaker in

general and far weaker in the high Alps.495
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4.5 Control experiment

As a simple control experiment for the proposed methodology and analyses, we replaced the target variable P [t+4 h] by

random noise. As expected from the missing correlations between SM [t] and random noise, the methodology identified no

statistically significant (cf. Sect. 4.1) causal effect of soil moisture on the target variable in this case.

Defining a more complex control experiment confirming the results obtained in the application to soil moisture-precipitation500

coupling is not possible. This is because the maps in Eq. 6 and Eq. 5, and thus the errors in their approximations, would differ

if, for example, we replaced SM [t] by a variable X that is highly correlated with P [t+4 h] but does not causally affect

P [t+4 h]. However, we believe that the analyses proposed in this section build high confidence in the methodology and the

results.

5 Conclusions505

In this study, we proposed a novel methodology for studying complex, e.g. nonlinear and non-local, relations in the Earth

system. The methodology is based on the recent idea of training and analyzing a DL model to gain new scientific insights into

the relations between input and target variables. It extends this idea by combining it with concepts from causality research. A

crucial aspect in the proposed methodology is the choice of additional input variables for the DL model. This choice requires

prior knowledge on which variables are relevant to the considered relation, and on the existence of dependencies between these510

variables. However, it does not require prior knowledge on the strength or sign of these dependencies, which can be obtained

from the proposed methodology. When the required prior knowledge does not exist, methods from causal discovery (Guo et al.,

2021) might be used to identify a causal graph anyway, such that the proposed methodology might still be applicable.

In addition to the methodology, we presented analyses to assess whether results obtained with the proposed methodology are

statistically significant, i.e. reflect more than random correlations or artifacts of the DL training procedure, whether they reflect515

more than specific (known) correlations, and whether they actually reflect causal rather than (potentially unknown) spurious

correlations. Finally, we proposed sanity checks for the obtained results. While the analyses cannot guarantee the correctness of

obtained results, we believe that the proposed analyses provide a solid indication of the correctness of obtained results. Taking

into account the difference between causality and correlation, and overcoming common assumptions on linearity and locality

in statistical approaches, as well as high computational costs and assumptions of numerical approaches, we believe that the520

proposed methodology may yield new scientific insights into various complex mechanisms in the Earth system.

As an illustrating example, we applied the methodology and the proposed analyses to study soil moisture-precipitation

coupling in ERA5 climate reanalysis data across Europe. Our main findings are the difference in sign between positive local

and negative regional impact and particularly strong local and regional couplings in mountainous regions and ridges. While we

believe that these findings may contribute to a better understanding of soil moisture-precipitation coupling, in this article, we525

focused on demonstrating the methodology. An extension and discussion of our results on soil moisture-precipitation coupling

in terms of physical processes are subject of a future study.
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Code and data availability. The ERA5 climate reanalysis data (Hersbach et al., 2018) underlying this study are publicly available. Code to

reproduce the study can be found here: https://doi.org/10.5281/zenodo.6385040.
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Figure A1. Local and regional soil moisture-precipitation couplings for models trained on the first and second half of the training

years, respectively. Left column: local couplings. Right column: regional couplings. Upper row: model trained on the first half of all training

years (1979-1997). Bottom row: model trained on the second half of all training years (1998-2019).
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Figure A2. Local and regional soil moisture-precipitation couplings for models trained only on data from June, July and August,

respectively. Left column: local couplings. Right column: regional couplings. Upper row: model trained on data from June. Centre row:

model trained on data from July. Bottom row: model trained on data from August.
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Figure A3. Local and regional soil moisture-precipitation couplings for models trained on the left and right half of the considered

region, respectively. Left column: local couplings. Right column: regional couplings. Upper row: model trained on the left half of the

considered region. Bottom row: model trained on the right half of the considered region (see Appendix Fig. A4). Note that the models were

trained only on the left and right half, respectively, but the model architecture allows to compute local and regional couplings for the entire

region.
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Figure A4. Location variant tasks. The input region was divided in a left and a right input region with corresponding target regions

(indicated by the red and blue boxes).
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Figure A5. Sum of local and regional soil moisture-convective precipitation and soil moisture-large-scale precipitation couplings.

Left: sum of local couplings. Right: sum of regional couplings. See Appendix Fig. A6 for soil moisture-convective precipitation and soil

moisture-large-scale precipitation couplings.
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Figure A6. Local and regional soil moisture-convective precipitation and soil moisture-large-scale precipitation couplings. Left

column: local couplings. Right column: regional couplings. Upper row: soil moisture-convective precipitation coupling. Lower row: soil

moisture-large-scale precipitation coupling.
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Figure A7. Product of local soil moisture-evaporation and local/ regional evaporation-precipitation couplings. Left: product of lo-

cal soil moisture-evaporation and local evaporation-precipitation couplings. Right: product of local soil moisture-evaporation and re-

gional evaporation-precipitation couplings. See Appendix Fig. A8 for local soil moisture-evaporation and local and regional evaporation-

precipitation couplings.
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Figure A8. Local soil moisture-evaporation and local and regional evaporation-precipitation couplings. Left: local soil moisture-

evaporation coupling. Centre: local evaporation-precipitation coupling. Right: regional evaporation-precipitation coupling.
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