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Abstract. The-Earth-system-Earth is a complex non-linear dynamical system. Despite decades of research, and considerable
scientific and methodological progress, many processes and relations between Earth system variables are-stitb-remain poorly
understood. Current approaches for studying relations in the Earth system may-be-broadly-divided-into-approaches-based

rely either on numerical simulations and-or statistical approaches. However, there are several inherent limitations to eurrent
approachesthat-are;forexamplerexisting approaches, including high computational costs, reliance-on-the-correctrepresentation
of-relations-uncertainties in numerical models, strong assumptions related—to-about linearity or locality, and the fallacy of
correlation and causality.

Here, we propose a novel methodology combining deep learning (DL) and principles of causality research in an attempt

to overcome these limitations. The-methodology-combines-the-On the one hand, we employ the recent idea of training and
analyzing DL models to gain new scientific insights ia-the-into relations between input and target variableswith-a-theerem-from

eatsality research—This-theoremstates-. On the other hand, we use that a statistical model may-tearn-the-eausal-impaetlearns

the causal effect of an input variable on a target variable if suitable additional input variables are included. As an illustrative
example, we apply the methodology to study soil moisture-precipitation coupling in ERAS climate reanalysis data across
Europe. We demonstrate that, harnessing the great power and flexibility of DL models, the proposed methodology may yield

new scientific insights into complex snonlinear and non-local coupling mechanisms in the Earth system.

1 Introduction

The Earth system is—a—dynamieal-system—featuring-comprises many complex processes and non-linear relations between

ider-variables that are still not fully understood.
Considering for example soil moisture-precipitation coupling, i.e. the question how precipitation changes if soil moisture is

changed—1t-, it is well-known that soil moisture affects the temperature and humidity profile of the atmosphere and thereby

influences the development and onset of precipitation

Seneviratne et al., 2010; Santanello et al., 2018). However, because there are several concurring pathways of soil moisture-
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precipitation coupling(see—upper—panel-of-Fig—22), it remains an open question whether an increase in soil moisture leads

to an increase or decrease in precipitation. Answermg this question is—impertant,—because—a—betterunderstanding-of-soil
as-might lead to improved precipitation predictions with

numerical models.

Certainly—there-are-many-approaches-Approaches for studying relations in the Earth system —These-approaches-may be

broadly divided into approaches based on numerical simulations (e.g. Koster, 2004; Seneviratne et al., 2006; Hartick et al.,

2021), and statistical approaches (e.g. Taylor, 2015; Guillod et al., 2015; Tuttle and Salvucci, 2016). Howevereurrent-Both

classes of approaches have several inherent limitations. On-the-one-hand;-approaches-Approaches based on numerical simula-
tions usually have high computational costs and, even more importantly, rely on the correct representation of the considered re-

lations in the numerical model. For example, precipitation in numerical models lacks accuracy due to several parameterizations;
steh-that-using-these-numerieal-simplified parameterizations, thus, using these models to study soil moisture-precipitation cou-
pling may-notbe-optimalis problematic. On the other hand, statistical approaches usually have much lower computational costs
and can directly be applied to observational data. However, current statistical approaches often-bring-their-ownlimitationshave
strong limitations on their own, for example strong-assumptions-tike-due to assumptions on linearity or locality of the-consid-
ered relations and negligence of the diserepaney-difference between causality and correlation.

A recent statistical approach for studying relations in the Earth system is to train deep learning (DL) models to pre-

dict one Earth system variable given one or several others, and use methods from the realm of interpretable deep-tearning

DL (Zhang and Zhu, 2018; Montavon et al., 2018; Gilpin et al., 2018; Molnar, 2019; Samek et al.
tions learned by the models (Roscher et al., 2020). The approach was-has been applied in several recent studies (Ham et al.,
2019; Gagne Il et al., 2019; McGovern et al., 2019; Toms et al., 2020; Ebert-Uphoff and Hilburn, 2020; Padarian et al., 2020),

2021) to analyze the rela-

2

and the pewer-and-flexibility-use of DL models allows to overcome common assumptions in other statistical approaches like
linearity or locality. So far, however, the diserepaney-difference between causality and correlation has been neglected in the

studies using this approach. Indeed, DL models might learn al-kinds-ef-various (spurious) correlations between input and
target variables, while researchers striving for new scientific insights are most interested in the-eausal-ones—Fhus;-we-propese
to-extend-causal relations.

Therefore, in this work, we propose extending the approach by combining it with a theerem-result from causality research

that-states-that-stating that a statistical model may learn the causal impaet-effect of an input variable on a target variable if
suitable additional input variables are included Pearl;2009)--

oy—(Pearl, 2009; Shpitser et al., 2010). In the geosciences, this
result has only recently received attention in the work of (Massmann et al., 2021)and-has—not-yet-been—, In this work, it is

combined with the methodology of training and analyzing DL models to gain new scientific insights —Harnessing-the-great
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for the first time. Note that there are several other recent studies on causal inference methods in the geosciences
.g. Tuttle and Salvucci, 2016, 2017; Ebert-Uphoff and Deng, 2017; Green et al., 2017; Runge, 2018; Runge et al.,

. However, most of them focus on discovering causal dependencies between variables, while the proposed methodolo

assumes prior knowledge on causal dependencies and focuses on quantifying the strength and sign of a particular causal
dependency. As an illustrative example, we apply the proposed methodology to study soil moisture-precipitation coupling in

ERAS climate reanalysis data across Europe.

to-a-second-paperQther geoscientific questions that could be addressed with the proposed methodology are, for example, soil
moisture-temperature coupling (Seneviratne et al., 2000; Schwingshackl et al., 2017; Schumacher et al., 2019) and.

The-This manuscript is structured sueh-that-as follows: Sect. 2 introduces the required-background on causality research and
details the proposed methodologys-. Sect. 3 presents the application of-the-methedology-to-the-example-of-to soil moisture-
precipitation coupling ;-and-and provides a comparison to other approaches. Finally, Sect. 4 presents-several-further-contains

several additional analyses to assess the statistical significance and correctness of results obtained with the proposed method-

ology. Fin

2 Methodolo

To introduce the proposed methodologywi

analysis—,_which combines deep learning with a result from causality research, we first give a basic introduction into the
required concepts from causality research. Based on that, we describe how one can train a DL model that reflects causality.

3 Methodology

2019; Barnes et al., 2(
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2.1 Background on causalit

Fhe-causat-impact of If we could change the value of any Earth system variable, e.g. increase soil moisture in some area, this
would potentially affect numerous other Earth system variables, e.g. evaporation, temperature and precipitation. The variable
that was changed thus has a causal impact on the latter variables. Formally, the causal effect of some variable X € R on
another variable Y € R" is the (expeeted«}e&ggtg&hesponse of Y to mfefvemﬁg—mtemefeﬂﬁdefeésyﬁem{&g—fhelé&ﬁh
system)&nd»changlng the value of X. To

-determine this impact, one has to determine
the expected value of Y given that one intervened-into-thesystemand-setsets X to some arbitrary value . In the framework of
Structural Causal Models (SCMs) introduced below, this-setting X to « is represented by a mathematical intervention operator

do(X = z), and the sought value is referred to as the post-intervention expected value E[Y |do(X = x)]. Nete-thatin-general;

In some cases, the-vatae-E[Y |do(X = x)] can be eomputed-by-actually-interveninginto-the-consideredsystemdetermined
experimentally by setting X to  while monitoring Y. For example whaﬁh&eens&defe&systeimsﬁmmeﬁeahﬂede%ef—%he

120

value-of Y—if-we-would tn{efveﬂe—m—fhesystem—aﬂéseﬂn Earth System Modeling (ESM), one may be able to set X to «;and
thus-the-eausal-Hmpaet-of X—on¥-x in numerical experiments. However, often it is impossible to determine E|Y |do(X =«

experimentally due to computational constraints or because of the lack of appropriate numerical models. Obviously, analo
experiments are even harder to perform or impossible in case of large scale interactions in the Earth system.
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for-the proposed-methodology—describes how it can be determined without experimentally setting X to . The framework is
briefly introduced in the following. For a more in-depth introduction te-the-frameweork-we refer to (Pearl, 2009). Anether-An

introduction to the framework in the context of Earth-seienees-geosciences is given in (Massmann et al., 2021).
Underlying-
211 Structural Causal Models

In the framework of SCMsis-the-conceptof-eausal-graphs, the considered system, e.g. the Earth system, is described by a causal
raph and associated structural equations. A causal graph is a Directed-Aeyelie- Graph-(DAG)-that-encodes-our-assumptions

aoot agsar-acp a S—OT-a-S¥S S pa O & o1 a P anda 0108V )~ OGCSO grap

of-variable-A-on—varitable B—directed acyclic graph, in which nodes represent the variables of the system and edges encode

the dependencies between these variables. For example, in the system described by Fig. 1a, variable Y depends on all other

variables, although the lack of an edge from X to Y implies that X only affects Y indirectly via its impact on C'5. Parents of

a considered variable (node) are all variables that have a direct effect on that variable, i.e. all variables with an edge pointing to

that variable. In the following the terms node and variable are used interchangeably.

Figure 1. ¥

a-system—Example for a causal graph (a) and corresponding causal graph for setting variable X to some arbitrary value z (b). The

grey circles are referred to as nodes of the graphand-represent-variables-ef-the-system, while the arrows are referred to as {directed y-edges.A
irected-edgefromsome-node-A-to-another node-B-represents-a-direct eausal-impaet-of-variable-A-on-variable-B-

Formally, it-is-assumed-that-the-value-of some-variable-A-a variable in the causal graph is determined by a (deterministie)
funetion—ffunction f, whose inputs are the-parents-of node-A;te-altnodes-with-an-edge-pointing-to-A;and-an-independen

vartable-Uxits parents and a random variable U representing potential chaos and variables not included in the causal graph
explicitly. For example, for the system in theleft-panel-of-Fig. 1;-itis-assumed-that-a, the four variables are determined by four
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functions fc,, fo,, fx, fr-suchthat-
ci= fo,(uc,)

z= fx(c1,ux)

c2= fo,(z,uc,)

Yy= fY(C1,02-,UY)-,

~

These equations are called structural equations. The random variables U, ,Uc,,Ux ,Uy are assumed to be mutuall

independent and give rise to a jeint-probability distribution P(C4,C2, X ,Y ), which describes the probability of observin
any tuple of values (cy,co,x,y). Integrating the product of Y and this probability distribution over all tuples (cq,c for

some fixed value x, one obtains the expected value of Y given that one observes the value x of X, i.e.

EY|X =x] = / y-P[C1=c1,Ca=ca,Y =y|X =2x]. (2)

C1,C2,Y

stated above, to determine the causal effect of X on Y, one has to determine the expected value of Y te-intervening-into-the
considered-system-and-changing-the-value-given that one set X to some arbitrary value z, i.e. the post-intervention expected

value E|Y |do(X = x)]. By setting X to some arbitrary value x, all dependencies of X on other variables are eliminated.
Within the framework of SCMs, the-intervention-into-the-system-this corresponds to removing all edges in the causal graph
pointing to X, and modifying the structural equation for X —Te-study-the-causalimpaetof-variable-accordingly. For example

when studying the causal effect of X on variable-Y in theleft-panel-of-Fig. 1-forexample;-we-might-intervene-in-the-system
e-a, the modified system is described by the causal graph in the

C2= sz (iI?,uC2)

y= fy(c1,c2,uy).
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b with the associated structural equations

) )

Again, the random variables U, ,U¢,,Uy give rise to a probability distribution ; : = ;

E[Y | X = z|. For instance, in the example from Fig. 1, knowing X allows to draw conclusions about Y both in
the original system (Fig. 1a) as well as in the modified system (Fig. 1b), because X has a causal effect on Y by-analyzing

E[Y|do(X = xo)] — E[Y|do(X = x1)].

valae-of(via its impact on C5). However, in the original system, knowing X allows to draw conclusions-about-the-value-of

additional conclusions about C'ys-beeause. This is the case although the edge in the causal graph points from Cy to X, ie.
Cj_affects the-X, not vice versa. For example, if X was simply the sum of €'y and the random term Ux . a high value of X
~Fhat-again-would probably imply a high value of Cj . These conclusions about C1y cannot be drawn in the modified system,
where the edge from C to X is removed. The knowledge about C';_allows to draw further conclusions about the-value-of-Y 5
because C also affects the-value-of-Y ¢, Summarizing, due to the confounding influence of Cis-a-confounder)—In-theformer
ease;-on, knowing X reveals more about ¥ in the original system than in the modified system, which is why the original
expected value E[Y'| X = x] and the post-intervention expected value E[Y |do(X = )] differ.

If we could observe the modified system, i.e. if we could experimentally set variable X to arbitrary values x, we could
roximate the post-intervention expected value E[Y |do(X = )] by training a suitable (see Sect. 2.2.1) statistical model on
the observed tuples (,y) to predict ¥ given X . However, in the other hand; we intervene i the systemand cases considered in
@&mmﬂmm@mgﬁm&w X to some-arbitrary-vatue-wg—tn-this-ease-the
Crx. Thus, we can only observe the orig
approximate the original expected value E[Y| X = x| by analogously training a statistical model on observed tuples (z.y).
of the original system. Consequently, we have to bridge the gap between the original expected value E[Y'|X = x| and the
post-intervention expected value E[Y |do(X = z)].

. . )

ginal system and

2.1.2 Adjustment criteria



To bridge the gap between the original expected value E[Y | X = x| and the post-intervention expected value E[Y |do(X = x
we must take into account variables other than X on-another-variable-and Y when-we-cannotintervene-in-the-system;-we-need
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E[Y|do(X =), {Ci = ci}i1] =E[Y|X =2, {C; = ci}},]-

210 A—suthetentsetisdefined-asfoHows—
Definition -1 (Sufficient set): -
sufficientif - No-clementof-Sis-a-deseendantof-. Indeed, in the example from Fig. 1, we showed that original and post-intervention
expected values differ because, in the original system, knowing X —TFhe-elements-of-S-bloek-att-paths-between-allows inferences
about C'; that are not possible in the modified system. However, if we actually knew C, this would not be the case, thus

the original expected value E|Y | X = x.C and the post-intervention expected value E[Y |do(X = x).C

215

identical. Analogously to E[Y | X = x|, the expected value E[Y | X = x,C1 = ¢1] can be approximated by observing the

original system and training a statistical model on the observed tuples (x,y, ¢y ) to predict Y given X and ¥—thatcontain-an

edge-pointingto-C'y . Therefore, this equality allows to approximate the post-intervention expected value E|Y |do(X = z).Cq =

by only observing the original system and without experimentally setting X to x. Here;-a-descendant-of X—is-any-variable-D-
220 for-whichthereexists-a-directedpathX—————D-
In the proposed methodology, we exploit the fact that the equalit

EY|X = {Ce = ce}icy] =BV |do(X = 2). {Cp = esi] @

holds for any causal graph, thus allowing to determine the post-intervention expected value E[Y |do(X = x

from observations alone, if the additional variables C, € R% _¢ = 1. ... k. fulfil the following adjustment criteria (Shpitser et al., 2010

225

1. The variables {Cy}%_, block all non-causal paths from X to P-inthe-Y in the original causal graph. n-the left-panet

2. No {C,}¥_, lies on a causal path from X while-Cr-is-not—tnthe second-conditionto Y.

Here, a path is any sequence-node-edge-node-edge-——edge-node —where-the-edgesdonotneee ty potat-in-the

230 directionconsecutive sequence of edges. A path between X and Y is causal from X to Y if all edges point towards Y, and
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non-causal otherwise. A path pis-blocked-is blocked by a set §-5 = {Cy}§_, of nodes if either (i) ythe path contains at least
)

S +(e.g. the path X <— Cj — Y in Fig. 1 is blocked by S if S contains C); or (ii) p-the path contains at least one collision
node, i.e. a node en-the-path-with both adjacent edges pointing towards the node (... — C < ...), which is outside S and has

no descendants in S —Fa-(e.g. the path X — C < Y is blocked if S does not contain C).
The first adjustment criterion generalizes the example of sei

one edge-emitting node, i.e. a node with at least one adjacent edge pointing away from the node (... <> C — ...), that is in

3

the edge-emittin,

X 2 Cy 22 Y such that X is only used to draw conclusions about Y via the causal path X — C'; = Y. In general, the
criterion ensures that X is only used to draw conclusions about ¥ via causal paths from X to ¥ and not via any non-causal
path between X and Y.

The second adjustment criterion ensures that no causal path from X to Y is blocked, such that the post-intervention expected
value E[Y |do(X = ). {Cp = cp};_,] actually reflects the causal effect of X —i-e.on Y. For example, considering the causal

ath X — C3 — Y in Fig.

would indicate that there is no causal effect of X on Y.

Summarizing this section, we can aj

observations alone, if we can describe the considered system by a causal graph and find variables Cp € R*. £ =1.....k that
fulfil the above adjustment criteria. Describing the system by a causal graph requires knowledge on which variables are relevant
to the considered relation (represented by the nodes in the graph) and on the existence of causal dependencies between these
variables (represented by the edges in the graph). Nevertheless, it does not require knowledge on the sign or strength of
WQM@WWWMWMM%%

of X in the causal graph always fulfil the adjustment criteria. In the
fespeeﬂve—v&ﬂab}e—feéé)—a}ways—fefm—a—sufﬁeteﬁt—se% roposed methodology, we exploit the post-intervention expected value

methodology is as follows: given a complex relation between two variables X € R? and Y € R", for example soil moisture-

precipitation coupling, we train a causal deep learning (DL) model to predict Y given X and additional input variables

CpcR¥ ¢ =1,....k In a second step, we perform a sensitivity analysis of the trained model
ton—to analyze how Y ehanges—when—would change if we changed X, i.e. to
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2.2.1 Training a causal DL modelte-prediet-one-variablegiven-the-other

DL models (LeCun et al., 2015; Reichstein et al., 2019) learn statistical associations between their input and target variables.

By training a ea#seat causal DL model, we mean that we train a DL model which-approximates-the-map-

(z,{cs}iny) = E[Y|do(X =), {Ci = e;}{],

Fo-achieve-that-the-DE-that approximates for each input tuple (z,{ce}%_,) the post-intervention expected value
E[Y|do(X =x),{Cp = ce}%_,], i.e. the model approximates the map fromEe-—5

(@ {cebicy) 2 EY|do(X = @) {Ce = co}iy). ®)

To obtain a causal DL model, the loss function, PE-medel-model architecture and additional input variables Ct—=4+—k;
{Cy}%_, have to be chosen carefully. In particular, we choose a loss function that is minimized by the original expected value
of Y given X and the other input variables, i.e. by the map

(, {ce}iziem1®) = E[Y | X =2, {C;s = ci}[ | [E[Y|X = 2, {Cp = co};_y]. (©)

Alessfunetionfulfilling-thisrequirementis—forexample;-An example for such a loss function is the expected mean squared

error,

BI(Y ~ ¥)X . {Ci = i}y (s (X, {Caley) » B) S EI(Y — ma (e} )] ¢

m: (X,{C,} ) = R™, representing the predictions of the DL model, to its expected mean squared error (Miller et al., 1993

. Furthermore, in terms of model architecture, we choose a differentiable DL model (e.g. a neural network) that can rep-

resent the potentially complicated function from Eq. 6. Finally, we choose additional input variables {6+ —thatforma

K2

suffieient-set-S—(see-{Cy¢}%_, that fulfil the adjustment criteria from Sect. 2-H—From Theoremt-weknow-that-this-implies
i .1.2, such that the maps from Eg. S and

N

ir-requires prior knowledge on which variables are relevant for the considered relation, and on the existence of causal
dependencies between these variables. However, it does not require prior knowledge on the strength, sign, or functional form
of these dependencies (cf. Sect. 4-2.1.2), which can be obtained from the proposed methodology.

10



2.2.2 Performing-a-sensitivity-Sensitivity analysis of the trained model

To determine the causal impaeteffect of X € R on Y € R™, we consider partial derivatives of the map from Eq. 5, i.e.

IE[Y i, |do(X =x),{C; =¢; ,}le] OE[Y ;|do(X = x),{Cy = ce}lzzl]
0X; ’

®)

295 sil”i@gw’wcekffwl) = X

i

I 1 S

i—1

300 we-take-thecorrespondingpartial-derivative-indicate how Y'; is expected to change if we experimentally varied the value of

The target quantity in the proposed methodology is the expected value of s;; (., {cs}%_,) with respect to the probabilit

distribution of X and {Cy =cp}7_,,i.e. 5;; = k. |sii(x,{ce}s_,)|. This quantity, which we refer to as the causal

305 effect of X on Y, indicates how Y ; is expected to change if we experimentally varied the value of X ; by a small amount.
To approximate this quantity, we average the partial derivatives g;;(z,{ce}5_,) of the DL model to-approximates;7;—over a

large number of observed tuples (x,{cy}*_,). For instance, when studying soil moisture-precipitation coupling, we average
(2, {ce}®_.) over the T samples from the test set, i.e. we consider

_ 1 k

@ = > @ij(z, {ceti=1)- )

(x,{ce}}_,)Etest set

310 Note that one might also combine partial derivatives for different tuples {¢154)(4, ), for example to analyze the impact of a

change in X;-X ; on the sum %—Iﬂ—fhef*&mp}eeﬁ " Y ;. When studying soil moisture-precipitation coupling, for
instanee;-we combine different partial derivatives to study the local and regional impact of soil moisture changes on precipita-

tion (see Sect. 3.4).

—

In theory, the
315 . .

k
v =1 1%~

OE[Y ;, |do(X = x),{C; = ¢; }F_|]
Sivieg = ]]Z?‘iac,{c,;}i?:1 [Siliz] - Em,{ci k. - X, : : =
io

i1i=1/"

on Y exactly. In practice, however, we make two
320 important approximations. First, due to the complexity of the Earth system, the additional input variables {C,}%_, may not
strictly fulfil the adjustment criteria from Sect. 2.1.2, such that the map from Eqg. 6 is only approximately identical to the ma

11



from Eq. 5. Second, the DL model only approximates the map from Eq. 6. Thus, the partial derivatives of-the-trained Dl-model
over-all-samplesfrom-thetestset—q;; k) of the DL model only a

that we are interested in. We will come back to this in Sects. 3.3 and 4.

roximate the partial derivatives s;;

325 3 Application exampleto soil moisture-precipitation couplin

This—seetion—deseribes—the-apphieation—ofthe-As an illustrative example, we apply the proposed methodology to study soil
moisture-precipitation coupling, i.e. the question how precipitation changes if soil moisture is changed. Although it is well-

known that soil moisture affects precipitation

, it remains unclear whether an increase in soil moisture results in an increase or decrease in precipitation. This is due to several
330 concurring pathways of soil moisture-precipitation coupling (see tpperpanetof-Fig. 222). Improving our understanding of soil
moisture-precipitation coupling is important --beeause-this-might-to improve precipitation predictions with numerical models.
A S-af 1'| ]]f‘tf'lﬁ“‘e eX‘ifﬁ]S|e, we
We apply the proposed methodology to study soil moisture-precipitation coupling across Europe at a short time scale of 3
to 4 hours. Namely, we train a causal DL model to predict precipitation P[t + 4 h] € R89*140 3¢ 80 x 140 target pixels across

335 Europe, given soil moisture S M [t] € R120%180 and further input variables €;{#-c RZ20X180.C [f] € R129%180 ¢ o antecedent

recipitation, that approximately fulfil the adjustment criteria from Sect. 2.1.2, at 120 x 180 input pixels (see Fig. 3);-and-. In

a second step, we perform a sensitivity analysis of the trained model to analyze how the precipitation predictions change if the
soil moisture input variable is changed. The-Note, the input region is larger than the target region because P[t + 4 h] depends

on input variables in a surrounding region.

,.,o ‘oo ,,,o oo ,.,- ®oe ,,,o ®oe

Soil
moisture
(@) Increased (b) Decreased atmospheric (c) Effects of horizontal soil
atmospheric water boundary layer (ABL) height moisture inhomogeneities on
content. (left), increased moist static mesoscale circulation.

energy in the ABL (right).

Figure 2. Concurring pathways of soil moisture-precipitation coupling. An increase in soil moisture can increase latent heat

flux and decrease sensible heat flux at the land surface (Seneviratne et al., 2010). This can increase precipitation via an increase in

atmospheric water content (a; Eltahir, 1998). At the same time, it can increase or decrease precipitation via boundary layer dynamics

b; Findell and Eltahir, 2003a, b; Gentine et al., 2013), or via effects of spatial heterogeneity in latent and sensible heat fluxes on mesoscale

circulations (c; Eltahir, 1998; Adler et al., 2011; Taylor et al., 2011; Taylor, 2015).

12
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Figure 3. Input and target regions in the example of soil moisture-precipitation coupling. The colored region represents the 120 x 180
pixels input region, the red box the 80 x 140 pixels target region. Note that the offset between input and target region is 20 pixels on each

side and distorted by the projection.

3.1 Data

The data underlying our example are ERAS5 hourly data (Hersbach et al., 2018) s-which-are-constituting an atmospheric reanal-
ysis of the past decades (1950 to today) provided by the European Centre for Medium-Range Weather Forecasts (ECMWEF).
Reanalysis means that-they-ecombine-simulation data and observations have been merged into a single description of the global
climate and weather using data assimilation technologies. ERAS5 data contain hourly estimates for a large number of atmo-
spheric, ocean-wave and land-surface quantities on a regular tat-ten-latitude-longitude grid of 0.25 degrees (~ 30 km). Nete
that—in-In _this study, soil moisture refers to the ERAS variable ‘“‘volumetric soil water in the upper soil layer (0-7 cm)-—Nete
furtherthat-the-”, The target variable, precipitation 2{—+4-A}P|[t 4 4 h], represents an accumulation of precipitation over the
lasthour-
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time interval [{ + 3 h,t 44 h]. In our analyses, we consider ERAS data from 1979 to 2019 across Europe. Because soil
moisture-precipitation coupling in Europe is strongest during the summer months, we only consider the months June, July
and August. Further, we restrict our analyses to daytime processes considering precipitation predictions, Pt + 4 h], for times

t 44 h between noon and 11 pm UTC.
3.2 Loss function, model architecture and training

From-As described in Sect. 2.2.1, we-have-that-the loss function should be minimized by the expected value of precipitation
Pt + 4 h], given soil moisture S M [t] and the other input variables €;{¢t}Cl[t], i.e. by the function (cf. Eq. 6)

(SM[t], {Celt]}iz1e=1®) — E[P[t + 4 h)|SM[t], {Cs[t]}i, JE[P[t + 4 h][SM[t], {Ce[t] };_, ). (10)

This holds true for the expected mean squared error tess-funetion;-

L(xy,...,xN) = — Zmean((yi —4:)%))

, the expected mean squared error

N
5> mean((Plt;+ 41] — m(SM{t], (Celt}1))). (an

that-we-usefor-this-example-Here, N-is-the-nambe atrg-samples s e the inputsamples.y; = L

mean operator denotes the mean over the 80 x 140 target pixels across Europe.
Furtherthe-ehosen-The employed DL model should be able to represent the presumably highly nonlinear function from

Eq. 10. As—suech-a-model—we-choose-a-CNIN-We choose a convolutional neural network (CNN; LeCun et al., 2015) whose

architecture is inspired by the U-Net architecture

two-coneepts-that-one-sheuld-be-familiar-with-(see Fig. 4; Ronneberger et al., 2015) Two concepts are important in a
CNN s in representing the function from Eq. 10. The first is the concept of receptive fields. Namely, the prediction of the model

at some target location is fully determined by the 1nput variables in a eeffaﬁrﬂetghbeflﬁmd—&mefaﬂeek surrounding region,
the so-called receptive field. In
thereeeptivefield-isglobaldn-our case, the size of the receptive field is < 52 x 52 pixels, i.e. the precipitation prediction at a
target location is fully determined by the input variables in a < 52 x 52 pixels neighborhood-surrounding region.

The second concept is that of translation invariance. In-the-simplest-easetranslation-Translation invariance means that the

function f , which maps the input variables in the receptive field to a prediction, is identical for all target locations. In our case,

due to the arithmetic details of max-peelinglayers-and-transposed-convolutions-the considered model architecture (Dumoulin
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Figure 4. Model architecture in the example of soil moisture-precipitation coupling. The leftmost blue box represents the input to the

model, which consists of 12 variables (including soil moisture) at the 120 x 180 input pixels (see Fig. 3). This input is passed through

multiple sequential modules represented by the arrows. Each module performs simple mathematical operations on its respective inputs and
produces an output that is fed to the next module. This output is represented by the next blue box and, in general, differs in shape from the
input, as indicated by the grey upright and rotated numbers. For details on the mathematical operations we refer to (Ronneberger et al., 2015)

and Visin, 2016), the fﬂedeHs—aeEua}}yLQLv@\Qle\lAsNblock translation invariant, i.e. the prediction at a target location (4, 7) is
i i ot determined by a single function f for
all target locations, but by one of 4 x 4 fixed functions Fok,m, k= 1,...,4 —Here-the-exact size-and-Jocation-of the receptive
i fon, s-depending on the values +—mod-4-and-j—mod-4— mod 4 and

1mod 4.
Both concepts, receptive field and translation invariance, are desirable-important features of CNNsas-, because they counter-

act overfitting, i.e. making (nearly) perfect predictions on the training data but not generalizing to unseen data. However, they

alse-represent-constraints—to-the-model-both concepts constitute constraints that may prevent itfrom-being-able-to-represent
CNNs from representing the function from Eq. 10. Indeed, if-the-modelis-to-learn-thisfunetion;the-the translation invariance re-

quires including input-variables-additional input variables {Cy}5_, that lead to spatial variability in soil moisture-precipitation
coupling. We will eeme-back-to-this-in-the-section-on-thecheice-of input-variables:discuss this in Sect. 3.3. Note that we can
mostly ignore the general constraint of receptive fields, re—that-the-prediction-at-a-targetlocationisfully-determined-by-the
input-variables-in-a-<52-<52pixelsneighborhood;-because the lead time of the predictions is only 4 h and the receptive field

is large enough fer-the-medelto take into account all relations between soil moisture and precipitation at that time scale.
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395

Before-starting-to-train-Before training the model, we split our data in-a-into training, validation and test setsets. Due to the

potential correlations between subsequent time steps, an entirely random split would lead to high correlations between samples

400 in training, validation and test setsets. To achieve independence between samples belonging to different sets, we randomly

ehose—choose all samples from the years 2010 and 2016 for validation, all samples from the years 2012 and 2018 for testing

and all samples from the remaining 37 years for training. The test set was-held-outis not used during the entire training and
tuning process of the model.

During training, the Adam optimizer (Kingma and Ba, 2017) is used to adapt the approximately 2.3 million, randomly initial-

405 ized weights of the model to minimize the mean squared error (mse;see-Eg—+)-on the training set. In terms of implementation,

we use the Pytorch (Paszke et al., 2019) wrapper skorch (Tietz et al., 2017) with default parameters for training the model, set

the maximum number of epochs to 200;; the learning rate in the Adam optimizer to 1e — 35 the batch size to 64; and patience

for early stopping (i.e. the number of epochs after which training stops if the loss function evaluated on the validation set does

not improve by some threshold) to 30 epochs. During training, we further use data augmentation. Namely, we randomly rotate

410 by 180°(or not) and subsequently horizontally flip (or not) the considered region for each training sample and each training

epoch independently. Similar to the translation invariance of the model, this requires including input variables which lead to

spatial variability in soil moisture-precipitation coupling as discussed in the next section.

3.3 Choice of input variables

415 additional input variables {C,}% . represents a crucial aspect of the proposed methodology for two reasons (cf. Sect. 2.2.2).

First, we need our-Dl-modelto-be-able-to-approximate-the-funetion{from-the additional input variables to (approximately) fulfil
. Cylt]} e Colt]}

420 coupling(seelastsection)—Second;-we-wantthe-) is a good approximation of the ma

(SM] {Celtl}icy) = B[Pl + 4 b]|do(SMt]) {Celil}i ) (12)

Second, the choice of additional input variables affects how accurately the CNN approximates the map from Eq. 10, and finall

the partial derivatives of this map with respect to S M [t] that are computed in the sensitivity analysis (see Sect. 3.4).

425
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-Seet—3-4fulfil the adjustment criteria is usually based on a causal graph of the considered system. However, a generall

applicable causal graph of the Earth system does not exist. Thus, we make use of the fact that causal parents of S M [t| always

430 fulfil the adjustment criteria, i.e. we look for a set of Earth system variables that is sufficient to determine S M [¢| while not

being affected by SM [t|. Given the temporal resolution of the ERAS data and the time scale of our analysis, a reasonable

example is the set of variables in the second column in Fig. 5.

To ensure that

State of the Precipitation
Other variables atmosphere[t] [t+3 h, t+4 h]

Soil moisturs

Soil properties Soil moisture[t]

Figure 5. Causal graph in the example of soil moisture-precipitation coupling. The dark grey nodes represent the chosen input variables,

while light grey nodes represent variables that are ignored in our analysis (see text). Land properties comprise the time-independent variables

topography, land-sea mask, and fractions of high and low vegetation cover. The state of the atmosphere at time ¢ is represented by temperature

and dew point temperature at 2 m height at time z, as well as wind at 100 m height at time ¢. In addition to these variables, we included short-

and long-wave radiation at the land surface at time ¢. Note that the depicted causal graph only includes nodes and edges that are relevant for

the adjustment criteria from Sect. 2.1.2 (e.g. no edge from “other variables” to P[¢t — 1 h, t], and no nodes on the causal path from S M [¢] to

Plt+ 3 h,t+ 4 h], such as evaporation|[t,t + 3 h]).

If we included all of these variables, the adjustment criteria would be met and the map from Eq. 10 would be identical
435 to that from Eq. 12. Nevertheless, obtaining a good approximation of the map from Eq. 10 with our DL model is—able—te
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strong correlation between SM [t — 1 h] and SM [t].
Furthermore, the strong correlation between evaporation|t — 1 h. ¢| and evaporation|,¢ + 3 h] may prevent us from identifyin

any causal effect of SM[¢] on P[t + 4 h|, because evaporation|t,t + 3 h| is a direct descendant of SM [t| on every causal

cf. motivation of the second adjustment criterion in Sect. 2.1.2). Therefore, we decided to

exclude SMt — 1 h] and evaporation[t — 1 h,]. Nevertheless, this leads to unblocked non-causal paths between SM [¢] and
we include additional input variables that represent the state of the atmosphere at time ¢.

Approximating the map from Eq. 10 and its partial derivatives with respect to SM [¢] gets more difficult with increasin
number of input variables. This is because additional input variables increase the complexity of this map, and the general risk
of overfitting. Therefore, and because SMt — 1 h] and evaporation|t.t — 1 h] presumably affect the lower atmosphere more
strongly than the higher atmosphere, we focus on variables representing the state of the lower atmosphere in this example.

The above considerations are valid for any model architecture and training procedure. In our example, we further must
take into account the translation invariance of the considered DL model, and the rotation and flipping of the region used for
data augmentation during the training procedure. Theoretically, in order to achieve invariance, the most accurate option is to
include latitude-longitude information s-as additional input variables. However, if we did so, the DL model would have to learn
a different set-meisture-preeipitationcouphngfunetion-mapping for each location —Farther—(7, ), and data augmentation in
form of flipping and rotation of the region would not make-sense—Speeifically,~we-included-land-sea-mask;fraction-of-high
and-low-vegetation-cover; be useful. Instead, we include short- and long-wave radiation at the land surface[t];-2-temperature{t}

tonr—. Thus, the above requirement
is approximately fulfilled and the model does not have to learn a different mapping for each location, which presumably leads
to it learning a better approximation of the map from Eq. 10.
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475

480

485  subjective decisions that have to be made. For example, above we could have started from a different set of causal parents,

i i ial-variability-of-going not one but several
hours into the past from time ¢, but at least theoretically that makes no difference (see Sect. 4). Starting from a set of causal
parents and replacing variables strongly correlated with X, as described above, seems to be a valid strategy for the choice of
input variables, which is applicable to many relations in the Earth system besides soil moisture-precipitation coupling. Second;

hilein din atacadant coil-me o A alidointheorv—inn o_correctlvlearninetheman

490

Ourfinal-chotce—ofinput-variables—is—summarized-by-the-It is in line with the fact that causal parents always fulfil the
adjustment criteria, and with the general finding from causality research that input variables strongly correlated with X reduce
495 the efficiency of statistical estimators of causal effects (Witte et al., 2020). The causal graph-inFig—5—The-darkgreynedes

extent-this—affeets-the-results-of-the-sensitivity-analysis-deseribed-in-Seet—34—graph clearly conveys to other scientists the
500 assumptions underlying a specific application of the proposed methodology.
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3.4 Sensitivity analysis

505 Given our trained DL model, we consider different combinations of partial derivatives of the model to study the local and re-

gional effects of soil moisture changes on precipitation (seecf. Sect. 2.2.2). As-loeal-effect-orlocal-soil-moisture-precipitation
coupling;-we-define-the-impact We define the causal effect of a soil moisture change at a pixel

inrthe-80-<140pixelstargetregion-({, j) on precipitation at the very same pixel {4;5}as local effect or local soil moisture-precipitation
coupling. Accordingly, we consider for each pixel (¢, ;) in the target region the partial derivative

510 qloci‘ _ apij(SM7 {C’n Z:]) 8pij(SM7 {Ci}i?:l)’
A 0SM1J 8SM2J

(13)

where p;; denotes the pre(npltatlon prediction of the DL model for plxel (1, ]) and SM and {Gﬁ}ﬁ%are the input

variables to the model.

average these derivatives over all input samples @%{G—}—%Mﬁom the test set %mehwv&deﬁef&by

oloc

52%5denoted b i
515 As-Next to the local soil moisture-precipitation coupling, we define the regional effect or regional soil moisture-precipitation
coupling ;we-define-the-impaetas the causal effect of a soil moisture change at a pixel (4, j) in-the-targetregion-on precipitation

in the entire target region. Accordingly, we consider for each pixel (4, ) in the target region the sum of partial derivatives

2 R Ip;;(SM {Cn n—1) Op;;(SM {Ce}j_,)

> L esm,

(14)

21]1

520 s%mmﬁufeﬂﬁegimﬁkpfeerpﬁ&ﬂeﬁ—w%ﬂehw&deﬁef&byﬁ—i”—Note that most of the derivatives in the sum are zero, as
for-instanee-because e.g. a change in soil moisture {-in Great Britain at time ¢ does not affect precipitation f—+4-hlHattaly-in
Italy four hours later. Outside of a 52 x 52 pixels neighborheedsurrounding region, this is enforced by the architecture of the
DL model (see-the-coneeptofreceptivefields-explainedncf. Sect. 3.2)and-within-the-52-<-52-pixels-neighborhood;-this-, and
inside of this region, it is learned during training of the model. As for local soil moisture-precipitation coupling, ¢"°9,; denotes

reg

525 the average of ¢, over all input samples from the test set.
To obtain more-robust-resultstandforsomefurther-analyses—presented-in-Seet—4jrobust results, we computed local and

regional couplings for 10 instances of the DL model which-that were trained from different random weight initializations.
Next, we averaged the obtained couplings (WM%) over the 10 instances. The ebtained-results are
shown in Fig. 6. Notably, the difference in sign between positive local and negative regional impact in-Fig—6-demonstrates
530 the importance of taking into account non-local effects of soil moisture-precipitation coupling, which are neglected by many

other approachesths

ing. Moreover, Fig. 6 indicates particularly
strong local and regional eeupling-couplings in mountainous regions and ridges. We will further discuss the correctness of

these results in Sect. 4.
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Figure 6. ingLocal and regional soil moisture-precipitation couplings. Left: Impact

of local soil moisture changes (m® water - m 2 soil) on local precipitation (mm h~") for each pixel in the target region (in the text denoted

by sl"—clyqﬁff\a) Right: Impact of local soil moisture changes on regional precipitation for each pixel in the target region (in the text denoted

by 87¢9:7¢7%9 ). Neote-that-the-unit-mm-h—forpreeipitation-alwaysrefers-to-some-area—For better comparability of local and regional
values, %Wg@g@@i@&refﬂs to a single pixel in both panels. Missing hatching indicates that the coupling reflects more

than randemnessrandom correlations between soil moisture and precipitation in the training data, artifacts of the DL training procedure,

seasonality, and the correlation between soil moisture and topography (see Sect. 4.2). The green and yellow elevation contour lines indicate

370 m and 750 m, respectively.

4 Further-analyses-to-assess-the-eorreetness-of-obtainedresults
535 3.1 Comparison to other approaches

A common approach for studying relations in the Earth system is to consider the linear correlation between variables (Froidevaux et al., 201

- Here, we compare our results on regional soil moisture-precipitation coupling to results obtained from a linear correlation

i ig. 7 shows the linear correlation coefficient of soil moisture SM [t

at that location and subsequent precipitation P|[¢ + 4 h] summed over the 15 x 15 pixels surrounding region. In contrast to our

540  analysis of regional soil moisture-precipitation coupling, the linear correlation analysis assumes linearity of relations between

local soil moisture and regional precipitation, and neglects the difference between causality and correlation. The obtained

regional soil moisture-precipitation “coupling” in Fig. 7 then also differs in sign and spatial pattern from the coupling in the

right panel of Fig. 6, stressing the importance of accounting for nonlinear effects and for the difference between causality and
correlation in the proposed methodology.
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Figure 7. Linear correlation coefficient of local soil moisture and regional precipitation. For each location, the linear correlation

coefficient of soil moisture S M [¢] at the location and subsequent precipitation P[t + 4 h| summed over the 15 X 15 pixels surroundin

region of the location is shown.

545 Another approach for studying soil moisture-precipitation coupling is to perform multiple numerical simulations that differ

only in initial soil moisture and to analyze the differences in precipitation between these simulations (Imamovic et al., 2017; Baur et al., 201

. This approach allows to evaluate the effects of soil moisture changes on precipitation within the employed numerical model

precisely. However, for some questions, it is computationally infeasible. For instance, in this work, we used ERAS data to
analyze the effects of soil moisture changes at each of 120 x 80 target pixels on subsequent precipitation in the target region.
550 We averaged these effects over all time steps in two test years, constituting 2208 time steps. Performing an analogous study
based on numerical simulations would require at least 120802208 = 21196800 4-hourly simulations with the ECMWE
Earth system model used to produce the considered ERAS data. Each simulation would be initialized with the state of the
reference simulation at one of the 2208 considered time steps. the only difference being that soil moisture would be slightly
increased or decreased at one of the 120 x 80 target pixels. This corresponds to simulating approximately 10000 years with the
555 ECMWE Earth system model and is computationally infeasible. Furthermore, an advantage of the proposed methodology over
approaches based on numerical simulations is that it can directly be applied to observational data, if suitable observational data
are available. In this case, the proposed methodology does not rely on any assumptions incorporated into numerical models.

4 Additional analyses to verify the results

560 impaet-of-To ensure that the proposed methodolo rovides reliable results, this section presents some additional analyses.
Theoretically, the proposed methodology determines the causal effect of X on Y butspurious-correlations—For-example;our

oy " ch?’
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Eq. 5. Second, the DL model represents only an approximation of the map from Eq. 6. Both errors are difficult to quantif’
because both maps are unknown.

For example, the
performance of the DI, model on the test set cannot indicate how well the DI. model approximates the map from Eqg. 6, because
the loss value for this map is not known. For instance, for a system described by the causal graph X —Y < C and the
structural equation —=-®—+1000e-where-the-valuesof-Y = X 41000 C (where X and C vary in similar ranges—In-this
Mﬂmw%mmwmmm@@gwt suffices to traina Dk
model-to-prediet-Y—givenconsider X - 1s input variable
in the proposed methodology. Nevertheless, even if the trained DL model perfectly represented the map  — E[Y|X = x],
the associated loss value would be high as knowing X does not reveal much about Y, which is mainly determined by C'.

o

~The results of the proposed methodology are the
partial derivatives g;; of the DL model computed in the sensitivity analysis. Due to the above approximations, these derivatives
are only approximations of the partial derivatives 5;; of the map from Eq. 5, which represent the causal effect of X' —We-detait
thisin-on Y (cf. Sect. 2.2.2). However, even quantifying the two approximation errors mentioned above would not give us a
good estimate of the errors in these results. In this section, we propose several additional analyses to build confidence in results
obtained with the proposed methodology. Particularly, the proposed analyses show if results are statistically significant, i.e.
reflect more than random correlations or artifacts of the DL training procedure (Sect. 4:2-Selely-for reference-we note-that
the-4.1). and if they reflect more than specific (known) correlations (Sect. 4.2). Moreover, the analyses proposed in Sect. 4.3
allow to identify (potentially unknown) spurious correlations in the results. Finally, we propose some further sanity checks in
Sect. 4.4. We illustrate the analyses with our results on soil moisture-precipitation coupling from Sect. 3.

For reference only, we provide here the normalized mean squared error (mse)-with-respectto-the-normalized-target-variables
{on the test set (target variable normalized to mean of O and standard deviation of 1 on the training set) en-the—test—set;
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for our application to soil

moisture-precipitation coupling: it is 0.60 for the DL model. For a persistence predictiong, i.e. for-when predicting the in-
put field-P[t] as target field-P[t + 4 h]}, which is a simple baseline prediction, it is 1.54.

RAARARRA

4.1

the DLtraining precedure?Statistical significance

Given—soeme-To test whether results obtained with the proposed methodology are statistically significant, i.e. represent more
than random correlations between X -and Y sensitivi i i ibed

is~in the training data and random artifacts of
the procedure for training the DL model, we propose the following procedure. First, randomly permute X in the training data,
thereby breaking all non-random correlations between X and Y. For example, in the application to soil moisture-precipitation
coupling, permute soil moisture temporally and spatially. Next, train a separate instance of the original DL model with a
random initialization of model weights on the modified training data. Repeat this procedure several times. If the original results

deviate significantly from the results obtained from this procedure, they are statistically significant.
Formally, we propose to interpret s-as-a-random-variable-s+&Q—-IRa result r € R of the proposed methodology, e.g. local or
i, 7) (cf. Sect. 3.4), as a sample of a random variable 7 : ) — R,

regional soil moisture-precipitation coupling at some

where (2 is the probability space

Q) = {Training data} x {Weight initialization of the DL model}. (15)

sample w € €. We define the null hypothesis that 7 represents random correlations between X onrand Y sbutis random-or-an
m%mwwmmmw To test this
hypothesis, we create a—&&mp}ewo—gzvéggg)vlgsvcvu\owof Q un
WMX fbame%ﬂef&wﬂéémwamﬁﬁwmb}e&&%fheﬂﬂmﬁm

If the original value r differs from these samples, we can reject the null hypothesis and conclude that r is statisticall
significant. In particular, if m is large enough, we can reject the null hypothesis at some significance level « (e.g. a = 5 %), if
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the original sensitivity-stay-value r lies outside the middle 100 % — « of the values s}——sbrd,.. .1l ie. if
s ¢ [percentile({s7, ..., 570 ™}, a/2), percentile({s73, ..., 570" },100 % — a/2)]. (16)

However, because we have to train £-medels-m DL models for this analysis, it may not be feasible to choose %-m large enough
to get reasonable approximations of the-these percentiles. In this case, we propose to-compute-computing the mean p and
standard deviation o of the values st——s5:14, .. .. 10, asswmeassuming a normal distribution of sg;-and-rejeet+ under the
null hypothesis, and rejecting the null hypothesis at significance level « if s is not in the middle 100 % — « of the distribution
N(p,0),ie.if

sr & [percentile(N (u,0),/2), percentile(N (1, 0),100 % — a/2)]. 17

4.2 Known spurious correlations

Given-some-As mentioned above, the proposed methodology identifies the exact causal effect of X -on Y sensitivity-s-c R

=-in theory, but not necessarily in practice, where results
might reflect spurious correlations. In this section, we propose two analyses to test whether results obtained with the proposed
methodology represent more than spurious correlations. The analyses apply whenever the spurious correlations are known,
and X can be permuted such that the considered correlations are preserved while other correlations between X and Y break.

For example, when—considering—our—resultsfor-soil-meoisture-precipitation—coupling—inFig—6;-one-might-wender—whethe
they-refleet-solely-potential-correlations-due-to-seasonalitythere exists a spurious correlation between SM |t] and P[t +4 h
via topography, because topography affects both SM [t| and P|t + 4 h| (SM|t] < topography — P|[t 4+ 4 h], cf. Sect. 2.1.1).

Further, there might exist a spurious correlation between SM [t| and P|[t 4- 4 h] via seasonality, e.g. if both soil moisture and

precipitation were generally lower in August than in June

Both

correlations are preserved if we permute soil moisture year-wise as illustrated in Fig. 8. All other cases of spurious correlations
are discussed in the next section, in particular unknown spurious correlations.
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1) Randomly permute the 2) Modify the training set
37 training years
For each training sample |SM[t], {CitlTk, |P[t+4 h]|
yi)rig yzorig y3orig y4orig ygrig ‘ y§7rig ‘ ]
Find t' that corresponds to the same hour of the day
e.g.* as t, the same day of the year, but yJPe"“ rather than yj"rig‘
vire [y yee [ [vare | [ |
Replace original sample by [SM[t'], {C[tI}, [Plt+4 h]|
‘y{)erm|y2perm y3perm yferm y5|.)erm . |y3p7erm

Figure 8. Modification of the training data for the year-wise permutation of S M [¢]. The modification of the test data works analogously.

The first proposed analysis is identical to the analysis described in Sect. 4.1 except that X' ean-be-permutectin the training.
data is not permuted randomly, but such that the eerrelations-es——c-are-preservedwhile-other correlationsbreak—Forexample
~when-eonsidering-considered spurious correlations are preserved. If the original results deviate significantly from the results
obtained in this analysis, they are statistically significant and do not only represent the considered spurious correlations. In
our example of soil moisture-precipitation coupling, we i i i
seasonality—correlation—and-thecorrelation—permuted SM [t] year-wise as illustrated in Fig. 8 and trained m = 10 separate
instances of the DL, model. The analysis indicates that our results on soil moisture-precipitation coupling are statistically
significant and represent more than correlations between soil moisture and topography (and-ef-course-between-topography-and
preeipitationjor seasonalit issi ing in Fig. 6). Intriguingl
weak) at most ocean locations, although one would not expect the DL, model to learn a systematic effect of soil moisture
variations on precipitation at these locations, since soil moisture does not vary at these locations. Indeed, we set soil moisture
to 1 m? water per m® at all ocean locations for all time steps, while it is smaller than 0.75 at all non-ocean locations. We.
assume that the statistical significance of the regional coupling at ocean locations is an artifact of the DL model architecture,
which favours generalization between locations, ocean and non-ocean.

In-—thefirst-approach—we—eonsider k—(in-our—ease-k—=1+0)-The second proposed analysis evaluates whether the original
DL model learned useful information in terms of predictive performance on the relation between X and ¥, apart from the
considered spurious correlations. In the analysis, we train m separate instances of the PE-model-which-were-trained-with

differentrandom-weightin ons—We-comptite-the-mean-squared-error-(mse)of these-instanees-original DL model on the
original training data. The m instances differ in the random initialization of model weights (cf. Sect. 3.4). For each model

is statistically significant (albeit

the regional couplin

l1,. ...y € R. Next, we-permute-the-soil-moistare-input-years-for each model instance separately, we randomly permute X in

the test set(as-there-are-only-two-test-years-this-corresponds—to-switchineboth-years)-data such that the considered spurious
correlations are preserved, and compute the s i s-mser——mservalue of the loss function on the modified
test set, obtaining m values ;" ... I5;" € R. Finally, we use a permutation test (Hesterberg, 2014) to test if the expected

value of the loss function is smaller on the
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original test set than when-considering-the-testset-with-permuted-soilmeisture-years—on the modified test set. If this is the case,
the DL models learned something useful in terms of predictive performance on the relation between X and Y, apart from the
considered spurious correlations. In our example -the-nutt-hypethesis-wasrejeeted-of soil moisture-precipitation coupling, we
trained m = 10 separate instances of the DL model. We considered the year-wise permutation of soil moisture in the test data as
ggmmwﬂgmlswm“ s at a confidence level of 99 % sindieating-that the model learned meore-than
-useful information in terms of predictive performance on soil

moisture-precipitation coupling, apart from the correlations between soil moisture and topography or seasonality. However.
for the validity of this testanalysis, it may be harmful-limiting that there are only two test years in our-ease-this example and

thus only one possible permutation of years apart from the original one. Therefore, we repeated the test-and-permuted-theseil
moisture-input-time-steps-analysis and permuted soil moisture in the test setseveral-timescompletelyrandemly-data completel

randomly in time. While this breakspotential-correlations—due—to-does not preserve correlations between soil moisture and
seasonality, it still preserves the correlation between soil moisture and topography Agaﬂ%Furthermore it ensures the validit

analysis as there are a lot of
ossible permutations. In this case, the analysis indicates at a confidence level of 99 % ;indieating-that the model learned mere

s €[percentile(N (u,0),a/2), percentile(N (11,0),100 % — a/2)],
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correlations, it cannot exclude that the results are partly affected by the considered spurious correlations. Analogously, if the
second analysis indicates that the DL model learned useful information in terms of predictive performance on the relation
between X and ¥, apart from the considered spurious correlations, it cannot exclude that the predictions are partly affected
by the considered spurious correlations.

4.3 Do-theobtainedresultsrefleet(potentially-unknewn)Further spurious correlations?

previous section, we
analysed specific spurious correlations, i.e. spurious correlations that were known, and for that X could be permuted such that

the spurious correlations are preserved, while other correlations between X and Y break. As an additional analysis to identif
any spurious correlations reflected in obtained results, we propose a variant approach. The concept of the approach is related
to the ideas in (Tesch et al., 2021) and (Peters et al., 2016). The-eoneeptis-to-train-It consists of training separate instances of

the original DL model (referred to as variant models) on modified prediction tasks (referred to as variant tasks) for which it is
assumed that causal relations between input and target variables either remain stable or vary in specific ways. Subsequently, the
retations-thatresults obtained from original and variant models fearn-are compared and it is evaluated whether they reflect the
assumed stability or specific variations, respectively, of causal relations. If not, the original model or one of the variant models

(or all models) learned spurious correlations.
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For example, we may assume that the general (causal) mechanisms of soil moisture-precipitation coupling in-general-do
not vary in time or space. Then, if the couplings in Fig. 6 reflect the causal impaet-effect of soil moisture on precipitation, we

should obtain the same couplings from separate instances of the DL model that are trained only on

— data from the first and-or second half of the training years, respeetively;-

— data from June, July and-Augustrespeetively,-or August, or

— the left and-righthalfrespeetively,-or right half of the considered region.

On the other hand, if Fig. 6 reflected spurious correlations and these spurious correlations differed for the different subsets of
training data listed above, we should obtain different couplings from the different model instances.

Appendix FiguresFigs. Al to A3 show the local and regional couplings obtained from the different model instances trained
on the listed training subsets. As it-should-be-if-expected for the case that all instances learned the causal impaet-effect of soil
moisture on precipitation, all couplings are very similar to the ones shown in Fig. 6. Note however that the-variant-approach

approach—this does not guarantee that they show causal relations.

4.4 Further Task-specific sanity checks

To further assess the correctness and increase trust in results obtained from the proposed methodology, ene-might-we propose
to perform further, task-specific sanity checks. In-the-For instance, in our example of soil moisture-precipitation coupling, for
instanee-precipitation P can be partitioned into convective precipitation P,,,, (occurring at spatial scales smaller than the grid
boxspatial resolution of the numerical model) and large-scale precipitation Pjs (occurring at larger spatial scales), such that
P = P,,,, + P,s. Accordingly, soil moisture-precipitation coupling, SM-P coupling, can be decomposed into the sum of
SM-P,,,, coupling and S M -P,, coupling. As a sanity check for the results in Fig. 6, we applied the proposed methodology
to obtain S M -P,oy, coupling and SM-P,s coupling by simply-replacing P by Peon and P, respectively, and compared
the sum of the obtained couplings with Fig. 6. Appendix FigureFig. A5 shows the sum of local and regional SM-P,,,, and
S M - Py couplings, which are indeed very similar to the couplings shown in Fig. 6.

Further, SM-P coupling can approximately be factorized into instantaneous (local) soil moisture-evaporation (S M-FE)
coupling times evaporation-precipitation (F-P) coupling. As another sanity check for the results in Fig. 6, we applied the
proposed methodology to obtain SM-E coupling and E-P coupling by once replacing the target variable P by E and the
other time replacing the SA-input-variable-input variable SM by E. Appendix FigureFig. A7 shows the product of local
SM-E and local and regional E-P eouplingcouplings. The obtained couplings are very similar to the couplings shown in
Fig. 6, despite being slightly weaker in general and far weaker in the high Alps.

5 ¢ . K lati
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For-a-deeper-analysis-of-
4.1 Control experiment

As a simple control experiment for the proposed methodology ;it-weuld-be-interesting-to-perform-an-ablationstudy,i-e-repeat

lecation-and-subsequentpreeipitation-and analyses, we replaced the target variable Pt + 4 h] summed-over-the 15-<15-pixels

by random
noise. As expected from the missing correlations between SM [t] and random noise, the methodology identified no statistically
significant (cf. Sect. 4.1) causal effect of soil moisture on the target variable in this case._

Defining a more complex control experiment confirming the results obtained in the application to soil moisture-precipitation

o 2

and thus the errors in their approximations, would differ if, for example, we replaced SM (] by a variable X that is highly
correlated with Pt 4-4 h] but does not causally affect Pt + 4 h]. However, we believe that the analyses proposed in this
section build high confidence in the methodology and the results.

5 Conclusions

In this study, we proposed a novel methodology for studying complex, e.g. nonlinear and non-local, relations in the Earth
system. The prepesed-methodology is based on the recent idea of training and analyzing a DL. model to gain new scientific
insights en-into the relations between input and target variables. It extends this idea by combining it with insights-concepts

from causality research. Summarizing-A crucial aspect in the proposed methodology ;-given-a-complexrelation-between-two

earefullyconsidered relation, and on the existence of dependencies between these variables. However, it does not require prior
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knowledge on the strength or sign of these dependencies, which can be obtained from the proposed methodology. When the
required prior knowledge does not exist, methods from causal discovery (Guo et al., 2021) might be used to identify a causal
raph anyway, such that the proposed methodology might still be applicable.

In addition to the methodologyitself;-we-propesed-several-further-, we presented analyses to assess whether results ob-
tained with the proposed methodology are statistically significant, i.e. reflect more than random correlations or artifacts of

the DL training procedure;-, whether they reflect more than specific (known) correlations;—, and whether they actually re-
flect causal rather than (potentially unknown) spurious correlations. Finally, we proposed some—further—sanity checks for
the obtained results. While these-the analyses cannot guarantee the correctness of obtained results, and-developingfurther
analyses—is—desirable;—we believe that the proposed analyses provide a solid indication of the correctness of obtained re-

sults. Nete-that-studies-based-onnumerical-simulations;-whichrely-on-many-assumptions-in-the numerical-model,-and-othe

statistical approacheseannot guarantee correctness-eitherTaking into account the difference between causality and correlation,
and overcoming common assumptions on linearity and locality in statistical approaches, as well as high computational costs
and assumptions of numerical approaches, we believe that the proposed methodology may yield new scientific insights into

As an illustrating example, we applied the methodology and the proposed further-analyses to study soil moisture-precipitation
coupling in ERAS climate reanalysis data across Europe. Our main findings are the difference in sign between positive local
and negative regional impact and a-particularly strong local and regional eeupling-couplings in mountainous regions and ridges.

While we believe that these findings may contribute to a better understanding of soil moisture-precipitation coupling, in this

article, we focused on demonstrating the general-methodology. An extenstve-extension and discussion of our results on soil

moisture-precipitation coupling in terms of physical processes and-related-studies-willfolow-in-a-second-paperare subject of a
future study.

Code and data availability. The ERAS climate reanalysis data (Hersbach et al., 2018) underlying this study are publicly available. Code to
reproduce the study can be found here: https://doi.org/10.5281/zenodo.6385040.
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50°N

50°N

Figure Al.
years;respeetivelyLocal and regional soil moisture-precipitation couplings for models trained on the first and second half of the

training years, respectively. Left column: local eetplingcouplings. Right column: regional eeuplingcouplings. Upper row: model trained
on the first half of all training years (1979-1997). Bottom row: model trained on the second half of all training years (1998-2019).
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50°N

Figure A2.

respeetivelyLocal and regional soil moisture-precipitation couplings for models trained only on data from June, July and August.

respectively. Left column: local eeuphingcouplings. Right column: regional eeuptingcouplings. Upper row: model trained on data from June.

Centre row: model trained on data from July. Bottom row: model trained on data from August.
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50°N

Figure A3.
region;—respeetivelylLocal and regional soil moisture-precipitation couplings for models trained on the left and right half of the

considered region, respectively. Left column: local eeuplingcouplings. Right column: regional eeuplingcouplings. Upper row: model

trained on the left half of the considered region. Bottom row: model trained on the right half of the considered region (see Appendix

Fig. A4). Note that --while-the models were trained only on the left and right half, respectively, but the €NN-model architecture allows to
compute local and regional couplings for the entire region;-which-is-shewn-here.
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Figure A4. Location variant tasks. The input region was divided in a left and a right input region with corresponding target regions

(indicated by the red and blue boxes).
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50°N

Figure AS5. Sum of local and regional soil moisture-convective precipitation and soil moisture-large-scale precipitation couplings.
Left: sum of local couplings. Right: sum of regional couplings. See Appendix Fig. A6 for soil moisture-convective precipitation and soil

moisture-large-scale precipitation couplings.
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Figure A6. Local and regional soil moisture-convective precipitation and soil moisture-large-scale precipitation couplings. Left col-
umn: local eeuplingcouplings. Right column: regional eouptingcouplings. Upper row: soil moisture-convective precipitation coupling. Lower

row: soil moisture-large-scale precipitation coupling.
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50°N

Figure A7.

moisture-evaporation and local/ regional evaporation-precipitation couplings. Left: product of local soil moisture-evaporation and lo-

cal evaporation-precipitation eeuphingcouplings. Right: product of local soil moisture-evaporation and regional evaporation-precipitation

eouphingcouplings. See Appendix Fig. A8 for local soil moisture-evaporation and local and regional evaporation-precipitation couplings.

38



840

845

850

5 5 5

3 AT il ASSN M WASGS
AT, T, OR[N,

-04 0 04 -0.15 0 0.15 -0.7 0 0.7
mmh=t/m3m3 mm h=1/mm h~1 mm h~1/mm h~!

Figure A8. ingLocal soil moisture-evaporation

and local and regional evaporation-precipitation couplings. Left: local soil moisture-evaporation coupling. Centre: local evaporation-

precipitation coupling. Right: regional evaporation-precipitation coupling.
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