Supporting information

5

Table S1. Overview of the model input (apart from the volatility distributions) and diffusion volumes.

General settings		
Density, ρ	(kg m ⁻³)	1200
Surface tension, σ	$(N m^{-1})$	0.3
Diffusion coefficient, D	$(10^{-6} \text{ m}^2 \text{ s}^{-1})$	5
Temperature dependent factor for D , μ	(-)	1.75
Accommodation coefficient, $\alpha_{\rm m}$	(-)	1
Atomic and structural diffusion volumes		
C	15.9	
H	2.31	
0	6.11	
N	4.54	
Aromatic ring	18.3	
Heterocyclic ring	-	
	18.3	
Air	19.7	

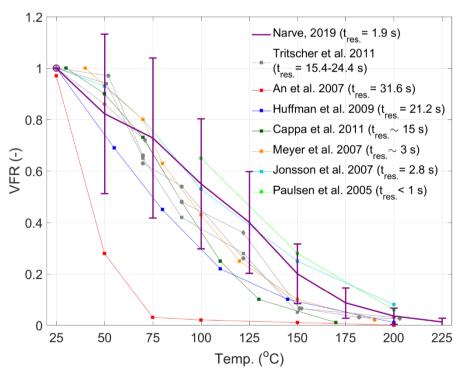


Figure S1 Measured VFRs of α -pinene ozonolysis vs. temperature and comparison to literature, based on different residence times within the TD.

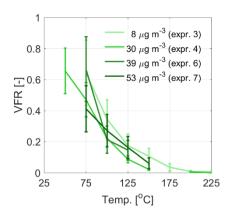


Figure S2 VFR as a function of VTDMA temperature for four different initial mass loadings from the nitrate oxidation of α-pinene.

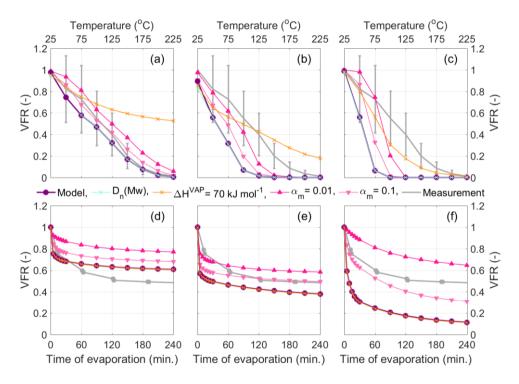


Figure S3. Sensitivity study based on α -pinene ozonolysis with the original model output (purple) and measurements (grey), for a fixed vaporization enthalpy, $\Delta H^{VAP} = 70$ kJ/mol (yellow), reduced accommodation (α_m , set to be either 0.1 or 0.01 (pink)), and a mass-dependent diffusion coefficient (blue).

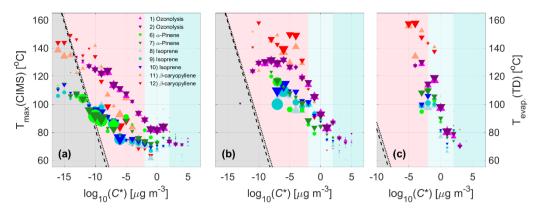


Figure S4. The TD temperatures at which 50 % (dashed line) or 99 % (dotted line) of species with a given C^* are predicted to evaporate for (a) MHR, (b) IvWA and (c) PRK according to the kinetic model. Grey shading indicates regions where the majority of the species with a given C^* are expected to be in the particle phase, and pink (+ blue) shading regions with gas phase dominating the partitioning within our VTDMA setup. The markers represent the mean maximum desorption temperature (T_{max}) within the FIGAERO-CIMS as a function of the C^* values for α-pinene ozonolysis (purple) and the nitrate oxidation of α-pinene (green), isoprene (blue) and β-caryophyllene (orange). The marker sizes are proportional to the mass fraction observed in the studied systems. The blue areas mark the range of C^* which is sensitive towards iso-thermal evaporation at room temperature with our setup, based on the results shown in Figs. 4 and 5.