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Abstract. Here we investigate how uncertainties in the solar and volcanic forcing records of the past millennium affect the

large-scale temperature response, using a 2-box impulse response model. We use different published solar forcing records

and present a new volcanic forcing ensemble which accounts for random uncertainties in eruption dating and sulfur injection

amount. The simulations are compared to proxy reconstructions from PAGES 2k and Northern hemispheric tree-ring data. We

find that low solar forcing is most consistent with all the proxy reconstructions, even when accounting for volcanic uncertainty5

and that the residuals are well in line with CMIP6 control variability at centennial timescales. Volcanic forcing uncertainty

induces a significant spread in the temperature response, especially at periods of peak forcing. For individual eruptions and

superposed epoch analyses volcanic uncertainty can strongly affect the agreement with proxy reconstructions, and may explain

previous proxy-model discrepancies.

1 Introduction10

To quantify long-term climate variability we rely on simulations from climate models, driven by transient records of past

radiative forcing, as well as on climate reconstructions from natural proxy archives. While both sources of information are

imperfect in their own ways, they are independent, and thus may complement each other and serve for cross-validation. Proxy

reconstructions are subject to a wide range of uncertainties and biases and data availability is sparse in many regions (Wilson

et al., 2016; Anchukaitis et al., 2017; Neukom et al., 2018; Lücke et al., 2019, 2021). Models are very useful for detecting15

underlying mechanisms and drivers of variability, but are only approximations of the real world. Additionally, even a perfect

model can only provide data as good as its input parameters: the records of external forcing agents, which are again subject to

uncertainties.

Natural climate forcing includes orbital, solar and volcanic forcing. For the last Millennium, explosive volcanism is consid-

ered to be the main driver of forced surface temperature variability (Crowley and Lowery, 2000; Hegerl et al., 2003; Schurer20

et al., 2014; Neukom et al., 2019; Lücke et al., 2019). The influence of solar forcing on large-scale climate variability has been

subject to debate, but has probably been minor compared to other forcings (Schurer et al., 2014). Orbital forcing is the only

driver that can be precisely calculated for the last few millions of years (Berger, 1978; Berger and Loutre, 1991; Laskar et al.,
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2004). While it influences seasonal millennial temperature trends (Lücke et al., 2021), it plays only a minor role on shorter

timescales.25

Volcanic forcing records are most often compiled from sulfate concentrations in ice cores, complemented by documentary

evidence to help determine unknown eruption characteristics, including eruption location and precise timing. However, both

carry uncertainties and documentary evidence is not always available, especially for eruptions further back in time (Toohey

and Sigl, 2017; Guevara-Murua et al., 2014) and thus various knowledge gaps still exist regarding past volcanic forcing. In

some cases, large discrepancies are found between the simulated response to volcanic eruptions and the climate response in30

proxy reconstructions (e.g. Timmreck et al. (2009); Anchukaitis et al. (2012); Wilson et al. (2016); Guillet et al. (2017)), but

also between the magnitude of ice core sulfate signals and proxy-based climate response estimates (Esper et al., 2017). Studies

have shown that the forcing from eruptions can be overestimated if rapid adjustments are not considered where volcanic

forcing is calculated from SAOD rather than forward modelled (Schmidt et al., 2018), and that the response to eruptions

is strongly dependent on the eruption season and latitude (e.g. Marshall et al. (2019, 2020); Toohey et al. (2013, 2019)).35

The latest SAOD reconstruction for the past 2500 years (eVolv2k, Toohey and Sigl (2017)) benefits from improvements in

methodologies used to date and synchronise ice core records, resulting in a more accurate estimate of volcanic forcing and

resolving some discrepancies in the timing of volcanic events recorded by ice core sulfate records and by temperature sensitive

proxy data (Sigl et al., 2015). Based on data availability and current state of knowledge, the most recent Paleoclimate Project

Model Intercomparison Project (PMIP4, Jungclaus et al. (2017)) recommends the use of eVolv2k (Toohey and Sigl, 2017)40

for volcanic forcing in simulations of the 2000 years, replacing the two previous records (Crowley and Unterman, 2013; Gao

et al., 2008) from PMIP3 (Schmidt et al., 2011, 2012). Despite these latest advances, substantial uncertainties remain in the

reconstruction of volcanic forcing from ice core records regarding e.g. timing, magnitude, injection height and latitude of

eruptions (Stoffel et al., 2015; Schneider et al., 2017; Stevenson et al., 2017; Marshall et al., 2021). To address this, eVolv2k

included an estimated uncertainty range in the volcanic sulfur injections for each eruption for the first time (Toohey and Sigl,45

2017), providing information that can be used to explore the impact of uncertainties in volcanic forcing.

Solar forcing is primarily driven by photospheric magnetism, leading to varying numbers of sunspots and faculae con-

centrations on the solar surface, which modulate the total solar irradiance (TSI). Satellite records start in 1978 and have, in

combination with various prior instrumental measurements of TSI, produced a well constrained understanding of short-term

solar activity, which follows a quasiperiodic 11 year cycle (Fröhlich, 2006). Before the start of the instrumental period, sunspot50

numbers serve as a proxy for TSI. From AD 1610 onwards, records of sunspot numbers from telescope observations are

available. However, prior to the telescopic era, the reconstruction of solar variation is based mainly on cosmogenic isotopes

deposited in polar ice cores and tree-rings, of which solar activity can be estimated by applying a chain of physics-based mod-

els. Therefore, long-term changes in radiative forcing remain uncertain, and its exact timeline and especially its amplitude is

still controversial (Gray et al., 2010). While most studies suggest a small amplitude on centennial timescales (e.g. Vieira et al.55

(2011); Steinhilber et al. (2009); Wang et al. (2005); Muscheler et al. (2007)), Shapiro et al. (2011) reconstructed the maximum

long-term amplitude based on physically possible mechanisms, exceeding other reconstructions by more than 1 Wm−2 during

the Spörer Minimum. A number of studies have investigated this high versus low amplitude controversy, and indicated that
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high solar forcing is inconsistent with instrumental data (Feulner, 2011; Judge et al., 2012; Lockwood and Ball, 2020) and

proxy temperature reconstructions (Ammann et al., 2007; Hind et al., 2012; Schurer et al., 2014). The uncertainty around the60

long-term solar cycle is reflected by the inclusion of several solar forcing records in PMIP, with three different reconstruc-

tions included in PMIP4 (Jungclaus et al., 2017), an update from the previous seven reconstructions of PMIP3 (Schmidt et al.,

2011, 2012).

Given the high degree of uncertainty in the volcanic and solar forcing record, it would be desirable to run a variety of

comprehensive climate model simulations using different realisations of transient forcing. However, running such experiments65

over a whole Millennium requires large computational resources. Additionally, internal variability tends to disguise the effects

of forcing, and therefore a large ensemble of runs would be needed for the differences in the forced signal to emerge for each

implementation of forcing. Given the computational expense needed, such experiments are not performed by the scientific

community.

A computationally very efficient representation of the Earth system is given by simple energy balance models, which simu-70

late the climate system’s response to changing radiative forcing (Crowley, 2000; Hegerl et al., 2006; Held et al., 2010; Geoffroy

et al., 2013b, a; Millar et al., 2017). Held et al. (2010) introduced an energy balance model with two time scales, in which a fast

timescale is associated with the ocean mixed layer, while the slow timescale is associated with the deep ocean response. Such

a model can perform well to simulate the large-scale forced response to greenhouse gas and other forcings on hemispheric and

global scale, for land and ocean (Haustein et al., 2019).75

Here, we use a two-box impulse response model, tuned to climate simulations using volcanic forcing only, to simulate the

response to solar and volcanic forcing to study the consequences of uncertainty in the natural forcing history. We perform ex-

periments using a new ensemble of volcanic forcing, as well as different solar forcing reconstructions as input for the response

model. We present the current forcing records, temperature reconstructions and a detailed explanation of the experimental setup

in Sect. 2. We compare the response model output to proxy reconstructions of Northern Hemisphere and global temperature,80

focusing on the analysis of solar and volcanic forcing uncertainty separately in Sect. 3. The residuals between proxy recon-

structions and response model simulations reflect a combination of forcing error, structural error in the response model, tuning

error, reconstruction uncertainty and internal variability. We put these residuals into the context of CMIP6 pre-industrial control

runs and observed unforced variability. Where the residual is similar in magnitude to internal variability, we conclude that the

particular forcing estimate used is consistent with the proxy reconstruction, while the spread of the residuals with varying forc-85

ing reflects the importance of forcing error to explain discrepancies. Based on this we estimate the role of forcing uncertainty

and evaluate if particular forcings are more realistic than others. We discuss our findings and summarise our conclusions in

Sect. 4.
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2 Data and Methods

2.1 Volcanic forcing90

The eVolv2k reconstruction (Toohey and Sigl, 2017) provides a time series of volcanic stratospheric sulfur injection (VSSI)

and latitudinally resolved stratospheric aerosol optical depth (SAOD). This reconstruction uses ice core records to estimate the

timing and amount of VSSI, and the EVA forcing generator (Toohey et al., 2016) to reconstruct the spatiotemporal distribution

of SAOD given the estimated eruption latitude, date and VSSI. Estimates of VSSI and SAOD from ice core sulfate measure-

ments have a significant associated uncertainty (Hegerl et al., 2006). The eVolv2k reconstruction provides estimates of the95

1-sigma random uncertainty in the VSSI estimates (Toohey and Sigl, 2017). These uncertainties represent uncertainties due to

two sources: 1) the uncertainty in the ice sheet (Greenland or Antarctica) mean sulfate flux, based on the variation between the

individual ice core records that make up the ice sheet composite, and 2) a representativeness error, corresponding to the error

inherent in taking the ice sheet mean as a measure of the full hemispheric sulfate deposition. The latter source of uncertainty is

estimated based on the variability in ice sheet average deposition for eruptions of fixed magnitude in aerosol model simulations100

(Toohey et al., 2013). A total random error is computed by combining the measurement and representativeness error. Average

estimated percent uncertainties in eVolv2k are 34%, with values for eruptions of greater than 10 TgS ranging from 14-40%.

There is also uncertainty in the timing of eruptions for all but the relatively few ice core sulfate peaks that can be attributed to

historically recorded eruptions. For unidentified eruptions, the year listed in the eVolv2k database represents the year in which

excess sulfate is first detected in the ice cores, with an estimated uncertainty of ±2 years. This uncertainty includes the overall105

dating uncertainty of the ice core and as well as uncertainty in the time lag between eruption and first deposition of sulfate

flux to the ice sheets. To incorporate uncertainties in VSSI amount and eruption timing into the present work, we constructed

an ensemble of VSSI time series from the default eVolv2k data. For each member of constructed eVolv2k forcing ensemble

(eVolv2k-ENS) the following steps were taken:

– For each eruption individually, we perturbed the VSSI amount by a normally distributed random variable of mean zero110

and standard deviation of the reported VSSI uncertainty for that eruption. If the resulting value was negative, we set the

value to zero.

– For unidentified eruptions, we perturbed the eruption year by a normally distributed random variable with mean zero and

standard deviation 2, rounded to the nearest integer. Eruption months were furthermore randomised based on a uniform

distribution centered on the default January eruption month used in eVolv2k.115

This procedure was iterated to produce 1000 different timeseries of VSSI, each a possible version of past volcanic activity given

the estimated values and uncertainties listed in eVolv2k. For each individual eruption, the eVolv2k-ENS members produce a

distribution of potential VSSI amount and timing. The original default eVolv2k values are found at the peak of the distribution,

representing the estimated most probable value for each individual eruption. The eVolv2k-ENS VSSI timeseries are then each

passed through the EVA v1 forcing generator to create a time series of SAOD. Due to non-linearity in the VSSI to SAOD120

conversion, the default eVolv2k SAOD is not at the center of the eVolv2k-ENS SAOD distribution, but it occurs at the peak in
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the VSSI distribution (Fig. S7). The volcanic forcing ensemble therefore represents an estimate of the range of possible volcanic

forcing histories given the VSSI values and random uncertainties reported in the eVolv2k data set. It does not however include

all possible sources of uncertainty. For example, it does not include potential systematic biases arising from 1) uncertainty

in the scaling relations used to covert ice core sulfate into VSSI, or 2) model uncertainty from EVA, including its lack of125

sensitivity to the height of the sulfur injection (Aubry et al., 2020). Nor does it include potential uncertainty in the attribution

of unidentified eruptions to different latitude bands, nor any potential misattribution of sulfate signals to historical eruptions.

To convert the global SAOD timeseries to radiative forcing, we use the average relationship presented for global mean values

in Marshall et al. (2020), using exponential scaling. The conversion of NH SAOD to NH radiative forcing is more uncertain

and therefore, for simplicity, we use the same relationship, in this way treating all of the SAOD ensembles the same. However130

it should be noted that this presents a substantial source of uncertainty with respect to the impulse response model output,

especially for NH results.

2.2 Solar forcing

Reconstructions of solar irradiance are based on cosmogenic isotope records of 14C (Roth and Joos, 2013; Usoskin et al.,

2016) and 10Be (Baroni et al., 2015). 14C is oxidised to CO2 in the atmosphere and metabolised by trees to form tree-rings135

(e.g. Suess (1980); Stuiver and Quay (1980)), while 10Be attaches to atmospheric aerosols, which are removed from the

atmosphere in different ways and subsequently deposited to ice sheets (e.g. Beer et al. (1983); Usoskin et al. (2009)). They

represent independent proxy records (Bard et al., 1997; Steinhilber et al., 2012) and are mostly consistent – especially on long

timescales – but deviations during certain periods have been noted due to the different formation rates (Usoskin et al., 2009;

Steinhilber et al., 2012).140

We include four different reconstructions of solar forcing in our analysis, resulting from either of these isotope records

or combined versions, including the PMIP4 records PMOD, SAT10Be and SATC14 (Jungclaus et al., 2017). The latter two

are derived from the updated SATIRE-M model (Vieira et al., 2011; Wu, 2017), with SAT10Be using 10Be isotope records

as input, and SATC14 using 14C isotope records. PMOD uses only 14C as input (Jungclaus et al., 2017), and represents an

update from the older SEA model (Shapiro et al., 2011). PMIP3 includes seven different records (Schmidt et al., 2011, 2012),145

including, among others, SBF (Steinhilber et al., 2009), which was used as the solar forcing record for runnign HadCM3, and

SEA (Shapiro et al., 2011), which represents the maximum amplitude solar forcing record. Apart from SEA and PMOD, all

records represent small long-term solar forcing and share a similar amplitude. Due to the similarities in the low solar forcing

records, we restrict our analysis to the PMIP4 records, and, for completeness, include SEA, representative of the maximal

(although unlikely) physically possible forcing (Fig. 1 (a)). We thus sample two independent isotope records (10Be and 14C),150

combined with two independent reconstruction methods (SATIRE and SEA/PMOD).

The ensemble variance is dominated by the difference in the long-term amplitude (Fig. 1 (b)) and is especially high during

the Spörer minimum (around 1390−1550), the Wolf minimum (around 1270−1340) and the Maunder minimum (around

1640−1720) (Usoskin et al., 2007). Short-term changes are less uncertain and are caused by quasi-periodic oscillations ranging

between 9 and 14 years (Nandy et al., 2021), mainly as a result of discrepancies between the different isotope records (Usoskin155
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et al., 2009; Steinhilber et al., 2012). The variance is largest during the mid-15th century, coinciding with the large volcanic

eruption in 1458 (Fig. 1 (c)). Baroni et al. (2019) hypothesised that large stratospheric volcanic eruptions may deplete the

stratospheric 10Be isotope for around a decade, biasing the isotope records. This could partially explain the large amplitude of

solar minima in the SEA record, a record based on 10Be only, which all coincide with periods of major volcanic activity.

2.3 Impulse response model160

2.3.1 Model setup and tuning

The response model accounts for fast and slow temperature changes in response to external forcing (Otto et al., 2015; Haustein

et al., 2017; Millar et al., 2017), where fast and slow components are associated with the response of the ocean mixed layer and

the deep ocean response respectively (Li and Jarvis, 2009). In addition to these two timescale parameters, which need to be

determined through model tuning, the equilibrium climate sensitivity (ECS) and the transient climate response (TCR) have to be165

set. In order to ultimately compare the output with proxy reconstructions, which typically represent northern hemisphere (NH)

summer (May-June-July-August; MJJA) land surface temperature, we tune the response model separately to global annual

temperature, and to NH summer land temperature from HadCM3 simulations (Pope et al., 2000; Gordon et al., 2000). We run

the response model with TCR=2.0 and ECS=3.3 (Tett et al., 2022) and use ICI5 (Crowley and Unterman, 2013) for volcanic

forcing and SBF (Steinhilber et al., 2009) for solar forcing, in agreement with the HadCM3 input. Pre-industrial greenhouse170

gas concentrations (Meinshausen et al., 2017) were converted into radiative forcing (Etminan et al., 2016) and merged with

historical output from FAIR v1.3 (Smith et al., 2018). Aerosol forcing from the Community Emissions Data System (CEDS,

Hoesly et al. (2018)) is included from 1820 onwards. We tune the response model by minimising the residuals between the

response model output and the all forcings HadCM3 ensemble mean over the period 1400 to 1850. We use the HadCM3 all

forced simulations as the target for tuning to ensure an optimal choice of the fast and the slow response time. We test the tuned175

response model by comparing its forced response separately to the all forcing HadCM3 ensemble mean as well as to individual

forcings (Fig. S1 and S2). Note that the response to solar forcing in the HadCM3 solar only simulation is largely masked by

residual internal variability in the ensemble mean, which decreases the correlation between HadCM3 and response model. For

all, GHG and volcanic forcing we confirm that the best fit corresponds well to the associated HadCM3 ensemble mean.

2.3.2 Forcing uncertainty ensemble180

After determining the free model parameters, we run the response model with our forcing uncertainty ensemble as input.

However, to ensure an optimal comparison between response model and proxy reconstructions, we first change the climate

sensitivity to a more generic setup. A large range of climate sensitivity is found across the CMIP6 models (Fig. S3), reflect-

ing the large uncertainty associated with this parameter (Sherwood et al., 2020). We therefore run the response model with

the median climate sensitivity across CMIP6 (ECS=3.3, TCR=2.0) for the main analysis, and conduct additional sensitivity185

studies with the lower and the upper range of climate sensitivity of CMIP6 models (shown in the Supplementary Information).

The lowest climate sensitivity is associated with INM-CM4-8 (ECS=1.84, TCR=1.32) and the highest climate sensitivity is
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associated with E3SM-1-0 (ECS=5.38, TCR=2.99). This way we can estimate a lower and an upper limit of the temperature

response to differences in the natural forcing record.

In order to run the impulse response model with eVolv2k-ENS, we convert the forcing timeseries from SAOD to ERF. For190

producing global annual data, we use the globally averaged timeseries of SAOD, while for NH summer, we restrict our data to

NH SAOD only. For global data, yearly averages are created by using the average from April to March of the following year,

following Neukom et al. (2019). For NH summer data, we use a similar strategy, e.g. for a given year we average September

of the preceding year to August of the current year. This way, we ensure that a volcanic eruption after the growing season has

finished is not taken into account for a given year. The resulting timeseries are converted into ERF using the non-linear scaling195

(Marshall et al., 2020).

The 1000 timeseries of volcanic radiative forcing, obtained by eVolv2k-ENS are joined with the four solar forcing timeseries,

and thus the response model is run 4000 times for each global annual and NH summer land temperature. Greenhouse gas and

aerosol forcing were kept from the previous setup. Additionally, we run the response model with the PMIP4 reference forcing,

eVolv2k, and each solar forcing reconstruction.200

A summary of the complete process, from model tuning to running the forcing uncertainty ensemble, is given in Fig. S4.

2.4 Evaluation of the forced response

2.4.1 Residual variability of proxy reconstructions

To evaluate the consistency between the output of the impulse response model x, the temperature response to radiative forcing,

with the proxy reconstructions y, temperature variability due to forcing and internal climate processes, we calculate the residu-205

als, using the root mean square error (RMSE). We calculate the RMSE over centered,running windows t with length N , using

RMSEt =

√√√√√ 1

N

N/2∑
i=−N/2

((xi+t − x̂t)− (yi+t − ŷt))2, t=
N

2
,
N

2
+1,

N

2
+2, .... (1)

The mean over the window t is denoted by x̂t for the response model, and ŷt for the proxy data. We choose a length N = 20

years to analyse the temperature response to volcanic forcing, and a length N = 200 years to analyse the response to solar210

forcing. The former encompasses the recovery time even after a large volcanic eruption such as Tambora generously (Schurer

et al., 2013; Otto-Bliesner et al., 2016; Raible et al., 2016). The latter encompasses a full solar cycle, which has an amplitude of

around 200 years (Fig. 1 (b)). The residual represents differences between model output and proxies due to internal variability

present in the proxy reconstructions, but also includes the discrepancy between radiative forcing in the proxies and the model,

proxy reconstruction error and model simulation error.215

We can roughly estimate the influence of all of these factors by

– varying the radiative forcing in the response model using an ensemble of different realisations of forcing to estimate

forcing discrepancy
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– comparing the residuals to control runs from climate models and to estimates of unforced variability in observational

data to estimate internal variability220

– using an ensemble of different proxy reconstructions to estimate reconstruction error

– comparing the response model simulations to coupled climate model simulations to estimate simulation error.

2.4.2 Proxy reconstructions

We use four tree-ring reconstructions of Northern hemispheric (NH) summer temperature (N-TREND16: Wilson et al. (2016),

N-TREND17: Anchukaitis et al. (2017), GCS17: Guillet et al. (2017), SSB15: Schneider et al. (2015) and the multi-proxy re-225

construction PAGES 2k (Neukom et al., 2019) for global annual temperature. The N-TREND reconstructions are both compiled

from the northern hemisphere Tree-Ring Network Development dataset (Wilson et al., 2016; Anchukaitis et al., 2017), but us-

ing different reconstruction methods. N-TREND16 is a hemispheric land surface temperature reconstruction based on iterative

nesting plus scaling to instrumental data. N-TREND17 is a climate field reconstruction using point-by-point regression (Cook

et al. (1999)). N-TREND includes measurements of tree-ring width (RW), maximum latewood density (MXD) and blue inten-230

sity (BI), and aims to reconstruct midlatitudinal (40–75◦ N) MJJA temperature over land. SSB15 uses weighted composites

based on moving correlations with local temperature and scaling to reconstruct extratropical (30–90◦ N) June to August (JJA)

temperature. They include solely MXD tree-ring chronologies, which are considered to be more sensitive to high frequency

variability (Franke et al., 2013; Esper et al., 2015; Lücke et al., 2019). GCS17 used tree-ring data (RW and MXD) to recon-

struct extratropical (40–90◦ N) JJA temperature over land with a bootstrap linear model using principal component analysis.235

The four reconstructions share several chronologies, however all of them use different methodologies for reconstruction.

PAGES 2k uses a large multi-proxy dataset (PAGES2k Consortium, 2017) and combines seven different reconstruction

methods (CPS: Neukom et al. (2014); Mann et al. (2008), PCR: Neukom et al. (2014); Luterbacher et al. (2002), OIE: Shi et al.

(2017), M08: Mann et al. (2008), PAI: Hanhijärvi et al. (2013), BHM: Barboza et al. (2014), LMR: Hakim et al. (2016)) to

obtain global mean surface temperature (GMST) of the last two Millennia between April and March. For each method Neukom240

et al. (2019) obtained an ensemble of 1000 reconstructions using various statistical approaches to estimate the reconstruction

uncertainty such as bootstrapping or red noise perturbations. For computational reasons we subsample 50 random ensemble

members of each method, which we find gives a reasonable estimate of the ensemble spread (compare Fig. S5).

2.4.3 Time-series filtering

We apply a second order Butterworth filter (Mann, 2004, 2008; Neukom et al., 2019) on all temperature timeseries, which245

we use in two ways: to isolate the response to a specific forcing and to suppress spectral biases/frequency insensitivity of the

proxy data. To isolate the response to long-term changes in solar variability we use a bandpass filter between 50 and 300 years.

PAGES 2k and N-TREND are both sensitive to temperature variability on this frequency band (Neukom et al., 2019; Lücke

et al., 2019). For the volcanic response we focus on annual to multi-decadal frequencies. However, PAGES 2k was shown

to be relatively insensitive to high frequency variability due to the large inclusion of low frequency records (Neukom et al.,250
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2019), and thus we set the high frequency threshold at 15 years for global analyses. Tree-ring reconstructions perform well at

high frequencies, but are subject to autoregressive biases which affect their high frequency variability (Lücke et al., 2019). We

therefore set the high frequency threshold at 5 years. The low frequency threshold remains set at 300 years.

2.4.4 Variability of CMIP6 control runs

We use temperature data from 58 pre-industrial control runs (Eyring et al. (2016), table S1) to estimate unforced temperature255

variability on centennial timescales and on multi-decadal timescales. Temperature was averaged over both midlatitudinal land

summer (MJJA) and the global annual mean. The timeseries were bandpass filtered, and the RMSE was calculated from non-

overlapping chunks of N = 20 and N = 170 years. For N = 20 years all individual models are consistent within the lower and

upper quartile of the population of all simulations, showing that most of the models roughly agree on the extent of decadal

variability (Fig. S9 (a), (c)). For N = 170 years there is less agreement between the individual models, with some models260

displaying higher variability than others (Fig. S9 (b), (d)). These models are also associated with higher 100 year running

GMST trends (Parsons et al., 2020) and we therefore refer to them as high variability types.

2.4.5 Residual variability of observations

We use the infilled HadCRUT5 dataset (Morice et al., 2021), a gridded dataset of global historical surface temperature anoma-

lies from January 1850 to December 2020. The infilled dataset has increased coverage and includes 200 realisations sampling265

the distribution of various errors and uncertainties. To obtain an estimate of unforced variability, we conduct a total least squares

(TLS) regression, using the historical CMIP6 multi-model mean as the fingerprint of forcing (Allen and Stott, 2003; Schurer

et al., 2014). The residuals give an estimate of the unforced variability (Schurer et al., 2015; Friedman et al., 2020) and can be

compared to the residuals of proxy and model simulations. This procedure was repeated for each of the HadCRUT5 ensemble

members and for both global annual and NH summer temperature.270
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3 Results

3.1 Model performance

We assess the model performance by comparing the residuals between the response model, tuned to HadCM3 and using

HadCM3 forcings, and transient HadCM3 simulations to the standard deviation of HadCM3 control runs over 20 and 200

years sliding windows (Fig. 2). For a perfect response model, which accurately reproduces the climate response to forcing in275

HadCM3, the residuals would represent the internal variability simulated by HadCM3, and thus match the spread of control

variability. However, given that the response model is a simplistic simulation of large-scale climate and does not account for

hemispheric transport, seasonal processes or non-linear mechanisms, we expect the residuals to also include model error, and

thus to exceed the control variability. Remaining internal variability in the HadCM3 ensemble mean due to the relatively small

ensemble size could additionally increase the residuals.280

At 20 year timescales the residuals agree at most times well with the spread of control variability, especially for global

simulations. However, in the NH, residuals are very large during the mid-15th century as well as around 1800, which are both

periods of high volcanic forcing. The larger residuals around 1800 are also present in the global simulation. Both periods are

subject to very large volcanic forcing, and thus it is likely that the response model may be too simplistic to accurately model

the associated climate processes as simulated by HadCM3. We find a larger discrepancy for both global and NH simulations at285

the 200 years timescale, although the 90th percentile is within the range of control at most times. The residual clearly exceeds

the control variability during the 17th century, which could be explained by a possible non-linearity in the solar and volcanic

forcing during that period (Schurer et al., 2014). As observed at the 20 y timescales, residuals are smaller for global simulations,

indicating that model error is larger in the NH. This finding is unsurprising, given that regional and seasonal climate processes

play a larger role for NH summer temperature as opposed to global annual temperature.290

3.2 Solar forcing uncertainty

We compare the proxy reconstructions with response model simulations including the different solar forcing reconstructions.

On centennial timescales the difference between simulations including SAT10Be and SATC14 is almost negligible, and both

follow the proxy reconstructions closely after around AD 1300 (Fig. 3 (a), (b)). In contrast, the temperature response to

PMOD and SEA forcing show very large variability, with particularly strong anomalies during the Wolf (around AD 1300)295

and the Spörer (15th century) minima. Since the availability of proxy records decreases quickly before AD 1300 and therefore

reconstructions are much more uncertain (Wilson et al., 2016; Neukom et al., 2019), we use the period from 1300 to 1900

to calculate residuals between proxy reconstructions and response model simulations and compare to estimated observed and

modelled internal variability. The residuals between the proxy reconstructions and the full response model ensemble show that

even when accounting for volcanic and proxy reconstruction uncertainty the SATIRE forcings consistently generate the lowest300

residuals, and SEA consistently generates the highest (Fig. 3 (c), (d)), with very little overlap between them. For the northern

hemisphere, the former shares a very similar distribution with the root mean square deviation of the CMIP6 control variability,

although the distribution shows two peaks, generated by the different proxy reconstructions. Given that the model error ranges
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around 0.03 K for NH summer simulations and 0.01 K for global annual simulations (Fig. 2), we expect the response model

to produce slightly higher residuals than the control variability. This suggests that SATIRE forcing is consistent with the305

reconstructions compared to the distribution of control variability. In contrast, both PMOD and SATIRE are inconsistent with

the majority of CMIP6 control runs.

At global scale, the CMIP6 control runs show a significantly lower variability than the residuals from all solar forcings. This

is roughly consistent with the difference between HadCM3 and the response model run with HadCM3 forcing (Fig. 2) and thus

could be caused by model error, or could indicate that global annual variability is slightly underestimated by CMIP6 models.310

PMOD is only consistent with the upper tail of the distribution, caused by the high variability type models, and residuals from

SEA are pretty much inconsistent with CMIP6 control variability.

It is worth noting that the relative magnitude of residuals associated with the different solar forcings is independent of the

temperature target and the reconstruction (Fig. S11 and S12). In addition, it is also independent of response model parameters

such as climate sensitivity. While for the low climate sensitivity the differences between the temperature response to SATIRE,315

PMOD and SEA forcing decrease, SEA still produces consistently larger residuals than SATIRE forcing (Fig. S13). For the

high climate sensitivity the differences increase (Fig. S14), but the order remains unchanged: SATIRE produces the smallest

residuals, followed by PMOD, and SEA forcing.

3.3 Volcanic forcing uncertainty

To quantify the effect of volcanic forcing uncertainty, we fix the solar forcing to SATC14, the default PMIP4 forcing (Jungclaus320

et al., 2017). The volcanic ensemble generates a large variety of amplitudes in response to individual eruptions. At times, the

spread between the ensemble members exceeds 1 K in the NH, indicating that large uncertainty of the volcanic forcing record

progresses into the temperature response (Fig. 4 (a)). The largest spread is found during the 1450s, and after the eruption of

Laki (1783). Accordingly, the magnitude of the residuals between response model simulations and proxy reconstructions also

vary significantly throughout the Millennium (Fig. 4 (b)). In the NH, the 75th percentile of the residuals obtained from eVolv2k-325

ENS agrees with the spread of residuals obtained from eVolv2k, which represent the proxy reconstruction uncertainty, at most

times. The proxy reconstruction uncertainty tends to be larger during years of low volcanic activity, and decreases around the

eruptions, except for the eruption of Samalas in 1257. The residuals of eVolv2k-ENS are largest, and show the largest spread

during periods of high volcanic activity. The residuals peak around the eruption of Samalas for both eVolv2k and eVolv2k-

ENS, which also features the largest spread of results. This reflects the large uncertainty around this eruption with regard to330

both forcing and reconstruction. The mismatch between the model response to the eruption of Samalas and the response shown

by proxy reconstructions is a well-known discrepancy. It reflects a mismatch between the signals in ice-cores, the source data

of the volcanic forcing in model simulations, and tree-rings, the source data of the proxy reconstructions (Guillet et al., 2017;

Timmreck et al., 2009). Additionally, the response model and the proxy reconstructions match better going forwards in time,

with a particularly poor agreement prior to ca. A.D. 1300. This reflects the decreasing data availability and quality as we335

go back in time. Prior to A.D. 1300 only few high resolution records from maximum latewood density are available, which

reduces the confidence in the proxy reconstructions for the first three centuries (Wilson et al., 2016) and hence in the proxy
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response to the eruption of Samalas. Nevertheless, given the large ensemble spread between residuals from the eVolv2k-ENS

members (around 0.2 K) around this eruption, volcanic forcing uncertainty could additionally explain a part of this discrepancy.

A similar observation holds for the mid 1450s eruptions (Esper et al., 2017; Sigl et al., 2015), however in this case the spread340

of reconstructions is smaller.

While volcanic forcing uncertainty provides a possible contribution to the discrepancy of these specific eruptions, it is

unlikely that it can be fully explained by it- at least not with such a simple model. Proxy biases, reconstruction uncertainty

and model errors may provide further explanations. Apart from Samalas and the mid-1450s eruptions, the lower range of

residuals is well in line with the observed unforced variability. Thus, for most eruptions we can find an ensemble member345

that is in line with the uncertainty range of observed internal variability and control variability. It is likely that the lowest

range overfits the data to some extent, however it is well in line with observed unforced variability (Fig. 5 (a)). For most of

the instrumental period– except the 1920s– the 20 y variability of control runs exceeds the estimates of observed unforced

variability. Based on these findings, we conclude that for many eruptions, the temperature differences resulting from volcanic

forcing uncertainty is in line with the magnitude of internal variability on decadal timescale. This indicates that differences350

in the response to volcanic eruptions due to uncertainty in the eruption parameters may not emerge from the background of

internal variability. This is particularly important for comparing model simulations to proxy reconstructions. For eruptions

which exceed the control variability, it is likely that the proxy temperature reconstructions can constrain the volcanic forcing

by identifying forcing ensemble members that produce temperature anomalies incompatible with the reconstructions. This

includes for example 1345, Samalas, the unknown mid 15th century eruption, the tropical eruptions in the 17th century (1600,355

1640, 1695), Laki (1783) and the 19th century eruptions (1809 and Tambora 1815). However, residuals from most of eVolv2k-

ENS and residuals from eVolv2k fully agree with the range of control variability after 1300 (Fig. 5 (a)).

The ensemble spread for global temperature is less variable, and the biggest spread just about exceeds 0.3 K (Fig. 4 (c)). This

is partly caused by the smaller variability of global annual temperature in contrast to NH land summer temperature, and thus

could be an effect of the tuning. It could also reflect a possibility that random errors average out in the global reconstruction.360

However, note that high frequency variability is strongly suppressed due to the bandpass filter that we applied to global annual

temperature (compare Fig. S15 (a), (c)).

At global scale the 90th percentile of the uncertainty ensemble agrees at all times with the range of eVolv2k residuals. This

implies that after removing the higher frequencies with the 15 to 300 years bandpass filter, spread due to volcanic forcing

uncertainty is small compared to the proxy uncertainty range. We therefore concentrate on the analysis of the residuals from365

NH reconstructions and simulations. However, we note that the lower range of the eVolv2k-ENS spread perfectly matches the

lower range of the control variability at all times for the global residuals, and exceeds the upper range only during periods of

very large volcanic forcing. eVolv2k lies well within the range of control variability, and at times of low volcanic forcing the

residuals of PAGES 2k/eVolv2k, CMIP6 CTRL and HadCRUT5/CMIP6 match almost perfectly. However, it is likely that the

lowest range is an overfit of the data (see Fig. 5 (b)), due to too many degrees of freedom.370

Our results suggest that internal variability and proxy reconstruction uncertainty may at times disguise the effects of volcanic

forcing uncertainty, which range in the same order of magnitude. However, overall, they confirm the large-scale quality of
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proxy reconstructions, where the distribution of residuals between eVolv2k and proxy reconstructions overlaps well with the

distribution of control variability and observed unforced variability (Fig. 5).

Note that due to the way eVolv2k-ENS was compiled, it does not represent systematic uncertainty, but randomly combines375

the uncertainties associated with individual eruptions. Thus, the distribution of the residuals over the whole Millennium do not

differ very much between the different ensemble members (Fig. 5). Compared to eVolv2k, the main difference can be found

at the upper tail of the distribution, which, for most ensemble members, is shifted towards larger residuals. In Fig. 4 (b) and

(d), the lower range represents the minimum residual which can be generated by one ensemble member over 20 years. Due to

the limited ensemble size of 1000 ensemble members, randomly combining 105 eruptions, the lower range does not represent380

one individual ensemble member but a combination of them over the whole millennium for each 20 year slice. While this may

strongly overfit the data due to the large number of degrees of freedom, it can give information about the very lowest boundary

of residuals that can be achieved by tweaking the volcanic response. Remarkably, the lower range of NH residuals fits the

estimate of observed variability relatively well (Fig. 5 (a)), although the left tail of the distribution indicates that a significant

number of residuals approach zero. This is not consistent with any other data source, and thus clearly indicates overfitting. For385

global data, the same observation can be made, and the distribution of the lower range is considerably smaller than control and

estimated observed variability. However, the large discrepancy between the distribution of eVolv2k-ENS and the distribution of

the lower range of residuals indicates that choice of the volcanic forcing record can influence the variability of last Millennium

temperature significantly, especially at, but not limited to, higher frequencies.

As a sensitivity study, we repeat our analysis with the highest and the lowest climate sensitivity presented by a CMIP6 model.390

We find that for very high climate sensitivity, the differences between the ensemble members are much elevated (Fig. S16),

making the residuals overall less consistent with control variability (Fig. S17 (a), (b)). This concerns both residuals obtained

from eVolv2k and eVolv2k-ENS, although the best fit considerately overlaps with control and observed variability. In contrast,

very low climate sensitivity suppresses the response to forcing and thus decreases the spread of eVolv2k-ENS (Fig. S18) and

the distribution of residuals is shifted towards zero (Fig. S17 (c), (d)). Consequentially, if climate sensitivity was very low, the395

effects of volcanic forcing uncertainty may be to a very large extent disguised by internal variability.

The exact effect of timing and magnitude uncertainty on the temperature response to individual eruptions can be quantified

by focusing on 11 eruptions with the largest eruption magnitudes (Fig. 6 (a)–(k)). Due to their better sensitivity at higher

frequencies, we limit our analysis to NH temperature. Furthermore, we consider only eruptions past AD 1300 due to the400

increased quality of proxy reconstructions (Wilson et al., 2016). We compare the eVolv2k-ENS ensemble spread to the proxy

reconstructions, and find the forcing ensemble members that minimise the residuals between response model and each proxy

reconstruction. For most eruptions we find at least one ensemble member that matches the proxy reconstruction very closely

in the immediate aftermath of an eruption, in particular 1345, 1640, 1695, 1783 and all 19th century eruptions. This has

a significant effect on the superposed epoch analysis which combines these eruptions (Fig. 6 (l)), and brings the simulated405

volcanic response in line with the proxy reconstructions. Eruptions which still show a significant discrepancy include 1453 and

1458 and 1600.
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Comparing the eruption parameters of eVolv2k-ENS best fit and eVolv2k, we find that for most eruptions the sulfate injection

magnitude favoured by the proxy reconstructions is significantly reduced (table S2 and Fig. S22). Only for 1453 all four

reconstructions suggest a larger sulfate injection magnitude than eVolv2k, while for 1835 three reconstructions agree on a410

slightly larger one. For all other eruptions considered, the majority of proxy reconstructions suggest smaller amplitudes ranging

from a reconstruction average of 32% for Laki (1783) to 88% for Tambora (1815). From the four reconstructions considered,

GCS17 stands out regarding the magnitude, suggesting a higher magnitude for about half the eruptions considered (1453, 1695,

1809, 1815 and 1835).

For undated eruptions, eVolv2k-ENS accounts not just for the uncertainty of sulfate injection, but also for uncertainty in415

eruption month and year. Out of the eleven eruptions shown in Fig. 6, this concerns 1345, 1453, 1458, 1694 and 1809. While

the eruption year plays a role regarding the spread of the temperature response, the eruption month does not seem to account

for much variance (Fig. S23). It is likely, that this is caused by the simple nature of our temperature response model, which does

not take seasonal processes into account, and thus we cannot draw any significant conclusions regarding the role of the eruption

season. The relative eruption year varies much between the different undated eruptions, as well as the different reconstructions,420

with no visible trend (Fig. S24). We find that only for 1695 all reconstructions agree on a slightly later eruption date, ranging

between +1 to +3 years. For the other eruptions results range between −2 and +3 years.

The wide range of volcanic forcing uncertainty found in the temperature response to the 11 individual eruptions leads to

a similarly large range in the epoch analysis combining these eruptions (Fig. 6 (l)). At the time of the maximum amplitude,

two years after an eruption, the difference between the different ensemble members ranges around 0.8 K. The ensemble range425

encompasses the range of proxy reconstructions at all times, while the simulation using eVolv2k shows a larger response until

around four years after the eruption. At this point we find a quick recovery from the cooling, while the proxy reconstructions

show more persistent cooling, leading to an overlap between proxy reconstructions and eVolv2k response. In contrast, the

weaker cooling and slower recovery is replicated by the best fitting eVolv2k-ENS members. Here, we find an almost perfect

overlap within the proxy reconstruction range, although the epoch analysis still shows a slight discrepancy in the timing and430

magnitude of the peak cooling, and a more prolonged response in the proxy reconstruction. The latter could be explained by

biological memory processes in the tree-ring data (Lücke et al., 2019). Note that the response model does not account for

internal variability, but the volcanic response in the proxy reconstruction is affected by it. Therefore we do not necessarily

expect the best fitting ensemble members to be the true implementation of volcanic forcing over these eruptions. However, it

should be noted that the overall response– including magnitude, peak cooling and recovery time– shown by the epoch analysis435

is heavily affected by volcanic forcing, and can differ by up to 0.8 K during peak cooling. This exceeds the magnitude of the

difference between PMIP3 models and proxy reconstructions (Masson-Delmotte et al., 2013).

4 Discussion and Conclusion

In this study, we have, for the first time, estimated the effects of both volcanic and solar forcing uncertainty on simulated

temperature during the last millennium. This includes the uncertainty of magnitude and timing of volcanic eruptions and the440
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uncertainty of the long-term variation of the solar cycle. Our main findings include:

Solar forcing:

– We confirm previous findings that the SEA solar reconstruction is not consistent with global and hemispheric proxy

reconstructions using an independent approach. The same applies for the new PMOD record, producing consistently445

higher residuals between model simulations and proxy reconstructions than SATIRE forced simulations. For the first

time we have shown that this finding is not affected by volcanic forcing uncertainty. We therefore advise that the PMOD

and the SEA forcing records should not be used in future analyses.

– We find that low amplitude solar forcing estimates keep the residuals between model simulations and proxy reconstruc-

tions consistent with estimates of internal variability from control runs on centennial timescale. Residual variability450

between the large-scale temperature response to SATIRE solar forcing records and proxy reconstructions agrees excep-

tionally well with variability from control simulations, even when accounting for uncertainty in the volcanic record and

proxy reconstruction uncertainty. Given that temperature reconstructions from proxy records and climate model simula-

tions represent two completely independent sources regarding data and methodology, this agreement strongly supports

the quality of proxy reconstructions as well as the SATIRE solar forcing records at these timescales.455

Volcanic forcing:

– Our study also shows that volcanic forcing uncertainty has the potential to resolve several discrepancies between model

simulations and proxy reconstructions for some individual eruptions, such as 1640, 1695, Laki or Tambora. The best

fit between proxy reconstructions and temperature response to eVolv2k-ENS tends to favour weaker sulfate injection.

This is a well-known discrepancy, which could result from 1) a weaker response of biological proxies due to memory460

processes (Lücke et al., 2019; Zhu et al., 2020), 2) reflect a systematic error in the transfer functions used to translate

ice core sulfate flux to VSSI, or 3) imply that climate sensitivity of the response model is too high, resulting in an

overestimation of the forced response. While the exact cause for this discrepancy remains open, our results show that

volcanic uncertainty cannot be neglected for the evaluation of the response to volcanic forcing and has the potential to

increase the agreement between proxy reconstructions and climate model simulations remarkably.465

– These uncertainties add up considerably in superposed epoch analyses, where different ensemble members can induce

a large spread in the amplitude. Thus, when including poorly constrained eruptions the epoch analysis does not seem to

be suitable to entirely isolate the volcanic signal. We recommend to focus on comparing better constrained individual

eruptions, and/or to include an estimate of forcing uncertainty.

Unforced variability:470

– Comparison of simulated control variability with unforced variability estimated from the observations (see Sect. 2.4.5)

suggests that on decadal timescales control variability may be overestimated for NH land summer and underestimated for
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global annual data. The latter confirms previous findings by Neukom et al. (2019). Incompletely removed external forcing

in residuals between proxy reconstructions and model simulations, arising from discrepancies in their forcing history,

induce a large spread of results. This supports findings by Mann et al. (2022) who suggested that such residual external475

forcing explains much of the multidecadal variability previously attributed to the Atlantic Multidecadal Oscillation.

– We also find that within the range of volcanic forcing uncertainty, residual variability between model simulations and

proxy reconstructions is consistent with both control and observed unforced variability on decadal timescales. All three

data sources agree well within their own range of uncertainties. This agreement between two independent records, i.e.

the forcing and the climate response, emphasises the quality of both proxy reconstructions of the last Millennium within480

their band of frequency sensitivity and volcanic forcing reconstructions within their uncertainty range.

These conclusions are, to a greater or lesser extent, all sensitive to our assumptions, input data and methods. Here, we discuss

these sensitivities.

Primarily, the results rely on the performance of the impulse response model and the quality of the proxy reconstructions

within the chosen frequency bands both of which are subject to a range of uncertainties and biases. The impulse response model485

is a simple large-scale simulation of energy balance, and does not account for complex processes within the climate system,

seasonal or hemispheric phenomena, or abrupt changes on sub-annual timescale. Such models are therefore better suited for the

simulation of global annual temperature. In contrast, large-scale proxy reconstructions are impacted by the lack of high quality

high resolution proxy records covering the whole globe and reconstructions of extra-tropical northern hemisphere climate tend

to be more reliable than global reconstructions. Therefore a balance has been struck between these two contrasting issues.490

We use the impulse response model here to simulate regional and seasonal temperature, such as midlatitudinal NH summer,

to allow for a better comparison to tree-ring datasets. Therefore we carefully evaluated the model performance which agrees

sufficiently well with that of HadCM3.

Impulse response models were initially developed for modeling the response to slow-acting forcing, in particular greenhouse

gases (Held et al., 2010; Rypdal, 2012; Geoffroy et al., 2013b, a) and have only recently been used for simulating the response495

to volcanic forcing (Haustein et al., 2019; Marshall et al., 2020). The latest studies have found that in order to capture the full

range of CMIP6 model behaviour, impulse response models require at least 3 boxes, and the 2-box model used here will not

capture the full response of a more complex model (Tsutsui, 2016, 2020; Cummins et al., 2020). We have carefully tested our

model output by comparing the forced response and the residual variability to HadCM3 simulations– which is also subject to

model uncertainty. The response model produced systematically larger residuals compared to HadCM3, and was not able to500

reproduce certain non-linearities in the forced response. Nevertheless it provides a good approximation of forced pre-industrial

temperature variability and is able to run a large ensemble of possible realisations of forcing combinations. The conversion

between SAOD and radiative forcing is a further source of uncertainty, but likely less important than the overall uncertainty on

the SAOD timeseries across the EVA ensemble. For example if the NH conversion was reduced, the NH radiative forcing input

into the impulse response model would be lower, which could result in better agreement between the proxy reconstructions505

and model output. These issues all contribute to our expectation of a significant model error, which has been estimated by
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comparing the residuals between HadCM3 and response model simulations using HadCM3 forcing. We found that the model

error is small compared to the uncertainty associated with climate sensitivity, at least for the specific filtering and target fre-

quencies. Climate sensitivity induces a large systematic uncertainty in the amplitude of simulated variability in the response

model. However, this uncertainty affects the amplitude equally for each simulation, and thus may, in case of higher climate510

sensitivity, increase or, in case of lower climate sensitivity, decrease the relative differences between the temperature response,

but does not change the conclusions of this article.

Despite these simplifications and assumptions our results are robust, as they are based on relative comparisons of differ-

ent datasets under the same set of assumptions, such as the comparison of the temperature response to the different forcing515

records to the proxy data. Our results are also consistent with those obtained from current generation (CMIP6) global climate

simulations for the historical period and the observational record. While we do not expect the response model simulations to

be a perfect implementation of the forced response throughout the last millennium, they give a good approximation within

the range of the various uncertainties associated with the datasets. A more sophisticated model may be able to produce more

pronounced differences in the forced response, for example regarding the influence of the seasonality of volcanic eruptions520

on the temperature response. However, the high agreement between the four independent data sources– proxy reconstructions,

the simulated response to solar and volcanic forcing, CMIP6 control variability and direct observations– strongly supports our

conclusions.

Code and data availability. The data and code generated during this study will be available on the University of Edinburgh DataShare server

(upload pending). eVolv2k is available from the World Data Center for Climate: http://doi.org/10.1594/WDCC/eVolv2k_v1 and eVolv2k–525

ENS will be hosted on the same server (upload pending). The HadCM3 simulations are available from the Center for Environmental Data

Analysis: https://catalogue.ceda.ac.uk/uuid/9b51eb5d44524e4c9aebcbbc53d79a27. The HadCRUT5 dataset is available from the Climatic

Research Unit: https://crudata.uea.ac.uk/cru/data/temperature/#datdow. CMIP6 simulations are available via the World Climate Research

Programme: https://esgf-node.llnl.gov/projects/cmip6/. The solar reconstructions are available from the Paleoclimate Modelling Intercom-

parison Project - Phase 4: https://pmip4.lsce.ipsl.fr/doku.php/data:solar and the Paleoclimate Modelling Intercomparison Project Phase III:530

https://wiki.lsce.ipsl.fr/pmip3/doku.php/index.

All Paleo datasets are publicly available from the NOAA National Centers for Environmental Information (NCEI), under the World Data

Service (WDS) for Paleoclimatology. Both N-TREND reconstructions are available from: https://doi.org/10.25921/kztr-jd59. The PAGES 2k

GMST reconstruction is available from: https://doi.org/10.25921/tkxp-vn12. The reconstruction generated by Guillet et al. (2017) is avail-

able from: https://doi.org/10.25921/42gh-z167. The reconstruction generated by Schneider et al. (2015) is available from: https://doi.org/10.535

25921/6mdt-5246.
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Figure 1. Timeseries of natural forcing records, as anomalies taken over the whole period. (a) global annual mean of the volcanic forcing

ensemble (eVolv2k-ENS) and of eVolv2k. Triangles on top mark the associated eruption years. (b) solar forcing reconstructions. The three

strongest solar minima during the pre-industrial millennium are shaded in grey.
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Figure 2. Evaluating the performance of the response model, tuned to HadCM3 and using similar forcing, against simulations from HadCM3.

Left: midlatitudinal NH land MJJA temperature. Right: global annual temperature anomalies. (a), (b) Bandpass filtered timeseries of the past

600 years. Thick orange line represents the HadCM3 ensemble mean, thin lines the ensemble members. (c), (d) RMSE between IRM and

HadCM3 versus HadCM3 control (CTRL) variability calculated over 20 year running windows. Thick lines represents the median, shading

the 75th/90th/100th percentile. The violinplots show the distribution of all slices. (e)–(h) as previous but filtered using a 50-300 year bandpass

and residual variability calculated over 200 year windows.
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Figure 3. Left: Temperature anomaly of proxy reconstructions and response model ensemble for the different solar forcing records for (a) NH

summer land and (b) global mean, filtered by a 50–300 years bandpass. The shading indicates volcanic forcing uncertainty for the response

model and reconstruction uncertainty for the proxy data (shading levels at 75th, 90th and 100th percentile, thick line median, thin lines

range). Right: Distribution of residuals between response model and proxy reconstructions, calculated over 200 years sliding windows over

the period 1300 (dotted line in (a) and (b)) to 1900, for (c) NH summer land and (d) global annual temperature for different solar forcing

estimates (colours). The dashed line indicates the variability of CMIP6 control runs.
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Figure 4. (a) Temperature anomaly from tree-ring reconstructions and response model simulations for NH land summer over the pre-

industrial last Millennium (up to AD 1885), filtered by a 5 to 300 years bandpass. Observations, CMIP6 historical multi-model mean

(MMM) and CMIP6 control runs are presented from 1885 onwards. Note that the CMIP6 control runs are shown for reference only and are

not associated with this particular time period. (b) Residuals between tree-ring reconstructions and response model simulations over 20 y

running windows. From 1890 onwards residuals between HadCRUT5 and the CMIP6 multi-model mean are shown and compared to CMIP6

control variability. (c) and (d) as (a) and (b), but for global annual data, and compared to PAGES 2k using a 15 to 300 years filter. The shading

in all panels indicates the 75th, 90th and 100th percentile, thin lines the range, thick lines the median (where applicable).
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Figure 5. Distribution of residuals between proxy reconstructions and impulse response model simulation from 1300 to 1900, compared to

the distribution of CMIP6 control variability and estimated unforced variability in HadCRUT5. (a) shows NH land summer temperature and

(b) global annual temperature. The proxy/eVolv2k-ENS lower range represents the lower range of the residuals (thick blue line) shown in

Fig. 4 (b) and (d).
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Figure 6. (a)–(k): Temperature response to the 11 biggest eruptions post AD 1300, filtered by a 5 to 300 years bandpass. Title indicates the

eruption year in eVolv2k. Anomalies are taken w.r.t. ten years prior to the eruption in eVolv2k, up to the eruption year. (l) Epoch analysis

over all eruptions shown in panels (a)–(k). In all panels the shading indicates the range, thick line the median (where applicable).
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