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Abstract. Insights into the controlling factors of soil organic carbon (SOC) stocks variation is necessary both for our scientific

understanding of the terrestrial carbon balance and to support policies that intend to promote carbon storage in soils to mitigate

climate change. In recent years, complex statistical and algorithmic tools from the field of machine learning became popular

for modelling and mapping SOC stocks over large areas. In this paper, we report on the development of a statistical method for

interpreting complex models, which we implemented for the study of SOC stocks variation. We fitted a random forest machine5

learning model with 2206 measurements of SOC stocks for the 0-50 cm depth interval from mainland France and using a set

of environmental covariates as explanatory variables. We introduce Shapley values, a method from coalitional game theory,

and use them to understand how environmental factors influence SOC stocks prediction: what is the functional form of the

association in the model between SOC stocks and environmental covariates, and how the covariate importance varies locally

from one location to another and between carbon-landscape zones. Results were validated both in light of the existing and10

well-described soil processes mediating soil carbon storage and with regards to previous studies in the same area. We found

that vegetation and topography were overall the most important drivers of SOC stock variation in mainland France but that

the set of most important covariates varied greatly among locations and carbon-landscape zones. In two spatial locations with

equivalent SOC stocks, there was nearly an opposite pattern in the individual covariates contribution that yielded the prediction:

in one case climate variables contributed positively whereas in the second case climate variables contributed negatively, and15

that this effect was mitigated by landuse. We demonstrate that Shapley values are a methodological development that yielded

useful insights into the importance of factors controlling SOC stocks variation in space. This may provide valuable information

to understand whether complex empirical models are predicting a property of interest for the right reasons and to formulate

hypotheses on the mechanisms driving the carbon sequestration potential of a soil.

1 Introduction20

Understanding how soil organic carbon (SOC) stocks and storage behave with ecosystem change has attracted much attention,

not only for scientific purposes but also for policy making and to encourage economic incentives for carbon sequestration.

Soils are a major component of the global carbon balance, storing about two third of the terrestrial carbon pool (Batjes, 1996).

SOC stocks are related to a number of functions provided by soils (e.g. nutrient cycling, habitat for biodiversity) which are
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determinants of the overall soil functioning. There has also been a growing interest by policy makers on the role that soil could25

play for carbon sequestration and climate change mitigation. For example, SOC stocks are one of the three Land Degradation

Neutrality indicators developed by the United Nations Convention to Combat Desertification (UNCCD). This interest in soils

to tackle climate change has also led to the development of economic incentives to store soil carbon (e.g. greenhouse gas

emission trading scheme, Keenor et al., 2021). For these reasons, there have been many studies that attempted to estimate SOC

stocks spatially for large areas and to understand how SOC stocks vary in space as a result of change in the environment (e.g.30

Van Wesemael et al., 2010; Rahman et al., 2018; Wang et al., 2022).

Spatial modelling of SOC stock over large areas can be done by statistical models that interpolate soil SOC data from profiles

using a set of environmental covariates of which maps are available, such as remote sensing imagery and terrain attributes. A

recent example study using this approach is Kempen et al. (2019) for mapping SOC stocks in Tanzania using a geostatistical

model with a spatially varying mean. Dynamic modelling has mainly been achieved using semi-mechanistic models such as35

DNDC, CENTURY or RothC, which were applied, for example, by Lugato et al. (2014) and Martin et al. (2021). Semi-

mechanistic models are attractive because they do more justice to the underlying soil processes involved in SOC storage and

enable the integration of existing knowledge into the modelling. They are also particularly suited when the objective is not

only predicting but also understanding of the factors driving SOC sequestration. There remain, however, several challenges for

the application of semi-mechanistic models over large areas (e.g. model parametrization, boundary conditions and forcings),40

which have been only partly solved in the literature. In recent years complex, statistical and algorithmic tools from the field of

machine learning became popular for mapping SOC stocks. Martin et al. (2011), for example, used boosted regression trees

for SOC mapping in mainland France, whereas Guo et al. (2021) used a complex neural network for mapping SOC stocks in

agricultural fields of Iowa in the United States. Complex machine learning models are popular because they usually are more

accurate than simple statistical model but obtaining insights into the functioning of these models and their structure is complex.45

Methods were developed in the statistical and machine learning literature to extract information from complex machine learning

models, methods which then were applied and became popular to interpret complex model of SOC stocks. Studies in soil

science usually report statistics that measure the relative importance of biotic and abiotic covariates used as predictor in the

model. In a study investigating the factor controlling SOC stocks in agricultural soils of Germany, Vos et al. (2019) calculated

the relative importance of a set of biotic and abiotic factors for SOC stocks modelling. Also, in a study over mainland France,50

Mulder et al. (2015) reported the covariate importance of a cubist model to understand the large-scale controlling factor of

SOC storage. Reviewing the literature, we found that studies on interpretation of complex models of SOC stocks report a

global variable importance metric, such as a mean decrease in accuracy obtained by permutation of the covariates, in nearly

all cases. While valid and useful, these metrics only report a global measure of variable importance. Variable importance is

only one aspect of model understanding, the nature of the relationship between the covariates and the response variables being55

another one. Further, in spatial modelling it is sensible to assume that the importance of environmental factors for SOC stocks

modelling varies spatially, and between areas.
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This work builds on the recent study of Wadoux and Molnar (2022), in which several methods to interpret complex models of

soil variation were reviewed and discussed. They stressed the importance to use global and local methods jointly to interpret

differentiable aspects of the model, and showed how methods can reveal the overall covariate importance, but also the functional60

form of the association between the soil property and the environmental covariates, and how the importance varies from one

location to another. It is worthwhile to include these developments for the interpretation of complex models of SOC stocks

variation. Interpretation of complex models to help us formulating hypotheses on the underlying soil processes has also recently

been highlighted as one of the challenges for pedometric research (Wadoux et al., 2021a, Challenge 3).

Amongst the various methods for the interpretation of complex models, the use of Shapley values was seen as a promising line65

of research in several recent studies (e.g. Padarian et al., 2020; Mohammadifar et al., 2021; Beucher et al., 2022). The study

of Padarian et al. (2020), for example, used SHapley Additive exPlanations (SHAP), a local method of for the estimation of

Shapley values, to interpret a convolutional neural network model for mapping soil organic carbon in Chile. In Beucher et al.

(2022), SHAP was also used to interpret two models: random forest and convolutional neural network, for mapping classes of

potential acid sulfate soils in a wetland area of Denmark. In each of these studies, it was found that Shapley values could reveal70

new insights and that they were particularly suited for use in a spatial context.

In this paper we show how Shapley values can help explain the relationship found by a complex machine learning model

between a soil property and environmental covariates for a large area. Shapley values were originally developed in coalitional

game theory as a means to distribute the gain to the different players according to their relative participation in a game. Recently,

Shapley values were introduced to the field of statistical learning to explain the prediction of complex models. In a case study75

in mainland France, we use Shapley values on a random forest model with a large number of tree, and describe how the values

are used for i) understanding the average importance of driver of SOC stocks, ii) obtaining insights into the spatial variation

of the variable importance, that is, how the importance varies locally, in space and by carbon-landscape areas, and iii) deriving

the functional form of the association between SOC stock and environmental factors.

2 Material and Methods80

2.1 Study area

Large-scale controlling factors of SOC stocks are investigated mainland France, excluding Corsica and other islands. Mainland

France is about 543,965 km2 and has a wide variety of landscapes, climates and soil types which are characteristics of con-

tinental Western Europe as a whole. Landscapes in France vary from coastal plains with low elevation in the south-west and

north to the mountainous areas of Massif Central in the south, of Vosges and Jura in the East, of Pyrenees in the south-west85

and of the Alps in the south-east with an altitude exceeding 4,000 m. Climate is influenced by both a West-East and North-

South gradient with local effects of altitude and relief: average annual temperature increases from North to South whereas

precipitation increases markedly with higher altitude while temperature declines. Climate in the South is Mediterranean, and

temperate oceanic in the North, and tends to be semi-continental further away from the Atlantic ocean. The varying climate
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types, landscapes and geological formations, have resulted in a heterogeneity in soil types with large areas covered by sandy90

soils (Podzols in the Landes and Sologne), fertile loess soils (Luvisols in the North), calcarous soils (Leptosols and Calcisols

in Champagne and Ardennes), and soils from the weathering of different parent materials (dystric Cambisols in Massif Cen-

tral and Brittany) (Laroche et al., 2014). These large differences in soil types are further influenced locally by vegetation and

landuse, which results in important differences in stored SOC across France (Jones et al., 2005).

2.2 Soil organic carbon and physical properties95

Soil organic carbon concentration and physical properties data are available within the framework of the soil monitoring

network program (RMQS). This network is based on a systematic random sampling design following a 16 km × 16 km square

grid. The sampling units are selected at the centre of the grid cells resulting in about 2206 soil sampling sites for mainland

France. In the case of soil being inaccessible at the centre of the cell (i.e. due urban area, road, river, etc.), an alternative

location with a natural (i.e. undisturbed or cultivated) soil is selected as close as possible, but within 1 km from the centre of100

the cell (for more information, see Arrouays et al., 2002). This soil monitoring program covers a broad spectrum of climatic,

soil and environmental conditions. At each site, 25 individual core samples were taken from the top and subsoil (broadly 0–30

and 30-50 cm) using a hand auger according to a unaligned design within a 20 m × 20 m area. Individual samples were mixed

to obtain a composite sample for each soil layer.

Bulked soil samples were air-dried and a subsample of 500 g (step 1) was sieved to 2 mm before analysis. From (step 1), a105

sub-sampling of a 30 g aliquot (step 2) is done using an automatic divisor. This subsample is finely grinded to 250 µm using

planetary mill and 50 mg of the resulting earth (step 3) is analyzed by dry combustion (step 4, ISO 10694:1995). In summary,

four steps are necessary to measure the SOC content. The Soil Analysis Laboratory of INRAE at Arras, which is the accredited

and recognized laboratory for soil and sludge analysis performed all analyses. SOC content was determined for a 0.5-10 g

subsample of each composite sample.110

The mass of fine earth for each observation site was determined for six samples of known volume that were extracted from a

soil pit adjacent to the site. The methods used varied according to the particle size distribution of the samples. The samples

were dried prior to analysis. The cylinder method was used for soils with little to no gravel. The cylinder used was 90 mm high

with a diameter of 84 mm, i.e. 500 cm3. When the use of the cylinder method was not possible, i.e. for gravelly or stony soils,

the water method was applied. The water method is adapted from the sand method. In this method, circular holes of between115

1000 and 3000 cm3 are dug into the soil. The exact volume of soil extracted is determined by lining the hole with a plastic bag

and measuring the volume of water required to fill the hole.

4

Text Inserted�
Text
"90"

Text Replaced�
Text
[Old]: "(Leptosol" 
[New]: "(Leptosols"

Text Deleted�
Text
"90"

Text Replaced�
Text
[Old]: "Brittany)." 
[New]: "Brittany)"

Annotation Inserted�
Annotation
 

Text Inserted�
Text
"(Laroche et al.,"

Annotation Inserted�
Annotation
 

Text Inserted�
Text
"2014)."

Text Replaced�
Text
[Old]: "France." 
[New]: "France"

Annotation Inserted�
Annotation
 

Text Inserted�
Text
"(Jones et al.,"

Annotation Inserted�
Annotation
 

Text Inserted�
Text
"2005). 95"

Text Deleted�
Text
"95"

Text Inserted�
Text
"100"

Text Deleted�
Text
"100"

Text Replaced�
Text
[Old]: "agricultural" 
[New]: "environmental"

Text Inserted�
Text
"105"

Text Replaced�
Text
[Old]: "¯m using 105" 
[New]: "µm using"

Text Inserted�
Text
"110"

Text Deleted�
Text
"110"

Text Inserted�
Text
"115"

Text Deleted�
Text
"115"



2.3 SOC conversion to stocks

In this study, SOC stocks were estimated for the 0–50 cm depth interval following the fixed-depth approach (Rovira et al.,

2022):120

SOC stock0−50 cm =

n∑
i=1

piBDiSOCi(1− rfi), (1)

where n is the number of depth intervals at which measurements of SOC were made within the 0–50 cm depth interval, BDi

(g cm−3), rfi (%) and SOCi (%) are the bulk density, percentage of rock fragments (relative to the mass of soil) and the SOC

concentration in the ith depth interval, respectively, and pi is the considered width of the horizon (in meters). The values of

SOC stocks obtained this way along with their spatial location are shown in t ha−1 in Fig. 1.125
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Figure 1. Location of the soil organic carbon stock data (in t ha−1) for mainland France.

2.4 Exhaustive explanatory variables

We use a set of 23 publicly available spatially continuous environmental covariates. The covariates provide information on

the main biotic and abiotic factors which are known to affect SOC stocks. The main sources of covariates was the database

from BioClim, SoilGrids and a SRTM elevation model with derivatives. We also used MODIS products from which the veg-

etation index NDVI map was calculated from the NIR and RED spectral bands and a high-resolution landcover map with 7130

classes obtained by Sentinel-2 images. Covariates were further grouped into six categories representing 1) average climate

condition, 2) climate seasonality, 3) extreme climate conditions, 4) topography and terrain derivatives, 5) soil properties and 6)

organisms/vegetation. The list of factors, covariates, along with their unit and reference is provided in Table 1.

5

Image Inserted�
Image
 

Text Replaced�
Text
[Old]: "SOC conversion to stocks" 
[New]: "SOCconversiontostocks"

Text Replaced�
Text
[Old]: "fixed-depth approach" 
[New]: "fixed-depthapproach(Roviraetal.,2022):120SOCstock0−50cm=nXi=1piBDiSOCi(1−rfi),(1)wherenisthenumberofdepthintervalsatwhichmeasurementsofSOCweremadewithinthe0–50cmdepthinterval,BDi(gcm−3),rfi(%)andSOCi(%)arethebulkdensity,percentageofrockfragments(relativetothemassofsoil)andtheSOCconcentrationintheithdepthinterval,respectively,andpiistheconsideredwidthofthehorizon(inmeters).ThevaluesofSOCstocksobtainedthiswayalongwiththeirspatiallocationareshownintha−1inFig.1.125300"



Font "NimbusRomNo9L-Regu" changed to "TimesNewRomanPSMT".

Annotation Deleted�
Annotation
 

Text Deleted�
Text
"(Rovira et al.,"

Annotation Deleted�
Annotation
 

Text Deleted�
Text
"2022): X n SOC stock 0−50 cm = p i BD i SOC i (1 − rf i ), (1) i=1"

Image Deleted�
Image
 

Text Deleted�
Text
"where n isthenumberofdepthintervalsatwhichmeasurementsofSOCweremadewithinthe0–50cmdepthinterval, BD i 120 (gcm −3 ), rf i (%)and SOC i (%)arethebulkdensity,percentageofrockfragments(relativetothemassofsoil)andtheSOC concentration in the ith depth interval, respectively,and p i istheconsidered widthof the horizon(in meters).The valuesof SOCstocksobtainedthiswayalongwiththeirspatiallocationareshownintha −1 inFig.1. 300"

Text Replaced�
Text
[Old]: "on125" 
[New]: "on"



Font "NimbusSanL-Regu" changed to "NimbusRomNo9L-Regu".

Text Replaced�
Text
[Old]: "7" 
[New]: "7130"



Font "NimbusRomNo9L-Regu" changed to "NimbusSanL-Regu".

Text Replaced�
Text
[Old]: "Sentinel-2images.Covariateswerefurthergroupedintosixcategoriesrepresenting1)averageclimatecondition,2)climateseasonality,3)extremeclimateconditions,4)topographyandterrainderivatives,5)soilpropertiesand6)130organisms/vegetation.Thelistoffactors,covariates,alongwiththeirunitandreferenceisprovidedinTable1.5" 
[New]: "Sentinel-2images.Covariateswerefurthergroupedintosixcategoriesrepresenting1)averageclimatecondition,2)climateseasonality,3)extremeclimateconditions,4)topographyandterrainderivatives,5)soilpropertiesand6)organisms/vegetation.Thelistoffactors,covariates,alongwiththeirunitandreferenceisprovidedinTable1.5"



Table 1. List of environmental covariates used as predictor in the random forest model with unit and associated reference when applicable.
Covariates are grouped into categories representing average climate conditions, climate seasonality, extreme climate conditions, topography,
soil and organisms/vegetation. Covariates have coordinate system Lambert 93 (EPSG:2154) and extent: 16877.61E - 1251060E; 6028362S -
7141392S.

Factor Covariate Acronym Unit Reference

Average climate conditions Annual mean temperature T_am °C Fick and Hijmans (2017)
Annual precipitation Prec_am mm Fick and Hijmans (2017)
Long term annual evapotranspiration ETP_Glob mm Zomer et al. (2008)
Annual mean solar radiation SolRad_m kJ m−2 day−1 Fick and Hijmans (2017)

Climate seasonality Temperature seasonality (Standard deviation * 100) T_seaso °C Fick and Hijmans (2017)
Precipitation seasonality Prec_seaso Coefficient of

Variation
Fick and Hijmans (2017)

Standard deviation of monthly solar radiation SolRad_sd kJ m−2 day−1 Fick and Hijmans (2017)

Extreme climate conditions Mean temperature of driest quarter T_mdq °C Fick and Hijmans (2017)
Mean temperature of warmest quarter T_mwarmq °C Fick and Hijmans (2017)
Precipitation of wettest month Prec_Wm mm Fick and Hijmans (2017)
Precipitation of driest month Prec_Dm mm Fick and Hijmans (2017)
Global Aridity Index AI_glob unitless Trabucco et al. (2008)

Topography Elevation Elev metre Rabus et al. (2003)
Slope Slope percent Yamazaki et al. (2017)
Module Multiresolution Index of Valley Bottom Flatness MRVBF unitless Yamazaki et al. (2017)
Topographic wetness index TWI unitless Yamazaki et al. (2017)

Soil Average soil and sedimentary-deposit thickness SoilSed_thickness metre Pelletier et al. (2016)
Soil water content for 33kPa suction (0-10 cm) SoilWat_33 volumetric % Hengl and Gupta (2019)
Soil water content for 1500kPa suction (0-10 cm) SoilWat_1500 volumetric % Hengl and Gupta (2019)
Sand content Sand percent Poggio et al. (2021)
Clay content Clay percent Poggio et al. (2021)

Organisms/vegetation Shannon (EVI Heterogeneity), diversity of EVI Sha_EVI unitless Tuanmu and Jetz (2015)
Primary Production Gap-Filled Yearly Terra_PP kg·C/m2 Running and Zhao (2019)
Long-term average NDVI NDVI unitless Lyapustin et al. (2018)
Landcover (7 classes) Landcover unitless Thierion et al. (2018)

The original covariate resolution spanned from grid cell sizes of 90 m × 90 m to 1 km × 1 km which we brought to a common

resolution with grid cells of 250 m × 250 m by either resampling with bilinear interpolation or aggregation. Covariates were135

then converted to the coordinate system Lambert 93 and brought to a common extent.

2.5 Modelling and mapping of SOC stocks

The SOC stocks data and their matching values of environmental covariates were used to build a regression matrix. The

modelling approach to establish the relationship between the SOC stocks and environmental covariates is based on random

forest.140

Random forest (RF, Breiman, 2001) is an ensemble machine learning algorithm based on decision trees. A single decision tree

is fitted by partitioning the covariate values of the calibration dataset. Partitions are evaluated based on a splitting metric and

the partition providing the optimal value of the metric is selected. This procedure is repeated until a user-defined value of node

size is reached. The prediction value of a single tree is taken as the average prediction of all nodes at the terminal leaf. In RF, an

additional procedure of bootstrap and aggregating is introduced, where a user-defined number of trees are built from bootstrap145

samples of the calibration data. In each tree, a random perturbation is further introduced where only a subset of the covariates
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are used for fitting the tree. The final prediction from a RF model is the average of all the decision trees. The theory of RF has

been extensively described in the literature and we refer the reader to standard textbooks for more details (e.g. Hastie et al.,

2009).

Modelling and mapping of SOC stocks with RF is made with an usual procedure in three steps: i) model parameter selection,150

ii) model fitting and validation, and iii) prediction. We optimized three parameters: the number of trees, the minimum number

of observations in the terminal node and the number of covariates drawn randomly from the covariate set at each split. In

the machine learning literature, these parameters are usually denoted ntree, node.size and mtry, respectively. We used the

model-based optimization procedure described in Probst et al. (2019) using the mean square error of the out-of-bag prediction

as objective function and 500 iterations. The optimal parameters were ntree = 500, node.size = 12 and mtry = 10. All other155

parameters where held to their default value.

The performance of the model with optimized parameters was evaluated using a standard random 10-fold cross-validation

strategy. The dataset was randomly split into 10 folds of approximately equal size, where nine folds were used to calibrate the

RF model and the remaining fold was left apart for validation. This procedure was repeated 10 times, each time setting aside

a single fold. The independent observed values and those predicted by the RF model are used to compute usual validation160

statistics. The predictions did not show systematic over- of under-prediction (mean error (ME) was close to 0), and had a root

mean square error of 36.4 t ha−1 and a modelling efficiency coefficient (MEC) of 0.31.

The final model for prediction is fitted using all available SOC stocks data and the optimized set of RF parameters. Predictions

are made for the whole of France at a resolution of 250 m using the spatially exhaustive set of covariates as predictor. This final

model along with prediction for the whole of France is used for interpretation with Shapley values.165

2.6 Interpretation with Shapley values

The RF model is interpreted with Shapley values (Shapley, 1953), which were described and used in soil science in Wadoux

and Molnar (2022). Shapley values were originally developed within coalitional game theory. Consider a game where each

covariate is a player and the prediction is the payout, Shapley values distribute the gain to the players (i.e. covariates) according

to their relative participation to the outcome. The gain is the prediction for a particular unit minus the average prediction and170

the players are the covariates that contribute to the prediction and “collaborate” to receive a gain.

In statistical terms, let a set of covariates of size p be defined by S, and S ⊆ {1, . . . ,p} \ {j} be a subset of covariates which

excludes covariate j. The Shapley value ϕ0,j for covariate j for a spatial location composed of the vector of covariates x0 is

given by:

ϕ0,j =
∑

S⊆{1,...,p}\{j}

|S|! (p− |S|−1) !

p!

(
f̂∗ (xi,S∪{j}

)
− f̂∗(xi,S)

)
, (2)175
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where |S| is the size of the subset which excludes the jth covariate, S ∪{j} is the subset S with the jth covariate added,

and f̂∗(xi,S) = EXC [f̂(xi,S ,XC)] is the prediction function where covariates not contained in S are marginalized (similar for

S ∪{j}). The calibrated RF model is defined by f̂ and X is the matrix containing the covariates from the calibration dataset,

and XC is a subset of covariates where C represents the set of covariates not included in S. Note that f̂∗ (xi,S∪{j}
)
− f̂∗ (xi,S)

can be interpreted as marginal contribution to the prediction when adding covariate j to the subset of covariates S. Equation 2180

has two components: the first is the marginal contribution for a subset of covariates, whereas the second is a weighted average,

giving equal weight to each of marginal contributions of all possible subsets of covariates. The contribution of a covariate to

the prediction of a single spatial location is then given by ϕ0,j .

Calculating the exact solution for Eq. 2 is computationally intractable because it requires estimating the sum of the marginal

contribution for 2p − 1 combination of covariates. To solve this, we use the approximation algorithm developed by Štrumbelj185

and Kononenko (2014) and based on Monte-Carlo sampling. In Štrumbelj and Kononenko (2014), the covariate effect is

approximated by integrating over the observations of the calibration dataset. We refer to Štrumbelj and Kononenko (2014) and

Molnar (2020, Chapter 9) for more detail on the approximation algorithm.

A Shapley value should be interpreted as the contribution of a covariate to the difference between the prediction and the average

prediction. One advantage of Shapley values is the set of mathematical axioms of which they are derived, which provide190

the basis for a rigorous interpretation of their meaning. Further, Shapley values are additive and symmetric: the individual

contribution of a covariate to a spatial location can be averaged over a region or a dataset. We give three example uses in the

next paragraph.

A Shapley value can be obtained for any single value of the calibration dataset and any prediction at unobserved location, in

the unit of the prediction (e.g. the soil property of interest). They are usually used to evaluate the individual contribution of a195

covariate to the prediction of a single location (i.e. to perform a local interpretation the model). Hereafter we describe three

uses of the Shapley values for both local and global interpretation.

– Average contribution: absolute Shapley values can be summed over the individual observations from calibration dataset

to obtain an overall variable contribution to the prediction. Note that while it is similar to the variable importance plot

obtained by permutation and often reported in soil modelling studies with machine learning, average contribution plot200

has a different interpretation because it is not based on decrease in model accuracy (unlike permutation plots).

– Partial dependence: a scatterplot of the average of Shapley values in the calibration dataset against the value of a single

covariate gives indication of the functional form of the association between the soil property and the covariate (i.e. the

partial dependence, Hastie et al., 2009). To ease visualization, the individual dots in the scatterplot are fitted with a

smooth curve.205

– Local and spatial evaluation: the local contribution of the covariate to the prediction is obtained by Shapley values and

can be used to generate a spatial pattern. This pattern can in turn be used to obtain the average contribution for areas,

such as bioclimatic regions or soilscapes, or for an individual pedon. This approach is computationally very intensive as
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it requires estimating Shapley values for all spatial locations (discretized into a finite number of grid cells) in the area of

interest.210

2.7 Practical implementation and computational aspects

The framework for mapping used in this study follows the usual procedure used in digital soil mapping studies, see for ex-

ample the summary in Hengl et al. (2017, Fig. 5). In short, SOC stocks data obtained at point locations are overlaid with

environmental covariates used as predictors to build a regression matrix. This regression matrix is then used to fit and vali-

date the random forest model using 10-fold cross-validation. The final model is fitted using all data and can then be used for215

spatial prediction using the covariates known exhaustively. Shapley values are estimated on the final fitted RF model using

the covariate values and the measured values of SOC stocks. We use the R programming language (R Core Team, 2022) for

the SOC stock calculation, covariate pre-processing, model parameter selection, model fitting and prediction, and estimation

of the Shapley values. The RF model was fitted using the ranger package (Wright and Ziegler, 2017) and parameter selected

with the tuneRanger function from the tuneRanger package (Probst et al., 2019). Estimation of Shapley values was made220

with the fastshap package (Greenwell, 2020). The procedure for estimating the Shapley values spatially at was parallelized

and combine with a subsampling approach to ease computation. A total of 12,495,098 grid cell locations were taken using

a systematic grid sample of 800,000 cells, for which the Shapley values were estimated. We used a number of Monte-Carlo

sampling as large as feasible, i.e. 500 in all cases. Calculations were done on a eight-core computer and took approximately 6

days.225

3 Results

3.1 Average contribution

Figure 2 shows the magnitude of the covariate contribution to the prediction of SOC stocks averaged over the calibration

dataset (average of absolute values in Fig. 2) or for each individual point of the calibration dataset (Fig. 2). Fig. 2b indicates

that Elevation is on average the most important covariate contributing to the prediction of the SOC stocks. NDVI, mean230

temperature of warmest quarter and annual mean temperature also have a relatively important contribution to the prediction

with an average absolute value of nearly 4 and 3 t ha−1. Fig. 2b further shows that the four most important covariates have

a wide range of Shapley values. Elevation, for example, has values between -10 to 55 t ha−1. The colour scale in Fig. 2b

also shows that large positive values of Shapley for the covariate elevation are obtained for high elevation, whereas negative

contribution of this covariate to the prediction are obtained for low value of elevation. Other covariates have a similar pattern.235

For example, while the covariate soil and sedimentary-deposit thickness (SoilSed_thickness) has a small contribution to the

prediction (i.e. the average value in Fig. 2a is 0.7 t ha−1), large values of soil and sedimentary-deposit thickness have a strong

positive contribution of the prediction of the SOC stocks.
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Figure 2. Magnitude of the covariate contribution to the prediction of SOC stocks in France. Plot a) shows the absolute values of Shapley
averaged over the calibration dataset whereas plot b) shows the Shapley values for each individual points in the calibration dataset, i.e. the
contribution of the covariate to the prediction of the SOC stock at that location. The colour scale represents the covariate value normalized
in the range (0,1). Note that plot a) is the average of the absolute values presented in plot b).

3.2 Partial dependence

Figure 3 shows the relative covariate contribution to the individual SOC stock observations of the calibration dataset as a240

function of covariate values. The four most important covariates of Fig. 2 contributing to the predictions have a well-defined

pattern. The covariate contribution to the SOC stocks prediction tend to increase with elevation and temperature for values up to

1800 m and 5°C, respectively, but sharply decreases for higher annual mean temperature or levels off for higher elevation. For

high annual mean temperature (i.e. above 10°C), the Shapley values are negative, which means that the covariate contributes

negatively to the SOC stocks prediction of these observations. Covariate mean temperature of warmest quarter has a very245

similar pattern as covariate mean annual temperature. Covariate NDVI contributes negatively to the SOC stocks prediction for

NDVI values up to 0.6, after which Shapley values are positive. Large values of NDVI have a strong positive contribution (i.e.

above 10 t ha−1) to the prediction of SOC stocks. Shapley values of landcover are nearly always positive for 6 out of the 7

classes, but nearly always negative for the annual crops class.
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Figure 3. Relative covariate contribution to the SOC stocks prediction of the calibration dataset. The x-axis shows the covariate values and
the y-axis the Shapley value of the calibration dataset for this covariate. The blue line is a smoothed curve fitted on the Shapley values for
visualization purposes.
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3.3 Spatial evaluation250

The spatial pattern of Shapley values for the three most important covariates (Fig. 2) is presented in Fig. 4. Note that we present

the maps for three covariates, but that maps for all covariates are presented in the Supplementary Materials (Figures S1-S3).

The three maps presented in Fig. 4 have a smooth and detailed pattern with significant spatial variation. Both elevation and

mean annual temperature have a similar pattern of positive contribution in areas of high elevation (e.g. in the Massif Central,

the Pyrenees, and in the Alps mountains), whereas they have negative values in most of South-western France. Elevation seems255

also to follow the pattern of two main rivers in the Northern part of France, with a noticeable negative contribution of elevation

in the stream bed. The map of Shapley values estimated for NDVI shows a different spatial pattern with detailed variation. In

the South Mediterranean coast, NDVI has a negative contribution to the SOC stocks prediction. An opposite pattern is found

in the Northern Atlantic coast and in Brittany, where NDVI contributes positively to the SOC stocks prediction.

Figure 4. Spatial pattern of the Shapley values over mainland France for the three most important covariates. Dark colour indicate a negative
contribution of the covariate to the SOC stocks prediction whereas a bright colour indicate a positive contribution.

Figure 5 is a map of the most important covariates contributing to the SOC stock prediction along with a map showing of260

the proportion of this covariate contribution to the total. To ease visualization only the five most important covariates are

represented. Climate covariates are the most important predictors for nearly all mountainous areas, either T_am in the Massif

Central and in the Vosges, or T_mwarmq in the Alps and Pyrenees. Vegetation covariates Terra_PP and NDVI_mean are the

most important in a large area in the northern part of France and in the extreme East (Terra_PP), whereas NDVI_mean is the

most important locally in larges patches in Brittany and locally around the Massif Central. Elevation is the most important265

covariate in the South of Landes (South-West) and in small areas in Champagnes (East of Paris). Fig. 5 also shows that the
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most important covariates contribute between 20% and 85% of the total SOC stock prediction, but with considerable variation

between regions. There is a East-West gradient of decreasing proportion with some local large proportions (e.g. small patches

in the Atlantic coast). Large values of proportion are found for all covariates in the Pyrenees, in the Alps, and also for small

areas in the Massif Central. Small values are found for most of the Eastern part of France, with values lower than 0.4, which270

means that in these areas the most important covariate shown in the left-hand side of the Figure is the most important but

contributes in small proportion to the total SOC stock prediction in these areas.

Figure 5. Map of the location-specific most important covariate contributing to the SOC stock prediction (left) for five covariates (out of 24),
and proportion of this location-specific covariate to the total SOC stock prediction (right).

Figure 6 shows two maps: a map of the most important group of covariates contributing to the SOC stock prediction along with

a map showing the proportion of this group of covariate relative to the total SOC stock contribution of all groups. The group

of covariates related to vegetation is the most important in most parts of France and also show a high proportion relative to the275

total (i.e. higher than 0.45). The group topography is the most important in nearly all mountainous areas such as in the Alps,

Pyrenees and Massif Central and have also a relatively high proportion of contribution to the total SOC stock prediction. The

three groups of covariates related to climate seem not the most important over large areas but only locally. For example, mean

climate condition covariates are important in South-West of France, whereas the group of extreme climate condition covariates

is the most important in Eastern part of Brittany. Soil group covariates is the most important in a small area in the north of280

Landes where it also contributes to the SOC stock prediction with a proportion up to 0.5.
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Figure 6. Map of location-specific most important group of covariates contributing to the SOC stock prediction (left), and proportion of this
group to the total SOC stock prediction (right).

Using the carbon-landscape zones from Chen et al. (2019) we calculated and reported in Fig. 7 the average absolute value of

Shapley for each group of covariates and for each of the 10 carbon-landscape zones (CLZ). Fig. 7 shows that overall some

groups of variables are more important than others. For example, vegetation and topography covariates are for nearly all CLZ

more important (i.e. with larger absolute values of Shapley) than other groups such as climate seasonality and soil. Mountainous285

areas which have higher SOC stocks also have high Shapley values for mean and extreme climate conditions but the highest

values are found for topography. Vegetation is relatively important in nearly all CLZ and is the most important for the CLZ

corresponding to the areas in a large part of South France.
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Figure 7. Maps of the most important group contributing to the SOC stocks prediction for the 10 carbon-landscape zones of mainland France.
Values are absolute Shapley values averaged spatially by carbon-landscape zone.

3.4 Local evaluation

Figure 8 shows the contribution (i.e. the Shapley values) of the covariates to the SOC stock prediction at two spatial locations290

in a) a forested area in the Landes (South-West France) and in b) an agricultural area of Champagne (North-East France). The

two locations have predicted SOC stock of 98 t ha−1 and 92 t ha−1, respectively. There is large difference in the estimates

of Shapley values between the two locations. For Landes, the covariate soil and sedimentary thickness is the main positive

contributor (8.3 t ha−1) to the SOC stock prediction, followed by NDVI, Terra_PP and sand. The main two negative contributors

are Elev and T_mwarmq. A very different pattern is observed for the Shapley values in Champagnes where T_am is the main295

positive contributor whereas the landcover class annual crops is the main negative contributor with a value of (-4.9 t ha−1).

The variables NDVI_mean and Terra_PP are also major negative contributors.
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Figure 8. Contribution of the covariates to the SOC stock prediction at two spatial locations in a) a forested area in the Landes (South-West
France) and in b) a agricultural area of Champagne (North-East France). Both locations have close range of predicted values of SOC stocks
around 95 t ha−1. The blue colour indicates a positive contribution of the covariate to the SOC stock prediction whereas a red colour indicates
a negative contribution. The y-axis shows the covariate value for the prediction at the location. Satellite images from © Google Maps [2022,
CNES/Airbus, Maxar Technologies] Available through: https://www.google.com/maps/ [Accessed 2 July 2022].

4 Discussion

4.1 Modelling and mapping of SOC stocks

The validation statistics obtained by the RF model was in good agreement with previously published studies, although it is300

generally difficult to draw conclusion on the quality of the fitted RF model compared to other studies mapping SOC concen-

tration or density. The MEC obtained in our study is within the upper range of the R2 values for large area mapping of SOC

reported in Minasny et al. (2013). When mapping SOC stocks over large area, difference in model performance can arise from

whether the bulk density is measured or estimated, and from the covariate set used to fit the model. Other causes of difference

are the modelling procedure and the validation strategy (e.g. (spatial) cross-validation, independent validation with probability305

sampling) which can all have a substantial impact on the resulting map quality. Our fitted RF model had no bias and a MEC

of 0.31. This is similar to previous studies on mapping SOC stock for large areas. For example, Martin et al. (2014) fitted a

boosted regression tree model on a similar set of the RMQS sampling sites in France and obtained a R2 of 0.36 and negligible

bias, whereas Mishra et al. (2009) obtained a ME and R2 of -0.1 and 0.46, respectively, for mapping SOC stocks in the state

of Indiana (USA). Also, Lacoste et al. (2014) reported a R2 of 0.43 for modelling SOC stocks in the O horizon of the French310
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forest soils. The spatial pattern of the SOC stocks map for the 0-50 cm depth intervals (not shown) obtained by prediction

with the RF model also agreed with past studies. Studies by Martin et al. (2011) and later Martin et al. (2014) reported similar

patterns of SOC stocks in France for the 0-30 cm depth interval. The later study of Martin et al. (2014) performed a rigorous

validation assessment of several modelling approaches to SOC stocks in France, and from which we found no systematic dif-

ference with the maps made in this study with the error maps made in Martin et al. (2011) or Meersmans et al. (2012). Overall,315

the validation statistics and spatial pattern of prediction by the RF model suggest that the RF fitted in this study is sufficiently

accurate to serve as basis for the interpretation with Shapley values.

4.2 What did Shapley values reveal about the drivers of SOC stocks in mainland France?

The Shapley values revealed that the covariates contribution to the SOC stocks prediction varied greatly among spatial loca-

tions and between CLZ. The results suggest relationships between environmental covariates and SOC stocks which have been320

abundantly documented in the literature and other relationships that may highlight the limitations of empirical modelling for

the SOC stocks prediction. Hereafter we describe how group of covariates relates to potential acting processes of soil carbon

storage and how the Shapley values revealed potential limitations of the empirical modelling of SOC stocks.

4.2.1 Climate

The effect of climate on SOC stocks, here through the temperature and precipitations variables (i.e. T_am and P_am), is325

usually linked to a number of soil carbon decomposition processes as well as plant growth. In our case, covariates related to

temperature (i.e. T_am, T_mwarmq and T_mdq) were the most important average contributors to the SOC stock prediction, but

the pattern reported in Fig. 2 and 3 show that the relationship with SOC is complex (i.e. non-monotonic, non-linear and with

strong discontinuities). In fact, temperature is one of the most important climate drivers affecting SOC mineralization, while

at the same time also affecting the net primary productivity (Martin et al., 2011). Here, after a certain threshold (i.e. 6°C),330

the relationship between SOC and temperature is decreasing, likely because of the combined effects of negative impact of

extreme temperatures on plant productivity and of its positive effect on SOC mineralization. The impact of temperature is also

exemplified in the CLZ related to high SOC stocks in mountainous areas (Fig. 7), the group of climate covariates has the most

important contribution, which may be caused by the low mineralization processes due to cold temperature. Fig. 9 illustrates

the combined effect of mean temperature and NDVI on SOC stocks. Optimum conditions in term of SOC stocks correspond335

to high NDVI mean levels (around 0.75) and moderate temperature (hence mineralization) close to 7.5°C on average. Similar

optimal conditions are found for lower NDVI levels, but where low temperature enable slow turn-over of SOM.
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Figure 9. Two-dimensional visualization of NDVI_mean and T_am contributions to the SOC stocks prediction. Black dots indicate a point
in the calibration dataset. The colour represent the Shapley values. The surface was obtained by linear interpolation of the Shapley values
obtained from the calibration dataset.

This relationship is also modulated locally by the extreme climate condition which act as a limiting factor to carbon storage

(Reichstein et al., 2013). Indeed, Fig. 8 shows that T_mwarmq importance is overall greater than the importance of T_am and

Fig. 3 that variations of SOC stocks induced by T_mwarmq are greater than variations of T_am. The shape of the relationship340

between T_mwarmq and SOC stocks is close to that of T_am and SOC. This might be because, overall, similar (and possibly

opposing) processes relating temperature to both plant productivity and SOM mineralization come into play. Also, for T_mdq

above 19°C, SOC stocks remain constant. To our knowledge there is no best explanation, but there is a probable correlations

with other variables, such as land use, or other climate variables including precipitation. Typically in areas with a very hot

summer, drought possibly also limits SOM mineralization, avoiding temperature increases to further facilitate SOC stocks345

depletion.

4.2.2 Topography

Topographic covariates control many of the redistribution processes influencing SOC stocks. In our study case, elevation was

on average the most important covariate for explaining the SOC stocks variation, with a trend (Fig. 2 and 3) of increasing

Shapley values for higher elevation (i.e. elevation contributes positively to the SOC stocks prediction). In fact, the higher SOC350

stocks in France are found in the mountainous areas of the Pyrenees, Massif Central and Alps. This is an expected finding

already reported in the literature for various ecosystems (e.g. by Lemenih and Itanna, 2004) and which is usually attributed to

the combined effect of temperature, precipitation (Saby et al., 2008). In our study, the Shapley values revealed that the effect

of elevation is merely related to its relationship with temperature, see, for example, the inverse relationship between these

two variables in Fig. 3. The covariate slope had overall a positive effect on SOC stock prediction (Fig. 2) but the maps of355

Slope in the Supplementary Materials (Fig. S3) shows that this occurs both in mountainous areas (e.g. the Alps) and in river
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stream beds (e.g. the Seine river stream). The effect of slope on SOC stocks is logical in this study case and has already been

reported elsewhere (e.g. Stevens et al., 2014). However, in Stevens et al. (2014) the relationship between slope and SOC stocks

is negative. This suggests that in our case the positive effect of slope might be due to the location of steep slopes, i.e. mostly

in mountainous areas. Higher SOC stocks with steeper slope might also result from the combined effect of orientation, and360

resulting effects on moisture and temperature.

4.2.3 Soil

Soil clay has a well-known effect on SOC stock through physical interaction and protection of organic matter from decom-

position (Stewart et al., 2008). We found that prediction of SOC stocks was monotonically increasing with higher values of

clay, which is consistent with previous study on the same area (e.g. Martin et al., 2011). The soil water regime had a relatively365

moderate contribution to the SOC stocks, but this was very contrasted locally for the covariate Soilwat_33. For example, large

agricultural and semi-mountainous areas from the center to North-West of France had a positive value of Shapley for this co-

variate (see also the Supplementary Materials, Fig. S1-S3). For these areas there might be a contribution of processes relying on

soil moisture for SOC storage, such as soil carbon mineralization by microbes (Orchard and Cook, 1983). From the available

results, however, this is disputable to draw conclusions on this process. We also found that soil covariate SoilSed_thickness,370

which represent the soil thickness to the unweathered bedrock, was not an important contributor on average, but that for the

deep sandy soils of Landes, this variable was a very important predictor of the SOC stocks. In this regard, the sand covariate

was an important factor contributing to SOC stocks prediction in the Landes, because in these areas the SOC stocks are mainly

characterized by acidic sandy soils that that were undisturbed for a long time by agriculture. The high SOC stocks in these

areas, however, are not due to the sandy soils but due to the combined effect of landuse and carbon input (see below). It is375

likely that the empirical model of SOC stocks is predicting high values in these areas for the wrong reasons.

4.2.4 Organisms/vegetation

Both NDVI_mean and Terra_PP were important covariates for predicting the SOC stocks on average (Fig. 2) but also locally

in many parts of France (Fig. 5 and 6). SOC stocks are mediated by a balance of net C input and net loss and vegetation acts

on SOC stocks through C inputs. This is shown in Fig. 4 where the map of Shapley values for NDVI_mean has high values380

in large forested areas. Landuse has also an important effect on SOC stocks over time. In Fig. 3 it was shown that 6 out of 7

categories have a positive contributions to the SOC stocks prediction, but that for Annual crops the contribution was nearly

always negative. This is a realistic result that has been reported abundantly in the literature as arable land cropping systems are

characterized by a large human appropriation of the net primary productivity (Plutzar et al., 2016). In the Mediterranean CLZ,

conversely, NDVI and Terra_PP covariates were not important. In Mediterranean areas carbon storage is mitigated by landuse385

and mediated by water availability. We also note the stepped pattern of the NDVI_mean covariates on the SOC stocks prediction

shown in Fig. 3. This suggest that NDVI compensate for a missing carbon input covariate or an insufficient number of landuse

classes. In our case the Shapley values reveal that the covariates are not sufficiently precise or that potential covariates are

missing to predict the SOC stocks. For example, a mitigation occurs by landuse between NDVI and the carbon input.
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Finally, the Shapley values presented for two spatial locations in Fig. 8 reveal well-known relationship of SOC stocks with its390

environment. In Landes the SOC stock is relatively high because despite of sandy acid soils that do not store well the carbon,

the system is stable over time with no cultivation and a landuse made of pine forest. The Landes are also characterized with

Podzols with accumulation horizons which are likely to contain more SOC in the subsoil. This is reflected in the Shapley

values: the soil thickness and sand content are important predictors of the SOC stocks, as well as vegetation. This is counter-

intuitive and this suggest that the model did not capture well the landuse information, or that we did not have sufficient landuse395

classes to discriminate historical landuse. The spatial location in Champagnes, conversely, is within an area with relatively high

clay content (high physical protection) and low temperature reduces carbon mineralization in cold winters. It is therefore no

surprise that the two most important variables contributing to the SOC stocks in this location is temperature and clay content,

but that this was strongly mitigated by the landuse class.

4.3 Comparison with previous studies400

We found no notable difference in results with previous studies investigating the controlling factors of SOC (Arrouays et al.,

2001) and SOC stocks variation in France (e.g. Martin et al., 2011; Mulder et al., 2015). In these studies too, they concluded

that landuse or vegetation, soil physical and chemical properties and climate had the most important effect of SOC levels. In

our case, we had a different set of explanatory variables and we investigated the controlling factors for a single depth interval

(i.e. 0-50 cm). In spite of these differences we also found the climate and vegetation were major factors contributing to the SOC405

stocks prediction. The reported effect of clay, soil water regime is the same as reported in Martin et al. (2011) but they also

reported that rainfall was consistently the most important predictor, whereas in our case temperature was the most important.

The effect of these two variables on SOC storage are dependent of many factors (e.g. chemical protection, freezing, plant

productivity) which may be accounted for by a different set of covariates. Both precipitation and temperature as important

predictors are plausible outcomes of the modelling, but more thorough analysis is need to investigate this. In Mulder et al.410

(2015), it was found that evapotranspiration, net primary productivity and clay content were important predictors, for both

topsoil and subsoils. They too found that the influence of environmental factors varied greatly among soil-landscape zones.

4.4 Limitations of Shapley values and the interpretation of complex models

The results appear realistic, both in relation to the existing known soil carbon storage processes and with regards to previous

studies in the same area. One however must take care with interpreting Shapley values as potential causal mechanisms de-415

scribing the spatial pattern of SOC stocks. Despite that we selected a set of covariates that intended to represent underlying

mechanisms involved in SOC storage, first, these are only proxy variables and do not necessarily relate to processes involved in

SOC stocks variation. Several studies have argued in this sense (e.g. Wadoux et al., 2020). In this work we limited our analysis

of the Shapley values to the connection of the relationship found between environmental covariates and SOC stocks to possible

processes involved in soil carbon decomposition and storage, but we did not proceed any further in assuming that we inferred420

causal conclusion from these values. Doing so would require additional experiments and a more thorough analysis. Another

aspect to be considered when interpreting Shapley from the derived relationships between covariates and the response variable
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is the accuracy of the covariates. This is particularly important when using the covariates rankings provided by Shapley values.

We also stress that the present-day SOC stocks are the resultant of the integrated effect of processes over time, which for

SOC can be decades to centuries. The covariates that we used only reflect the current situation and do not represent well past425

processes (e.g. climate or landuse). This may also affect the model accuracy and limit the interpretation of the relationships

reported in this study.

An interesting and novel aspect of the use of Shapley values is the possibility to understand whether the complex model is

predicting for the right reasons. Empirical models used in soil mapping studies include little or no pedological knowledge on

the property of interest. Instead the mode search for correlation among the data and predict using empirical rules. Often these430

models are more accurate that simple models (i.e. linear regression), but it is unclear whether they are able to predict because

of spurious associations between data or through a correlation that has an underlying causal structure (Wadoux et al., 2021b,

Section 5.2). In our study, the Shapley values revealed that in the Landes, for example, SOC stocks were accurately predicted,

but that the model used the correlation with the sand to predict this high values, instead of the expected historical landuse and

carbon input information. An obvious solution to this problem is to obtain better covariates and more covariates on carbon435

input and historical landuse, which should allow the model to discern better the controlling factor of SOC storage.

Although we used Shapley values to obtain the pattern of controlling factors in a large area, Shapley values require of lot

of computing time. In our case computing took approximately 6 days of parallel processing in a standard 8-cores desktop

computer, but processing time is largely determined by the number of Monte-Carlo sampling. We used 500 Monte-Carlo

simulations, which we considered sufficient. This was tested by a scatterplot of the Shapley values estimated by a number of440

Monte-Carlo sampling, against another set of Shapley value estimated by the same number of Monte-Carlo sampling. The

results (not shown) suggested that any number greater than 100 would provide a sufficiently accurate estimate of the values.

Excessive computing time, however, might usually preclude the use of Shapley values for continental and global studies. To

date two approaches exists for approximating Shapley values: the one described in Štrumbelj and Kononenko (2014) that we

used in this study, and the one described in (Lundberg and Lee, 2017) called SHAP (see also studies in soil science using445

SHAP Padarian et al., 2020; Beucher et al., 2022). The SHAP approach might be valuable too although we did not consider

it in our case. SHAP can be viewed as a local approximation of Shapley values and might provide a computationally efficient

(near) exact approximations of Shapley values for specific families of models such as gradient boosted decision trees. To the

best of our knowledge we are not aware of studies describing the differences between the two approaches, and whether this has

an impact on the estimated values. This may be investigated further in future works.450

5 Conclusions

We introduced and implemented the Shapley values for interpreting a machine learning model. Using the soil organic carbon

stocks for the 0-50 cm depth intervals and a large set of environmental covariates as predictors, Shapley values revealed insights
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into the global and local factors contributing to the SOC stocks variation, and how the model adjusted the prediction locally.

The main conclusions are:455

– Shapley values revealed the global contribution of environmental factors to the SOC stocks prediction, but also enable

to obtain the functional form of this association and a spatial pattern of the covariate contribution to the prediction.

– Covariates contribution for SOC stock prediction varied greatly among spatial location and between carbon-landscape

zones.

– The results of the interpretation were valid in light on existing and well-described soil processes acting in soil carbon460

decomposition in the area.

– In a test of predicting SOC stocks to two spatial locations with similar stock values but very different environments, we

obtained Shapley values that show individual covariate contribution to the prediction.

– In our case study, the comparison with existing works investigating the controlling factors of SOC stocks variation

showed that Shapley values found similar relationships between SOC stocks and environmental factors.465

– We need to further test the use of Shapley values on covariates that are more precise (for example, measured at site)

and more directly linked to factors conditioning SOC stocks variation, for example by using covariates linked to carbon

inputs instead of NDVI.

The results and comparison with existing studies suggest that Shapley values were a useful tool to give insight about the

controlling factors of SOC stocks variation, both globally and locally for specific spatial locations. We conclude the Shapley470

values is a promising tool to interpret complex models, and that its main added value is to enable a local interpretation of the

environment factors contributing to a prediction.
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Abstract. Insights into the controlling factors of soil organic carbon (SOC) stocks variation is necessary both for our scientific


understanding of the terrestrial carbon balance and to support policies that intend to promote carbon storage in soils to mitigate


climate change. In recent years, complex statistical and algorithmic tools from the field of machine learning became popular


for modelling and mapping SOC stocks over large areas. In this paper, we report on the development of a statistical method for


interpreting complex models, which we implemented for the study of SOC stocks variation. We fitted a random forest machine5


learning model with 2206 measurements of SOC stocks for the 0-50 cm depth interval from mainland France and using a set


of environmental covariates as explanatory variables. We introduce Shapley values, a method from coalitional game theory,


and use them to understand how environmental factors influence SOC stocks prediction: what is the functional form of the


association in the model between SOC stocks and environmental covariates, and how the covariate importance varies locally


from one location to another and between carbon-landscape zones. Results were validated both in light of the existing and10


well-described soil processes mediating soil carbon storage and with regards to previous studies in the same area. We found


that vegetation and topography were overall the most important drivers of SOC stock variation in mainland France but that


the set of most important covariates varied greatly among locations and carbon-landscape zones. In two spatial locations with


equivalent SOC stocks, there was nearly an opposite pattern in the individual covariates contribution that yielded the prediction:


in one case climate variables contributed positively whereas in the second case climate variables contributed negatively, and15


that this effect was mitigated by landuse. This shows that SOC stock variation is complex and should be interpreted at multiple


levels. We demonstrate that Shapley values are a methodological development that yielded useful insights into the importance


of factors controlling SOC stocks variation in space. This may provide valuable information to understand whether complex


empirical models are predicting a property of interest for the right reasons and to formulate hypotheses on the mechanisms


driving the carbon sequestration potential of a soil.20


1 Introduction


Understanding how soil organic carbon (SOC) stocks and storage behave with ecosystem change has attracted much attention,


not only for scientific purposes but also for policy making and to encourage economic incentives for carbon sequestration.


Soils are a major component of the global carbon balance, storing about two third of the terrestrial carbon pool (Batjes, 1996).
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SOC stocks are related to a number of functions provided by soils (e.g. nutrient cycling, habitat for biodiversity) which are25


determinant of the overall soil functioning. There has also been a growing interest by policy makers on the role that soil could


play for carbon sequestration and climate change mitigation. For example, SOC stocks are one of the three Land Degradation


Neutrality indicator developed by the United Nations Convention to Combat Desertification (UNCCD). This interest in soils to


tackle climate change has also led to the development of economic incentives to store soil carbon (e.g. greenhouse gas emission


trading scheme, Keenor et al., 2021). For these reasons, there has been many studies that attempted to estimate SOC stocks30


spatially for large areas and to understand how SOC stocks vary in space as a result of change in the environment.


Spatial modelling of SOC stock over large areas can be done by statistical models that interpolate soil SOC data from profiles


using a set of environmental covariates of which maps are available, such as remote sensing imagery and terrain attributes. A


recent example study using this approach is Kempen et al. (2019) for mapping SOC stocks in Tanzania using a geostatistical


model with a spatially varying mean. Dynamic modelling has mainly be achieved using semi-mechanistic models such as35


DNDC, CENTURY or RothC, which were applied, for example, by Lugato et al. (2014) and Martin et al. (2021). Semi-


mechanistic models are attractive because they do more justice to the underlying soil processes involved in SOC storage and


enable the integration of existing knowledge into the modelling. They are also particularly suited when the objective is not only


predicting but also understanding of the factors driving SOC sequestration. There remains, however, several challenges for the


application of semi-mechanistic models over large areas (e.g. model parametrization, boundary conditions and forcings), which40


have been only partly solved in the literature. In recent years complex, statistical and algorithmic tools from the field of machine


learning became popular for mapping SOC stocks. Martin et al. (2011), for example, used boosted regression for SOC mapping


in mainland France, whereas Guo et al. (2021) used a complex neural network for mapping SOC stocks in agricultural fields of


Iowa in the United States. Complex machine learning models are popular because they usually are more accurate than simple


statistical model but obtaining insights into the functioning of these models and their structure is complex.45


Methods were developed in the statistical and machine learning literature to extract information from complex machine learning


models, methods which then were applied and became popular to interpret complex model of SOC stocks. Studies in soil


science usually report statistics that measure the relative importance of biotic and abiotic covariates used as predictor in the


model. In a study investigating the factor controlling SOC stocks in agricultural soils of Germany, Vos et al. (2019) calculated


the relative importance of a set of biotic and abiotic factors for SOC stocks modelling. Also, in a study over mainland France,50


Mulder et al. (2015) reported the covariate importance of a cubist model to understand the large-scale controlling factor of


SOC storage. Reviewing the literature, we found that studies on interpretation of complex models of SOC stocks report a


global variable importance metric, such as a mean decrease in accuracy obtained by permutation of the covariates, in nearly


all cases. While valid and useful, these metrics only report a global measure of variable importance. Variable importance is


only one aspect of model understanding, the nature of the relationship between the covariates and the response variables being55


another one. Further, in spatial modelling it is sensible to assume that the importance of environmental factors for SOC stocks


modelling vary spatially, and between areas.
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This work builds on the recent study of Wadoux and Molnar (2022), in which several methods to interpret complex models of


soil variation were reviewed and discussed. They stressed the importance to use global and local methods jointly to interpret


differentiable aspects of the model, and showed how methods can reveal the overall covariate importance, but also the functional60


form of the association between the soil property and the environmental covariates, and how the importance varies from one


location to another. It is worthwhile to include these developments for the interpretation of complex models of SOC stocks


variation. Interpretation of complex models to help us formulating hypotheses on the underlying soil processes has also recently


been highlighted as one of the challenges for pedometric research (Wadoux et al., 2021a, Challenge 3).


Amongst the various methods for the interpretation of complex models, the use of Shapley values was seen as a promising65


line of research in several recent studies (e.g. Padarian et al., 2020; Mohammadifar et al., 2021; Beucher et al., 2022). The


study of Padarian et al. (2020), for example, used SHAP, a local method of for the estimation of Shapley values, to interpret a


convolutional neural network model for mapping soil organic carbon in Chile. In Beucher et al. (2022), SHAP was also used


to interpret two models: random forest and convolutional neural network, for mapping classes of potential acid sulfate soils in


a wetland area of Denmark. In each of these studies, it was found that Shapley values could reveal new insights and that they70


were particularly suited for use in a spatial context.


In this paper we show how Shapley values can help explain the relationship found by a complex machine learning model


between a soil property and environmental covariates for a large area. In a case study in mainland France, we use Shapley


values on a random forest model with a large number of tree, and describe how the values are used for i) understanding the


average importance of driver of SOC stocks, ii) obtaining insights into the spatial variation of the variable importance, that75


is, how the importance varies locally, in space and by carbon-landscape areas, and iii) deriving the functional form of the


association between SOC stock and environmental factors.


2 Material and Methods


2.1 Study area


Large-scale controlling factors of carbon stocks are investigated mainland France, excluding Corsica and other islands. Main-80


land France is about 543,965 km2 and has a wide variety of landscapes, climates and soil types which are characteristics of


continental Western Europe as a whole. Landscapes in France vary from coastal plains with low elevation in the south-west


and north to the mountainous areas of Massif Central in the south, of Vosges and Jura in the East, of Pyrenees in the south-west


and of the Alps in the south-east with an altitude exceeding 4,000 m. Climate is influenced by both a West-East and North-


South gradient with local effects of altitude and relief: average annual temperature increases from North to South whereas85


precipitation increases markedly with higher altitude while temperature declines. Climate in the South is Mediterranean, and


temperate oceanic in the North, and tends to be semi-continental further away from the Atlantic ocean. The varying climate


types, landscapes and geological formations, have resulted in a heterogeneity in soil types with large areas covered by sandy


soils (Podzols in the Landes and Sologne), fertile loess soils (Luvisols in the North), calcarous soils (Leptosol and Calcisols in
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Champagne and Ardennes), and soils from the weathering of different parent materials (dystric Cambisols in Massif Central90


and Brittany). These large differences in soil types are further influenced locally by vegetation and landuse, which results in


important differences in stored SOC across France.


2.2 Soil organic carbon and physical properties


Soil organic carbon concentration and physical properties data are available within the framework of the soil monitoring


network program (RMQS). This network is based on a systematic random sampling design following a 16 km × 16 km square95


grid. The sampling units are selected at the centre of the grid cells resulting in about 2206 soil sampling sites for mainland


France. In the case of soil being inaccessible at the centre of the cell (i.e. due urban area, road, river, etc.), an alternative


location with a natural (i.e. undisturbed or cultivated) soil is selected as close as possible, but within 1 km from the centre of


the cell (for more information, see Arrouays et al., 2002). This soil monitoring program covers a broad spectrum of climatic,


soil and agricultural conditions. At each site, 25 individual core samples were taken from the top and subsoil (broadly 0–30100


and 30-50 cm) using a hand auger according to a unaligned design within a 20 m × 20 m area. Individual samples were mixed


to obtain a composite sample for each soil layer.


Bulked soil samples were air-dried and a subsample of 500 g (step 1) was sieved to 2 mm before analysis. From (step 1), a


sub-sampling of a 30 g aliquot (step 2) is done using an automatic divisor. This subsample is finely grinded to 250 ¯m using


planetary mill and 50 mg of the resulting earth (step 3) is analyzed by dry combustion (step 4, ISO 10694:1995). In summary,105


four steps are necessary to measure the SOC content. The Soil Analysis Laboratory of INRAE at Arras, which is the accredited


and recognized laboratory for soil and sludge analysis performed all analyses. SOC content was determined for a 0.5-10 g


subsample of each composite sample.


The mass of fine earth for each observation site was determined for six samples of known volume that were extracted from a


soil pit adjacent to the site. The methods used varied according to the particle size distribution of the samples. The samples110


were dried prior to analysis. The cylinder method was used for soils with little to no gravel. The cylinder used was 90 mm high


with a diameter of 84 mm, i.e. 500 cm3. When the use of the cylinder method was not possible, i.e. for gravelly or stony soils,


the water method was applied. The water method is adapted from the sand method. In this method, circular holes of between


1000 and 3000 cm3 are dug into the soil. The exact volume of soil extracted is determined by lining the hole with a plastic bag


and measuring the volume of water required to fill the hole.115


2.3 SOC conversion to stocks


In this study, SOC stocks were estimated for the 0–50 cm depth interval following the fixed-depth approach (Rovira et al.,


2022):


SOC stock0−50 cm =


n∑
i=1


piBDiSOCi(1− rfi), (1)


4
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where n is the number of depth intervals at which measurements of SOC were made within the 0–50 cm depth interval, BDi120


(g cm−3), rfi (%) and SOCi (%) are the bulk density, percentage of rock fragments (relative to the mass of soil) and the SOC


concentration in the ith depth interval, respectively, and pi is the considered width of the horizon (in meters). The values of


SOC stocks obtained this way along with their spatial location are shown in t ha−1 in Fig. 1.
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Figure 1. Location of the soil organic carbon stock data (in t ha−1) for mainland France.


2.4 Exhaustive explanatory variables


We use a set of 23 publicly available spatially continuous environmental covariates. The covariates provide information on125


the main biotic and abiotic factors which are known to affect SOC stocks. The main sources of covariates was the database


from BioClim, SoilGrids and a SRTM elevation model with derivatives. We also used MODIS products from which the veg-


etation index NDVI map was calculated from the NIR and RED spectral bands and a high-resolution landcover map with 7


classes obtained by Sentinel-2 images. Covariates were further grouped into six categories representing 1) average climate


condition, 2) climate seasonality, 3) extreme climate conditions, 4) topography and terrain derivatives, 5) soil properties and 6)130


organisms/vegetation. The list of factors, covariates, along with their unit and reference is provided in Table 1.
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Table 1. List of environmental covariates used as predictor in the random forest model with unit and associated reference when applicable.
Covariates are grouped into categories representing average climate conditions, climate seasonality, extreme climate conditions, topography,
soil and organisms/vegetation. Covariates have coordinate system Lambert 93 (EPSG:2154) and extent: 16877.61E - 1251060E; 6028362S -
7141392S.


Factor Covariate Acronym Unit Reference


Average climate conditions Annual mean temperature T_am °C Fick and Hijmans (2017)
Annual precipitation Prec_am mm Fick and Hijmans (2017)
Long term annual evapotranspiration ETP_Glob mm Zomer et al. (2008)
Annual mean solar radiations SolRad_m kJ m−2 day−1 Fick and Hijmans (2017)


Climate seasonality Temperature seasonality (Standard deviation * 100) T_seaso °C Fick and Hijmans (2017)
Precipitation seasonality Prec_seaso Coefficient of


Variation
Fick and Hijmans (2017)


Standard deviation of monthly solar radiation SolRad_sd kJ m−2 day−1 Fick and Hijmans (2017)


Extreme climate conditions Mean temperature of driest quarter T_mdq °C Fick and Hijmans (2017)
Mean temperature of warmest quarter T_mwarmq °C Fick and Hijmans (2017)
Precipitation of wettest month Prec_Wm mm Fick and Hijmans (2017)
Precipitation of driest month Prec_Dm mm Fick and Hijmans (2017)
Global Aridity Index AI_glob unitless Trabucco et al. (2008)


Topography Elevation Elev metre Rabus et al. (2003)
Slope Slope percent Yamazaki et al. (2017)
Module Multiresolution Index of Valley Bottom Flatness MRVBF unitless Yamazaki et al. (2017)
Topographic wetness index TWI unitless Yamazaki et al. (2017)


Soil Average soil and sedimentary-deposit thickness SoilSed_thickness metre Pelletier et al. (2016)
Soil water content for 33kPa suction (0-10 cm) SoilWat_33 volumetric % Hengl and Gupta (2019)
Soil water content for 1500kPa suction (0-10 cm) SoilWat_1500 volumetric % Hengl and Gupta (2019)
Sand content Sand percent Poggio et al. (2021)
Clay content Clay percent Poggio et al. (2021)


Organisms/vegetation Shannon (EVI Heterogeneity), diversity of EVI Sha_EVI unitless Tuanmu and Jetz (2015)
Primary Production Gap-Filled Yearly Terra_PP kg·C/m2 Running and Zhao (2019)
Long-term average NDVI NDVI unitless Lyapustin et al. (2018)
Landcover (7 classes) Landcover unitless Thierion et al. (2018)


The original covariate resolution spanned from grid cell sizes of 90 m × 90 m to 1 km × 1 km which we brought to a common


resolution with grid cells of 250 m × 250 m by either resampling with bilinear interpolation or aggregation. Covariates were


then converted to the coordinate system Lambert 93 and brought to a common extent.


2.5 Modelling and mapping of SOC stocks135


The SOC stocks data and their matching values of environmental covariates were used to build a regression matrix. The


modelling approach to establish the relationship between the SOC stocks and environmental covariates is based on random


forest.


Random forest (RF, Breiman, 2001) is an ensemble machine learning algorithm based on decision trees. A single decision tree


is fitted by partitioning the covariate values of the calibration dataset. Partitions are evaluated based a splitting metric and the140


partition providing the optimal value of the metric is selected. This procedure is repeated until the a user-defined value of node


size is reached. The prediction value of a single tree is taken as the average prediction of all nodes at the terminal leaf. In RF, an


additional procedure of bootstrap and aggregating is introduced, where a user-define number of trees are built from bootstrap


samples of the calibration data. In each tree, a random perturbation is further introduced where only a subset of the covariates
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are used for fitting the tree. The final prediction from a RF model is the average of all the decision trees. The theory of RF has145


been extensively described in the literature and we refer the reader to standard textbooks for more details (e.g. Hastie et al.,


2009).


Modelling and mapping of SOC stocks with RF is made with an usual procedure in three steps: i) model parameter selection,


ii) model fitting and validation, and iii) prediction. We optimized three parameters: the number of trees, the minimum number


of observations in the terminal node and the number of covariates drawn randomly from the covariate set at each split. In150


the machine learning literature, these parameters are usually denoted ntree, node.size and mtry, respectively. We used the


model-based optimization procedure described in Probst et al. (2019) using the mean square error of the out-of-bag prediction


as objective function and 500 iterations. The optimal parameters were ntree = 500, node.size = 12 and mtry = 10. All other


parameters where held to their default value.


The performance of the model with optimized parameters was evaluated using a standard random 10-fold cross-validation155


strategy. The dataset was randomly split into 10 folds of size approximately equal, where nine folds were used to calibrate the


RF model and the remaining fold was left apart for validation. This procedure was repeated 10 times, each time setting aside


a single fold. The independent observed values and those predicted by the RF model are used to compute usual validation


statistics. The predictions did not show systematic over- of under-prediction (mean error was close to 0), and had a root mean


square error of 36.4 t ha−1 and a modelling efficiency coefficient of 0.31.160


The final model for prediction is fitted using all available SOC stocks data and the optimized set of RF parameters. Predictions


are made for the whole of France at a resolution of 250 m using the spatially exhaustive set of covariates as predictor. This final


model along with prediction for the whole of France is used for interpretation with Shapley values.


2.6 Interpretation with Shapley values


The RF model is interpreted with Shapley values (Shapley, 1953), which were described and used in soil science in Wadoux165


and Molnar (2022). Shapley values were originally developed within coalitional game theory. Consider a game where each


covariate is a player and the prediction is the payout, Shapley values distribute the gain to the players (i.e. covariates) according


to their relative participation to the outcome. The gain is the prediction for a particular unit minus the average prediction and


the players are the covariates that contribute to the prediction and “collaborate” to receive a gain.


In statistical terms, let a set of covariates of size p be defined by S, and S ⊆ {1, . . . ,p} \ {j} be a subset of covariates which170


excludes covariate j. The Shapley value ϕ0,j for covariate j for a spatial location composed of the vector of covariates x0 is


given by:


ϕ0,j =
∑


S⊆{1,...,p}\{j}


|S|! (p− |S|−1) !


p!


(
f̂∗ (xi,S∪{j}


)
− f̂∗(xi,S)


)
, (2)
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where |S| is the size of the subset which excludes the jth covariate, S ∪{j} is the subset S with the jth covariate added,


and f̂∗(xi,S) = EXC [f̂(xi,S ,XC)] is the prediction function where covariates not contained in S are marginalized (similar for175


S ∪{j}). The calibrated RF model is defined by f̂ and X is the matrix containing the covariates from the calibration dataset,


and XC is a subset of covariates where C represents the set of covariates not included in S. Note that f̂∗ (xi,S∪{j}
)
− f̂∗ (xi,S)


can be interpreted as marginal contribution to the prediction when adding covariate j to the subset of covariates S. Equation 2


has two components: the first is the marginal contribution for a subset of covariates, whereas the second is a weighted average,


giving equal weight to each of marginal contributions of all possible subsets of covariates. The contribution of a covariate to180


the prediction of a single spatial location is then given by ϕ0,j .


Calculating the exact solution for Eq. 2 is computationally intractable because it requires estimating the sum of the marginal


contribution for 2p − 1 combination of covariates. To solve this, we use the approximation algorithm developed by Štrumbelj


and Kononenko (2014) and based on Monte-Carlo sampling. In Štrumbelj and Kononenko (2014), the covariate effect is


approximated by integrating over the observations of the calibration dataset. We refer to Štrumbelj and Kononenko (2014) and185


Molnar (2020, Chapter 9) for more detail on the approximation algorithm.


A Shapley value should be interpreted as the contribution of a covariate to the difference between the prediction and the average


prediction. One advantage of Shapley values is the set of mathematical axioms of which they are derived, which provide


the basis for a rigorous interpretation of their meaning. Further, Shapley values are additive and symmetric: the individual


contribution of a covariate to a spatial location can be averaged over a region or a dataset. We give three example uses in the190


next paragraph.


A Shapley value can be obtained for any single value of the calibration dataset and any prediction at unobserved location, in


the unit of the prediction (e.g. the soil property of interest). They are usually used to evaluate the individual contribution of a


covariate to the prediction of a single location (i.e. to perform a local interpretation the model). Hereafter we describe three


uses of the Shapley values for both local and global interpretation.195


– Average contribution: absolute Shapley values can be summed over the individual observations from calibration dataset


to obtain an overall variable contribution to the prediction. Note that while it is similar to the variable importance plot


obtained by permutation and often reported in soil modelling studies with machine learning, average contribution plot


has a different interpretation because it is not based on decrease in model accuracy (unlike permutation plots).


– Partial dependence: a scatterplot of the average of Shapley values in the calibration dataset against the value of a single200


covariate give indication of the functional form of the association between the soil property and the covariate (i.e. the


partial dependence, Hastie et al., 2009). To ease visualization, the individual dots in the scatterplot are fitted with a


smooth curve.


– Local and spatial evaluation: the local contribution of the covariate to the prediction is obtained by Shapley values and


can be used to generate a spatial pattern. This pattern can in turn be used to obtain the average contribution for areas,205


such as bioclimatic regions or soilscapes, or for an individual pedon. This approach is computationally very intensive as
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it require estimating Shapley values for all spatial locations (discretized into a finite number of grid cells) in the area of


interest.


2.7 Practical implementation and computational aspects


We use the R programming language (R Core Team, 2022) for the SOC stock calculation, covariate pre-processing, model210


parameter selection, model fitting and prediction, and estimation of the Shapley values. The RF model was fitted using the


ranger package (Wright and Ziegler, 2017) and parameter selected with the tuneRanger function from the tuneRanger pack-


age (Probst et al., 2019). Estimation of Shapley values was made with the fastshap package (Greenwell, 2020). The procedure


for estimating the Shapley values spatially at was parallelized and combine with a subsampling approach to ease computation.


A total of 12,495,098 grid cell locations were taken using a systematic grid sample of 800,000 cells, for which the Shapley215


values were estimated. We used a number of Monte-Carlo sampling as large a feasible, i.e. 500 in all cases. Calculations were


done on a eight-core computer and took approximately 6 days.


3 Results


3.1 Average contribution


Figure 2 shows the magnitude of the covariate contribution to the prediction of SOC stocks averaged over the calibration220


dataset (average of absolute values in Fig. 2) or for each individual point of the calibration dataset (Fig. 2). Fig. 2b indicates


that Elevation is on average the most important covariate contributing to the prediction of the SOC stocks. NDVI, mean


temperature of warmest quarter and annual mean temperature also have a relatively important contribution to the prediction


with an average absolute value of nearly 4 and 3 t ha−1. Fig. 2b further show that the four most important covariates have


a wide range of Shapley values. Elevation, for example, has values between -10 to 55 t ha−1. The colour scale in Fig. 2b225


also shows that large positive values of Shapley for the covariate elevation are obtained for high elevation, whereas negative


contribution of this covariate to the prediction are obtained for low value of elevation. Other covariates have a similar pattern.


For example, while the covariate soil and sedimentary-deposit thickness (SoilSed_thickness) has a small contribution to the


prediction (i.e. the average value in Fig. 2a is 0.7 t ha−1), large values of soil and sedimentary-deposit thickness have a strong


positive contribution of the prediction of the SOC stocks.230
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Figure 2. Magnitude of the covariate contribution to the prediction of SOC stocks in France. Plot a) shows the absolute values of Shapley
averaged over the calibration dataset whereas plot b) shows the Shapley values for each individual points in the calibration dataset, i.e. the
contribution of the covariate to the prediction of the SOC stock at that location. The colour scale represents the covariate value normalized
in the range (0,1). Note that plot a) is the average of the absolute values presented in plot b).


3.2 Partial dependence


Figure 3 shows the relative covariate contribution to the individual SOC stock observations of the calibration dataset as a


function of covariate values. The four most important covariates of Fig. 2 contributing to the predictions have a well-defined


pattern. The covariate contribution to the SOC stocks prediction tend to increase with elevation and temperature for values up to


1800 m and 5°C, respectively, but sharply decreases for higher annual mean temperature or levels off for higher elevation. For235


high annual mean temperature (i.e. above 10°C), the Shapley values are negative, which means that the covariate contributes


negatively to the SOC stocks prediction of these observations. Covariate mean temperature of warmest quarter has a very


similar pattern than covariate mean annual temperature. Covariate NDVI contributes negatively to the SOC stocks prediction


for NDVI values up to 0.6, after which Shapley values are positive. Large values of NDVI have a strong positive contribution


(i.e. above 10 t ha−1) to the prediction of SOC stocks. Shapley values of landcover are nearly always positive for 6 out of the240


7 classes, but nearly always negative for the annual crops class.
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Figure 3. Relative covariate contribution to the SOC stocks prediction of the calibration dataset. The x-axis shows the covariate values and
the y-axis the Shapley value of the calibration dataset for this covariate. The blue line is a smoothed curve fitted on the Shapley values for
visualization purposes.
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3.3 Spatial evaluation


The spatial pattern of Shapley values for the three most important covariates (Fig. 2) is presented in Fig. 4. Note that we


present the maps for three covariates, but that maps for all covariates are presented in the Supplementary Materials. The three


maps presented in Fig. 4 have a smooth and detailed pattern with significant spatial variation. Both elevation and mean annual245


temperature have a similar pattern of positive contribution in areas of high elevation (e.g. in the Massif Central, the Pyrenees,


and in the Alps mountains), whereas they have negative values in most of South-western France. Elevation seems also to


follow the pattern of two main rivers in the Northern part of France, with a noticeable negative contribution of elevation in


the stream bed. The map of Shapley values estimated for NDVI shows a different spatial pattern with detailed variation. In the


South Mediterranean coast, NDVI has a negative contribution to the SOC stocks prediction. An opposite pattern is found in the250


Northern Atlantic coast and in Brittany, where NDVI contributes positively to the SOC stocks prediction.


Figure 4. Spatial pattern of the Shapley values over mainland France for the three most important covariates. Dark colour indicate a negative
contribution of the covariate to the SOC stocks prediction whereas a bright colour indicate a positive contribution.


Figure 5 is a map of the most important covariates contributing to the SOC stock prediction along with a map showing of


the proportion of this covariate contribution to the total. To ease visualization only the five most important covariates are


represented. Climate covariates are the most important predictors for nearly all mountainous areas, either T_am in the Massif


Central and in the Vosges, or T_mwarmq in the Alps and Pyrenees. Vegetation covariates Terra_PP and NDVI_mean are the255


most important in a large area in the northern part of France and in the extreme East (Terra_PP), whereas NDVI_mean is the


most important locally in larges patches in Brittany and locally around the Massif Central. Elevation is the most important


covariates in the South of Landes (South-West) and in small areas in Champagnes (East of Paris). Fig. 5 also shows that the
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most important covariate contribute between 20% and 85% of the total SOC stock prediction, but with considerable variation


between regions. There is a East-West gradient of decreasing proportion with some local large proportions (e.g. small patches260


in the Atlantic coast). Large values of proportion are found for all covariates in the Pyrenees, in the Alps, and also for small


areas in the Massif Central. Small values are found for most of the Eastern part of France, with values lower than 0.4, which


means that in these areas the most important covariate shown in the left-hand side of the Figure is the most important but


contributes in small proportion to the total SOC stock prediction in these areas.


Figure 5. Map of the location-specific most important covariate contributing to the SOC stock prediction (left) for five covariates (out of 24),
and proportion of this location-specific covariate to the total SOC stock prediction (right).


Figure 6 shows two maps: a map of the most important group of covariates contributing to the SOC stock prediction along with265


a map showing the proportion of this group of covariate relative to the total SOC stock contribution of all groups. The group


of covariates related to vegetation is the most important in most parts of France and also show a high proportion relative to the


total (i.e. higher than 0.45). The group topography is the most important in nearly all mountainous areas such as in the Alps,


Pyrenees and Massif Central and have also a relatively high proportion of contribution to the total SOC stock prediction. The


three groups of covariates related to climate seem not the most important over large areas but only locally. For example, mean270


climate condition covariates are important in South-West of France, whereas the group of extreme climate condition covariates


is the most important in Eastern part of Brittany. Soil group covariates is the most important in a small area in the north of


Landes where it also contribute to the SOC stock prediction with a proportion up to 0.5.
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Figure 6. Map of location-specific most important group of covariates contributing to the SOC stock prediction (left), and proportion of this
group to the total SOC stock prediction (right).


Using the carbon-landscape zones from Chen et al. (2019) we calculated and reported in Fig. 7 the average absolute value of


Shapley for each group of covariates and for each of the 10 carbon-landscape zones (CLZ). Fig. 7 shows that overall some275


groups of variables are more important than others. For example, vegetation and topography covariates are for nearly all CLZ


more important (i.e. with larger absolute values of Shapley) than other groups such as climate seasonality and soil. Mountainous


areas which have higher SOC stocks also have high Shapley values for mean and extreme climate conditions but the highest


values are found for topography. Vegetation is relatively important in nearly all CLZ and is the most important for the CLZ


corresponding to the areas in a large part of South France.280
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Figure 7. Maps of the most important group contributing to the SOC stocks prediction for the 10 carbon-landscape zones of mainland France.
Values are absolute Shapley values averaged spatially by carbon-landscape zone.


3.4 Local evaluation


Figure 8 shows the contribution (i.e. the Shapley values) of the covariates to the SOC stock prediction at two spatial locations


in a) a forested area in the Landes (South-West France) and in b) a agricultural area of Champagne (North-East France). The


two locations have predicted SOC stock of 98 t ha−1 and 92 t ha−1, respectively. There is large difference in the estimates


of Shapley values between the two locations. For Landes, the covariate soil and sedimentary thickness is the main positive285


contributor (8.3 t ha−1) to the SOC stock prediction, followed by NDVI, Terra_PP and sand. The main two negative contributors


are Elev and T_mwarmq. A very different pattern is observed for the Shapley values in Champagnes where T_am is the main


positive contributor whereas the landcover class annual crops is the main negative contributor with a value of (-4.9 t ha−1).


The variables NDVI_mean and Terra_PP are also major negative contributors.
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Figure 8. Contribution of the covariates to the SOC stock prediction at two spatial locations in a) a forested area in the Landes (South-West
France) and in b) a agricultural area of Champagne (North-East France). Both locations have close range of predicted values of SOC stocks
around 95 t ha−1. The blue colour indicates a positive contribution of the covariate to the SOC stock prediction whereas a red colour indicates
a negative contribution. The y-axis shows the covariate value for the prediction at the location. Satellite images from © Google Maps [2022,
CNES/Airbus, Maxar Technologies] Available through: https://www.google.com/maps/ [Accessed 2 July 2022].


4 Discussion290


4.1 Modelling and mapping of SOC stocks


The validation statistics obtained by the RF model was in good agreement with previously published studies, although it is


generally difficult to draw conclusion on the quality of the fitted RF model compared to other studies mapping SOC concen-


tration or density. The MEC obtained in our study is within the upper range of the R2 values for large area mapping of SOC


reported in Minasny et al. (2013). When mapping SOC stocks over large area, difference in model performance can arise from295


whether the bulk density is measured or estimated, and from covariate set used to fit the model. Other causes of difference


are the modelling procedure and the validation strategy (e.g. (spatial) cross-validation, independent validation with probability


sampling) which can all have a substantial impact on the resulting map quality. Our fitted RF model had no bias and a MEC


of 0.31. This is similar to previous studies on mapping SOC stock for large areas. For example, Martin et al. (2014) fitted a


boosted regression tree model on a similar set of the RMQS sampling sites in France and obtained a R2 of 0.36 and negligible300


bias, whereas Mishra et al. (2009) obtained a ME and R2 of -0.1 and 0.46, respectively, for mapping SOC stocks in the state


of Indiana (USA). Also, Lacoste et al. (2014) reported a R2 of 0.43 for modelling SOC stocks in the O horizon of the French


16



https://www.google.com/maps/

Image Inserted�

Image

 



Text Inserted�

Text

"a) − − 3.979 0.343 1.395 −3.678 − − 0.561 0.428 0.319 −0.14 1.272 −3.197 0.177 0.048 0.378 b) 1.546 1.288 8.323 −0.226 −1.282 −0.706 3.058 0.085 3.369 4.136 Landcover"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"SoilSe = Fores"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"Soilwa"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"Terra d_thickne"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"T_mwa"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"Soilwa"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"Prec_se"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"NDVI_mea"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"solRa"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"ETP_Gl"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"Sha_EVI"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"SolRa"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"T_sea"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"Prec_W _PP"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"AI_glob"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"T_mdq ts and woodla t_1500"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"Prec_a"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"MRVBF"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"Prec_Dm"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"TWI"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"T_am d_m"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"Slope t_33 rmq so d_sd aso"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"Sand"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"Cla ss ob"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"Ele = 11048.81 m m y = 516.52 = 115.19 n v = 17772 = 12.85 = 12.75 = 24.24 = 18.98 = 19.17 = 49.43 = 15.51 = 31.61 = 1033 = 9128 = 6.24 = 0.33 = 943 = 109 = 698 = 208 = 552 = 0.7 = 46 = 38 nds"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"80 85 Shaple"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"Mean value y value 90 95"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"Predicted"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"value"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"Landc"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"SoilSe"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"Soilwa over"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"Terra"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"T_mwa NDVI_mea"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"Soilwa"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"solRa"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"Sha_EVI"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"SolRa"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"ETP_Gl"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"MRVBF"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"T_sea"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"Prec_se"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"AI_glob d_thickne t_1500"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"Prec_a Prec_W _PP Prec_Dm"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"Sand"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"T_mdq"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"Cla = Annual"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"T_am d_m"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"Slope t_33 rmq d_sd"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"TWI Ele y so ob aso m = 6224.47 n"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"v m = 352.56 = 154.22 = 16097 ss = = 617.9 = 17.15 = 68.45"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"="



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"= = 7869 = 9.38 = 6.45 = 5.28 = 0.61 = 0.51 = 698 = 886 = 313 = 100 11.46 14.14 34.36 crops = 19 = 76 = 41 = 1 Mean value"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"4.819 90"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"−"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"Predicted"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"val 1.141"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"ue"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"1.752 Shaple"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"2.092"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"−4.972 y value"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"1.195 95"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"0.348"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"0.321"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"1.216"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"−"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"− 0.493 0.18"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"−"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"− − 3.534"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"− 0.68"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"1.575"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"0.012 0.019 0.048"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"0.016"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"2.62 0.606 0.571 0.114 100"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"−"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"1.361 2.145"



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"0.307"



Image Deleted�

Image

 



Text Deleted�

Text

"290"



Annotation Inserted�

Annotation

 



Image Inserted�

Image

 



Text Inserted�

Text

"300"



Text Deleted�

Text

"295"



Annotation Deleted�

Annotation

 



Annotation Deleted�

Annotation

 



Graphic Element Inserted�

Graphic Element

 



Text Inserted�

Text

"the"



Text Inserted�

Text

"305"



Graphic Element Inserted�

Graphic Element

 



Graphic Element Inserted�

Graphic Element

 



Graphic Element Inserted�

Graphic Element

 



Graphic Element Inserted�

Graphic Element

 



Text Deleted�

Text

"300"



Annotation Deleted�

Annotation

 



Graphic Element Inserted�

Graphic Element

 



Annotation Deleted�

Annotation

 



Text Inserted�

Text

"310"



Graphic Element Inserted�

Graphic Element

 



Annotation Deleted�

Annotation

 



Annotation Deleted�

Annotation

 



Text Inserted�

Text

"0.566 −0.421"



Graphic Element Inserted�

Graphic Element

 







forest soils. The spatial pattern of the SOC stocks map for the 0-50 cm depth intervals (not shown) obtained by prediction


with the RF model also agreed with past studies. Studies by Martin et al. (2011) and later Martin et al. (2014) reported similar


patterns of SOC stocks in France for the 0-30 cm depth interval. The later study of Martin et al. (2014) performed a rigorous305


validation assessment of several modelling approaches to SOC stocks in France, and from which we found no systematic dif-


ference with the maps made in this study with the error maps made in Martin et al. (2011) or Meersmans et al. (2012). Overall,


the validation statistics and spatial pattern of prediction by the RF model suggest that the RF fitted in this study is sufficiently


accurate to serve as basis for the interpretation with Shapley values.


4.2 What did Shapley values reveal about the drivers of SOC stocks in mainland France?310


The Shapley values revealed that the covariates contribution to the SOC stocks prediction varied greatly among spatial loca-


tions and between CLZ. The results suggest relationships between environmental covariates and SOC stocks which have been


abundantly documented in the literature and other relationships that may highlight the limitations of empirical modelling for


the SOC stocks prediction. Hereafter we describe how group of covariates relates to potential acting processes of soil carbon


storage and how the Shapley values revealed potential limitations of the empirical modelling of SOC stocks.315


4.2.1 Climate


The effect of climate on SOC stocks, here through the temperature and precipitations variables (i.e. T_am and P_am), is


usually linked to a number of soil carbon decomposition processes as well as plant growth. In our case, covariates related to


temperature (i.e. T_am, T_mwarmq and T_mdq) were the most important average contributors to the SOC stock prediction, but


the pattern reported in Fig. 2 and 3 show that the relationship with SOC is complex (i.e. non-monotonic, non-linear and with320


strong discontinuities). In fact, temperature is one of the most important climate drivers affecting SOC mineralization, while


at the same time also affecting the net primary productivity (Martin et al., 2011). Here, after a certain threshold (i.e. 6°C),


the relationship between SOC and temperature is decreasing, likely because of the combined effects of negative impact of


extreme temperatures on plant productivity and of its positive effect on SOC mineralization. The impact of temperature is also


exemplified in the CLZ related to high SOC stocks in mountainous areas (Fig. 7), the group of climate covariates has the most325


important contribution, which may be caused by the low mineralization processes due to cold temperature. Fig. 9 illustrates


the combined effect of mean temperature and NDVI on SOC stocks. Optimum conditions in term of SOC stocks correspond


to high NDVI mean levels (around 0.75) and moderate temperature (hence mineralization) close to 7.5°C on average. Similar


optimal conditions are found for lower NDVI levels, but where low temperature enable slow turn-over of SOM.
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Figure 9. Two-dimensional visualization of NDVI_mean and T_am contributions to the SOC stocks prediction. Black dots indicate a point
in the calibration dataset. The colour represent the Shapley values. The surface was obtained by linear interpolation of the Shapley values
obtained from the calibration dataset.


This relationship is also modulated locally by the extreme climate condition which act as a limiting factor to carbon storage330


(Reichstein et al., 2013). Indeed, Fig. ?? shows that T_mdq importance is overall greater than the importance of T_am and


Fig. 3 that variations of SOC stocks induced by T_mdq are greater than variations of T_am. The shape of the relationship


between T_mdq and SOC stocks is close to that of T_am and SOC. This might be because, overall, similar processes relating


temperature to both plant productivity and SOM mineralization come into play. Noticeably, for T_mdq above 19°C, SOC


stocks remain constant. To our knowledge there is no best explanation, but there is a probable correlations with other variables,335


such as land use, or other climate variables including precipitation. Typically in areas with a very hot summer, drought possibly


also limits SOM mineralization, avoiding temperature increases to further facilitate SOC stocks depletion.


4.2.2 Topography


Topographic covariates control many of the redistribution processes influencing SOC stocks. In our study case, elevation was


on average the most important covariate for explaining the SOC stocks variation, with trend (Fig. 2 and 3) of increasing Shapley340


values for higher elevation (i.e. elevation contribute positively to the SOC stocks prediction). In fact, the higher SOC stocks


in France are found in the mountainous areas of the Pyrenees, Massif Central and Alps. This is an expected finding already


reported in the literature for various ecosystems (e.g. by Lemenih and Itanna, 2004) and which is usually attributed to the


combined effect of temperature, precipitation (Saby et al., 2008). In our study, the Shapley values revealed that the effect of


elevation is merely related to its relationship with temperature, see, for example, the inverse relationship between these two345


variables in Fig. 3. The covariate slope had overall a positive effect on SOC stock prediction (Fig. 2) but the maps of Slope in


the Supplementary Materials shows that this occurs both in mountainous areas (e.g. the Alps) and in river stream beds (e.g. the


Seine river stream). The effect of slope on SOC stocks is logical in this study case and has already been reported elsewhere
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(e.g. Stevens et al., 2014). However, in Stevens et al. (2014) the relationship between slope and SOC stocks is negative. This


suggests that in our case the positive effect of slope might be due to the location of steep slopes, i.e. mostly in mountainous350


areas. Higher SOC stocks with steeper slope might also result from the combined effect of orientation, and resulting effects on


moisture and temperature.


4.2.3 Soil


Soil clay has a well-known effect of SOC stock through physical interaction and protection of organic matter from decom-


position (Stewart et al., 2008). We found that prediction of SOC stocks was monotonically increasing with higher values of355


clay, which is consistent with previous study on the same area (e.g. Martin et al., 2011). The soil water regime had a rela-


tively moderate contribution to the SOC stocks, but this was very contrasted locally for the covariate Soilwat_33. For example,


large agricultural and semi-mountainous areas from the center to North-West of France had a positive value of Shapley for


this covariate (see also the Supplementary Materials). For these areas there might be a contribution of processes relying on


soil moisture for SOC storage, such as soil carbon mineralization by microbes (Orchard and Cook, 1983). From the available360


results, however, this is disputable to draw conclusions on this process. We also found that soil covariate SoilSed_thickness,


which represent the soil thickness to the unweathered bedrock, was not an important contributor on average, but that for the


deep sandy soils of Landes, this variable was a very important predictor of the SOC stocks. In this regard, the sand covariate


was an important factor contributing to SOC stocks prediction in the Landes, because in these areas the SOC stocks are mainly


characterized by acidic sandy soils that that were undisturbed for a long time by agriculture. The high SOC stocks in these365


areas, however, are not due to the sandy soils but due to the combined effect of landuse and carbon input (see below). It is


likely that the empirical model of SOC stocks is predicting high values in these areas for the wrong reasons.


4.2.4 Organisms/vegetation


Both NDVI_mean and Terra_PP were important covariates for predicting the SOC stocks on average (Fig. 2) but also locally


in many parts of France (Fig. 5 and 6). SOC stocks are mediated by a balance of net C input and net loss and vegetation acts370


on SOC stocks through C inputs. This is shown in Fig. 4 where the map of Shapley values for NDVI_mean has high values


in large forested areas. Landuse has also an important effect of SOC stocks over time. In Fig. 3 it was shown that 6 out of 7


categories have a positive contributions to the SOC stocks prediction, but that for Annual crops the contribution was nearly


always negative. This is a realistic result that has been reported abundantly in the literature as arable land cropping systems are


characterized by a large human appropriation of the net primary productivity (Plutzar et al., 2016). In the Mediterranean CLZ,375


conversely, NDVI and Terra_PP covariates were not important. In Mediterranean areas carbon storage is mitigated by landuse


and mediated by water availability. We also note the stepped pattern of the NDVI_mean covariates on the SOC stocks prediction


shown in Fig. 3. This suggest that NDVI compensate for a missing carbon input covariate or an insufficient number of landuse


classes. In our case the Shapley values reveal that the covariates are not sufficiently precise or that potential covariates are


missing to predict the SOC stocks. For example, a mitigation occurs by landuse between NDVI and the carbon input.380
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Finally, the Shapley values presented for two spatial locations in Fig. 8 reveal well-known relationship of SOC stocks with its


environment. In Landes the SOC stock is relatively high because despite of sandy acid soils that do not store well the carbon,


the system is stable over time with no cultivation and a landuse made of pine forest. This is reflected in the Shapley values:


the soil thickness and sand content are important predictors of the SOC stocks, as well as vegetation. This is counter-intuitive


and this suggest that the model did not capture well the landuse information, or that we did not have sufficient landuse classes385


to discriminate historical landuse. The spatial location in Champagnes, conversely, is within an area with relatively high clay


content (high physical protection) and low temperature reduces carbon mineralization in cold winters. It is therefore no surprise


that the two most important variables contributing to the SOC stocks in this location is temperature and clay content, but that


this was strongly mitigated by the landuse class.


4.3 Comparison with previous studies390


We found no notable difference in results with previous studies investigating the controlling factors of SOC (Arrouays et al.,


2001) and SOC stocks variation in France (e.g. Martin et al., 2011; Mulder et al., 2015). In these studies too, they concluded


that landuse or vegetation, soil physical and chemical properties and climate had the most important effect of SOC levels. In


our case, we had a different set of explanatory variables and we investigated the controlling factors for a single depth intervals


(i.e. 0-50 cm). In spite of these differences we also found the climate and vegetation were major factor contributing to the SOC395


stocks prediction. The reported effect of clay, soil water regime is the same as reported in Martin et al. (2011) but they also


reported that rainfall was consistently the most important predictor, whereas in our case temperature was the most important.


The effect of these two variables on SOC storage are dependent of many factors (e.g. chemical protection, freezing, plant


productivity) which may be accounted for by a different set of covariates. Both precipitation and temperature as important


predictors are plausible outcomes of the modelling, but more thorough analysis is need to investigate this. In Mulder et al.400


(2015), it was found that evapotranspiration, net primary productivity and clay content were important predictors, for both


topsoil and subsoils. They too found that the influence of environmental factors varied greatly among soil-landscape zones.


4.4 Limitations of Shapley values and the interpretation of complex models


The results appear realistic, both in relation to the existing known soil carbon storage processes and with regards to previous


studies in the same area. One however must take care with interpreting Shapley values as potential causal mechanisms de-405


scribing the spatial pattern of SOC stocks. Despite that we selected a set of covariates that intended to represent underlying


mechanisms involved in SOC storage, first, these are only proxy variables and do not necessarily relate to processes involved in


SOC stocks variation. Several studies have argued in this sense (e.g. Wadoux et al., 2020). In this work we limited our analysis


of the Shapley values to the connection of the relationship found between environmental covariates and SOC stocks to possible


processes involved in soil carbon decomposition and storage, but we did not proceed any further in assuming that we inferred410


causal conclusion from these values. Doing so would require additional experiments and a more thorough analysis. Another


aspect to be considered when interpreting Shapley from the derived relationships between covariates and the response variable


is the accuracy of the covariates. This is particularly important when using the covariates rankings provided by Shapley values.
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An interesting and novel aspect of the use of Shapley values is the possibility to understand whether the complex model is


predicting for the right reasons. Empirical models used in soil mapping studies include little or no pedological knowledge on415


the property of interest. Instead the mode search for correlation among the data and predict using empirical rules. Often these


models are more accurate that simple models (i.e. linear regression), but it is unclear whether they are able to predict because


of spurious associations between data or through a correlation that has an underlying causal structure (Wadoux et al., 2021b,


Section 5.2). In our study, the Shapley values revealed that in the Landes, for example, SOC stocks were accurately predicted,


but that the model used the correlation with the sand to predict this high values, instead of the expected historical landuse and420


carbon input information. An obvious solution to this problem is to obtain better covariates and more covariates on carbon


input and historical landuse, which should allow the model to discern better the controlling factor of SOC storage.


Although we used Shapley values to obtain the pattern of controlling factors in a large area, Shapley values require of lot


of computing time. In our case computing took approximately 6 days of parallel processing in a standard 8-cores desktop


computer, but processing time is largely determined by the number of Monte-Carlo sampling. We used 500 Monte-Carlo425


simulations, which we considered sufficient. This was tested by a scatterplot of the Shapley values estimated by a number of


Monte-Carlo sampling, against another set of Shapley value estimated by the same number of Monte-Carlo sampling. The


results (not shown) suggested that any number greater than 100 would provide a sufficiently accurate estimate of the values.


Excessive computing time, however, might usually preclude the use of Shapley values for continental and global studies. To


date two approaches exists for approximating Shapley values: the one described in Štrumbelj and Kononenko (2014) that we430


used in this study, and the one described in (Lundberg and Lee, 2017) called SHAP (see also studies in soil science using


SHAP Padarian et al., 2020; Beucher et al., 2022). The SHAP approach might be valuable too although we did not consider


it in our case. SHAP can be viewed as a local approximation of Shapley values and might provide a computationally efficient


(near) exact approximations of Shapley values for specific families of models such as gradient boosted decision trees. To the


best of our knowledge we are not aware of studies describing the differences between the two approaches, and whether this has435


an impact on the estimated values. This may be investigated further in future works.


5 Conclusions


We introduced and implemented the Shapley values for interpreting a machine learning model. Using the soil organic carbon


stocks for the 0-50 cm depth intervals and a large set of environmental covariates as predictors, Shapley values revealed insights


into the global and local factors contributing to the SOC stocks variation, and how the model adjusted the prediction locally.440


The main conclusions are:


– Shapley values revealed the global contribution of environmental factors to the SOC stocks prediction, but also enable


to obtain the functional form of this association and a spatial pattern of the covariate contribution to the prediction.


– Covariates contribution varied for SOC stock prediction varied greatly among spatial location and between carbon-


landscape zones.445
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– The results of the interpretation were valid in light on existing and well-described soil processes acting in soil carbon


decomposition in the area.


– In a test of predicting SOC stocks to two spatial locations with similar stock values but very different environments, we


obtained Shapley values that show individual covariate contribution to the prediction.


– In our case study. the comparison with existing works investigating the controlling factors of SOC stocks variation450


showed that Shapley values found similar relationships between SOC stocks and environmental factors.


– We need to further test the use of Shapley values on covariates that are more precise (for example, measured at site)


and more directly linked to factors conditioning SOC stocks variation, for example by using covariates linked to carbon


inputs instead of NDVI.


The results and comparison with existing studies suggest that Shapley values were a useful tool to give insight about the455


controlling factors of SOC stocks variation, both globally and locally for specific spatial locations. We conclude the Shapley


values is a promising tool to interpret complex models, and that its main added value is to enable a local interpretation of the


environment factors contributing to a prediction.
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