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Abstract. To understand the impact of different assimilated observations on convection-allowing model forecast skill, a diverse

range of observing system simulation experiment (OSSE) case studies are required (different storm modes and environments).

Many previous convection-allowing OSSEs predicted the evolution of an isolated supercell generated via a warm air pertur-

bation in a horizontally homogenous environment. This study introduces a new methodology where a quasi-linear convective

system is generated in a highly-sheared and modestly unstable environment. Wind, temperature, and moisture perturbations5

superimposed on a horizontally homogeneous environment simulate a cold front that initiates an organized storm system that

spawns multiple mesovortices. Mature boundary-layer turbulence is also superimposed onto the initial environment to account

for typical convective-scale uncertainties.

Creating an initial forecast ensemble remains a challenge for convection-allowing OSSEs because mesoscale uncertainties

are difficult to quantify and represent. The generation of the forecast ensemble is described in detail. The forecast ensemble is10

initialized by 24-hour full-physics simulations (e.g., radiative forcing, surface friction, microphysics). The simulations assume

different surface conditions to alter surface moisture and heat fluxes and modify the effects of friction. The subsequent forecast

ensemble contains robust non- Gaussian errors that persist until corrected by the data assimilation system. This purposely

“degraded” initial forecast ensemble provides an opportunity to assess whether assimilated environmental observations can

improve, e.g., the wind profile. An example OSSE suggests a combination of radar and conventional (surface and soundings)15

observations are required to produce a skilled quasi-linear convective system forecast, which is consistent with real case studies.

The OSSE framework introduced in this study will be used to understand the impact of assimilated environmental observations

on forecast skill.

1 Introduction

Forecasts of convection can provide important guidance to forecasters ahead of an impending severe weather event; however,20

forecast skill is often limited because the predicted storms are sensitive to modest initial condition errors. To mitigate these

errors, a combination of in-situ (surface stations, radiosondes) and remotely sensed observations (e.g., radar reflectivity, satellite

radiances) are blended with a prior estimate using data assimilation (Kalnay, 2002). Although skilled convection-allowing

model (CAM) forecasts can be generated after assimilating commonly available observations (e.g., Johnson et al., 2013; Sobash
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et al., 2016; Skinner et al., 2018; Snook et al., 2019; Flora et al., 2019), much of the atmosphere at the meso- and convective25

scales remains unobserved. Most model state variables are also, at best, indirectly observed and thus a challenge to update

during data assimilation. These limitations introduce uncertainties into posterior estimate of the environment and degrade

forecast skill. To address these concerns, data assimilation experiments can be used to determine future observational networks

that, when assimilated, positively impact CAM forecast skill.

Rather than prematurely deploying observing systems to conduct real-world experiments, which are costly and time-consuming,30

many studies rely on observation system simulation experiments (OSSEs) to determine the impact of assimilating new obser-

vation types (e.g., Snyder and Zhang, 2003; Xue et al., 2006; Jung et al., 2008; Yussouf and Stensrud, 2010; Potvin and Wicker,

2012; Sobash and Stensrud, 2013; Cintineo et al., 2016). These experiments assimilate simulated observations that are extracted

from a nature run—a well-tuned simulation that is designed to resemble a real-world weather phenomenon (e.g., an isolated

supercell, quasi-linear convective system [QLCS]). OSSEs provide an elegant strategy to test the effectiveness of different35

observation types, deployment strategies, and sampling intervals because the simulated observations are easily reconfigured.

OSSEs can also improve the assimilation system independently of the errors in the model physics (e.g., Zeng et al., 2021).

To understand the impact of different observing network configurations, the data assimilation initialized forecasts are verified

against the nature run. Despite the potential power of this framework, designing these experiments is nontrivial because both

the nature run and model prior state must reflect complex atmospheric phenomena and uncertainties that are observed in the40

environment.

It is imperative to run forecast and data assimilation experiments for a diverse range of storm cases to ensure OSSE results

are robust. Despite many different observed storm modes (e.g., Gallus et al., 2008), most convective-focused OSSEs simulate

the evolution of a supercell thunderstorm (e.g., Snyder and Zhang, 2003; Zhang et al., 2004; Dowell et al., 2004; Xue et al.,

2006; Caya et al., 2005; Gao and Stensrud, 2014; Kerr et al., 2015; Zhao et al., 2021). This is done, in part, because supercell45

thunderstorms produce a disproportionately large number of severe weather and tornado reports (e.g., Kain et al. 2008), and

thus serve as a logical first choice. These cases are also easier to create because a realistic storm can be generated by inserting

a “warm bubble” into an unstable, highly sheared, and horizontally homogeneous environment.

Only a few OSSEs simulate the evolution of non-supercellular convection, such as disorganized convection (Potvin et al.,

2013) or a line of storms that grows in scale (Sobash and Stensrud, 2013). To our knowledge, no idealized OSSE (i.e., ex-50

periments initialized from a sounding and a supplied mesoscale background) has simulated the evolution of a convective line

initiated via a frontal boundary. QLCSs that initiate via frontal forcing in highly sheared but marginally unstable environments

often cause severe weather in the southeastern United States during the cool season (Guyer and Dean, 2010; Sherburn and

Parker, 2014; Sherburn et al., 2016). Creating OSSEs that simulate other convective initiation mechanisms (e.g., cold front, dry

line boundary) and environments (e.g., high-shear, low-instability) will help to better understand how assimilated observations55

impact the environment and the subsequent evolution of convection.

Convective-scale OSSEs and real case studies often use an ensemble Kalman filter (EnKF; Evensen, 1994, 2003) to create

the forecast initial conditions (e.g., Snyder and Zhang, 2003; Dowell et al., 2004; Snook et al., 2011; Romine et al., 2013;

Wheatley et al., 2015; Jones et al., 2016; Johnson and Wang, 2017). This strategy is preferred for CAM forecast experiments
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because the data assimilation system can update unobserved model state variables using flow-dependent error covariances60

derived from the forecast ensemble. The EnKF can also assimilate remotely sensed observations (e.g., radar reflectivity) and

use cross-covariances to update environmental and in-storm fields (e.g., Snyder and Zhang, 2003). Experiments must craft a

forecast ensemble that is representative of the event uncertainty to maximize data assimilation system performance. This is

challenging when the initial state is generated from a single or composite sounding. Therefore, a variety of strategies have been

used to create the initial forecast ensemble. For example, random perturbations are commonly used to add variability to the65

initial environment. The perturbations are inserted into the environment as gridpoint noise (e.g., Snyder and Zhang, 2003; Tong

and Xue, 2005; Dawson et al., 2012) or smooth, spatially-correlated structures (e.g., Caya et al., 2005; Dowell and Wicker,

2009; Jung et al., 2012). The perturbation amplitude is calibrated to represent sources of uncertainty, including environmental

variability (e.g., Dawson et al., 2012) and model error (e.g., Cintineo and Stensrud, 2013). While these perturbations are

calibrated to account for sources of ensemble uncertainty, they remain an ad hoc technique used to introduce uncertainty into70

the forecast. The evolution of ensemble spread is sensitive to many user-defined parameters including perturbation length scale,

amplitude, and location (e.g., Snyder and Zhang, 2003; Dowell et al., 2004; Caya et al., 2005).

Despite being commonly used, random initial condition perturbations are not necessarily representative of the forecast errors

observed in real case studies. Many studies assume the perturbations are unbiased and have little impact on the mean ensemble

environment. This contradicts many previous CAM studies that note model errors bias the forecast environment (e.g., Snook75

and Xue, 2008; Coniglio et al., 2013; Romine et al., 2013; Cohen et al., 2015). Since the ensemble mean environment closely

matches the observed truth, OSSEs are unable to determine what impact assimilated environmental observations (e.g., surface

stations, aircraft soundings) could have on the storm forecasts. To confront this challenge, some studies strategically bias

the forecast initial environment (e.g., Stratman et al., 2018) or purposely fail to initiate convection (e.g., Kerr et al., 2015) to

ensure greater disparity between the nature run simulation and forecasts. Although these studies better represent forecast biases80

observed in real case studies, there remain few options to introduce appropriate forecast biases in an OSSE.

A diverse set of OSSE cases that challenge the effectiveness of our data assimilation systems is required to holistically under-

stand the impact that observing systems have on CAM forecasts. The goal of this study is to provide a novel OSSE framework

to understand how assimilated observations impact forecast performance. This study provides instructions to create an OSSE

for a QLCS that initiates along a frontal boundary in a high-shear, low-instability environment. Techniques to create the initial85

ensemble of simulations, which rely on uncertainties introduced by model physics, are also introduced. These techniques lead

to a purposely “degraded” initial ensemble that contains robust non-Gaussian errors, such that the profiles from the nature

run are often out of the ensemble spread. This ensemble of simulations allows for evaluation of the data assimilation system

described herein. The steps taken to create the nature run and forecast ensemble are listed in sections 2 and 3. Sections 4 and

5 describe the data assimilation procedure and forecast verification metrics. An example OSSE is described in section 6, and90

section 7 discusses the use of this OSSE framework for future studies.
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(a)Warm Sector (b)Cold Sector

Figure 1. (a) The initial sounding for the nature run simulation. Red and green vertical lines correspond with T and Td. The black vertical

line marks the temperature of an air parcel launched from the surface. The hodograph, which plotted in the upper-right corner, is color coded

by height above ground level (AGL): 0–1 km is red, 1—3 km is green, 3—5 km is blue, 5—10 km is yellow. Both soundings also initialize

the (a) warm sector and (b) cold sector simulations that create the forecast ensemble.

2 Nature Run Configuration

The following steps are taken to create the nature run simulation for this case:

– Step 1: Initialize the environment using a high-shear, low-convective-available-potential-energy (CAPE) composite

sounding (Fig. 1a) and insert a frontal boundary on the western edge of the domain95

– Step 2: Conduct an separate initial “turbulence simulation” to generate realistic perturbation fields of temperature, wind,

and moisture

– Step 3: Superimpose the resultant turbulence fields on the initial conditions created in Step 1 to generate the final envi-

ronment used to start the nature run simulation

The remainder of this section explains, in depth, the procedure used to generate the nature run simulation.100
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Figure 2. Nature run initial conditions at the lowest model level for (a) T, (b) Td, and (c) u-wind. The plotted subdomain is centered on the

initial frontal boundary.

2.1 Initial Environment

The nature run is initialized with a horizontally homogeneous environment using a high-shear, low-CAPE composite sounding.

The initial sounding (Fig. 1a), introduced by Sherburn and Parker (2019), is modified in the lower troposphere to support the

development of robust boundary-layer turbulence. High-shear, low-CAPE environments, which support approximately half

of the contiguous United States significant (EF2+) tornadoes (Schneider et al., 2006), are the primary target of Verification105

of the Origins of Rotation in Tornadoes Experiment-Southeast (VORTEX-SE) field experiments. OSSEs initialized with this

environment should help determine which observing systems benefit forecast skill most and how to appropriately deploy them

(e.g., spatial and temporal density).

A cold front provides the mechanical forcing required to initiate sustained convection for this case. Potential temperature

(θ), dewpoint temperature (Td), and u-wind perturbations of −10 K, −20 K, and 10 m s−1, respectively, are inserted along the110

western domain edge to create the frontal boundary. Perturbation magnitude fp(x) decreases with distance from the western

and bottom domain boundaries following a cosine function:

fp(x) = perturbation× cos

(
πβ

2

)2

, (1)

where

β =

√(
x

frontwidth+ fw(y)

)2

+

(
z

front height

)2

, (2)115

and x, y, and z are the distance of a grid point from the western, southern, and bottom boundaries, respectively. The assumed

frontal width is 100 km and height is 6 km. These equations generate a north-south front that, left undisturbed, will cause
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storms to initiate at the same time and east-west location. Waves are added to the frontal boundary in the north-south direction

to vary convective initiation timing and location via:

fw(y) = δ cos

(
2πy

λ
−ϕ

)
, (3)120

where λ is wavelength (100 km), ϕ is phase shift (0), and δ is wave amplitude (10 km). The subtle frontal waves (Fig. 2)

simulate the natural variability observed in frontal location.

2.2 Boundary-Layer Turbulence

Boundary-layer turbulence plays an important role in the evolution of convection. Storm interactions with turbulent eddies can

modify the mesocyclone circulation as well as storm intensity and location (e.g., Nowotarski et al., 2015; Markowski, 2020;125

Labriola and Wicker, 2022). Turbulent eddies transport near-surface air further aloft and impact boundary layer temperature,

wind, and moisture profiles. The turbulence also facilitates the downward transport of high momentum air aloft and is conse-

quently necessary to properly simulate the effects of surface friction on thunderstorm evolution (Markowski, 2016). To enhance

experiment realism, the nature run simulation for this case is initialized with fully mature boundary-layer turbulence using a

technique introduced by Markowski (2020) and subsequently improved upon by Labriola and Wicker (2022).130

A “turbulence simulation” is first conducted to create a realization of boundary-layer turbulence. The turbulence simulation

is initialized with the nature run initial sounding (Fig. 1a) and then small-scale pseudo-random θ perturbations (± 0.25 K)

are superimposed on the initial environment to initiate turbulence. The settings and grid configuration used for the turbulence

simulation are nearly identical to those used for the nature run (see Sect. 2.3), with a few notable exceptions. The lateral

boundary conditions are made periodic so that turbulent eddies persist across domain boundaries. The turbulence simulation135

assumes no radiative forcing, no surface friction, and applies Coriolis acceleration to the perturbation wind field. These settings

are necessary to form robust turbulent motions (Fig. 3) without spawning spurious convection or substantially modifying the

initial environment. See Labriola and Wicker (2022) for more details. As the turbulence simulation is integrated 12 hours

forward in time, the random perturbations evolve to form a turbulent boundary layer (Fig. 3). At the conclusion of the turbulence

simulation, the perturbation u, v, w, θ, and water vapor mixing ratio (qv) fields (i.e., the difference between a model state140

variable and the horizontal planar mean) are superimposed on the initial conditions used for the nature run. These perturbations

do not statistically impact the nature run’s mean initial environment because they average to zero across the domain.

2.3 Prediction Model Settings

The nature run simulation for this case is created using the Cloud Model One (CM1; Bryan and Fritsch, 2002; Bryan and

Rotunno, 2009) release 20.1. The simulation is run between 0000–0800 UTC on 1 January 2021 on a domain centered over145

Jackson, Mississippi (32.30 ºN, -90.18 ºW). This time and location correspond with previous cold-season tornadic events that

occurred in the Southeastern United States (Sherburn and Parker, 2014). The numerical mesh is 1200× 600 computational

points in the x- and y- directions, respectively, with uniform horizontal grid spacing of 500-m. This grid spacing, which is too

coarse to fully resolve large turbulent eddies (Bryan et al. 2003), was selected as a balance between the computational feasibility
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Figure 3. Vertical cross-sections of boundary layer turbulent perturbations that are inserted into the nature run simulation. Plotted fields

include the (a) u- (b) v-, and (c) w-components of wind, as well as (d) qv , and (e) θ.

and physical realism of boundary-layer turbulence. Lateral boundary conditions are open in the x-direction to preserve the east-150

west temperature gradient and periodic in the y-direction. No Coriolis acceleration is assumed due to the complex nature of

the atmospheric flow associated with the frontal boundary.

The 120-level vertical grid is stretched from 10 m at the lowest model level to 250 m at heights between 9.875—15 km

(i.e., the model top). The simulation is run with a semi-slip bottom boundary condition and uses the Jiménez et al. (2012)

surface-layer scheme to calculate surface fluxes and surface stress. The upper boundary condition is free-slip and Rayleigh155

damping is applied with a coefficient of 0.003 s−1 starting at 12 km above ground level (AGL).

Model physics options for this case were selected to ensure the simulation accurately portrays the evolution of a storm sys-

tem. Precipitation processes are parameterized using the double-moment Morrison microphysical parameterization (Morrison

et al., 2005, 2009). The microphysical parameterization predicts the evolution of a single rimed ice species similar to hail (e.g.,

dense, faster fall speeds), which produces realistic squall line simulations (Bryan and Morrison 2012). No separate cloud pa-160

rameterization is used. The NASA-Goddard radiative scheme simulates the effects of longwave and shortwave radiative forcing

during the simulation period. Subgrid-scale (SGS) turbulence is parameterized using the Deardorff (1980) three-dimensional

turbulence kinetic energy scheme.
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2.4 Simulation Results

The nature run setup produces a QLCS that persists for several hours before exiting the experiment domain (Fig. 4). Although165

the cold-air perturbation alone can initiate robust convection (e.g., Sherburn and Parker, 2019; Labriola and Wicker, 2022), the

positive u-wind perturbation along the western domain boundary is necessary to sustain convection. The post-frontal winds

advect cold air eastward with time (Fig. 4a, c, e) and maintain strong temperature and moisture gradients along the boundary.

The wind perturbation also enhances convergence, which initiates and sustains the robust storm system.
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Figure 4. Nature run (a,c,e) T and (b,d,f) Z at the lowest model level (5 m AGL). 500 m AGL winds are superimposed on (a,c,e) using

arrows.
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The QLCS storm structure changes over the simulation period. During the first two hours of the simulation (e.g., Fig. 4b)170

the convective line is robust and storms are spaced closely together so that it is difficult to discern individual convective

cores. As the simulation progresses, the QLCS embedded storms become more isolated and the trailing region of stratiform

precipitation expands in areal coverage (Fig. 4d,f). Boundary-layer turbulence and QLCS modifications to the environment

also cause isolated storms to initiate in the warm sector (Fig. 4f). Strong vertical wind shear and modest instability cause many

of the isolated storms to persist until they exit the domain or are absorbed by the approaching QLCS.175

Severe weather hazards (e.g., tornadoes, wind, hail) are small in scale and not fully resolved by the nature run simulation.

Since these phenomena cannot be explicitly predicted, diagnostic tools are used to identify areas of intense convection in model

output. Updraft helicity, which is the vertical integration of updraft intensity multiplied by vertical vorticity between 2 and 5

km (Kain et al., 2008), is a commonly used proxy for severe weather in CAM forecast experiments (e.g., Kain et al., 2010;

Sobash et al., 2011, 2016; Clark et al., 2012; Gallo et al., 2016; Loken et al., 2017; Carlin et al., 2017; Skinner et al., 2018;180

Potvin et al., 2019; Miller et al., 2022). Updraft helicity can skillfully predict severe weather events because the algorithm

identifies mid-level mesocyclones that produce a disproportionately large number of severe weather reports. To identify areas

of intense convection and understand how these storms evolve, the nature run maximum updraft helicity is evaluated (Fig. 5).

The nature run produces several long-track swaths of enhanced updraft helicity (> 500 m2 s−2), which suggests some

QLCS embedded storms are capable of producing severe weather. QLCS updraft helicity swaths (Fig. 5a) are short-lived and185

numerous in the western half of the experiment domain, where the storm system initiates and individual storm cells frequently

interact (Fig. 4b). Later in the simulation, as the QLCS convective cores become more diffuse (Fig. 4d), the number of updraft

helicity swaths decreases (Fig. 5a; 300 km < x < 450 km). In the eastern quarter of the experiment domain (x > 400 km),

isolated storms initiate ahead of the QLCS and produce long uninterrupted updraft helicity swaths (Fig. 5c). The rotating

storms initially move northeasterly until interacting with the QLCS, after which the updraft helicity intensity decreases and the190

swaths rotate eastward. The complex storm interactions for this case highlight the challenges to predict severe weather hazards

associated with an evolving QLCS.

3 Forecast Ensemble Configuration

Rather than using random perturbations to generate the initial ensemble, this study relies on uncertainties introduced by model

physics. The following steps are taken to create each of the 40 ensemble members for this case:195

– Step 1: Initialize two separate horizontally homogenous simulations with a warm-sector environment (Fig. 1a) and a

cold-sector environment (Fig. 1b)

– Step 2: Select a model surface type (Table 1) and insert random (± 0.25 K) θ perturbations

– Step 3: Run both simulations for 24 hours using the ensemble prediction model settings

– Step 4: Blend the simulations together to recreate the initial frontal boundary200

The remainder of this section explains, in depth, the procedure used to generate forecast initial conditions.
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3.1 Ensemble Initialization

Simulations are run with different land surfaces to allow the atmosphere to evolve freely and generate the 40-member forecast

ensemble. To avoid spawning the QLCS early, two separate simulations are created for each ensemble member to predict the

evolution of the air mass ahead (i.e., warm sector) and behind (i.e., cold sector) the front. The warm sector simulation is ini-205

tialized with the nature run initial sounding (Fig. 1a). Perturbations of θ, Td, and u-wind consistent with the nature run (-10 K,

-20 K, 10 m s−1, respectively) are added to the initial sounding to create the cold-sector environment (Fig. 1b). Perturbation

amplitude decreases as a cosine function of height above the surface and extends 6 km AGL. Once both simulations are initial-
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increments. Contours that are dashed (solid) indicate where the forecast is cooler (warmer) than the nature run. Contours become thicker as

error increases.

ized, pseudo-random potential temperature perturbations (± 0.25 K) are inserted into the environments to further encourage

ensemble diversity.210

Parameterized air-surface interactions are a substantial source of forecast uncertainty. Land-surface conditions impact the

boundary layer and can subsequently alter storm evolution (e.g., Reames and Stensrud, 2017, 2018; Yang et al., 2021). Conse-

quently, the heterogeneous surface makeup of the Southeastern United States can modify the environment in countless ways.

To incorporate these uncertainties into the ensemble design, cold- and warm-sector simulations for each ensemble member are

assigned a land-surface type that is commonly observed in the Southeast (Table 1). Simulated land surfaces include: various215

degrees of suburban and urban sprawl, croplands, grasslands, forests, bogs, and open bodies water (assumed in warm-sector

simulations only). Both simulations are then integrated for 24 hours using the ensemble prediction model settings (Sect. 3.2)

so that surface-dependent momentum, heat, and moisture fluxes can modify the lower troposphere.

Once the cold- and warm-sector simulations are complete, they are blended together using a cosine weighting function

consistent with Eq.(1) to form the initial cold-front boundary that initiates the QLCS. The cold-sector simulation solution is220

given full weight along the western domain boundary. The warm-sector solution is increasingly favored eastward and given

full weighting at all locations east of 100 km. To initiate convection at different times and locations, small changes are made
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Table 1. The surface types used to generate the initial ensemble of forecasts. Lu0 is the initial land-use index in CM1 namelist.

Members Lu0 Members Lu0

1, 21 1 11, 31 12

2, 22 2 12, 32 13

3, 23 3 13, 33 14

4, 24 4 14, 34 15

5, 25 5 15, 35 16

(Cold Sector = 33)

6, 26 6 16, 36 17

7, 27 7 17, 37 18

8, 28 8 18, 38 19

9, 29 9 19, 39 31

10, 30 10 20, 40 32

to the frontal boundary width (100 km ± 5 km), the number of frontal waves (3 ± 0.5), wave amplitude (10 km ± 5 km), and

phase (± π
4 ). The initial conditions for each ensemble member (Fig. 6) resembles the nature run; however, given the 24-hour

spin-up there is greater uncertainty in environmental conditions.225

3.2 Prediction Model Settings

The forecast ensemble is designed to resemble the National Severe Storms Laboratory Warn-on-Forecast System (WoFS;

Wheatley et al., 2015; Jones et al., 2016)—a frequent-updating CAM forecast ensemble that predicts the evolution of severe

weather events in real-time. This strategic choice allows OSSEs to assess how assimilated observations impact a real-time

ensemble prediction system that provides guidance to the operational community (e.g., Wilson et al., 2021; Gallo et al., 2022).230

Forecasts are run on a numerical mesh with 200×100 points in the x- and y-directions, respectively, with a uniform horizontal

spacing of 3 km and 50 vertical levels. Vertical grid spacing is stretched, with the smallest grid spacing (∆z = 50 m) located

at the surface and the coarsest grid spacing (∆z = 550 m) located at the 15-km model top. Forecast prediction model settings

are identical to those used for the nature run, save for a few notable exceptions. First, the SGS turbulence is disabled in the

ensemble forecasts and the one-dimensional Yonsei University (YSU) PBL scheme (Hong et al., 2006) is used to parameterize235

the effects of boundary-layer turbulence in the vertical direction. Second, the forecast ensemble and nature run are generated

using different versions of the CM1—release 20.1 for the nature run and release 18 for the ensemble. Differences between

prediction model releases and other factors (i.e., model physics configuration and grid spacing) are expected to mitigate the

“identical twin” problem that can cause overly optimistic OSSE results (e.g., Hoffman and Atlas, 2016).
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3.3 Forecast Results240

The initial forecast ensemble represents some of the complexities observed in real-data cases. Although most data assimilation

systems make use of Gaussian prior error approximations, the non-linear error growth attributed to mesoscale processes often

cause forecast errors to become non-Gaussian. Data assimilation systems can produce posterior state estimates under these

conditions, but subsequent analyses and forecasts are often suboptimal (e.g., Poterjoy et al., 2017; Robert et al., 2018; Buehner

and Jacques, 2020; Poterjoy, 2022). Due to the evolution of mesoscale processes in the warm- and cold-sector environments,245

forecast errors for this OSSE are non-Gaussian (e.g., Fig. 7) and more realistically challenge the performance of the data

assimilation system.

Errors introduced by model physics uncertainties cause the ensemble to drift away from the nature run environment. During

the 24-hour simulations, storm cold pools and increased cloud cover cause the warm sector surface layer to moisten and cool

on average (Fig. 7a). Relatively warm ground temperatures moisten and heat the lower troposphere in the cold sector (Fig. 7b).250

Friction also modifies the environment and slows near-surface winds (Fig. 7). Due to the idealized nature of these simulations,

there is no pressure gradient force to counteract the impacts of friction, so surface winds are nudged to zero. Ensemble wind

spread is larger in the warm-sector simulation (Fig. 7a), in part, because convective storms disrupt the environment. Moderating

cold- and warm-sector environments cause the atmosphere to become more stable and weakens frontal intensity (i.e., weaker

gradients, less convergence), which impacts the strength of the subsequent forecast QLCS.255

Modifications to the environment cause forecast storms to be weaker and less numerous than in the nature run simulation

(Fig. 8). Some members predict discrete convective storms to form near the observed QLCS (Fig. 8b, d), but fail to form an

organized line of storms. This occurs because moderating warm and cold sector environments weaken the frontal boundary

temperature gradient. Further, weaker winds diminish convergence that initiates the line of storms. Some ensemble members

predict a QLCS (Fig. 8c), but the storm system is smaller and weaker than in the nature run (Fig. 8a). Differences are attributed260

to changes in the horizontal grid spacing, which impacts storm updraft intensity and areal coverage (e.g., Bryan et al., 2003;

Bryan and Morrison, 2012; Verrelle et al., 2015). Additionally, the environment is more stable and has weaker low-level

convergence, so the forecast QLCS is less intense than in the nature run.

4 Data Assimilation Procedure

The data assimilation configuration for this study is designed to resemble the WoFS (Fig. 9). After initialization, the 40-265

member ensemble of forecasts undergoes a 30-minute spin-up period until 0030 UTC when observations are assimilated using

the Data Assimilation Research Testbed (DART; Anderson and Collins 2007; Anderson et al. 2009) ensemble adjustment

Kalman filter (EAKF; Anderson 2001). Observations are assimilated every 15 minutes over a 2-hour window between 0030–

0230 UTC. Following data assimilation, the forecast ensemble is run until 0700 UTC (4.5-hour forecast) before the QLCS

exits the domain.270

Simulated radar, surface, and sounding observations extracted from the nature run simulation are assimilated during this

study. Four radar sites that are spaced approximately 240 km apart in the experiment domain (Fig. 10) provide simulated

13



Figure 7. Profiles of the domain average (a) warm sector and (b) cold sector environments used to generate the initial ensemble. Red, green,

and black lines correspond with T (°C), Td (°C), and wind (knots). The 40 ensemble member profiles are marked with a thin translucent line.

The profiles used to initialize warm sector and cold sector simulations (i.e., the unperturbed soundings) are marked by a bold line.
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Figure 8. (a) Nature run and (b-d) forecast Z at the lowest model level at 0300 UTC. The forecasts are integrated forward in time without

data assimilation.

reflectivity (Z) and radial velocity (Vr) observations. The radar observations are interpolated in the vertical direction to generate

14 tilts that are consistent with the next generation weather radar (NEXRAD; Crum et al., 1993) system scanning pattern. A

Cressman weighting function (Cressman, 1959) with a 3-km radius of influence analyzes observations to a 5-km grid in the275

horizontal direction. Observations within 150 km of the parent radar site are assimilated. Radar observations update all model

state variables except surface moisture and skin temperature fields.
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Figure 9. The OSSE data assimilation timeline. Downward pointing arrows indicate times when only radar observations are assimilated.

Upward arrows indicate when surface and radar observations are assimilated.

Table 2. The data assimilation parameters used for each observation type.

Radar Surface Sounding

Number of Sites 4 54 4

Assimilation Frequency 15 Minutes Top of Hour Top of Hour

Observation 6 dBZ (Z) 1.75 m s−1 (u,v) 1.75 m s−1 (u,v)

Errors 3 m s−1 (Vr) 1.5 K (T) 1.5 K (T)

2.0 K (Td) 2.0 K (Td)

Localization 12 km (Horizontal) 150 km (Horizontal) 500 km (Horizontal)

Radius 6 km (Vertical) 4 km (Vertical) 4 km (Vertical)

Radar data assimilation alone does not necessarily result in optimal forecast performance due to more realistic and non-

Gaussian initial condition errors. This is different from many previous CAM OSSEs that produce skilled forecasts after assim-

ilating only radar observations (e.g., Snyder and Zhang, 2003; Dowell et al., 2004; Caya et al., 2005; Jung et al., 2008; Potvin280

et al., 2013; Stratman et al., 2018). Conventional observations must be also assimilated in this study to improve forecast skill.

This is consistent with operational forecast systems where multiple observation sources are always assimilated.

Simulated soundings (i.e., an instantaneous profile of the atmosphere) are assimilated at the top of each hour from each

radar site (average site spacing = 243.5 km). Soundings sample the atmosphere every 100 m and provide observations of air

temperature (T), dewpoint temperature (Td), and u- and v-wind. Simulated surface observations mimic what is reported by the285

automated surface observing system (ASOS) network in real-time. Surface observations are assimilated at the top of the hour

(Fig. 9) and include 2-m temperature, 2-m dewpoint temperature, and 10-m u- and v-wind. The 54 surface stations are randomly

distributed throughout the experiment domain to match the approximate spatial density of ASOS stations in the southeastern
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Figure 10. The experiment domain with assimilated observations plotted. Gray shaded circles mark scanning radius of four radars (marked

by dark circles). White stars mark the sites where soundings are launched. The 54 assimilated surface stations are marked by blue diamonds.

Nature run Z at the time of the final data assimilation cycle (0230 UTC) is plotted for reference.

United States (Fig. 10). Errors are added to each assimilated observation (radar, soundings, and surface) by randomly drawing

perturbations from a zero-mean Gaussian distribution that is equivalent to the observation error variance (Table 2).290

Data assimilation systems are subject to sampling errors that can cause observations to become spuriously correlated with

distant model state variables. Left unchecked, the assimilated observations will degrade the analyzed model state and limit

forecast skill. Covariance localization mitigates this problem by limiting the radius over which an assimilated can impact

the model state. This study uses a distance-based Gaussian weighting function (Gaspari and Cohn, 1999) to limit the range

of influence. Localization radii for the assimilated observations closely resemble what is employed by the WoFS (Table 2).295

Spatially and temporally varying adaptive inflation (Anderson and Collins, 2007) is applied to the prior ensemble to maintain

ensemble spread during data assimilation. Inflation parameters are defined in Table 3.

5 Forecast Verification

Observation space statistics provide insight into data assimilation system performance. The root-mean square error (RMSE)

quantifies the fit of forecasts and analyses to the observed environment. Rather than calculating statistics at the location of an300

observing station, errors are calculated for environmental fields (T, Td, u, v) over the lowest 3 km of the forecast domain, where

forecast errors are largest. This provides insight into how assimilated observations impact the environment.
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Table 3. The Surface types used to generate the initial ensemble of forecasts. Lu0 is the initial land-use index in CM1 namelist.

Inflation Parameter Defined Value

inf_initial 1.0

inf_sd_initial 0.6

inf_damping 0.9

inf_lower_bound 1.0

inf_upper_bound 100

inf_sd_lower_bound 0.6

Forecast and nature run simulated radar Z sampled at the lowest model level are compared to evaluate QLCS intensity,

position, and structure. The neighborhood maximum ensemble probability (NMEP Schwartz and Sobash, 2017) of forecast Z

exceeding 45 dBZ (P[Z > 45 dBZ]) evaluates storm cores embedded within the QLCS. To mitigate small displacement errors, a305

9-km neighborhood is used to generate the probabilistic fields. A Gaussian filter with the same radius smooths the subsequent

forecast probabilities. Probabilistic forecast guidance is subjectively compared and objectively verified against the nature run

to measure forecast skill.

The Brier skill score (BSS; Brier, 1950) objectively quantifies probabilistic forecast skill for this study. This measurement

of skill, which ranges between values less than zero (no skill) and one (perfect skill), can be decomposed into reliability,310

resolution, and uncertainty (Murphy, 1973):

BSS =
Resolution−Reliability

Uncertainty
(4)

Reliability is the difference between forecast probability and the relative frequency of the event occurring for that given

probability threshold. Forecast skill is optimized when this difference is minimized. Resolution is the difference between the

observed climatology of an event occurrence and the frequency that a forecast event occurs for a given probability threshold.315

Forecast skill increases with resolution. While the first two parameters are defined by forecast performance, uncertainty is a

measure of event climatology. Attributes diagrams, which plot forecast probability against observed frequency, provide insight

into forecast reliability and resolution.

6 Forecast and Data Assimilation Experiment

Three forecast and data assimilation experiments are run to demonstrate of impact assimilated environmental and radar obser-320

vations. The first experiment does not use data assimilation (NoDA), the control experiment (CTRL) assimilates only radar

observations, while the final experiment (ENVI) assimilates radar, surface, and sounding observations.

The RMSE values (Fig. 11) from the NoDA experiment generally increase over the forecast period. The CTRL RMSE values

are relatively improved, but remain constant or increase after successive data assimilation cycles. Although cross-covariances
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Figure 11. The domain averaged (a) u-wind (b) v-wind, (c) T, and (d) Td RMSE during the data assimilation window. Statistics consider the

lowest 3 km of the troposphere where forecast errors are largest. Dashed black, solid blue, and solid red lines correspond with NoDA, CTRL,

and ENVI, respectively. Vertical dotted lines mark the points when conventional observations (soundings and surface) are assimilated.

allow assimilated radar observations to update the model state, the impact of radar observations is confined to regions near or325

within convection. Much of the domain is clear air during the data assimilation window (Fig. 10), so radar observations have a

limited impact on the broad environment. Assimilated environmental observations substantially reduce wind field errors (Fig.

11a-b), but have little impact or increase T (Fig. 11c) and Td (Fig. 11d) errors. Assimilated sounding observations assume a

large localization radius (Table 2) that is consistent with the WoFS configuration. Large localization radii allow atmospheric

observations to update large regions of the experiment domain; however, spurious correlations between distant model state330

variables can potentially increase error. Despite modest increases in error, RMSE values for temperature and moisture fields

are comparable between both experiments and remain relatively small (i.e., less than or equal to the observation error variance)

throughout data assimilation window.

Assimilated environmental observations enhance frontal boundary wind convergence and cause a more robust QLCS to

form. The CTRL posterior u-wind field at the final assimilation cycle (Fig. 12c) is positively biased in the lowest 1–2 km of the335

warm sector (x > 250 km). This decreases CTRL frontal convergence because warm-sector winds are directed eastward and

away from the QLCS. Assimilated environmental observations decrease ENVI warm-sector wind errors near the surface (Fig.

12d). In the cold sector (x < 225 km), ENVI winds are slightly stronger than CTRL, which decreases error (Fig. 12c-d). This

further enhances convergence in ENVI forecasts and provides the mechanical forcing necessary to establish a QLCS that has
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Figure 12. Ensemble mean posterior error at the time of the final data assimilation cycle (0230 UTC) for (b-d) u-wind, (f-h) T, and (j-l) Td.

Errors are averaged in the north-south direction. Regions where the north-south average updraft velocity exceeds 2.0 m s−1 are contoured.

larger updrafts (Fig. 13). Errors in u-wind are largest in the NoDA case for both sectors (Fig. 13b), resulting in greatly reduced340

convergence and a QLCS with much weaker updrafts (Fig. 13).

While the NoDA experiment again clearly performs the worst, the CTRL and ENVI differences are more subtle for temper-

ature (Fig. 12f-h) and moisture (Fig. 12j-l) fields. All experiments underpredict cold-sector intensity; the near surface (< 0.5

km AGL) is too warm (Fig. 12f-h) and moist (Fig. 12j-l). ENVI cold-sector biases are smaller than CTRL, which suggests the

assimilated environmental observations have a small but positive impact on the posterior state. Analyzed T and Td are similar345

in the warm sector (x > 250 km) for the experiments; ensembles are cool near the surface (Fig. 12f-h) and dry further aloft

(> 1 km AGL) (Fig. 12j-l). Despite localized errors, domain-averaged temperature and moisture errors are relatively small in

magnitude (Fig. 11c,d).

Assimilated radar observations play an important role in the initial storm placement and intensity (e.g., Snyder and Zhang,

2003). Both the CTRL and ENVI experiments, which assimilate Z and Vr observations, predict high forecast probabilities350

(P[Z > 45 dBZ] > 0.7) to be collocated with observations early in the forecast (Fig. 14c,e), while the same is not true for the

NoDA case (Fig. 14a). Consequently, both the CTRL and ENVI experiments have similar attributes curves (Fig. 14g).

Forecast probabilities become displaced from observations over time (Fig. 14b,d,f). Although individual ensemble mem-

bers initially resemble to the nature run (Fig. 15a,c,e,g), the predicted storms move too slow during the forecast period (Fig.

15b,d,f,h). Forecast storm motion biases are commonly observed (e.g., VandenBerg et al., 2014) and are sensitive to many355
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Figure 13. Ensemble mean updraft volume during the forecast period. Statistics only consider regions where updraft velocity exceeds 5 m

s−1. Dashed black, solid blue, and solid red lines correspond with NoDA, CTRL, and ENVI, respectively.

factors including the wind profile errors and cold pool intensity. Due to storm displacement errors, CTRL forecast probabili-

ties far exceed observed frequency (Fig. 14h) for high probability thresholds (P[Z > 45dBZ] > 0.6). The ENVI QLCS moves

faster and is more closely located with the observed QLCS, causing the forecast ensemble to become more reliable (Fig. 14h).

The areal coverage of high forecast probabilities (0.6<P[Z > 45 dBZ] < 0.8; Fig. 14h) is also higher for ENVI than CTRL.

Forecast probabilities increase partly because ENVI forecasts predict storm updrafts to be larger than CTRL throughout much360

of the forecast period (Fig. 13).

The NoDA ensemble forecast skill scores are the lowest and reach unity after one hour (Fig. 16). This is because the forecasts

predict the weakest and slowest storm system (e.g., Fig. 15d). Forecast skill scores for both the CTRL and ENVI ensembles

are similar early in the forecast period (Fig. 14), but diverge during the first two hours. The benefits of radar data assimilation

wane during this time because small-scale errors quickly grow in scale and impact storm evolution (e.g., Aksoy et al., 2010).365

For example, CTRL skill decreases faster (Fig 16) because the predicted QLCS moves too slow and becomes displaced from

observations (Fig. 14d, Fig. 15d). The ENVI BSS is higher because the predicted QLCS evolves in an environment that is more

representative of the nature run (Fig. 11). Despite differences, both the CTRL and ENVI ensembles exhibit some skill (BSS

> 0.0) during the first 4 hours of the forecast (Fig. 16). BSSs for both ensembles gradually decrease after this time because the

QLCS becomes displaced from observations, the line of storms weakens, and storms ahead of the QLCS fail to initiate with370

sufficient coverage and intensity.
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Figure 14. The P(Z > 45 dBZ) at (a,c,e) 30 and (b,d,f) 150 minutes for (a-b) NoDA, (c-d) CTRL, and (e-f) ENVI. Regions where the nature

run Z exceeds 45 dBZ are contoured black. Attributes diagrams evaluate forecast performance over the full experiment domain at (g) 30 and

(h) 150 minutes.
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Figure 15. (a,b) Nature run and (c-h) forecast (member 25) Z at the lowest model level at (a,c,e,g) 30 and (b,d,f,h) 150 minutes.

23



0 50 100 150 200 250
Forecast Time (Minutes)

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0 Brier Skill Score (Z > 45 dBZ)
NoDA
CTRL
ENVI

Figure 16. The BSS evaluating the P(Z > 45 dBZ). Dashed black, solid blue, and solid red lines correspond with NoDA, CTRL, and ENVI,

respectively. The horizontal black line marks no skill. Vertical dotted lines mark the times when forecast probabilities are evaluated in Figure

15.

7 Summary

To gain a more robust understanding of how assimilated observations impact CAM forecast skill, it is imperative that OSSEs

include a diverse range of case studies that simulate different storm modes and environments. Unfortunately, the number of

idealized case studies for CAM OSSEs is limited. This paper introduces the techniques used to generate a nature run that is375

representative of a tornadic outbreak in the southeastern United States. The nature run simulates a cold front boundary that

initiates and maintains a QLCS in a highly-sheared and modestly-unstable turbulent environment. During the 7-hour simulation,

the QLCS produces multiple mesovortices with isolated rotating thunderstorms that initiate ahead in the warm sector.

This study also introduces a new technique to create an ensemble of forecasts initialized from a single sounding. Uncertain-

ties in the representation of surface conditions are leveraged to create the forecast ensemble. Each forecast member is initialized380

from the same sounding, but run for 24-hours assuming a different land-surface type and small-scale random perturbations.

Different surface conditions alter the surface heat, moisture, and momentum fluxes that modify the lower troposphere. The sub-

sequent ensemble is representative of many real-data CAM case studies because the ensemble mean environment is degraded

and the initial condition errors are non-Gaussian. This provides the opportunity to understand how assimilated environmental

observations will impact forecast skill during a real case study.385
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The OSSE framework introduced in this study requires a combination of in-storm and environmental observations to create a

more skilled QLCS forecast. Forecasts that only assimilate radar observations (reflectivity, radial velocity) predict a relatively

weak QLCS that moves too slowly. This is in large part because surface friction weakens the initial ensemble wind profile

in the lower troposphere which diminishes convergence along the front that initiates and sustains the QLCS. Environmental

observations must also be assimilated to correct wind profile errors and increase convergence. Forecasts that assimilate radar390

and environmental observations (surface and sounding) are consequently more skilled; the QLCS moves faster and has larger

updrafts.

The data assimilation experiments conducted in this study are relatively simplistic in their treatment of observations. En-

vironmental observations are interpolated from model output with Gaussian noise to simulate observation error. This strategy

is likely adequate for in-situ observations that directly observe the atmosphere (e.g., soundings), but underrepresents retrieved395

profile errors for remote sensing systems (e.g., Doppler wind lidars, atmospheric emitted radiance inferometers). To better

understand the impact of boundary layer profiling systems in future data assimilation experiments, it is imperative to more

accurately represent instrument errors. Further, high-resolution modeling studies of the simulated environment are needed

to quantify representativeness errors that also introduce uncertainties during data assimilation (e.g., Janjić and Cohn, 2006;

Hodyss and Nichols, 2015).400

Future work using this OSSE configuration will assimilate different simulated boundary-layer profiling instruments to un-

derstand their impact on convective initiation and QLCS evolution. Assimilating thermodynamic and kinematic profiles of the

boundary layer can improve representation of the lower troposphere and consequently increase convective initiation forecast

skill (e.g., Coniglio et al., 2019; Degelia et al., 2019, 2020; Chipilski et al., 2020). These OSSEs will also help determine an

optimal assimilation strategy, including sampling frequency and spatial density. New insights will help determine how these405

instruments should be deployed during future field campaigns to study and understand high-impact weather in the southeast

United States.

Finally, future studies should develop techniques to quantify the expected level of maximum forecast skill based on event

predictability. Understanding the limits of practical predictability (e.g., Melhauser and Zhang, 2012; Zhang et al., 2015; Flora

et al., 2018) should help focus efforts by users looking to optimize the design of, and the assimilation of, observations from410

new observing networks in the coming decade.

Code and data availability. The software and scripts used to generate the initial ensemble forecast, conduct data assimilation, run the free

forecast ensemble, and post-process model output can be found accessed at https://doi.org/10.5281/zenodo.7109050. In lieu of recreating the

data, initial conditions for the nature run, assimilated observations, and the initial prior ensemble at the time of the first assimilation cycle

can be accessed at: https://doi.org/10.5281/zenodo.7126769415
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