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Abstract 22 
 23 
Multiple climate-driven stressors, including warming and increased nutrient delivery, are 24 
exacerbating hypoxia in coastal marine environments. Within coastal watersheds, environmental 25 
managers are particularly interested in climate impacts on terrestrial processes, which may 26 
undermine the efficacy of management actions designed to reduce eutrophication and consequent 27 
low-oxygen conditions in receiving coastal waters. However, substantial uncertainty 28 
accompanies the application of Earth System Model (ESM) projections to a regional modeling 29 
framework when quantifying future changes to estuarine hypoxia due to climate change. In this 30 
study, two downscaling methods are applied to multiple ESMs and used to force two 31 
independent watershed models for Chesapeake Bay, a large coastal-plain estuary of the eastern 32 
United States. The projected watershed changes are then used to force a coupled 3-D 33 
hydrodynamic-biogeochemical estuarine model to project climate impacts on hypoxia, with 34 
particular emphasis on projection uncertainties. Results indicate that all three factors (ESM, 35 
downscaling method, and watershed model) are found to contribute significantly to the 36 
uncertainty associated with future hypoxia, with the choice of ESM being the largest contributor. 37 
Overall, in the absence of management actions, there is a high likelihood that climate change 38 
impacts on the watershed will expand low-oxygen conditions by 2050, relative to a 1990s 39 
baseline period; however, the projected increase in hypoxia is quite small (4%) because only 40 
climate-induced changes in watershed inputs are considered and not those on the estuary itself. 41 
Results also demonstrate that the attainment of established nutrient reduction targets will reduce 42 
annual hypoxia by about 50% compared to the 1990s. Given these estimates, it is virtually 43 
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certain that fully implemented management actions reducing excess nutrient loadings will 44 
outweigh hypoxia increases driven by climate-induced changes in terrestrial runoff. 45 
 46 
Short Summary  47 
 48 
Climate impacts are essential for environmental managers to consider when implementing 49 
nutrient reduction plans designed to reduce hypoxia. This work highlights relative sources of 50 
uncertainty in modeling regional climate impacts on the Chesapeake Bay watershed and 51 
consequent declines in Bay oxygen levels. The results demonstrate that planned water quality 52 
improvement goals are capable of reducing hypoxia levels by half, offsetting climate-driven 53 
impacts to terrestrial runoff.  54 
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1 Introduction 55 
 56 
 Over the past several decades, estuarine and coastal ecosystems have been subject to elevated 57 
levels of hypoxia relative to the open ocean (Gilbert et al., 2010), and are anticipated to be 58 
affected by multiple climate change impacts including terrestrial runoff changes (Breitburg et al., 59 
2018) and rising temperatures (Whitney, 2022). Increases in precipitation volume and intensity 60 
are likely to increase discharge and associated nutrient and sediment export to coastal systems 61 
(Howarth et al., 2006; Lee et al., 2016; Sinha et al., 2017). Rising atmospheric temperatures will 62 
increase soil temperatures and alter evapotranspiration, soil biogeochemical cycling and plant 63 
responses (Schaefer and Alber, 2007; Wolkovich et al., 2012; Ator et al., 2022), also affecting 64 
riverine nutrient export to marine habitats. Further changes to agricultural practices driven by 65 
these same climate impacts are also likely to contribute to altered nutrient applications and 66 
subsequent soil cycling (Wagena et al., 2018). Altogether, climate impacts in the terrestrial 67 
environment may further eutrophy coastal ecosystems (Najjar et al., 2010), altering the 68 
phenology and biogeochemical rates of nutrient consumption and exacerbating hypoxia (Testa et 69 
al., 2018). 70 
 Future estimates of coastal hypoxia have increased substantially over the past decade, likely 71 
influenced by increased access to biogeochemical modeling tools and regional climate 72 
projections needed for finer scale modeling and analyses (Fennel et al., 2019). The majority of 73 
coastal hypoxia climate impact studies have focused on a select few coastal locations including 74 
the Baltic Sea (Meier et al., 2011a,b; Meier et al., 2012; Neumann et al., 2012; Ryabchenko et 75 
al., 2016; Saraiva et al., 2019a,b; Wåhlström et al., 2020; Meier et al., 2021; Meier et al., 2022), 76 
Chesapeake Bay (Wang et al., 2017; Irby et al., 2018; Ni et al., 2019; Testa et al., 2021; Tian et 77 
al., 2021; Cai et al., 2021), and the Gulf of Mexico (Justić et al., 1996; Justić et al., 2007; Lehrter 78 
et al., 2017; Laurent et al., 2018). Other projected changes to dissolved oxygen (O2) levels have 79 
been documented in nearshore environments including the North Sea (Meire et al., 2013; 80 
Wakelin et al., 2020), Arabian Sea (Lachkar et al., 2019), California Current System (Dussin et 81 
al., 2019; Siedlecki et al., 2021; Pozo Buil et al., 2021), and coastal waters surrounding China 82 
(Hong et al., 2020; Yau et al., 2020; Zhang et al., 2021; Zhang et al., 2022). Hypoxia projections 83 
in relatively smaller estuaries have also been documented in the Elbe (Hein et al., 2018), 84 
Garonne (Lajaunie-Salla et al., 2018), and Long Island Sound (Whitney and Vlahos, 2021). 85 

Broadly speaking, these climate impact studies apply either a range of idealized changes to 86 
conduct a sensitivity study or utilize long-term projections derived from Earth System Models 87 
(ESMs) (IPCC, 2013). When directly applying such projections to study regional coastal oxygen 88 
responses, dynamically or statistically downscaled estimates of atmospheric and marine variables 89 
are typically used to continuously simulate climate impacts or to calculate and apply a change 90 
factor (Carter et al., 1994; Anandhi et al., 2011) to a shorter historical time period. Quantifying 91 
the relative uncertainties from various sources including ESM, downscaling methodology, 92 
internal variability, and hydrological model is not new to the field of climate research (Hawkins 93 
and Sutton, 2009; Yip et al., 2011; Northrop and Chandler, 2014) or watershed applications 94 
(Bosshard et al., 2013; Vetter et al., 2017; Wang et al., 2020; Ohn et al., 2021). Questions of 95 
uncertainty due to climate effects in past marine ecosystem impact studies have often been 96 
addressed by selecting some combination of ESMs and/or emissions scenarios (Meier et al., 97 
2011a; Ni et al., 2019; Saraiva et al., 2019b; Meier et al., 2019; Meier et al., 2021; Pozo Buil et 98 
al., 2021). Additionally, some studies have also sought to account for the importance of managed 99 
nutrient runoff from terrestrial (Irby et al., 2018; Saraiva et al., 2019a; Bartosova et al., 2019; 100 
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Pihlainen et al., 2020) and atmospheric (Yau et al., 2020; Meier et al., 2021) sources and their 101 
impacts on oxygen levels. Despite some comprehensive efforts to identify sources of uncertainty 102 
in coastal oxygen projections (Meier et al., 2019; 2021), few studies have evaluated uncertainties 103 
introduced by the choice of specific downscaling method and/or terrestrial model. These factors 104 
represent additional sources of variability when estimating future hypoxia and are inherent in 105 
regional simulations of coastal dynamics. 106 

The Chesapeake Bay, which is the largest estuary in the continental United States (Kemp et 107 
al., 2005), has undergone intensive management efforts to improve water quality and oxygen 108 
levels over the past three decades. These management efforts have focused on the reduction of 109 
excess nitrogen, phosphorus, and sediment loadings to the Bay (USEPA, 2010), and continuous 110 
adaptive monitoring efforts to evaluate progress in restoring water quality (Tango and Batiuk, 111 
2016). Recent analyses of monitoring data have demonstrated improvements in water quality 112 
throughout the Bay despite the trajectory of recovery being slowed by extreme weather events 113 
(Zhang et al., 2018). Observed lags in water quality responses to nutrient reductions (Murphy et 114 
al., 2022) are also evident in recent years (Zahran et al. 2022). Despite the difficulties in 115 
assessing long-term improvements in water quality due to strong interannual variability, new 116 
research has demonstrated that the Chesapeake Bay is more resilient to recent and ongoing 117 
climate change impacts that have decreased oxygen levels as a result of decades of nutrient load 118 
reductions (Frankel et al., 2022). 119 

In recent years managers have recognized the importance of investigating whether the 120 
originally established Total Maximum Daily Loads (USEPA, 2010) will need to be adjusted to 121 
ensure the attainment of water quality standards for the Chesapeake Bay as the climate changes 122 
(Chesapeake Bay Program, 2020; Hood et al., 2021). Increasing temperatures and precipitation 123 
are anticipated to affect watershed snowpack, soil moisture levels, terrestrial nutrient cycling, 124 
and associated discharge, streamflow generation, and flooding (Shenk et al., 2021b), potentially 125 
altering the efficacy of nutrient reduction strategies. Increases in nutrient and carbon inputs to the 126 
Bay resulting from climate change and anthropogenic stressors have already been documented 127 
over the course of the past century (Pan et al., 2021; Yao et al., 2021), and are anticipated to 128 
increase in the 21st century as well (Wang et al., 2017; Irby et al., 2018; Ni et al., 2019). For 129 
example, Irby et al. (2018) directly tested the role of future nutrient reductions via a sensitivity 130 
analysis of mid-century climate effects, and found substantial alleviation of hypoxic conditions 131 
when management targets were met, despite significantly increasing water temperatures. 132 
However, that study applied spatially constant changes in watershed inputs derived from a 133 
specific watershed model, one downscaling technique and a median estimate of ESM 134 
projections. A more robust effort to produce a range of scenarios incorporating multiple 135 
watershed models, downscaling techniques and ESMs is needed to assess uncertainty estimates 136 
of projected hypoxia, which can be used to guide decision-making that explicitly considers what 137 
levels of environmental risk are acceptable for Chesapeake Bay stakeholders. 138 

The present study applies multiple downscaled ESMs to two independently developed 139 
watershed models with significantly different representation of watershed processes and spatial 140 
scale; both are used to force a coupled hydrodynamic-biogeochemical estuarine model in order 141 
to better constrain the relative uncertainties of future terrestrial runoff estimates on estuarine 142 
hypoxia (Shenk et al., 2021a). The resulting ensemble of numerical experiments includes 143 
realistic climate forcings and an extensive set of regional linked watershed-estuarine 144 
deterministic model simulations. The framework established in this research assesses the relative 145 
uncertainties introduced by choice of ESM, downscaling methodology, and regionally focused 146 
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watershed model in quantifying changes to O2 levels in the estuary. Additionally, this 147 
investigation constrains the bounds of changes to Chesapeake Bay hypoxia (defined herein as O2 148 
< 2 mg L-1) with and without the effects of management actions, using an ensemble of realistic 149 
watershed forcings. The study provides a roadmap for environmental managers to design climate 150 
impact assessments that are better able to quantify the range of possible future levels of hypoxia, 151 
which can be influenced by nutrient management actions. 152 
 153 
2 Methods 154 
 155 
2.1 Monitoring data 156 
 Monthly estimates of freshwater discharge, inorganic nitrogen, and organic nitrogen at the 157 
non-tidal monitoring stations nearest the head of tide of the three largest tributaries to the 158 
Chesapeake Bay (Susquehanna, Potomac, and James; Fig. 1a; Table S1) were used to evaluate 159 
the performance of watershed models. Discharge and nitrogen load estimates are derived from 160 
observations that are collected at United States Geological Survey (USGS) stream gages and 161 
comprise part of the USGS River Input Monitoring program in the Chesapeake Bay watershed. 162 
Estimates for the nitrogen species were calculated using a weighted statistical regression process 163 
that accounts for the variability introduced by time, discharge, and season (Hirsch et al., 2010).  164 
 Main stem bay observations collected over the period 1991-2000, accessible via a data 165 
repository maintained by the Chesapeake Bay Program (CBP; Olson 2012; CBP DataHub 2020), 166 
were used to assess estuarine model skill (see Sect. 2.3.1). Since 1984, numerous water quality 167 
data have been collected along the Bay’s main stem and throughout its tributaries at semi-168 
monthly to monthly intervals as part of the Water Quality Monitoring Program. These data were 169 
collected at the surface, above and below the pycnocline, and at the bottom for chemical 170 
variables including nitrate and organic nitrogen, and throughout the entire water column at 1-2 m 171 
intervals for O2. Twenty CBP stations were selected for model comparison at the surface and 172 
bottom (Fig. 1b, Table S2), including those most frequently sampled and those located along the 173 
entirety of the Bay’s main channel where hypoxia commonly occurs (Officer et al., 1984; Hagy 174 
et al., 2004). Estimates of annual hypoxic volume (AHV), defined as the volume of hypoxic 175 
water integrated over the year (with units of volume*time), were taken from the Bever et al. 176 
(2013; 2018; 2021) interpolation of O2 measurements at 56 CBP stations.  177 
 178 
2.2 Estuarine and watershed modeling tools and evaluation 179 
 Model simulations are conducted with ChesROMS-ECB, a fully coupled, three-dimensional, 180 
hydrodynamic and Estuarine Carbon Biogeochemistry (ECB) implementation of the Regional 181 
Ocean Modeling System (ROMS ; Shchepetkin and McWilliams 2005) developed for the 182 
Chesapeake Bay (Xu et al., 2011) with 20 terrain-following vertical levels and an average 183 
horizontal resolution of approximately 1.8 kilometers in the estuary’s mainstem (Feng et al., 184 
2015; St-Laurent et al., 2020; Frankel et al., 2022). Two parameter changes were recently made 185 
to improve the representation of modeled oxygen: (1) a decrease of the maximum growth rate of 186 
phytoplankton, which, following Irby et al. (2018), preserves the temperature-dependent linear 187 
Q10 described in Lomas et al. (2002), and (2) a decrease in the critical bottom shear stress from 188 
0.010 Pa to 0.007 Pa, which increases the resuspension of organic matter and is well within the 189 
range of observed shear stresses evaluated by Peterson (1999). 190 

Estimates of watershed discharge, nitrogen loading, and sediment loading to drive the 191 
estuarine model were obtained via two independently developed models of the Chesapeake Bay 192 
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watershed: the Dynamic Land Ecosystem Model (DLEM; Yang et al., 2015; Yao et al., 2021) 195 
and the USEPA Chesapeake Bay Program’s regulatory Phase 6 Watershed Model (Phase 6; 196 
Chesapeake Bay Program, 2020). Both models were applied to generate comparable reference 197 
runs over the average hydrology period of 1991-2000, chosen because it reflects the decade used 198 
by the Chesapeake Bay Program to calculate Total Maximum Daily Loads (USEPA, 2010) and 199 
assess water quality improvements. Outputs from both watershed models were aggregated into 200 
10 major river input locations (Fig. 1). Watershed outputs were mapped to estuarine variables as 201 
in Frankel et al. (2022), except that a more realistic partitioning of terrestrial organic nitrogen 202 
loading into labile and refractory pools was implemented such that the percent refractory organic 203 
nitrogen loading increases with discharge at high flow volumes (Appendix A). 204 

Atmospheric conditions, including temperature and winds, were obtained from the ERA5 205 
reanalysis dataset (C3S, 2017) as in Hinson et al. (2021). Coastal boundary conditions were 206 
interpolated to match the nearest physical and nutrient observations, as in previous work (Da et 207 
al., 2021). In order to isolate the impacts of climate-driven changes in watershed inputs, 208 
atmospheric and coastal boundary conditions were kept the same in all model simulations under 209 
realistic 1991-2000 conditions, for both reference runs (1991-2000) and all future scenarios 210 
(2046-2055). 211 
 Watershed and estuarine model skill was evaluated by comparing results from the two 212 
reference scenarios to available data (see Sect. 2.1). Nash–Sutcliffe efficiencies (Nash and 213 
Sutcliffe, 1970) were used to evaluate watershed model performance of freshwater discharge and 214 
nutrient loadings. Estuarine model skill was evaluated by comparing model outputs matching the 215 
spatio–temporal variability of observations at 20 main stem stations over the 10-year reference 216 
period. Average bias (model output minus observed value) and root-mean squared difference 217 
(RMSD) of annual O2, nitrate (NO3), and dissolved organic nitrogen (DON) concentrations were 218 
calculated at the surface and bottom. AHV estimates were calculated by summing the daily 219 
volume of model cells containing low-oxygen waters (O2 < 2 mg L-1), and are expressed in units 220 
of km3 d following Bever et al. (2013; 2018; 2021). Daily net primary production estimates were 221 
integrated over the entire water column and averaged across the Bay and month before being 222 
compared to average Bay-wide estimates from Harding et al. (2002). 223 
 224 
2.3 Projected changes in atmospheric temperature and precipitation 225 
 Mid-21st century projected changes in atmospheric temperature and precipitation under a 226 
high emissions scenario (RCP 8.5) were obtained for multiple CMIP5 ESMs that were regionally 227 
downscaled via two statistical methodologies: Multivariate Adapted Constructed Analogs 228 
(MACA; Abatzoglou and Brown, 2012; downloaded from MACAv2-METDATA) and Bias-229 
Correction and Spatial Disaggregation (BCSD; Wood et al., 2004; downloaded from 230 
Reclamation, 2013). (Note that downscaled CMIP5 ESM output was used because downscaled 231 
CMIP6 ESM output was not yet available when the research began.) Downscaled MACA and 232 
BCSD projections have an average spatial resolution of approximately 0.042° and 0.125°, 233 
respectively. A delta approach (Prudhomme et al., 2002; Anandhi et al., 2011) was used to 234 
estimate the absolute change in atmospheric temperature and fractional change in precipitation 235 
over the Chesapeake Bay watershed. In this delta approach (also commonly referred to as a 236 
perturbation method or change-factor method), the difference in a given climate variable (i.e., air 237 
temperature or precipitation) is calculated by first subtracting monthly downscaled ESM 238 
estimates averaged over a hindcast period (in this case 1981-2010) from average monthly future 239 
projections (in this case 2036-2065). The resulting mean annual cycle (with monthly resolution) 240 
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in the delta (i.e., the absolute change in temperature or fractional change in precipitation) is then 243 
applied to reference atmospheric forcing inputs (in this case for 1991-2000) to generate future 244 
watershed scenarios (in this case for 2046-2055, hereafter referred to as mid-century) and limit 245 
uncertainty introduced by interannual variability. An additional step to modify precipitation 246 
intensity is also included in all climate scenarios, following the methodology outlined in Shenk 247 
et al. (2021b). Thirty-year averaging periods were used to limit potential biases introduced by 248 
multidecadal oscillations. 249 
 To reduce the computational load of applying the dozens of available ESMs to our combined 250 
watershed-estuarine modeling framework for a full factorial experiment, the Katsavounidis-Kuo-251 
Zhang (KKZ; Katsavounidis et al., 1994) algorithm was applied to select a subset of five ESMs 252 
from both downscaled datasets. KKZ is an objective procedure for selecting a subset of members 253 
that best span the spread of the full ensemble in a multivariate space. Because changes to 254 
hypoxia must be computed after a subset of ESMs are selected, the downscaled results were 255 
classified in terms of changes to the two variables most likely to influence hypoxia: air 256 
temperature from May–October (i.e., the historic hypoxic season in Chesapeake Bay) and 257 
precipitation from November–June (corresponding to the highest set of correlation coefficients 258 
when regressed against historical AHV estimates; Supplementary Material; Fig. S1). The KKZ 259 
algorithm first selected an ESM nearest to the center of the cluster of models in the two-260 
parameter space, which is referred to hereafter as the Center ESM, before iteratively selecting 261 
additional ESMs that were furthest from the center of the distribution and other previously 262 
selected ESMs (Fig. 2, Table S3). The next four selected ESMs are referred to as Hot/Wet, 263 
Cool/Wet, Hot/Dry, and Cool/Dry ESMs to denote whether they are cooler, hotter, wetter, or 264 
drier, relative to the Center ESM. The specific ESMs selected based on MACA and BCSD differ 265 
slightly; however, three of the five models are the same (Cool/Dry, Hot/Dry, and Cool/Wet). The 266 
selection process incrementally adds members to those previously selected, so that the entire 267 
ensemble is ordered and a subset of any size can be selected. This method has proven effective at 268 
covering the largest range of outcomes using the fewest ESMs in watersheds across the United 269 
States in previous research (Ross and Najjar, 2019). This ESM selection process allows for a 270 
more robust comparison of the distribution of ESMs from multiple downscaled datasets as 271 
opposed to individual ESM comparisons that may privilege one downscaling method over 272 
others. However, because inexact matches among ESMs can impact the quantification of relative 273 
uncertainty (Sect. 2.5), additional scenarios were simulated as needed for the Center and 274 
Hot/Wet ESMs, which were different for the two downscaling techniques (Fig. 2, Table S3). 275 
Future change in temperature and precipitation between the two downscaling methods are shown 276 
for the Center ESM (Fig. 3); changes for the other four ESMs are found in the Supplementary 277 
Material (Fig. S2). 278 
 279 
2.4 Experiments 280 

Three numerical experiments (sets of simulations) were conducted to evaluate the impacts of 281 
climate scenario factors, management conditions, and the use of a subset of ESMs on future 282 
AHV projections and uncertainty (Table 1). To isolate climate impacts on AHV from the 283 
watershed alone, direct atmospheric and oceanic forcings to the Bay were held the same as in the 284 
reference simulations (see Sect. 2.3) for all experiments. The first experiment (Multi-Factor) 285 
evaluates the relative change in AHV (hereafter defined as DAHV) between the 1991-2000 and 286 
2046-2055 time periods due to the following factors: ESM, downscaling method, and watershed 287 
model (Table 1, Fig. 4). Atmospheric deltas from ten downscaled ESMs (five from MACA and 288 
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five from BCSD) were applied directly to the two watershed models for a total of 20 simulations. 297 
A separate Phase 6 climate-reference run is used to evaluate the impacts of climate alone by 298 
holding land use and nutrient applications constant. This differs slightly from the Phase 6 299 
reference run that simulates realistic and interannually varying nutrient inputs and terrestrial 300 
conditions and is compared against observations (Sect. 2.2). Two additional simulations were 301 
conducted with Phase 6 to account for the fact that the ESMs selected by the KKZ method were 302 
not identical for MACA and BCSD (Table 1, Fig. 2). 303 

The second experiment (Management) applied the same deltas used for Phase 6 MACA 304 
scenarios in the Multi-Factor experiment (thereby varying runoff and nutrient loading), but also 305 
included the effect of changing environmental management conditions (affecting nutrient inputs 306 
to and export from the terrestrial environment), for a total of five additional simulations. These 307 
Management simulations assume that reduction targets for nutrient and sediment runoff are met 308 
in accordance with established management goals (USEPA, 2010). One additional scenario was 309 
conducted in which management goals were imposed, and climate change was not. 310 

The third experiment (All ESMs) applied all 20 MACA downscaled ESM deltas to the 311 
DLEM scenarios without any changes to management conditions, thereby only modifying 312 
changes in runoff and nutrient export without intentional nutrient reductions, for a total of 20 313 
additional simulations. Comparing the results of the first (Multi-Factor) and third (All ESMs) 314 
experiments highlights the strengths and limitations of using a subset of ESMs. 315 
 316 
2.5 Climate scenario analyses 317 
 To analyze climate impacts on Chesapeake Bay hypoxia, changes in O2 and AHV were 318 
compared between the reference runs and the future simulations. Relative O2 impacts introduced 319 
by the three climate scenario factors (ESM, downscaling method, and watershed model) were 320 
determined by applying an analysis of variance (ANOVA) approach to average ΔAHV estimates 321 
for each climate scenario. This method has been previously applied to the quantification of 322 
uncertainty sources in climate and hydrological applications (Hawkins and Sutton, 2009; Yip et 323 
al., 2011; Bosshard et al., 2013; Ohn et al., 2021). To use this method in this study, an average 324 
annual metric is first calculated for an outcome of interest (i.e., change in discharge, nitrogen 325 
loading, or hypoxic volume) within the Multi-Factor experiment. Then, the relative uncertainty is 326 
determined by calculating the sum of squares due to individual effects for each experimental 327 
factor (ESM, downscaling method, or watershed model). Following Ohn et al. (2021), the 328 
cumulative uncertainty is quantified for successive uncertainties introduced by each factor as 329 
well as their interactions, removing the unexplained interaction term described in Bosshard et al. 330 
(2013). The two additional ESM scenarios described previously (Table 1, Table S3) were used 331 
due to the inexact matches between MACA and BCSD ESMs selected by KKZ. Despite five 332 
ESMs being used in combination with only two downscaling methods and two watershed models 333 
in this analysis, the approach outlined (Bosshard et al., 2013; Ohn et al., 2021) accounts for this 334 
factor imbalance (five vs. two) by repeatedly subsampling combinations of two ESM scenarios 335 
from the five available. An example of this methodological approach is described in Appendix B.  336 

Relative frequency histograms and cumulative distributions were used to quantify the overall 337 
likelihoods of increasing/decreasing ΔAHV across the entire range of future scenarios. Average 338 
changes in the spatial distribution of O2 over the typical hypoxia season (May–September) were 339 
compared among all climate scenarios with no changes to management conditions. Results were 340 
considered significant if at least 80% of model scenarios tested agree on the direction of O2 341 
change in the estuary, as in Tebaldi et al. (2011). 342 
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 345 
3 Results 346 
 347 
3.1 Model Skill 348 
 349 
3.1.1 Watershed Models 350 
 351 
 Modeled discharge, nitrate loading, and organic nitrogen loading from the three largest Bay 352 
tributaries are comparable to observed monthly estimates derived from weighted statistical 353 
regressions (see Sect. 2.1). At the most downstream USGS stations on the Susquehanna, 354 
Potomac, and James Rivers, both Phase 6 and DLEM discharge estimates have higher skill 355 
(Nash–Sutcliffe Efficiencies closer to 1.0) relative to nitrate and organic nitrogen loading 356 
estimates (Table 2, Fig. S3). Although the overall skill of Phase 6 and DLEM is similar, Phase 6 357 
generally exhibits higher model skill than DLEM in estimating monthly nitrate loading, while 358 
DLEM demonstrates greater skill in simulating organic nitrogen loading.  359 
 360 
3.1.2 Estuarine Model 361 
 362 
 The two reference simulations, forced with loadings from DLEM and Phase 6, demonstrate 363 
substantial skill in representing key main stem estuarine biogeochemical variables, including O2, 364 
NO3, DON, primary production, and AHV (Table 3) throughout the Bay’s mainstem. Overall, all 365 
modeled variables at the surface and bottom forced by both DLEM and Phase 6 lie within 1 366 
standard deviation of observations. Modeled O2 is slightly greater than spatio–temporally paired 367 
observations at the bottom, and slightly lower than observations at the surface throughout the 368 
entire year (Table 3) and in the summer period of hypoxia (Fig. 5a-b), leading to a bias that is 369 
relatively small compared to the standard deviations of observed O2 concentrations across the 370 
entire year (Table 3). Additionally, modeled O2 performs similarly to or better than the results 371 
included in the multi-model comparison presented in Irby et al. (2016). Modeled average annual 372 
NO3 and DON are also within the range of observations at both the surface and bottom (Table 3). 373 
Whole Bay net primary production agrees well with observed estimates (Harding et al., 2002) 374 
reported over a similar time period (Table 3). Finally, modeled AHV compares favorably to data-375 
derived interpolated estimates (Table 3; Fig. 5c), with increased hypoxia in wet years compared 376 
to dry years. Average AHV estimates using Phase 6 and DLEM inputs are, respectively, 16% 377 
and 26% greater than interpolated observations (Table 3; Fig. 5c) and approximately half the 378 
model estimates lie within the estimated uncertainties (RMS % error) of the interpolation 379 
methodology (± 13%; Bever et al., 2018). Model estimates of AHV are generally slightly greater 380 
when ChesROMS-ECB is forced by DLEM watershed outputs as opposed to those from Phase 6 381 
(Table 3; Fig. 5c). 382 
 383 
3.2 Future (mid-21st century) projections of watershed discharge and nutrient loading  384 
 385 
 Increasing temperatures and changing precipitation throughout the Bay watershed produce 386 
different discharge responses for the two watershed models. On average, Phase 6 climate 387 
scenarios increase watershed runoff relative to the reference run by 4-6% while DLEM climate 388 
scenarios decrease average flow by 1-4% (Table 4). The annual flow changes range from -12 to 389 
+15% among ESM scenarios, with wetter ESMs tending to increase annual watershed discharge 390 
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while drier ESM scenarios generally decrease average watershed runoff, with a lesser impact due 391 
to atmospheric warming (Table 4; Fig. 6a). For both watershed models and downscaling 392 
methods, the Cool/Wet ESM produces the greatest increase in annual discharge. Overall, the 393 
greatest variability in changes to discharge estimates is due to ESM, as MACA and BCSD 394 
scenarios increase or decrease annual discharge by comparable amounts (Table 4; Fig 6a). 395 
 Chesapeake Bay Phase 6 watershed model climate scenarios increase average annual total 396 
nitrogen (TN) by +30% and +45% for MACA and BCSD respectively, but do not substantially 397 
change DLEM TN loads (+1% and -2% for MACA and BCSD, respectively; Fig. 7). Greater 398 
Phase 6 TN loadings are primarily due to extreme values in the Cool/Wet climate scenarios and 399 
are driven by increases in refractory DON (Fig. 7a). While DLEM scenarios show increases in 400 
the percentage of inorganic nitrogen and labile organic forms of total nitrogen loads, the 401 
contribution of particulate organic nitrogen (PON) decreases, resulting in little to no increases in 402 
overall TN loading (Fig. 7a). Phase 6 produces wetter climate scenarios increasing TN loading 403 
more than drier scenarios (Table 4; Fig 6b), with this effect being most pronounced for the 404 
Cool/Wet ESM. Phase 6 also produces the greatest percent changes in the southern rivers (James, 405 
York, Rappahannock), while DLEM produces similar percent changes in all rivers (Fig. 7b). 406 
Some Phase 6 climate scenarios substantially increase the average loading change in smaller 407 
watersheds like the Rappahannock and York, which increase TN between 77-172% and 32-408 
430%, respectively, and are comparable to the absolute change in Susquehanna TN loading (Fig. 409 
7b). In contrast with the Multi-Factor experiment results, climate scenarios that include 410 
management actions substantially reduce TN loading (-28%; Fig. 7, Table 4). Like other Phase 6 411 
climate scenarios that don’t account for management actions, the proportion of refractory organic 412 
nitrogen increases for the climate scenarios with management (+49%), but in these cases the 413 
average labile inorganic and organic nitrogen loadings also substantially decrease (-40%). 414 
 415 
3.3 Effects of future watershed change on estuarine O2 416 
 417 
 Climate change impacts on watershed discharge and nitrogen loading substantially affect 418 
estuarine hypoxia, even when, as in this study, direct climate effects on the Bay are not 419 
considered. On average, the Multi-Factor climate scenarios decrease average summer bottom O2 420 
in the Bay’s mainstem while also slightly increasing O2 at the surface in some mid-Bay areas 421 
(Fig. 8). In the northern part of the mainstem near the Susquehanna River outfall, model results 422 
show consistent decreases in both bottom and surface summer O2 (Fig. 8e,f). Further down the 423 
main stem in the mid-Bay, surface O2 increases in wet years, and experiences almost no change 424 
in dry years (Fig. 8b,c). In the same region, bottom O2 declines lessen during wet years and 425 
worsen during dry years (Fig. 8e,f). Increasing O2 levels are found in the shallow portions of the 426 
major tidal tributaries (i.e., Potomac and James), but are more pronounced in wet years than dry 427 
years (Fig. 8b-c,e-f). Altogether, average summer surface O2 increases by 0.02 ± 0.03 mg L-1 428 
(average change and standard deviation) while bottom O2 decreases by 0.03 ± 0.06 mg L-1. 429 
 There are some clear distinctions in the overall changes to future AHV when evaluating all 430 
Multi-Factor experiments. Climate effects on the watershed in DLEM increase AHV more so 431 
than in Phase 6 (5.6% vs 3.1%, respectively), but the overall standard deviation of DLEM ΔAHV 432 
results are greater than those for Phase 6 (Table 5). Similarly, using MACA vs. BCSD results in 433 
greater changes in ΔAHV (4.8% vs. 3.9%), albeit this difference due to the choice of 434 
downscaling method is less than that due to the choice of watershed model. Depending on the 435 
choice of ESM, ΔAHV ranges between +0.9% (for the Cool/Dry ESM) to +8.3 % (for the 436 
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Cool/Wet ESM) with the Center ESM producing intermediate results (+4.4 %). When comparing 437 
the impact of a particular ESM, wetter models tend to produce greater ΔAHV than drier 438 
scenarios (Fig. 6c), although interannual variability is still large. When climate scenarios are 439 
downscaled using different methodologies (either MACA or BCSD), average ΔAHVs have some 440 
notable differences, e.g., applying the Cool/Dry model to Phase 6 produces opposite average 441 
changes to hypoxia depending on downscaling method (Fig. 6c). Considering all possible 442 
combinations of scenarios, ESM average annual projected AHV spans a range of 921-939 km3 d 443 
for Phase 6 and 1019-1049 km3 d for DLEM, and four out of five of the climate scenarios in the 444 
Multi-Factor experiment projecting increases in average AHV (Table 4). 445 
 When the full distribution of Multi-Factor scenarios is evaluated, the average and standard 446 
deviation of these annual ΔAHV results are estimated to be 37 ± 64 km3 d (4.4 ± 7.4%; Fig 9). 447 
Wetter ESMs (blues in Fig. 9a) are more likely to increase hypoxia compared to drier ESMs, 448 
despite differences in downscaling method or watershed model. The likelihoods of the Cool/Dry 449 
or Hot/Dry ESM increasing hypoxia are only 58% or 50%, respectively, but these chances are 450 
greater than 80% for the Center, Hot/Wet, and Cool/Wet ESMs (Fig. 9a). Altogether, the Multi-451 
Factor experiment results in 72% of the runs increasing AHV when considering climate change 452 
impacts on terrestrial runoff (Fig. 9b). (Note, however, that this cannot technically be considered 453 
to be a statistical probability as the KKZ selection process used to generate our sample of climate 454 
scenarios is neither random nor independent.) 455 

The All-ESMs experiment produces similar results to those obtained when only a subset of 456 
five ESMs are used. Specifically, ΔAHV increases by 6.3 ± 3.5% using only five KKZ-selected 457 
ESMs and by 9.6 ± 1.7% when using all 20 ESMs (Fig. 10a,b; Model IDs further defined in 458 
Table S3). The use of five KKZ-selected ESMs covers approximately 69% of the total range of 459 
all 20 ESMs (Fig. 10c). Despite more than 15,000 options to choose from when selecting five out 460 
of 20 ESMs, the subset selected in this work demonstrates an improved ability to outperform a 461 
random selection of five ESMs (Fig. 10c) and generates a useful range of hypoxia projections. 462 
 The results of the Management experiment demonstrate the substantial impact of future 463 
nutrient reductions on hypoxia, decreasing average AHV by 50 ± 7% relative to the 1990s 464 
(DAHV = -438 ± 47 km3 d; Table 4; Fig. 11). Because there is a linear relationship between 465 
DAHV computed with Phase 6 MACA scenarios including management actions (DAHVmgmt) and 466 
those without (DAHV = 0.56 * DAHVmgmt – 262; R2=0.59, Fig. S5), DAHVmgmt can be estimated 467 
for any scenario by applying this linear model to the non-management scenario distribution. In 468 
effect, this linear relationship demonstrates a similar magnitude of relative nutrient export to and 469 
consequent hypoxia within the estuary. The result is a decrease of approximately 417 ± 67 km3 d 470 
among all scenarios, within the range of the management scenario subset obtained here by 471 
applying only MACA downscaled ESMs to Phase 6. As expected, hypoxia increases in the 472 
Management experiment when climate impacts are also included relative to the reference 473 
management scenario, specifically by 17.1 ± 34.8 km3 d or 3.8 ± 7.8% (Table 4; Fig 6c). 474 
 475 
3.4 Contributions to Climate Scenario Uncertainty 476 
 477 
 Applying an ANOVA approach (Ohn et al., 2021) to watershed discharge, nutrient loadings, 478 
and ΔAHV within the Multi-Factor experiment reveals that the relative uncertainties introduced 479 
by the choice of ESM, downscaling method, and watershed model vary substantially (Fig. 12). 480 
The choice of ESM is the dominant factor affecting changes to watershed discharge and nutrient 481 
loadings (Fig. 12a-c), and comprises 59-74% of the total uncertainty. The choice of watershed 482 
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model is the next largest source of uncertainty, making up 17-34% of the total variance in 483 
watershed changes, while the downscaling method only contributes 3-14%. Uncertainty in 484 
projected organic nitrogen loadings is particularly affected by the choice of watershed model, 485 
overwhelming the variability introduced by downscaling method, and strongly affecting 486 
estimates of total nitrogen change. Unlike changes to watershed flow and loadings, the 487 
uncertainty of projected changes to hypoxia is much more evenly distributed among the three 488 
scenario factors: 40%, 25%, and 35%, for ESM, downscaling method, and watershed model 489 
respectively (Fig. 12d). 490 
 491 
4 Discussion 492 
 493 
4.1 Uncertainty in Climate Scenario Projections 494 
 495 

Projected changes in watershed discharge and nutrient delivery to the Chesapeake Bay 496 
produce modest increases in estuarine hypoxia, with medium confidence (Mastrandrea et al., 497 
2010). Hypoxic volume has a high degree of interannual variability, and future hypoxia estimates 498 
are highly sensitive to the choice of ESM, downscaling method, and watershed model (Fig. 6c). 499 
While certain factors (particularly ESM and greenhouse gas emissions scenarios; Meier et al., 500 
2021) have previously been extensively evaluated in coastal systems with regards to future 501 
hypoxia, the results presented here also demonstrate the importance of terrestrial forcings on 502 
estuarine oxygen levels. 503 

In this study, future changes in watershed discharge, nitrogen loadings, and estuarine hypoxia 504 
are found to be highly dependent on the selection of a specific ESM (Fig. 12), comprising a 505 
majority of the total uncertainty in watershed runoff and the greatest fraction of total uncertainty 506 
for O2 levels. When only the effect of ESM choice is considered (and downscaling and 507 
hydrological model options are not; Fig. 10), the average projected change in AHV using only 508 
three ESMs (often chosen to represent cool, median, and hot scenarios) has a greater standard 509 
error than the selection of five in this study. Directly comparing results from the experiment that 510 
compared five ESMs, two downscaling methods, and two watershed models (Multi-Factor) 511 
versus that which only considered the impact of multiple ESMs (All ESMs) shows a substantial 512 
overlap in the range of projected ΔAHV. In addition, multiple ESMs downscaled with a single 513 
methodology and applied to one hydrological model produced meaningfully different estimates 514 
of ΔAHV than a more balanced approach (Fig. 11). 515 

Inter-model variability among ESMs appears to contribute most substantially to differences 516 
in Bay watershed inputs, but the choice of downscaling methodology can also affect these 517 
projections. The BCSD (Wood et al., 2004) and MACA (Abatzoglou and Brown, 2012) 518 
downscaling methodologies used here employ different approaches to reduce historical ESM 519 
biases, impacting the variability of spatio–temporal watershed hydrologic and water quality 520 
responses. The ability to statistically downscale ESMs accurately depends on the spatially 521 
coarser ESM’s ability to simulate synoptic-scale (~1000 km) patterns and may still 522 
underestimate the distributional tails of changes to temperature and precipitation. This increases 523 
the importance of properly selecting a subset of ESMs (Abatzoglou and Brown, 2012). 524 

Watershed model variability is caused by differences in the representation of processes that 525 
affect discharge, those controlling the fate and transport of nutrients from land and in rivers, and 526 
lag times of groundwater transport. The two watershed models used here project substantially 527 
different results in watershed discharge and nitrogen delivery, even when the same changes to 528 
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meteorological forcings are applied (Fig. 6). DLEM projects no change or decreases in discharge 681 
for nearly all scenarios, as opposed to greater average increases in discharge for Phase 6 682 
scenarios (Fig. 6a), likely driven by differences in the representation of evapotranspiration. 683 
Explicit soil biogeochemical processes within DLEM increase nitrification rates in warmer 684 
climate scenarios, producing higher nitrate loadings than Phase 6 despite comparable discharge 685 
changes (Fig. 6b). The greater total nitrogen loadings produced by Phase 6 are largely a 686 
consequence of its parameterizations for erosion and refractory nitrogen bound to sediment. 687 
Increases in bioavailable nitrate loadings, unlike refractory organic nitrogen that comprises the 688 
majority of DON loadings, produce greater levels of primary production and remineralization 689 
within the estuary. This largely explains the discrepancy between watershed model hypoxia 690 
estimates (Table 5). 691 

Our findings demonstrate the importance of considering differences among these three 692 
factors (ESM, downscaling, and watershed model) that may contribute to a wider range of target 693 
water quality variables and living resource responses in coastal marine ecosystems like the 694 
Chesapeake Bay that are highly influenced by watershed processes. Hydrological model 695 
assumptions can have potentially significant impacts on estuarine hypoxia. For example, the 696 
relatively high organic nitrogen loadings in Phase 6 compared to DLEM’s comparatively modest 697 
exports under the same future scenarios result in different levels of annual hypoxia. While 698 
dramatic increases in organic nitrogen loadings within Bay tributaries are mostly limited to 699 
Cool/Wet Phase 6 scenarios, there is precedent for catastrophic erosion within the Bay watershed 700 
driven by extreme precipitation events (Springer et al., 2001). The relative uncertainty 701 
introduced by individual factors is also not necessarily equivalent for discharge, nitrogen 702 
loadings, and AHV (Fig. 12). The complex connections between terrestrial runoff and 703 
biogeochemical changes in the marine environment may expand further when higher order 704 
trophic-level species are considered, and even more so when direct atmospheric impacts on the 705 
Bay are also included. It is unlikely that general conclusions regarding the relative impacts of 706 
different factors can be drawn for a marine ecosystem when only uncertainties in watershed 707 
discharge and nutrient loadings are considered. Had our results only accounted for the impacts of 708 
these factors on watershed changes and not estuarine oxygen levels, the role of downscaling 709 
could be incorrectly assumed to contribute negligible variability to hypoxic volume (Fig. 12). It 710 
is the complex interactions of nitrogen species transformations within this estuarine model that 711 
are responsible for this somewhat unexpected large contribution of downscaling method 712 
uncertainty that is less prominent in watershed changes. 713 

Despite the relatively small magnitude of Chesapeake Bay watershed climate impacts on 714 
estuarine hypoxia compared to previous evaluations of other climate impacts, like atmospheric 715 
warming over the Bay (Irby et al., 2018; Ni et al., 2019; Tian et al., 2021), the relative 716 
contributions of ESM and downscaling effects to the total uncertainty are large and are also 717 
likely to expand the range of outcomes for other climate sensitivity studies in this region. This 718 
suggests that, when attempting to determine a likely range of ecosystem outcomes, selecting 719 
additional downscaling techniques and hydrological model responses should be considered in 720 
addition to the more common practice of only selecting multiple ESMs. 721 
 722 
4.2 Watershed Climate Scenario Impacts on Riverine Export and Hypoxia 723 
 724 

The climate scenario projections evaluated in this study are in near complete agreement that 725 
the Chesapeake Bay watershed will be warmer and experience greater levels of precipitation by 726 
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mid-century, yet these results are not as straightforward to interpret as they relate to changes in 727 
discharge, nutrient loads, and estuarine hypoxia. Climate impacts on extreme river flows are 728 
currently evident at global scales (Gudmundsson et al., 2021), and projected increases in 729 
precipitation that could shape such events are aligned with estimates for this region derived from 730 
observational (Yang et al., 2021) and modeling (Huang et al., 2021) studies, as well as for other 731 
regions at similar latitudes (Bevacqua et al., 2021; Madakumbura et al., 2021). However, 732 
differences exist in the spatial distribution and timing of these precipitation increases, as well as 733 
in the temperature-affected rates of evapotranspiration. As a result, these estimates produce 734 
varied projections for future freshwater discharge. These complex interactions make it difficult 735 
to directly predict future discharge from projected precipitation changes, and even more difficult 736 
to relate these to changes in nutrient loading. For example, in this study half of the climate 737 
scenarios produce increasing discharge on an annual basis, yet more than 75% of these scenarios 738 
increase total nitrogen loading. Differences in the representation of soil and riverine nitrogen 739 
processes between watershed models also results in inconsistent simulated responses of nitrogen 740 
export to similar precipitation rates. Disparate export of nitrogen species (i.e., nitrate and organic 741 
nitrogen) between watershed models also directly affects future nutrient load projections. These 742 
hydrological model differences are evidenced by DLEM’s higher NO3 outputs that offset lower 743 
organic nitrogen loadings (Fig. 7a), and are discussed further in depth in Sect. 4.2. 744 

Our analysis quantifies changes in hypoxia due to mid-century climate change impacts on the 745 
watershed, and provides an estimate of the relative uncertainty in these estimates. Our 746 
experimental findings suggest that, in the absence of management actions, mid-century climate 747 
impacts on the Chesapeake Bay watershed will increase hypoxia, specifically annual hypoxic 748 
volume (AHV), by an average of 4 ± 7%. This estimate is in good agreement with prior studies 749 
that examined the impacts of watershed actions alone. Irby et al. (2018) applied a sensitivity 750 
approach and projected increases in AHV of 5%, while Wang et al. (2017) showed increases in 751 
annual anoxic volume of 9.7%, nearly equivalent to an increase of 10 ± 16.5% found here (Table 752 
6). Results from this study also project that changes to Bay O2 levels will vary spatially. Average 753 
bottom main stem O2 levels from May–September are expected to decrease most in the southern 754 
half of the Bay (south of 38.5°N), particularly in climatologically dry years (Fig. 8).  755 
     Importantly, the projected changes presented here only account for the effects of climate 756 
change on watershed response in isolation, and do not include the additional direct impacts of the 757 
atmosphere and ocean. These additional changes have been estimated in other previous studies of 758 
21st century impacts relative to observed conditions (Table 6). While numerous differing metrics 759 
have been reported for many of these studies, including shifting dissolved oxygen concentrations 760 
and water quality regulatory criteria, this work can be compared against previous results by 761 
examining changes to annual hypoxic and anoxic volumes. The majority of these studies (Table 762 
6) apply idealized changes to climate forcings and generally project increases in hypoxic 763 
conditions. Increases in mid-21st century annual hypoxic volume due to watershed forcings 764 
(+5% and +4.4 ± 7.4%) are smaller than average impacts of increasing temperatures alone 765 
(+13%), while the results of changing sea level are more mixed (Table 6). However, the 766 
variability in hypoxia due to watershed changes is likely greatest among these factors and may 767 
substantially modify the negative effects of warming on dissolved oxygen concentrations. Our 768 
results and their uncertainties generally encompass the range of future hypoxia estimates found 769 
in previous research that have studied multiple climate impacts in isolation and in various 770 
combinations. Future work that accounts for the sources of uncertainty explored here by applying 771 
realistic climate change projections while also standardizing a metric for model results, like 772 
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annual hypoxic volume, will help to narrow and better quantify definitive trends due to multiple 773 
factors that influence Bay dissolved oxygen. 774 

Our findings are focused on Chesapeake Bay hypoxia, but some lessons can also be drawn 775 
from other coastal ecosystems where changes in watershed discharge and nutrient loadings are 776 
also projected. In the Baltic Sea, Meier et al. (2011b) reported that hypoxia was very likely to 777 
increase regardless of ESM or climate scenario, assuming targeted reductions in accordance with 778 
the Baltic Sea Action Plan (decrease of nitrogen loads by 23 ± 5%) were not met. Extensive 779 
studies of projected oxygen change in the Baltic Sea have repeatedly demonstrated that climate 780 
impacts are likely to increase hypoxic area (BACC II, 2015 and references therein), but more 781 
recent reports (Saraiva et al., 2019a; Wåhlström et al., 2020; Meier et al., 2021, 2022) have 782 
reaffirmed that nutrient reductions in accordance with the Baltic Sea Plan are also highly likely 783 
to mitigate a substantial amount of those hypoxia increases. Repeated investigations into the 784 
impact of increased discharge and higher temperatures in the Gulf of Mexico demonstrate a 785 
likely expansion of hypoxic area (Justić et al. 1996; Lehrter et al., 2017; Laurent et al., 2018), 786 
and additional nutrient reductions required to mitigate these impacts (Justić et al., 2003). Finally, 787 
Whitney and Vlahos (2021) demonstrated a considerable erosion in oxygen gains due to nutrient 788 
reductions in the presence of climate effects, reducing projected mid-century improvements by 789 
14%, similar to the 9% increase in hypoxic volume reported by Irby et al. (2018) for O2 levels < 790 
2 mg L-1. Although these studies include direct climate change impacts on coastal water bodies, 791 
most support the findings here demonstrating that increases in discharge and associated nutrient 792 
loadings are likely to increase Chesapeake Bay hypoxia. Overall, climate impacts on land have 793 
the potential to profoundly modify biogeochemical interactions in the coastal zone and limit the 794 
efficacy of nutrient reductions. 795 

 796 
4.3 Hypoxia Lessened by Impacts of Management Actions 797 
 798 

Projections of changes to watershed discharge and nutrient delivery can better inform 799 
regional environmental managers tasked with managing interactions among nutrient reduction 800 
strategies, climate change, and coastal hypoxia (Hood et al., 2021; BACC II, 2015; Fennel and 801 
Laurent, 2018). The Chesapeake Bay results provided in this analysis demonstrate that the 802 
management actions mandated to improve water quality (USEPA, 2010) will decrease hypoxia 803 
by roughly 50%, approximately an order of magnitude more than projected increases due only to 804 
watershed climate change (Fig. 11). Therefore, nutrient reduction strategies are very likely to 805 
remain effective at reducing watershed nutrient loading and its contribution to eutrophication and 806 
hypoxia over a range of possible ESM scenarios (Mastrandrea et al., 2010). Should all 807 
management actions be implemented as outlined in the USEPA’s Total Maximum Daily Load 808 
(USEPA, 2010), it is very likely that future climate impacts on Bay watershed runoff will worsen 809 
Bay hypoxia by a far smaller amount, relative to 1990s reference conditions. These findings are 810 
consistent with those of Irby et al. (2018) who also examined the impacts of watershed climate 811 
on Chesapeake Bay hypoxia for the mid-21st century. When evaluating the effects of watershed 812 
climate impacts and management actions together, Irby et al. (2018) estimated an average AHV 813 
increase of 12.8 km3 d, which is well within the range of 17.1 ± 34.8 km3 d reported here (Table 814 
6). (Interestingly, the combined impact of all climate stressors, i.e. atmosphere, ocean, and 815 
watershed, increased average AHV by 24.5 km3 d, which is also within the range of the results 816 
reported here). Because climate change impacts are likely to increase total nitrogen loads, 817 
implementing nutrient reductions that do not account for the detrimental effects of climate 818 
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change will reduce the likelihood of attaining water quality targets. Further quantifying a range 820 
of future estimates of watershed discharge and nitrogen loading using regional models is critical 821 
to understanding the possibilities and limitations of mitigating negative climate impacts via 822 
nutrient reductions. 823 

Recent findings support the hypothesis that nutrient reductions will improve water quality 824 
despite projected climate impacts in both freshwater systems (Wade et al., 2022) and other 825 
coastal marine systems (Whitney and Vlahos, 2021; Saraiva et al., 2019a; Bartosova et al., 2019; 826 
Wåhlström et al., 2020; Pihlainen et al., 2020; Meier et al., 2021; Große et al., 2020; Jarvis et al., 827 
2022). In the Chesapeake Bay, reduced nutrient loading (Zhang et al., 2018; Murphy et al., 2022) 828 
has already helped mitigate growing climate change pressures (Frankel et al., 2022), despite 829 
rapidly increasing Bay temperatures over the past 30 years (Hinson et al., 2021). Like these prior 830 
studies, our findings confirm that management actions will likely produce even greater benefits 831 
to O2 in coastal zones strongly affected by terrestrial runoff. While direct effects (e.g., air 832 
temperature) are expected to increase hypoxia more so than watershed changes in Chesapeake 833 
Bay (Irby et al., 2018, Ni et al., 2019), the comparatively greater impacts of management actions 834 
reported here are also likely to substantially reduce the overall risk from a multitude of co-835 
occurring climatic stressors. 836 
 837 
4.4 Study Limitations and Future Research Directions 838 
 839 

Despite the plainly evident finding of nutrient reduction strategies improving water quality 840 
and counteracting negative climate change watershed impacts, a number of important caveats 841 
should temper this conclusion. First, the subset of scenarios that include management actions is 842 
limited to a set of five ESMs statistically downscaled with a single methodology and applied to 843 
one watershed model. As demonstrated in this work, this assumption may oversimplify the 844 
complex relationship between climate forcings and watershed model simulations, especially 845 
given that DLEM scenarios produce more change in nitrate and consequently more hypoxia than 846 
Phase 6 scenarios. Management actions implemented in Phase 6 nutrient reduction scenarios 847 
represent a multitude of possible methods to reduce point and nonpoint source pollution that are 848 
assumed to be fully implemented with a high operational efficacy by mid-century, but the true 849 
performance of best management practices operating under future hydroclimatic stressors 850 
remains largely unresolved (Hanson et al., 2022). Additionally, the importance of legacy 851 
nitrogen inputs to the Bay may grow over time (Ator and Denver, 2015; Chang et al., 2021), and 852 
can only be properly accounted for via a long-term transient simulation that accounts for 853 
changing groundwater conditions. 854 

A key strength of the delta method applied here is its ability to remove the influence of 855 
interannual variability, which is known to strongly influence hypoxia in the Chesapeake Bay 856 
(Bever et al., 2013). However, the delta method is unable to account for the impacts of 857 
unanticipated extreme events, or changing patterns of precipitation intensity, duration, and 858 
frequency that produce dramatic responses in sediment washoff, scour, and consequent 859 
watershed organic nitrogen export. Air temperature and precipitation were the only watershed 860 
model input variables adjusted in this analysis, allowing for a more equivalent comparison 861 
between downscaling approaches. Future representations of watershed change may also better 862 
account for changes in runoff through the inclusion of factors like ESM-estimated relative 863 
humidity that can help avoid possible unreasonable amplification of potential evapotranspiration 864 
that would decrease tributary discharge (Milly and Dunne, 2011) and associated nutrient loads. 865 
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Although main stem Bay oxygen levels are the focus of this study, watershed impacts are 866 
also likely to influence water quality in smaller scale tributaries. Differences in Chesapeake Bay 867 
temperatures introduced by ESM and downscaling method have also been investigated by 868 
Muhling et al. (2018), and contribute to biogeochemical variability via direct impacts of 869 
atmospheric temperature on Bay warming. Incorporating different facets of these relative 870 
uncertainties into projections of coastal change has also been demonstrated to affect ecological 871 
outcomes like those surrounding fisheries (Reum et al., 2020; Bossier et al., 2021). Thus, the 872 
impacts of these uncertainties are also very likely to affect socio-economic systems tied to 873 
coastal resources. The analytical method applied here is well established within climatic and 874 
terrestrial settings, so the relative dearth of coastal applications (excluding Meier et al., 2021) 875 
may be more related to a consequence of computational demand or greater focus on uncertain 876 
parameterizations of marine biogeochemical processes (Jarvis et al., 2022) that also play a large 877 
role in potential future hypoxia outcomes. 878 
 879 
5 Conclusions 880 
 881 

Coastal ecosystems like the Chesapeake Bay that are currently and will likely continue to be 882 
negatively affected by climate impacts exhibit complex responses in future scenarios, 883 
demonstrating our lack of complete system understanding. While this research reaffirms the 884 
importance of management actions in reducing levels of hypoxia, it also highlights the fact that 885 
uncertainties in climate-impacted watershed conditions will affect estimates of Chesapeake Bay 886 
O2 levels. Additional study of uncertainty interactions within a full climate scenario (that 887 
includes the impacts of changing atmospheric and oceanic conditions) will help better quantify a 888 
range of hypoxia projections, among other environmental conditions within the Chesapeake Bay. 889 
These results underscore the need for additional rigorous analyses of model parameterizations 890 
and their contributions to model scenario uncertainty to help identify biogeochemical processes 891 
that are most sensitive to climate change impacts and warrant further investigation. The 892 
development of more rapid techniques to evaluate a broader range of future water quality and 893 
ecological outcomes, and an inspection of their underlying assumptions, can help provide a 894 
better mechanistic understanding of complex reactions to multiple climate stressors. Like 895 
ongoing efforts to reduce greenhouse gas emissions and lessen the impacts of future climate 896 
change globally, continuing efforts to reduce eutrophication in coastal waters will help improve 897 
ecosystem resilience and the benefits derived by communities dependent on their function. 898 
Indeed, nutrient reduction plans are likely to become even more essential to managers tasked 899 
with preserving the health and function of rapidly evolving coastal environments and unfamiliar 900 
future conditions.   901 
  902 
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Appendix A: 903 
 904 

Original partitioning of organic nitrogen pools from the DLEM and Phase 6 watershed 905 
models was based on fixed fractions previously described in Frankel et al. (2022). There, 80% of 906 
the refractory organic nitrogen (rorN) loadings from Phase 6 were allocated to the small detritus 907 
nitrogen (SDeN) pool and the remainder was applied to the refractory dissolved organic nitrogen 908 
(rDON) pool in ChesROMS-ECB. More realistic changes to this partitioning of watershed rorN 909 
loadings were implemented, which decreased the lability of organic nitrogen loads overall. A 910 
specified threshold of rorN loadings was set at the 90th percentile of reference Phase 6 watershed 911 
inputs to the estuarine model, and thresholds were also set for individual river levels of discharge 912 
at the 50th and 90th percentiles of Phase 6 reference simulations. Below the 50th percentile of 913 
discharge levels, 80% of the rorN inputs below the specified rorN threshold were allocated to 914 
ChesROMS-ECB’s SDeN pool, and the remainder were assigned to the rDON pool. Between the 915 
50th and 90th percentiles of discharge events, 50% of the rorN load below the specified rorN 916 
threshold was apportioned to ChesROMS-ECB’s SDeN and rDON pools. At the uppermost 917 
levels of discharge (greater than the 90th percentile), 5% or rorN was allocated to SDeN and 95% 918 
was given to rDON within ChesROMS-ECB. For any partitioning of an organic nitrogen load, 919 
regardless of the level of discharge, rorN loading above this cutoff was allocated to ChesROMS-920 
ECB’s rDON pool. The rorN load below this threshold was allocated according to the 921 
fractionations described above. Changes to Phase 6 watershed loadings were mapped to 922 
equivalent DLEM watershed input variables, following the methodology of Frankel et al. (2022). 923 
 924 
Table A1. Acronyms and Abbreviations 925 
AHV Annual Hypoxic Volume 

BCSD Bias-Correction and Spatial Disaggregation 

CBP Chesapeake Bay Program 

ChesROMS-ECB Chesapeake Regional Ocean Modeling System – 
Estuarine Carbon and Biogeochemistry 

CMIP Coupled Model Intercomparison Project 
DIN Dissolved Inorganic Nitrogen 
DLEM Dynamic Land Ecosystem Model 
DON Dissolved Organic Nitrogen 
DSC Downscaling Methodology 
ESM Earth System Model 
KKZ Katsavounidis-Kuo-Zhang (Katsavounidis et al., 1994) 
MACA Multivariate Adapted Constructed Analogs 
Phase 6 Phase 6 Watershed Model 
RCP Representative Concentration Pathway 
WSM Watershed Model 

 926 
 927 
 928 
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Appendix B: 929 
 930 
 An example calculation of the methodology used to calculate uncertainty for a single 931 
component of the total uncertainty is provided below. Average annual changes in hypoxic 932 
volume (km3 d) are shown in the table below for the Multi-Factor experiment. Values of hypoxic 933 
volume are rounded to the tenth decimal place in Tables 1-3, but the rounding is not carried 934 
through all calculations. 935 
 936 

ESM P6 MACA P6 BCSD DLEM MACA DLEM BCSD 
KKZ1 -34.3 34.6 53.4 -2.0 
KKZ2 -18.8 57.7 7.2 -12.5 
KKZ3 24.8 23.8 139.2 71.8 
KKZ4 -10.7 -32.3 88.0 8.6 
KKZ5 64.7 93.7 24.3 94.3 

 937 
For the first calculation, a subset of two ESMs is selected so that the number of values is 938 
balanced among ESMs, downscaling methods, and watershed models. This process will be 939 
repeated for each possible combination of ESMs, ten in total {(1,2), (1,3), (1,4), …, (4, 5)}. 940 
 941 

ESM P6 MACA P6 BCSD DLEM MACA DLEM BCSD 
KKZ1 -34.3 34.6 53.4 -2.0 
KKZ2 -18.8 57.7 7.2 -12.5 

 942 
For simplicity, the above table can be rearranged to that shown below. Additionally, the format 943 
of the table below and the following equations largely mirror the format of Ohn et al. (2021). 944 

Stage 1 (E) Stage 2 (D) Stage 3 (W) Yx 
x1,1 x2,1 x3,1 -34.3 

  x3,2 53.4 
 x2,2 x3,1 34.6 
  x3,2 -2.0 

x1,2 x2,1 x3,1 -18.8 
  x3,2 7.2 
 x2,2 x3,1 57.7 
  x3,2 -12.5 

 945 
First, the total variance of this subset (𝑈{",$,%}'()(*) is calculated, with the subscripts of each 946 
individual factor (ESM=1, DSC=2, WSM=3) denoted: 947 

𝑈{",$,%}'()(* =
1
𝑁%(𝑋+ − 𝑋))$

,

+

= 1025.1 948 

Following this, the cumulative uncertainty due to the choice of downscaling method and 949 
watershed model (𝑈{$,%}'()(*) is calculated by selecting all values produced individual ESMs: 950 

𝑌{",$}(𝑥%,") = {−34.3, 34.6, −18.8, 57.7} 951 
𝑌{",$}(𝑥%,$) = {53.4, −2.0, 7.2, −12.5} 952 
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𝑈{",$}
'()(* =

1
2 9𝑈{",$}

'()(*
9𝑥%,": + 𝑈{",$}

'()(*(𝑥%,"): =
1
2 (1417.0 + 631.7) = 1024.3 953 

 954 
Similar variance calculations are completed for the uncertainty of the first stage alone (𝑈{"}'()(*), 955 
where the choice of ESM is the only constant: 956 

𝑌{"}9𝑥$,", 𝑥%,": = {−34.3, −18.8} 957 
𝑌{"}9𝑥$,", 𝑥%,$: = {53.4, 7.2} 958 
𝑌{"}9𝑥$,$, 𝑥%,": = {34.6, 57.7} 959 
𝑌{"}9𝑥$,$, 𝑥%,$: = {−2.0, −12.5} 960 

 961 
Combining these values to calculate the uncertainty of the first stage alone (ESM) yields: 962 

𝑈{"}'()(* =
1
4%%<𝑌{"}9𝑥$,+ 	, 𝑥%,-:> =

1
4 (60.1 + 533.6 + 133.4 + 52.6)

$

-."

$

+."

≈ 188.2 963 

 964 
Applying similar calculations produces the following values necessary to compute total 965 
uncertainty for all stages: 966 

𝑈{",$,%}'()(* = 1025.1 967 
𝑈{",$}'()(* = 1024.3 968 
𝑈{$,%}'()(* = 1019.9 969 
𝑈{",%}'()(* = 947.7 970 
𝑈{"}'()(* = 188.2 971 
𝑈{$}'()(* = 877.7 972 
𝑈{%}'()(* = 913.4 973 

 974 
Next, the uncertainty of the first stage is calculated by subtracting the uncertainties from other 975 
stages as follows: 976 

𝑈{",$,%},"
'()(* = 𝑈{",$,%}'()(* − 𝑈{$,%}

'()(* = 5.1 977 
𝑈{",$},"
'()(* = 𝑈{",$}'()(* − 𝑈{$}

'()(* = 146.6 978 
𝑈{",%},"
'()(* = 𝑈{",%}'()(* − 𝑈{%}

'()(* = 34.4 979 
𝑈{"},"
'()(* = 188.2 980 

 981 
The combined value of cumulative uncertainty for the first stage (ESM) can now be calculated: 982 

1
3 (𝑈{",$,%},"

'()(* +
1
2𝑈{",$},"

'()(* +
1
2𝑈{",%},"

'()(* + 𝑈{"},"
'()(*) =

1
3 (5.1 + 73.3 + 17.2 + 188.2) = 94.6 983 

 984 
Applying the same computational steps results in cumulative uncertainties for stages 2 985 
(Downscaling Method) and 3 (Watershed Model) of 475.5 and 480.5, respectively. These values 986 
correspond to relative uncertainties for ESM, Downscaling Method, and Watershed Model of 987 
9%, 45%, and 46%, respectively. This procedure is then repeated for all other combinations of 988 
two ESMs {(1,3), (1,4), (1,5), …, (4, 5)}, after which the percentage values are averaged to 989 
produce the estimates reported in our results.  990 Formatted: Font: Bold
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Tables and Figures 1443 
 1444 
Table 1. Experiments conducted to quantify future changes in Annual Hypoxic Volume (AHV). 1445 
 1446 

Experiment 
Name 

Number of 
ESMs 

Number of 
downscaling techniques 

Number of watershed 
models 

Number of 
simulations 

Multi-Factor 5a 2 (MACA and BCSD) 2 (DLEM and Phase 6) 20b 
Management 5a 1 (MACA) 1 (Phase 6) 5c 

All-ESMs 20 1 (MACA) 1 (DLEM) 20 
aCorresponding to the KKZ-selected subset of five ESMs: Center, Cool/Dry, Hot/Wet, Cool/Wet, and Hot/Dry for both MACA 1447 
and BCSD downscaled model outputs. 1448 
bAdditional scenarios were simulated for the Multi-Factor experiment as needed (for the Center and Hot/Wet ESMs) to 1449 
accurately partition uncertainty in model outcomes. 1450 
cAn additional scenario simulated the effects of future management conditions without climate change impacts.  1451 
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Table 2: Nash-Sutcliffe efficiencies of the DLEM and Phase 6 Watershed Models at the most 1452 
downstream stations of three major rivers, for monthly estimates of discharge and nutrient 1453 
loading over the period 1991-2000. Nash-Sutcliffe efficiencies equal to one are indicative of 1454 
perfect model skill and negative values indicate that error variance exceeds the observed 1455 
variance. 1456 

Major River 
Freshwater Discharge Nitrate Loading Organic Nitrogen Loading 

DLEM Phase 6 DLEM Phase 6 DLEM Phase 6 
Susquehanna 0.74 0.88 0.60 0.78 0.37 0.12 

Potomac 0.59 0.90 0.32 0.87 0.34 -0.69 
James 0.59 0.92 -1.05 0.42 0.51 0.72 

  1457 
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Table 3: Model skill metrics over the reference period (1991-2000) 1458 

Variable Depth Watershed 
model 

ChesROMS-ECB 
estimate 

Observed 
estimatea Bias RMSD 

O2 
[mg L-1] 

Surface DLEM 7.9 ± 2.3 9.3 ± 2.0 -1.4 2.2 
Phase 6 8.0 ± 2.3 -1.4 2.2 

Bottom DLEM 6.1 ± 3.5 5.7 ± 3.5 0.4 1.7 
Phase 6 6.2 ± 3.4 0.5 1.6 

NO3 
[mmol N m3] 

Surface DLEM 0.32 ± 0.36 0.23 ± 0.33 0.09 0.23 
Phase 6 0.30 ± 0.37 0.06 0.22 

Bottom DLEM 0.27 ± 0.33 0.14 ± 0.24 
0.13 0.25 

Phase 6 0.25 ± 0.33 0.11 0.23 

DON 
[mmol N m3] 

Surface DLEM 0.27 ± 0.05 0.28 ± 0.08 -0.00 0.08 
Phase 6 0.32 ± 0.08 0.05 0.12 

Bottom DLEM 0.27 ± 0.05 0.26 ± 0.08 
0.00 0.08 

Phase 6 0.31 ± 0.08 0.04 0.11 
Primary 

Production 
[mg C m-2 d-1] 

Water 
Column 

DLEM 1146 ± 154b 
957 ± 287 

189 
N/A 

Phase 6 1133 ± 129 176 
AHV 

[km3 d] 
Water 

Column 
DLEM 987 ± 254 785 ± 201 202 250 
Phase 6 906 ± 199 121 212 

aObserved estimates and standard deviations for O2, NO3, and DON are from Water Quality Monitoring Program data at 20 main 1459 
stem stations. Observed estimate and standard error for primary production are derived from Harding et al. (2002), averaged over 1460 
Feb-Nov for the years 1982-1998. Observed estimate and standard deviation for AHV is derived by applying a weighted-distance 1461 
interpolation model to observed O2 at a limited number of stations (Bever et al., 2013). 1462 
bModeled primary production is computed only over Feb-Nov for comparison with the observed estimate.  1463 
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Table 4: Annual average and standard deviations of reference (1991-2000) and climate scenario 1465 
(2046-2055) watershed loadings and estuarine hypoxia. 1466 

Watershed Freshwater Discharge [km3 y-1] 
Watershed 

Model DLEM Phase 6 Phase 6 with 
Management 

1990s 84 ± 26 72 ± 21 74 ± 21 
2050s 

Downscaling 
MACA BCSD MACA BCSD MACA 

Center 87 ± 28 74 ± 24 78 ± 21 80 ± 22 79 ± 21 
Cool/Dry 76 ± 24 75 ± 24 67 ± 19 77 ± 22 68 ± 19 
Hot/Wet 84 ± 29 86 ± 29 79 ± 22 77 ± 21 80 ± 22 
Hot/Dry 77 ± 25 74 ± 23 70 ± 20 68 ± 20 72 ± 20 

Cool/Wet 93 ± 29 95 ± 30 83 ± 22 80 ± 22 84 ± 22 
ESM Average 84 ± 27 81 ± 26 75 ± 21 76 ± 21 77 ± 21 

Watershed Nitrogen Loading [109 gN y-1] 
Watershed 

Model DLEM Phase 6 Phase 6 with 
Management 

1990s 151 ± 49 147 ± 46 87 ± 28 
2050s 

Downscaling MACA BCSD MACA BCSD MACA 

Center 159 ± 46 138 ± 41 177 ± 63 192 ± 75 103 ± 36 
Cool/Dry 137 ± 39 132 ± 38 133 ± 36 166 ± 53 78 ± 23 
Hot/Wet 157 ± 48 153 ± 45 183 ± 66 184 ± 68 105 ± 37 
Hot/Dry 149 ± 45 138 ± 41 146 ± 42 140 ± 40 86 ± 26 

Cool/Wet 159 ± 43 181 ± 62 301 ± 186 352 ± 244 156 ± 85 
ESM Average 152 ± 43 148 ± 48 188 ± 110 207 ± 139 105 ± 53 

Annual Hypoxic Volume [km3 d] 
Watershed 

Model DLEM Phase 6 Phase 6 with 
Management 

1990s 987 ± 254 904 ± 171 449 ± 144 

2050s 
Downscaling MACA BCSD MACA BCSD MACA 

Center 1072 ± 233 985 ± 250 926 ± 152 938 ± 152 470 ± 131 
Cool/Dry 994 ± 252 975 ± 257 885 ± 177 961 ± 170 429 ± 148 
Hot/Wet 1094 ± 247 1059 ± 249 931 ± 156 928 ± 171 480 ± 131 
Hot/Dry 1075 ± 263 996 ± 259 893 ± 164 871 ± 165 442 ± 141 

Cool/Wet 1011 ± 204 1081 ± 238 969 ± 170 997 ± 203 507 ± 138 
ESM Average 1049 ± 234 1019 ± 244 921 ± 160 939 ± 171 466 ± 135 

  1467 
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Table 5: Average ± standard error in ΔAHV (%) holding scenario effects (ESM, Downscaling 1468 
Method, Watershed Model) constant. 1469 

 
  1470 

Scenario 
Factor Effect Δ AHV, % 

ESM 

Center 4.4 ± 5.4 
Cool/Dry 0.9 ± 4.3 
Hot/Wet 6.7 ± 6.2 
Hot/Dry 1.4 ± 3.6 

Cool/Wet 8.3 ± 6.5 

Downscaling MACA 4.8 ± 6.0 
BCSD 3.9 ± 5.9 

Watershed 
Model 

DLEM 5.6 ± 7.5 
Phase 6 3.1 ± 3.8 
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Table 6: A summary comparison of simulated mid-21st century climate change impacts on 
Chesapeake Bay hypoxia relative to observed conditions. 
 

Published 
Research Climate Change Factors Future Oxygen Change 

Watershed Changes 
Wang et al., 

2017 
Increased watershed nitrogen loadings 
by +5 to +10%  

No AHV estimate provided 
Increase in AAV*: +9.7 to +18.7% 

Irby et al., 
2018 

Changed watershed discharge by -2% 
to +17% (varying by month); assumed 
nutrient reductions 

Increase in AHV: +5%    

Hinson et al., 
2023** (this 

paper) 

Changed watershed loadings according 
to two watershed models, two 
downscaling techniques, and five 
ESMs 

Increase in AHV: +4.4 ± 7.4%  
Increase in AAV: +10.0 ± 16.5% 

Temperature Changes 
Irby et al., 

2018 
Increased estuarine temperatures by 
1.75 °C; assumed nutrient reductions Increase in AHV: +13%    

Tian et al., 
2021 

Increased atmosphere and ocean 
temperature increased by ~1 °C 

†Increase in AHV: +9% 

Sea Level Rise 
Irby et al., 

2018 
Increased sea level by 0.5 m; assumed 
nutrient reductions Decrease in AHV: –13%    

St-Laurent et 
al. 2019 

Increased sea level by 0.5 m for 4 
different models 

Increase in summertime bottom O2 in all 4 
models 

Cai et al., 
2022 Increased sea level by 0.5 m Increase in AHV by +8% 

Cerco and 
Tian, 2022 

Increased sea level by 0.22 to 1 m and 
simulated wetland losses  Increase in DO criteria exceedances  

Multiple Environmental Changes 

Irby et al. 
2018 

Combined atmosphere, watershed and 
sea level change, assuming nutrient 
reductions 

Increase in AHV: +9%    

Ni et al., 
2019** 

Combined atmosphere, watershed, and 
ocean Change: Multiple downscaled 
scenarios that increased air 
temperatures, monthly discharge, ocean 
temperatures and sea surface height 

Increase in AHV: +9 to 31% 
Increase in AAV: +2 to 29% 

Basenback et 
al., 2022 

Modified timing of nutrient delivery 
and warming within the estuary Change in AHV: -10% to +18% 

AAV = Annual Anoxic Volume; AHV = Annual Hypoxic Volume 
*AAV defined as O2 < 1 mg L-1 in Wang et al. (2017), and O2 < 0.2 mg L-1 for all others. 
**Applied downscaled ESMs in projecting changes to Chesapeake Bay hypoxia. 
†No 2050 estimate provided; results based on 2025 projected changes. 



 

 38 

 1471 
Figure 1: (a) Map showing the extent of the Chesapeake Bay watershed boundary, major basins, 1472 
River Input Monitoring stations for the Susquehanna, Potomac, and James Rivers (red circles), 1473 
and ChesROMS-ECB river input locations (yellow circles). (b) Bathymetry of the ChesROMS-1474 
ECB model domain, river input locations (yellow circles), and 20 Chesapeake Bay Program 1475 
main stem monitoring stations (green triangles).  1476 
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 1479 
Figure 2: Relative changes in May-October temperatures and November-June precipitation over 1480 
the Chesapeake Bay watershed for an ensemble of ESMs (circled letters) downscaled using (a) 1481 
MACA and (b) BCSD methodologies. Horizontal and vertical blue lines correspond to the 1482 
ensemble average changes in temperature and precipitation. Numbers adjacent to particular 1483 
ESMs in both panels denote the order in which the first five were selected by the KKZ algorithm.  1484 
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 1485 
Figure 3: Changes in November to June precipitation (a, b) and May to October temperatures (c, 1486 
d) for the MACA (a, c) and BCSD (b, d) Center ESMs between mid-century (2046-2055) and the 1487 
reference period (1991-2000).  1488 
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 1489 
Figure 4: Diagram of Multi-Factor experimental design, comprising a total of 20 model 1490 
scenarios.  1491 
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 1492 
Figure 5: ChesROMS-ECB skill for average summer (Jun-Aug) O2 profiles at main stem 1493 
monitoring locations using watershed inputs from (a) DLEM and (b) Phase 6 over the reference 1494 
period 1991-2000. (c) Modeled AHV using DLEM and Phase 6 compared to interpolated 1495 
observations (error bars denote RMS percent error) over the reference period 1991-2000. 1496 
Average hydrologic conditions are noted below corresponding years and signify dry (D), average 1497 
(A), or wet (W) years.  1498 
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 1499 

 1500 
 1501 
Figure 6: Mean and standard deviations of changes to freshwater discharge (a), total nitrogen 1502 
loadings (b), and annual hypoxic volume (c) for Multi-Factor and Management experiments. 1503 
Future climate changes in these outputs are shown relative to 1990s baseline conditions (dashed 1504 
vertical line) without management actions (upper four rows) and with management actions 1505 
(bottom row).   1506 
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 1507 
Figure 7: Average total nitrogen loadings among ESM scenarios for reference scenarios and 1508 
various components of the Multi-Factor and Management experiments. Total nitrogen loadings 1509 
divided by (a) nitrogen species component: dissolved inorganic nitrogen (DIN), particulate 1510 
organic nitrogen (PON), dissolved organic nitrogen (DON), and refractory dissolved organic 1511 
nitrogen, and (b) by major river basin (SUS = Susquehanna, RAP = Rappahannock, POT = 1512 
Potomac, YRK = York, EAS denoting eastern shore rivers including the Elk, Chester, Choptank, 1513 
and Nanticoke, JAM = James, PAX = Patuxent).  1514 
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 1517 
Figure 8: Average O2 changes in Multi-Factor experiment scenarios at the surface (a-c) and 1518 
bottom (d-f). Columns correspond to average changes for all years (a, d) as well as 1519 
hydrologically wet (b, e) and dry (c, f) years.  1520 
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 1521 
Figure 9: Summary of Multi-Factor experiment results for changes to Annual Hypoxic Volume, 1522 
expressed as a histogram of relative frequencies (a) and an empirical cumulative distribution (b).  1523 
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 1525 
Figure 10: (a) Change in Annual Hypoxic Volume (ΔAHV) for the All-ESMs experiment. Red 1526 
dashed line denotes the multi-model average of five KKZ-selected ESMs; black dashed line 1527 
denotes the full 20-model average. (b) ΔAHV and standard errors as estimated by increasing 1528 
number of KKZ-selected ESMs. Black lines correspond to 20-model average (solid) and 1529 
associated standard errors (dotted) from the All-ESMs experiment. (c) Percent of ΔAHV range 1530 
covered by sequentially increasing the number of KKZ-selected ESMs. Black lines correspond to 1531 
the range (solid) and associated standard error (dashed) of estimates chosen by randomly 1532 
selecting ESMs. 1533 
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 1535 
Figure 11: Summary of all experiment results for change in Annual Hypoxic Volume (ΔAHV), 1536 
expressed as a cumulative distribution function. Black dashed vertical line corresponds to no 1537 
change in AHV.  1538 
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 1539 
Figure 12: Percent contribution to uncertainty from Earth System Model (ESM), downscaling 1540 
methodology (DSC), and watershed model (WSM), for estimates of (a) discharge, (b) organic 1541 
nitrogen loading, (c) nitrate loading, and (d) change in annual hypoxic volume (DAHV). 1542 
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