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Abstract. Land cover changes have been proposed to play a significant role, alongside emission reductions, towards achieving

the temperature goals agreed upon under the Paris Agreement. Such changes carry both global implications, pertaining to the

biogeochemical effects of land cover change and thus the global carbon budget, and regional/local implications, pertaining

to the biogeophysical effects arising within the immediate area of land cover change. Biogeophysical effects of land cover

change are of high relevance to national policy- and decision- makers and accounting for them is essential towards effective5

deployment of land cover practices that optimises between global and regional impacts. To this end, Earth System Model

(ESM) outputs that isolate the biogeophysical responses of climate to land cover changes are key in informing impact as-

sessments and supporting scenario development exercises. However, generating multiple such ESM outputs in a manner that

allows comprehensive exploration of all plausible land cover scenarios is computationally untenable. This study proposes a

framework to explore in an agile manner the local biogeophysical responses of climate under customised tree cover change10

scenarios by means of a computationally inexpensive emulator, TIMBER v0.1. The emulator is novel in that it solely represents

the biogeophysical responses of climate to tree cover changes, and can be used as either a standalone device or supplemen-

tary to existing climate model emulators that represent the climate responses from greenhouse gas (GHG) or Global Mean

Temperature (GMT) forcings. We start off by modelling local minimum, mean and maximum surface temperature responses

to tree cover changes by means of a month- and Earth System Model (ESM)- specific Generalised Additive Model (GAM)15

trained over the whole globe. 2-m air temperature responses are then diagnosed from the modelled minimum and maximum

surface temperature responses using observationally derived relationships. Such a two-step procedure accounts for the different

physical representations of surface temperature responses to tree cover changes under different ESMs, whilst respecting a defi-

nition of 2-m air temperature that is more consistent across ESMs and with observational datasets. In exploring new tree cover
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change scenarios, we employ a parametric bootstrap sampling method to generate multiple possible temperature responses,20

such that the parametric uncertainty within the GAM is also quantified. The output of the final emulator is demonstrated for

the SSP 1-2.6 and 3-7.0 scenarios. Relevant temperature responses are identified as those displaying a clear signal in relation

to their surrounding parametric uncertainty, calculated as the "signal-to-noise" ratio between the sample set mean and sample

set variability. The emulator framework developed in this study thus provides a first step towards bridging the information-gap

surrounding biogeophysical implications of land cover changes, allowing for smarter land-use decision making.25

1 Introduction

Following the Paris Agreement in 2015, 42% of Nationally Determined Contributions (NDCs) submitted by countries included

afforestation/reforestation based actions and targets (Seddon et al., 2020). The recent COP26 in Glasgow furthermore saw a

pledge to halt and reverse deforestation by 2030 (COP, 2021). Considering this, society is set to experience notable land cover

changes in hopes to achieve global warming levels well below +2 °C and pursue efforts in limiting them to +1.5 °C above pre-30

industrial levels. In anticipation of this, the Earth System Model (ESM) community has put great effort into understanding and

quantifying the biogeochemical and biogeophysical effects of land cover changes (De Noblet-Ducoudré et al., 2012; Lawrence

et al., 2016; Davin et al., 2020; Boysen et al., 2020).

Biogeochemical effects of land cover changes largely affect the global carbon budget, while biogeophysical effects are essen-

tial towards understanding regional climate impacts as well as extremes (De Noblet-Ducoudré et al., 2012; Pitman et al., 2012;35

Lejeune et al., 2018). Recent studies by Windisch et al. (2021) and Lawrence et al. (2022), highlighted the need to consider the

biogeophysical effects of land cover changes in order to effectively identify and prioritise areas for re/afforestation and con-

servation. Such underscores the regional importance of the biogeophysical effects of land cover changes under future climate

scenarios (Seneviratne et al., 2018; Hirsch et al., 2018), and evidences the need to consider them within impact assessments

(Popp et al., 2017) and scenario development exercises (Van Vuuren et al., 2012; Calvin and Bond-Lamberty, 2018). Exploring40

the biogeophysical effects of land cover changes under all possible future land cover scenarios solely through ESMs however,

quickly becomes untenable due to computational costs, and it is worth pursuing computationally inexpensive alternatives such

as climate model emulators.

Climate model emulators are computationally inexpensive tools, trained on available climate model runs to then render

probability distributions of key climate variables for runs that have not been generated yet. By statistically representing select45

climate variables, emulators are able to reduce the dimensionality of climate model outputs, allowing for agile exploration of the

uncertainty phase space surrounding climate projections. Climate model emulators designed to reproduce regional/grid point

level, annual to monthly temperature projections usually operate as ESM-specific and start by deterministically representing

the regional/grid point level mean response of temperatures to a certain forcing, after which the residual variability – treated as

the uncertainty due to natural climate variability – is sampled or stochastically generated (Alexeeff et al., 2018; McKinnon and50

Deser, 2018; Link et al., 2019; Castruccio et al., 2019; Beusch et al., 2020; Nath et al., 2022b). Outputs of such emulators act

as approximations of multi-model initial-condition ensembles, providing distributions of temperature responses to the forcing
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of choice for impact assessments. To date however, such climate model emulators mainly represent the greenhouse gas (GHG)-

or Global Mean Temperature (GMT)- forcing within their mean response, neglecting the biogeophysical effects of land cover

changes.55

In this study, we set up a conceptual framework for emulating the biogeophysical responses of climate variables to land cover

changes, hereafter referred to simply as "responses". As a first step, we focus on emulating the surface and 2-m air temperature

responses to land cover changes between forest and cropland, simply denoted as "tree cover changes". The resulting emulator

constitutes a prototype version of the Tree cover change clIMate Biophysical responses EmulatoR, i.e. TIMBER v0.1. Since

representation of natural climate variability is well-explored in other emulators, TIMBER v0.1 purely focusses on representing60

the mean response of temperatures to tree cover change. In doing so, we recognise that the ESM data available for training

(described under Section 2) is under-representative of the full range of possible tree cover changes across the globe. Conse-

quently, we pursue a more probabilistic representation, such that parametric uncertainties given the training data population are

accounted for. TIMBER v0.1 can thus be used as a standalone device or as supplementary to other emulators. The structure of

this paper is as follows: Section 3 introduces the emulator framework and its calibration and evaluation procedure; Section 465

presents the calibration and evaluation results, and illustrates some emulator outputs; Section 4.4 demonstrates the application

of the emulator to different Shared Socio-economic Pathway (SSPs) scenarios; and Section 5 wraps up with the conclusion and

outlook.

2 Data

2.1 ESM experiments70

Idealised Earth System Model (ESM) experiments that isolate the effects of tree cover change on the climate were run as

part of the LAnd MAnagement for CLImate Mitigation and Adaptation (LAMACLIMA) project, a detailed description of

these simulations can be found in (De Hertog et al., 2022). The experimental setup was designed to capture the maximal

potential climate response due to af/re/deforestation as compared to present-day land cover conditions. Accordingly, extreme

afforestation (AFF) and deforestation (DEF) scenarios were run alongside a reference scenario (REF). The REF scenario spans75

150 years with land cover conditions and other forcings (GHG emissions etc.) kept constant at 2015 levels. The AFF (DEF)

scenario then consists of full expansion of forest (crop) cover relative to that of 2015 levels with all other forcings again kept

constant at 2015 levels, and again span 160 years with a 10 year spin up period which is excluded. The AFF (DEF) was

implemented by removing the non required vegetation types (i.e. crops, grassland and shrubs for AFF and forest, grasslands

and shrubs for DEF) and upscaling the remaining vegetation to fill up the grid cells. Bare land was conserved throughout this80

process in order to respect the biophysical limits of where vegetation can grow. The difference between AFF (DEF) run and

REF run outputs averaged over the 150 years provides the climate response to idealised re/afforestation (deforestation).

Temperature responses derived from the ESM simulations are distinguished into local and non-local responses following

the checkerboard approach developed by Winckler et al. (2017c). Local responses represent the expected climate responses to
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land cover change within the immediate area of change and can be applied in any global tree cover change scenario, whereas85

non-local responses represent remote effects of land cover change and depend on the global extent and patterns of land cover

change. Given that local responses are independent of the global extent and patterns of land cover change, we focus only on

them for the rest of this study and the term "response" exclusively refers to the local response hereon. Participating ESMs

running simulations within the LAMACLIMA project are the Community Earth System Model version 2.1.3 (CESM2), the

Max Planck Institute Earth System Model version 1.2 (MPI-ESM) and the European Community Earth System Model version90

3-Veg (EC-EARTH).

2.2 Observational dataset

To demonstrate the applicability of the emulating approach outlined in this study on observational data we use the Duveiller

et al. (2018c) dataset, hereafter referred to as D18. This dataset was derived using a "space-for-time" substitution approach

applied on surface temperatures from satellite data, in order to map potential local responses of daytime, mean and nighttime95

surface temperatures to land cover transitions. It considers transitions from forest to several other land cover types (e.g. shrub-

land, grassland etc.). To ensure comparability with the ESM runs, we choose to only focus on forest transitions to cropland,

which are hereafter by analogy also referred to as DEF. It should be noted that we don’t emulate the temperature response

to afforestation in this case since the D18 dataset assumes a symmetrical temperature response for transitions from cropland

to forests. Additionally, the dataset contains some information gaps in space and is thus spatially sparse as compared to the100

spatially complete ESM output fields.

2.3 Tree cover change scenarios in selected SSPs

The emulator framework developed in this study enables to predict the expected local temperature changes that would be given

by the dataset it is trained on (being derived from models or observations) in response to any scenario of spatially explicit tree

cover changes. We apply it to scenarios of tree cover changes according to the Shared Socioeconomic Pathways SSP1-2.6 and105

SSP3-7.0 (Riahi et al., 2017).

SSP1-2.6 follows the narrative of a global trend towards sustainable development from SSP1 (Riahi et al., 2017), and entails

changes in global emissions and further climate forcings that eventually lead to a radiative forcing of 2.6 W/m2 in 2100. Strong

land-use regulations mean that tropical deforestation is reduced, while economic development enables increases in crop yields

and the focus on sustainability entails less food waste and a reduction in consumption of animal products (Popp et al., 2017).110

Overall, this leads to an increase in forest cover in many parts of the world. In contrast, SSP3-7.0 follows the SSP3 narrative

and leads to a radiative forcing of 7.0 W/m2 in 2100. SSP3 features a world in which there is a resurgence of nationalism

and regional conflicts that translates into a stronger focus on domestic and regional issues and low international cooperation

in particular on environmental issues. Land use is thus not well regulated, low economic development and reduced technology

transfer mean that crop yields stagnate or decline, while diets with high shares of animal products and high rates of food waste115

prevail. As a result, deforestation continues especially in the tropics.
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In this study, we use the trajectories of tree cover changes according to SSP 1-2.6 and SSP 3-7.0 as modelled by the Integrated

Assessment Models, IMAGE and MESSAGE-GLOBIOM respectively (van Vuuren et al., 2017; Fujimori et al., 2017). Tree

fraction maps are obtained as the CMIP6 variable "treeFrac", from the CMIP6 new generation library hosted by ETH Zürich

(Brunner et al., 2020).120

3 Methods

3.1 Overview of the emulation approach

The emulation framework presented in this study aims at predicting local temperature responses to tree cover changes, and

is split into three parts. The first part seeks to statistically represent the expected responses of minimum (∆TSmin
m,s ), mean

(∆TSmean
m,s ) and maximum (∆TSmax

m,s ) surface temperature for a given month m and location s, generically referred to as125

∆TSm,s, to tree cover change (Sect. 3.2). This is carried out using a Generalized Additive Model (GAM) that is calibrated via

a blocked cross validation procedure in order to account for the specificity of the training data. The predictive ability of the

GAM is also evaluated using a blocked cross-validation procedure.

The second part then seeks to diagnose 2-m air temperature responses (∆T 2m
m,s) from the statistically represented surface

temperature responses using observationally derived relationships (Sect. 3.3). T 2m
m,s is an important variable for impact assess-130

ments, however is diagnosed differently across ESMs (leading to inter-ESM discrepancies in their modelled response to tree

cover change) and is also defined differently between ESMs and observations. The split approach suggested in this study there-

fore allows to maintain a response of surface temperature to tree cover change that is specific to the ESM/observational data

trained on, from which ∆T 2m
m,s is then diagnosed using observationally derived relationships independent of training data. In

such, we account for the different physical representations of temperature responses to tree cover change for each ESM, whilst135

also ensuring a consistent definition of ∆T 2m
m,s across ESMs and with observational datasets, ergo the possibility to compare

them.

The third part aims to quantify the uncertainty in the final ∆T 2m
m,s predictions, that arise from the parametric uncertainties

within the GAM (Section 3.4). The GAM’s parametric uncertainty is assessed using a parametric bootstrap procedure (Hastie

and Tibshirani, 1986; Wood, 2017), so as to evaluate the imperfections within its fitted parameters conditional on the given140

training sample population. Given the limited amount of training data available, this is an important step towards quantifying

the confidence in the temperature response predictions from TIMBER.

3.2 Representing the expected surface temperature responses to tree cover change

In the following subsections, we introduce the statistical model used for representing ∆TSm,s to tree cover changes (Section

3.2.1), followed by our approach in calibrating (Section 3.2.2) and evaluating it (Section 3.2.3). In choosing and calibrating145

the model, we are especially mindful of the training datasets being solely representative of grid points which undergo both

directions of extreme tree cover changes relative to the REF scenario, as performed within the ESM training simulations, or

5



just one direction (i.e. deforestation) in the case of the D18 data. Consequently, we require a model that can train over the

whole globe (as otherwise there are at most two samples per grid point to train on) and need to account for the resulting

spatially-structured training data during model calibration. To this end, a random train/test split cannot be applied during150

model calibration due to the structural interdependencies in the ESM and observational data (for example arising through

spatial correlations). We therefore calibrate the model following a blocked cross validation procedure (Roberts et al., 2017).

Moreover, we recognise that evaluation can only be done on the training datasets as no other ESM simulations isolating the

local effects from af- or deforestation with the checkerboard approach of Winckler et al. (2017a) exist, and thus settle for

synthesising the best representation of the model’s out-of-sample performance during model evaluation, by again employing155

blocked cross-validation.

3.2.1 Model description

We model the expected ∆TSm,s conditional on tree cover change and geographical attributes using a month-specific General-

ized Additive Model (GAM) trained over the whole globe. The GAM, hereon referred to as Γmin/mean/max
m – depending on

whether it is applied to daily minimum, maximum or mean surface temperature – or more generically as Γm, is provided by the160

python pyGAM package. Γm can easily ingest multidimensional data and has the advantage that it does not prescribe any func-

tional form, allowing flexibility in representing linear to more complex response types. The input predictor matrix (X) given

to Γm is composed of tree cover changes relative to the 2015 (∆2015treeFrac) and geographical attributes of longitude (lon),

latitude (lat) and orography (orog). Maps of ∆treeFrac2015 implemented under the AFF and DEF scenarios, and the orog

(defined as meters above sea level) are available for reference in Figures A1 and A2 respectively, Appendix A.The conditional165

distribution of ∆TSm,s is assumed as normal,

Γm = E[∆TSm,s|X] = tem(∆2015treeFracm,s, lons, lats, by = orogs) where [∆TSm,s|X]∼N (1)

tem represents a tensor spline term built across the three-dimensional ∆2015treeFrac, lon, lat space with coefficient terms

stratified according to orog using the by operator so as to create a varying coefficient model (Hastie and Tibshirani, 1993).

For further details on tensor splines and the by operator, see Wood (2017). Γm can be calibrated for its lambda parameter (λ),170

which controls the complexity in shape of tem (where a smaller λ value allows for a more complex shape) and its number of

basis functions, also noted nbf (where more basis functions means more degrees of freedom).

3.2.2 Blocked cross validation for model calibration

A first blocked cross validation ((Roberts et al., 2017)) is conducted to find the model configuration, (i.e., the set of model

parameters λ and nbf ) that performs best over geographical and climate regions (Steps 1-4 of Figure 1). Block samples are175

constructed by identifying regions sharing climate and geographical characteristics. K-means clustering is used to cluster grid

points according to background climate (based on climatological values of temperature and relative humidity) in the REF sim-

ulation of each ESM and in historical climatological data from WorldClim v2 (https://www.worldclim.org/data/worldclim21.
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html) when further calibrating on the D18 observational data. To select the optimal number of clusters, we calculate the im-

provement in performance of the K-means clustering algorithm (measured as the average distance of all points from the centre180

of their respective cluster groups, a smaller distance indicating better performance) with increasing number of clusters, then

select the number of clusters after which no further improvement in performance is observed. Grid points are subsequently split

according to continuous geographical regions: Africa, North America, South America, Australia, Eurasia, Tibetan Plateau and

the South-East Asian Islands. The composite cluster blocks obtained through this procedure are illustrated on the upper-right

corner of Figure 1 (for example ESM, CESM2) and on Figure A1.185

Cross validation is then performed using the composite blocks identified in both the climate and geographical space. Suc-

cessively and for each block, Γm is fitted on data for the whole land area except over that block. At each iteration, λ values

between 0.001 and 1 as well as a number of basis functions between 5 and 9 are tried out, representing a possible model

configuration. For each block, the performance of each model configuration is evaluated by calculating the RMSEs its predic-

tions and the actual ESM or observational data over that block. By doing so, we hope to nudge the λ parameter and number190

of basis functions to values that most flexibly apply across all possible geographical and climate conditions whilst ensuring

independence between training and test sets by accounting for spatial correlations. Eventually, cross validation is carried out

across all train-test splits such that each block is used for testing once, and the set of model parameters yielding the best per-

formance for Γm as measured by the RMSE across all test sets is selected. The parameters of these model configurations and

their performance are shown in Section 4.1.1.195

3.2.3 Blocked cross validations for model evaluation

Having selected the optimal λ value and nbf configuration for Γm, a final training on the whole set of training data is conducted

to obtain the fully calibrated Γm. Blocked cross validation is further employed to evaluate the calibrated Γm’s performance

into "no-analogue" conditions where the model has the least information (Roberts et al., 2017), thus providing a representative

idea of the model’s ability to predict into new tree cover change scenarios unseen during calibration. It is mainly required that200

the model is able to predict well across different background climates as well as for different amounts of tree cover change,

therefore its performance is evaluated separately in no-analogue conditions representative of each of these aspects.

First, since Γm was originally calibrated by creating blocks that considered both climate and geographical space, the perfor-

mance into "no-analogue" background climates is assessed by re-using those same blocks. Successively and for each block, the

best performing configuration of Γm identified during calibration is trained on data for the whole land area except that block.205

The RMSEs between the values predicted by Γm and the actual values in the ESM or observational data over that block are

then calculated. The results of this procedure are described in Section 4.1.2.

Then, another set of blocks is constructed by splitting the same seven continuous geographical regions as in the previous sec-

tion, but by dividing the grid cells constituting those according to the amount of tree cover change ∆2015treeFrac encountered

between the REF and AFF or REF and DEF simulations, using bins of ∆2015treeFrac magnitudes: [0.01-0.15), [0.15-0.3),210

[0.3-0.5), [0.5-0.8) and [0.8-1.0], for both positive and negative signs of tree cover change. A similar procedure to that applied

for the no-analogue background climate conditions is then conducted but using these newly constructed blocks: Successively
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and for each block, Γm is trained on data for the whole land area except over that block, using the sets of parameters identified

in Section 3.2.2. For each block, the RMSEs between the values predicted by Γm and the actual ESM or observational data

are then calculated. They constitute an estimate of the predictive ability of Γm for tree cover change amounts unseen during215

training and are presented in Section 4.1.3.
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Figure 1. Framework for block cross validation used for the calibration and the evaluation of Γm, based on its ability to predict the surface

temperature response to tree cover changes over climate and continuous geographical regions not considered during model calibration.
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3.3 Diagnosing the 2-m air temperature response from changes in surface temperatures

Hooker et al. (2018) were able to derive month-specific relationships between observational night and day surface tempera-

tures (TSnight/day
m,s ) and observational T 2m

m,s (provided by the Global Historical Climatology Network monthly (Menne et al.,

2018)). They did so by performing both Geographical and Climate Space Weighted Regression (GWR and CSWR) between220

observational TSnight/day
m,s and observational T 2m

m,s values, so as to obtain grid point level coefficients specific to geographi-

cal/background climate conditions. By taking a stacked generalisation of the GWR and CSWR outputs, Hooker et al. (2018)

were able to reconstruct global T 2m
m,s maps over the period 2003 to 2016 in a geographically and climatically consistent manner.

In this study, we use a model adapted from Hooker et al. (2018) to diagnose T 2m
m,s from surface temperatures. Ideally, the

Hooker et al. (2018) model would be refitted to derive ESM-specific coefficients between ESM surface temperatures and225

observed T 2m
m,s data. Given that this study primarily focusses on setting up a conceptual framework however, we choose to

directly apply the original coefficients derived by Hooker et al. (2018) as an initial proof-of-concept. Before applying the

Hooker et al. (2018) model, we first make some modifications to it so as to enable a smooth translation between observed

and ESM spaces. In the following subsections, we introduce the modifications made to the Hooker et al. (2018) model and

furthermore outline some tests performed to check that the modified version of it applied to ESMs still yields results comparable230

to those expected from observations.

3.3.1 Modifications of the Hooker et al. (2018) model

T 2m
m,s values are diagnosed using a modified version of the Hooker et al. (2018) model which uses TSmin/max

m,s values instead

of TSnight/day
m,s and only considers the GWR coefficient terms,

T 2m
m,s = βGWR

0,m,s +βGWR
1,m,s ·TSmin

m,s +βGWR
2,m,s ·TSmax

m,s (2)235

assuming that the effects of land cover type are minimal on βGWR
0,m,s , we then get,

∆T 2m
m,s = βGWR

1,m,s ·∆TSmin
m,s +βGWR

2,m,s ·∆TSmax
m,s (3)

Where βGWR
0,m,s , βGWR

1,m,s and βGWR
0,m,s are coefficient terms obtained from GWR. We choose not to use the CSWR coefficient

terms as background climates between observations and ESMs are not consistent and there is the additional uncertainty sur-

rounding the evolution of CSWR coefficient terms under changing background climates. Additionally, we use TS
min/max
m,s240

values instead as they are the only available DEF and AFF scenario ESM outputs which are most similar to TS
night/day
m,s .

3.3.2 Tests on the modified Hooker et al. (2018) model applied to the ESM space

Since we look at relative changes in T 2m
m,s, the modifications made to the Hooker et al. (2018) model are expected to have

minimal impact as long as the biases in T 2m
m,s values calculated using ESM TS

min/max
m,s values have the same spread as those
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arising from natural variability within observational TSnight/day
m,s values, and are thus "acceptable". To determine this, we245

compare the spread of biases obtained when calculating T 2m
m,s values from observational TSnight/day

m,s values to those obtained

from TS
min/max
m,s ESM outputs for the REF scenario. TSmin/max

m,s outputs from the REF scenario are used, as we consider

them representative of the natural variability surrounding TS
min/max
m,s values. We approximate the spread of biases by taking

into account the natural variability surrounding the surface temperature values and compare them through the following steps:

1. Construct a multivariate Gaussian process across all observational TS
night/day
m,s values to generate spatially corre-250

lated pairs of TS
night/day
m,s which also take into account cross-correlations between TSnight

m,s and TSday
m,s. Generated

TS
night/day
m,s pairs will act as "pseudo-samples" that represent the underlying uncertainty due to natural variability within

observational data.

2. For each timestep of T 2m
m,s predictions available from the original Hooker et al. (2018) model (going from 2003 to 2016):

(a) Generate 100 synthetic pairs of TSnight/day
m,s values using the Gaussian process constructed in Step 1.255

(b) Calculate the biases between the T 2m
m,s prediction available from the original Hooker et al. (2018) model and those

obtained by applying Equation 2 to the synthetically generated pairs of TSnight/day
m,s .

3. Take the Interquartile Range (IQR) of the biases calculated in Step (2b) as a measure of their spread.

4. Repeat steps 1-3 for TSmin/max
m,s

5. Check the difference between the IQR calculated in step 3 using ESM TS
min/max
m,s values and that calculated using260

observational TSnight/day
m,s values. A positive difference indicates more spread within the biases for TSmin/max

m,s derived

T 2m
m,s values, in which case the biases are not acceptable considering those arising from natural variability within the

observational data.

A separate multivariate Gaussian process is constructed for the observational TSnight/day
m,s and ESM TS

min/max
m,s values in

Step 1. In order to construct the Guassian process we first test the observational TSnight/day
m,s and ESM TS

min/max
m,s values265

for normality using a Shapiro-Wilk test (see Figures C1-C4 in Appendix C). Observational TSnight/day
m,s values are normally

distributed over all grid points, while ESM TS
min/max
m,s values show some grid points (at most 17% of grid points) where the

null hypothesis of being normally distributed is rejected. Given that this is less than half of the grid points we proceed with

applying the multivariate Gaussian process.

3.4 Emulating 2-m air temperature responses to tree cover changes within the SSP scenarios270

By predicting the expected surface temperature responses using the calibrated Γm (described in Section 3.2.1), and subse-

quently diagnosing the corresponding 2-m air temperature response using Equation 3; we can emulate the expected 2-m air

temperature response to tree cover changes over the whole land area for any land cover change scenario. In this study, we do so

for 2 Shared Socioeconomic Pathways – SSP2 1-2.6 and SSP3-7.0 – for which the underlying narratives and resulting changes
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in tree cover over the 21st century are presented in Section 2.3. We only present the results for changes in tree cover between275

2015 and the end of the century (mean changes between 2015 and 2100).

In arriving at the final 2-m air temperature response emulations, we are mindful of the limited training data available for

constructing Γm. To account for this, we assess the underlying signal-to-noise ratio in the emulations, by considering "noise" as

the parametric uncertainties within Γm conditional on the training sample population. The noise in emulations arising from the

parametric uncertainties within Γm, is evaluated using a parametric bootstrap procedure (Hastie and Tibshirani, 1986; Wood,280

2017). In the following sections, we outline the parametric bootstrap procedure used, followed by how its results allow for

evaluation of the signal-to-noise ratio in the final 2-m air temperature response emulations.

3.4.1 Estimating parametric uncertainty in the predicted temperature responses

We quantify the impact of parametric uncertainties within Γm on the ∆TSm,s predictions following a parametric bootstrap

method as outlined in Figure 2 (Wood, 2017; Efron and Tibshirani, 1993). Parametric bootstrapping constitutes of first ap-285

proximating the joint distribution of the coefficients (β) and λ parameter used within Γm, conditional on the training data

available i.e. f(β,λ|X) (Step 1, Figure 2), from which β values are then sampled to estimate surface temperature responses

(Step 2, Figure 2). To avoid high computational costs, the joint distribution is approximated by first bootstrap sampling the

distribution of λ conditional on the training material, i.e. fλ(λ) (Steps 1a-1b, Figure 2), from which the distribution of β

conditional on both λ and the training material is constructed over the whole fλ(λ) space (Step 1c, Figure 2), such that290

f(β,λ|X)≈ f(β|λ,X) · fλ(λ). Surface temperature response values are then sampled by drawing β distributions from ran-

dom parts of the fλ(λ) space (Step 2a, Figure 2) and sampling coefficient values from them (Step 2b, Figure 2), which are then

used to estimate ∆TSm,s values (Step 2c, Figure 2).

3.4.2 Evaluating signal-to-noise in the predicted temperature responses

In representing temperature responses under new tree cover change scenarios, we consider the signal-to-noise ratio in the295

final ∆T 2m
m,s emulations. "Noise" constitutes the underlying parametric uncertainty within Γm arising from the training sample

population. We start by sampling ∆TS
min/max
m,s values from Γ

min/max
m globally for each relevant pixel using the parametric

bootstrap procedure outlined in Section 3.4.1, and then diagnose ∆T 2m
m,s for each sample. The β and λ parameter uncertainty

spaces are constructed using 10 bootstraps from which 200 samples are then drawn. We take the mean across all samples as

the expected ∆T 2m
m,s value and the standard deviation across all samples as the underlying parametric uncertainty within the300

GAM. The signal-to-noise ratio is then obtained as the ratio between the mean and standard deviation values. We consider

emulations with a signal-to-noise ratio lower than 0.5 as insignificant, as the underlying parametric uncertainty is double

the actual magnitude of expected response. Given the computational expenses of running ESMs, such gives Γm the benefit

of mainly requiring extreme tree cover change scenarios as training material, from which it can further explore all possible

outcomes of in-between scenarios itself. It should be noted however that this does not remove the benefit of having more305

training material ontop of the extreme scenarios, but simply minimises the training data requirements of Γm.
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Figure 2. Sampling routine of the Generalized Additive Model. First, an approximation of the coefficients’ (β) and λ parameter’s joint

distribution given the available training data is constructed (Step 1), from which coefficient terms are sampled to calculate ∆TSmean
m,s values

with (Step 2). Steps 1a-1b construct the sampling distribution of the λ parameter (fλ(λ)) given the known variability in the training data,

and Step 1c then constructs the distribution of β conditional on the training data and λ parameter at each point of the fλ(λ) space. As such,

the ∆TSmean
m,s values calculated in Step 2 account for the uncertainty in the shape of ∆TSmean

m,s responses, as modulated by β and λ values.
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4 Results

4.1 Blocked cross validation results

In this section we show the calibration and evaluation results of Γmean
m , obtained by performing different sets of blocked

cross-validation as described in Sections 3.2.2 and 3.2.3. The calibration and evaluation results for example months of January310

and July, which are representative of the hottest and coldest months for the Northern Hemisphere and vice versa for the

Southern Hemisphere, are shown. First, we show results from the blocked cross validation used to calibrate Γm for its optimal λ

parameter and number of basis functions (Section 4.1.1). Second, we show the results of the blocked cross validations employed

to evaluate the calibrated Γm’s performance into "no-analogue" conditions. "No-analogue" conditions of background climate

(Section 4.1.2) and those of tree cover change amounts (Section 4.1.3) are considered specifically with a separate blocked cross315

validation performed for each. The following subsections show the blocked cross validation results for Γmean
m only as this gives

a representative idea of the validity of this study’s framework. Blocked cross validation results for Γmin/max
m are provided in

the Appendix B.

4.1.1 Results of model calibration

Figure 3 provides the best performing λ parameter values and number of basis functions (nbf) configuration for Γmean
m . Maps320

of RMSEs calculated between the mean surface temperature response ∆TSmean
m,s samples drawn by the fully calibrated Γmean

m

(200 samples are drawn as described in Section 3.4.1), for the tree cover changes ∆treeFrac2015 implemented in the ESM

experiments used for training, and the values actually simulated by the ESMs are further provided. The percentage of grid points

with RMSE values below 0.5 are indicated above each map. These results are shown for both the DEF and AFF scenarios (only

DEF for observations).325

The Γmean
m trained on observational data has a λ parameter value of 0.001 for both January and July, which is significantly

lower than that of 1 otherwise chosen for all ESMs. This could be as the observationally trained Γmean
m only receives training

data for the DEF scenario, which implements large magnitudes of tree cover change localised to specific regions (see Figure

A1). Thus, lower λ parameter values are favoured to allow for complex representation with higher spatial variability. The

observationally trained Γmean
m moreover shows poor performance with only 34% of grid points have RMSE values less than330

0.5. This possibly arises from less training data available for the observationally calibrated Γmean
m (i.e., less grid points as well

as only one tree cover change scenario), such that Γmean
m cannot gain as much information to predict with.

All ESMs show higher RMSEs, with a lower proportion of grid points having RMSE values <0.5, for the DEF scenario than

the AFF scenario. This could be related to difficulty in representing the complex response types with high spatial variabilities

within the DEF scenario. Such highlights a design consequence of Γmean
m , where tem is fitted smoothly over lon, lat and335

∆2015treeFrac, thus falling short in representing high spatial variabilities as brought about by large magnitudes of localised

tree cover change. While CESM2 and EC-EARTH show varying number of grid points with RMSE values below 0.5 between

January and July for the AFF and DEF scenarios, MPI-ESM shows similar performance across both months for the Aff and
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DEF scenarios. Additionally, MPI-ESM’s Γmean
m favours the simplest representation across all ESMs with the lowest number

of basis functions chosen for both January and July. Such indicates a smoother response type outputted by MPI-ESM, with340

deforestation in the tropics not necessarily leading to significant temperature jumps within space.

Overall, Γmean
m mostly displays RMSEs less than or equal to 0.5 for all ESMs. Higher RMSEs (>0.5) are usually localised

to regions of extreme magnitudes of deforestation for CESM2 and EC-EARTH. In the case of MPI-ESM, higher RMSEs are

localised to different regions depending on the month. For example in both AFF and DEF scenario, MPI-ESM shows higher

RMSEs over South South America and Australia in January and over the South North America and the Mediterranean region345

for July. In such, Γmean
m proves itself as a reasonably flexible framework to represent expected temperature responses to more

realistic magnitudes of tree cover change. As noted in the observationally calibrated Γmean
m , a substantial hindrance to Γmean

m ’s

performance is the availability of training data, where it is recommended to have both directions (i.e., positive and negative) of

tree cover changes available for training.
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Figure 3. Performance of the fully calibrated Γmean
m trained on each full set of observational/ESM data for example months of January

(upper panel) and July (lower panel) shown as RMSE maps (rows) for afforestation, AFF (first row), and deforestation, DEF (second row),

scenarios. Columns headers indicate the training dataset used and the respective λ parameter and number of basis functions (nbf) chosen

during blocked cross validation. Percentages above each map indicate the proportion of land area with RMSE values less than 0.5.
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4.1.2 Evaluation of Γmean
m under "no-analogue" background climates350

Figure 4 shows RMSEs obtained for Γmean
m ’s sampled predictions (200 samples are drawn as according to Section 3.4.1) into

"no-analogue" background climates aggregated to latitudinal bands for example months of January and July. Latitudinal bands

were chosen as representative of the different ∆TSm,s response types to tree cover changes – as seen in De Hertog et al. (2022)

– namely: northern-hemispheric, temperate (40°N to 65°N); subtropical, temperate (10°N to 40°N); tropical (-15°N to 10°N);

and southern-hemispheric (-45°N to -15°N). Southern-hemispheric results are not differentiated into subtropical and temperate355

as the sample size of predictions would become too small otherwise. RMSEs are differentiated into those obtained under the

AFF scenario and the DEF scenario, except for observations where RMSEs are only available for the DEF scenario.

For observations and ESMs, the spread in RMSEs displays a month dependency across all latitudinal bands, evidencing the

seasonality in ∆TSmean
m,s responses to tree cover change as well as the need for prior background climate information being

more important for certain months than others. Despite the spread in RMSEs being large, median values are mostly below360

0.5 for ESMs and below 1.5 for Observations, which is in line with those seen in Figure 3, indicating overall good prediction

skill for Γmean
m into unseen background climate conditions. Observation RMSEs for DEF in -45 °N to -15 °N however show

significantly higher median values than those in Figure 3, although this is more likely due to data sparsity within the training

data for this region, leading to little information learned by the observationally calibrated Γmean
m for this region.

Across ESMs, DEF in the tropics (-15 °N to 10 °N) shows the largest spreads in RMSEs with slightly higher median values365

than those of Figure 3. Given that Γmean
m may underperform within these areas due to the localised, large magnitudes of

deforestation (as seen for CESM2 and EC-EARTH in Figure 3), exploration of its performance into "no-analogue" tree cover

changes is first required before concluding lower prediction skill for unseen background climate conditions within these areas.

4.1.3 Evaluation of Γmean
m under "no-analogue" tree cover change amounts

Figure 5 shows the median RMSEs (with error bars indicating 50% confidence intervals) obtained for Γmean
m ’s sampled pre-370

dictions into "no-analogue" tree cover changes aggregated to latitudinal bands for example months of January and July. For

observations and ESMs, magnitudes and patterns of RMSEs are similar between January and July across all latitudinal bands,

contrary to what has been found for the predictive ability in "no-analogue" background climate conditions 4.1.2. This is

expected as the way that local temperature response to tree cover changes depends on the season varies across background cli-

mates (and mainly across the latitudes, see for example Li et al. (2015)), and is thus intuitively more important for representing375

seasonality in ∆TSmean
m,s values.

Median RMSEs for ∆2015treeFrac≤-0.5 in the tropics are higher than those seen for DEF in Figure 4, indicating that the

prediction skill for Γmean
m in the tropics is more dependent on the availability of training information for similar tree cover

changes than for similar background climate. MPI-ESM is an exception to this, displaying much larger RMSEs for DEF in

Figure 4. Such could result from MPI-ESM outputting a weaker response to tree cover change in the tropics as previously380

suggested in Section 4.1.1, making availability of prior background climate information the main factor influencing Γmean
m ’s

prediction skill.
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Observations, CESM2 and EC-EARTH show an increase in RMSEs across all latitudinal bands as ∆2015treeFrac values

move towards the more extreme ends (-1 for observations and +/-1 for CESM2 and EC-EARTH), sometimes even reaching

RMSEs higher than those seen in Figure 3. This indicates lower prediction skill for Γmean
m into unseen, extreme tree cover385

change conditions for observations, CESM2 and EC-EARTH. Nevertheless, the resolved skill seen in Figure 3 verifies the need

to have a training dataset representative of the extreme ends of tree cover change, as TSmean
m,s responses may systematically

become more non-linear with increasing magnitudes of tree cover change.
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Performance in model prediction of TSmean across different background climates
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Figure 4. Evaluation of Γmean
m ’s predictive ability under ’non-analogue’ background climate conditions. Test set RMSEs obtained during

blocked cross validation with blocks clustered according to background climate and continuous geographical region (as shown in Figure A1)

are considered. RMSEs are shown for the months of January (unhatched) and July (hatched) and are aggregated to latitudinal band (columns)

and direction of tree cover change, yellow indicating a negative change (DEF) and blue indicating a positive change (AFF). The box-plots

indicate the median RMSEs as well as the associated interquartile ranges. Note that the scale used for Observations (upper row) is different.
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Performance in model prediction of TSmean to different 2015treeFrac
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Figure 5. Evaluation of Γmean
m ’s ability to predict across ∆2015treeFrac. Test set RMSEs were obtained during blocked cross validation

using blocks identified by gathering grid cells that underwent similar ∆2015treeFrac (grouped according to sign of change and absolute

value as binned into [0.01,0.15), [0.15-0.3),[0.3-0.5),[0.5-0.8) and [0.8-1.0]) within continuous geographical regions. RMSEs are shown for

January (blue) and July (red), are aggregated to latitudinal bands (results for each band are shown in a different column) and plotted against

the centre of each ∆2015treeFrac bin. The dots indicate the median RMSEs, while the error bars indicate the associated interquartile range.

Note that the scale used for Observations (upper row) is different.
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4.2 Illustration of Γmean
m outputs

In this section, we showcase the results of Γmean
m when predicting ∆TSmean

m,s for any amount of tree cover change compared to390

2015 levels and across the world. A select tree cover change value is applied to all grid points, and Γmean
m then used to predict

the temperature responses for that tree cover change. Figure 6 illustrates the mean ∆TSmean
m,s predictions as well as their 95%

interval calculated across all grid points within a given latitudinal band. We choose the same latitudinal bands used in Figures

4 and 5 TSmean
m,s

As a preliminary check, the predictions can be roughly compared to the ESM outputs for the idealised AFF and DEF395

simulations as analysed by De Hertog et al. (2022). Only a rough comparison is possible however, as we generate predictions

for tree cover change maps of constant values across grid points, whereas the tree cover change maps applied within the

AFF/DEF scenarios vary in values across grid points since they represent full expansion of forest/cropland relative to the 2015

period. To this extent, ∆TSmean
m,s predictions shown in Figure 6 correspond well in terms of direction and magnitude to the

results shown in Duveiller et al. (2018) (for observations) or De Hertog et al. (2022) (for ESMs, compare with their Figures 2,400

3, 5 and 6). For example, over the northern hemispheric temperate region (40°N to 65°N) in January, Γmean
m indicates a cooling

(warming) following deforestation (afforestation) when trained on all ESMs and observations, while the temperature response

in July is less clear but still rather indicates a warming from deforestation over these regions. Moreover, Γmean
m is notably able

to capture the inter-ESM spread in ∆TSmean
m,s values. For example, in the latitudinal band 40°N to 65°N, EC-EARTH-based

predictions show a cooling trend after +25% tree cover change, in contrast to the warming trend seen in other ESMs. Such a405

difference was also noted in De Hertog et al. (2022) and attributed to lower amounts of boreal afforestation implemented.

Over all latitudinal bands and months shown, the largest 95% intervals occur towards the extreme ends of tree cover change

for both observations and ESM-based predictions. This is especially the case for deforestation, where the 95% intervals are

in general larger than those of afforestation. Higher 95% intervals at extreme ends of tree cover change results from less grid

points which undergo more extreme tree cover changes, ergo less training material. This highlights once more the higher410

uncertainty in the predictions by Γmean
m for extreme amounts of tree cover changes (in both directions).

Mean observation-based predictions remain close to 0 across all latitudinal bands for both January and July, owing to the high

data sparsity which makes it difficult to extract significant TSmean
m,s responses during training. Nonetheless, observation-based

95% intervals are in general agreement with those of ESMs across all latitudinal bands and months shown.

4.3 Surface to 2-m air temperature diagnosis415

In this section, we apply the modified Hooker et al. (2018) model (Equation 3) to the outputs of Γmin
m and Γmax

m so as to derive

the expected T 2m
m,s responses to tree cover change. Results are only shown for CESM2, as tree cover changes implemented in

the experiments run by this ESM cover the whole range of possible ∆2015treeFrac (unlike observations and EC-EARTH)

and provide local TSmin/max
m,s values (not available from MPI-ESM otherwise). We first ascertain that applying Equation 3 in

the ESM space does not introduce additional biases to T 2m
m,s predictions ontop of those arising from the natural variability in420

observed values, after which we proceed with predicting T 2m
m,s responses based off Γmin/max

m outputs.
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Figure 6. Γmean
m ’s depiction of ∆TSmean

m,s shown for observations and ESMs (colours) at months of January (first row) and July (second

row) across the whole range of ∆2015treeFrac and aggregated to latitudinal bands (columns). λ parameters and number of basis functions

(nbf) chosen through blocked cross validation are given in the first column of their respective month and colour coded according to their

respective training data (observations or ESMs). Solid lines represent the mean ∆TSmean
m,s predictions and the surrounding band represents

the 95% interval calculated over ∆TSmean
m,s predictions for all grid-points within the respective latitudinal band.
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4.3.1 Tests on the modified Hooker et al. (2018) model applied to the ESM space

Figure 7 compares the spread of biases in T 2m
m,s calculated using ESM values to that obtained when using observational values.

Positive values indicate more spread within the biases of ESM derived T 2m
m,s values, suggesting that biases outside the range of

those arising from natural variability may occur when calculating ∆T 2m
m,s.425

Across most months, less than 40% of grid points have positive values, and these mostly occur in the Northern Hemisphere

for the months between and including January and June. Such may result from the change in length of day during these months

such that TSmin/max
m,s values do not necessarily correspond to the TS

night/day
m,s values. To be specific, the time of overpass

for measuring TSnight
m,s and TSnight

m,s are fixed at 0100 and 1300 respectively, however given the longer nights in Northern-

hemispheric winters, TSmin
m,s are likely to occur later and TSmax

m,s earlier than these times.430

4.3.2 2-m air temperature diagnoses

Since less than half of grid points have positive values and such values are isolated to certain months and geographical areas,

we proceed with diagnosing ∆T 2m
m,s from ∆TS

min/max
m,s values outputted by Γmin/max. The calibration and evaluation results

for Γmin/max are available in Appendix B and show similar results as those seen in Section 4.1, namely minimal additional

RMSEs when predicting into "no-analogue" conditions sampled out of the training dataset as compared to when predicting435

after having seen the full training dataset (i.e. comparing RMSE values from Figures B3 and B4 to those of Figure B2). It

should be noted that ∆TSmax
m,s predictions show high RMSEs, especially for the DEF scenario where less than half of the grid

points have RMSEs lower than 0.5. In relation to the absolute ∆TSmax
m,s values (see Figure B1) however, these RMSEs are of

similar relative magnitude as those of ∆TSmin
m,s and ∆TSmean

m,s . Moreover, RMSEs of Γmax
m are of similar magnitude when

predicting into "no-analogue" conditions as when predicting after having seen the whole training data set.440

Figure 8 shows the ∆T 2m
m,s values obtained at different tree cover change values, alongside the Γmin

m and Γmax
m predictions

for example months of January and July. Patterns of Γmin
m and Γmax

m predictions correspond well to one another and generally

well to ∆TS
min/max
m,s values as derived in another study using the same ESM (Meier et al., 2018). An exception here are

Northern Hemispheric, July ∆TS
min/max
m,s values for which a cooling was observed in Meier et al. (2018) in contrast to the

warming seen in the training material used within this study (see Appendix B, Figure B1). Such discrepancy could arise from445

too large albedo responses shown by CESM2 and highlights the caveats of diagnosing ∆T 2m
m,s from ∆TS

min/max
m,s , where

physical inconsistencies in the surface temperature responses as represented within ESMs can be transferred to T 2m
m,s during

diagnosis. Nevertheless, the task of Γm is to mimic ESM outputs irrespective of their ’realism’ and to this end, the statistically

derived relationships for ∆TS
min/max
m,s to tree cover changes match those of the ESM outputs trained on.
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Figure 7. Differences between the spread of biases for ESM vs observationally derived T 2m
m,s values, obtained as described in Section 3.3.

The inter-quartile range (IQR) is considered as a measure of spread and results are shown for CESM2 across all months. Percentage values

indicate the proportion of land grid points where ESM-derived T 2m
m,s values have a larger spread in bias as compared to observationally

derived T 2m
m,s values.
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Figure 8. Latitudinally aggregated ∆TS
min/max
m,s given by Γ

min/max
m (first two columns) shown for CESM2 at months of January (first

row) and July (second row) across the full range of ∆2015treeFrac. The resulting ∆T 2m
m,s values obtained using the modified Hooker et al.

(2018) model are shown in the third column.

25



4.4 Exploration of tree cover change effects within SSP scenarios450

In this section, we showcase the results of applying TIMBER v0.1 calibrated on simulations conducted with CESM2 to the

scenarios of future tree cover changes in SSP1-2.6 and SSP3-7.0. We employ the sampling method as described in Section

3.4 such that parametric uncertainties within the GAM are also represented. This provides a first step towards statistically

emulating T 2m
m,s responses to tree cover change, in a manner that not only provides the expected response, but also gives an idea

of the signal-to-noise ratio within predictions.455

Figure 9 shows maps of end-of-century tree cover changes (shown in the first column) under SSP 1-2.6 and SSP 3-7.0

and their associated mean T 2m
m,s responses (second column), obtained by sampling ∆TS

min/max
m,s values from Γ

min/max
m ,

applying Equation 3 to get ∆T 2m
m,s and taking its sample average. The signal-to-noise ratio is furthermore given by taking the

ratio between the absolute mean ∆T 2m
m,s value and its standard deviation calculated across sample results for ∆T 2m

m,s (third

column). We consider areas with a signal-to-noise ratio lower than 0.5 as having an insignificant temperature response, as their460

surrounding parametric uncertainty is double that of the magnitude of response.

SSP 1-2.6 shows substantial cooling from afforestation in Southern Africa and Brazil for both January and July. A substantial

July warming due to deforestation can also be seen in the Tibetian plateau due to deforestation. SSP 3-7.0 shows a significant

January and July warming due to deforestation in Central Africa, Tibetian plateau and South America. West-North America

shows a significant cooling from deforestation especially in July, while parts of East Asia show significant cooling from465

afforestation for both January and July.

In general, areas with a tree cover change lower than 0.1 in magnitude tend to have a signal-to-noise ratio lower than 0.5

and thus an insignificant temperature response. Such systematically lower signal-to-noise ratios indicates that Γm is not only

aware of the lack of information it has for smaller changes in tree cover, but can also infer that temperature responses to such

tree cover changes are likely to be trivial.470
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Responses of T2m
m  to tree cover change under SSP scenarios: CESM2
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Figure 9. ∆T 2m
m,s values resulting from end-of-century changes (i.e. 2100) relative to 2015 in tree cover for SSP 1-2.6 (upper panel) and SSP

3-7.0 (lower panel) scenarios at the months of January (top rows) and July (bottom rows). Mean ∆T 2m
m,s values (second column) as well as

their signal-to-noise ratios (third column) calculated over the sampling distributions are shown. ∆2015treeFrac maps are given in the first

column, grid points with |∆2015treeFrac| < 0.01 are not considered.
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5 Conclusion and Outlook

This study presents TIMBER v0.1, a conceptual framework for representing monthly temperature responses to changes in tree

cover. TIMBER v0.1 starts by modelling minimum, mean and maximum surface temperature responses to tree cover change

with a month-specific GAM which is trained over the whole globe. 2-m air temperature responses are then diagnosed from

the modelled minimum and maximum surface temperatures using observational relationships derived by Hooker et al. (2018).475

Such an approach maintains the ESM-specific temperature response to tree cover change, whilst ensuring a constant diagnosis

and observationally consistent definition of 2-m air temperature.

The GAM is evaluated for its ability to predict into unseen, i.e. "no-analogue", background climate as well as tree cover

change conditions. This is done using a blocked cross validation procedure in order to account for the spatial structure of the

data when splitting in subsamples used for training and testing. Overall, the GAM shows good skill in predicting into "no-480

analogue" conditions, with minimal additional RMSEs to those occurring when predicting after having seen the full training

dataset and thus all available background climate and tree cover change information. Such provides confidence in the GAM’s

ability to derive meaningful relationships from the training data provided by the ESMs. Nevertheless, poorer representation for

extreme, localised tree cover changes – such as deforestation in the tropics – was identified, most likely due to difficulty in

adequately representing high spatial variability.485

When predicting into new tree cover change scenarios, we are especially mindful of the training data only including grid

points which experience extreme tree cover change in the training simulations. To this extent, surface temperature responses

are sampled from the GAM, in a manner that explores all possible shapes of responses in between the two extreme ends of

tree cover change as provided by the training data. 2-m air temperature responses are then diagnosed from the sampled surface

temperature responses and relevant responses are identified as those having a high signal-to-noise ratio (>0.5).490

The final outputs of TIMBER v0.1 are demonstrated for SSP 1-2.6 and SSP 3-7.0. Generally, areas with less than ±10% of

tree cover change render a low signal-to-noise ratio, which is intuitive as responses to such low changes in tree cover are likely

to be minimal. Employing TIMBER v0.1 thus provides avenue to explore impacts of tree cover change and their underlying

uncertainty due to availability of training data and model calibration. It should be stressed that given the lack of comparable

ESM simulations that employ the checkerboard approach to isolate local signals of land cover changes, TIMBER’s outputs495

cannot be thoroughly validated, and must therefore be cautioned with the limitations of its current set up. Specifically, that they

are produced with limited amounts of training data, as well as that the 2-m air temperature is diagnosed using observational

relationships – as provided by Hooker et al. (2018) – directly applied to the ESM space. In the following subsections, we

further highlight areas of potential improvement, elaborate upon the suitable modes of application for TIMBER v0.1 and detail

possible further developments.500

5.1 Areas of potential improvement

One area of potential improvement pertains to the model calibration procedure. When inspecting the calibrated λ parameter

values and number of basis functions, the limits of values cross validated for (0.001 and 1 for the λ parameter and 5 and 9 for
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the number of bases functions) seem to be favoured. Reasons behind this could be: (1) the blocked cross validation sometimes

removes too large chunks of data, leading to an overestimation of RMSEs chosen, and/or (2) the range of λ parameter/number505

of basis functions values calibrated for is too narrow. The first reason could be tackled by further splitting the blocks such

that each block has a predefined number of samples. Alternatively, the GAM could be fitted over specific climate regions, and

blocked cross validation conducted with uniformly sized blocks composed along latitude and longitude dimensions; although

here it is likely that the complete spectrum of tree cover change information will be lost for some regions. The second reason

is easily solved by cross validating over a larger range of values.510

Another area of improvement could be to derive ESM-specific coefficients for the Hooker et al. (2018) model. Such would

entail fitting for the relationships between ESM minimum and maximum surface temperatures and the observational 2-m air

temperatures as used by Hooker et al. (2018). Since the additional biases introduced by using the original Hooker et al. (2018)

coefficients on the ESM surface temperatures were ascertained as minimal (Section 4.3.1), such an exercise would mostly tar-

get deriving the complete Hooker et al. (2018) model for each ESM. The resultant ESM-specific Hooker et al. (2018) models515

obtained would allow for more consistent 2-m air temperature diagnoses facilitating better comparison. Furthermore, consid-

ering that the difference between night and day surface temperatures (that are used as predictors in the original Hooker et al.

(2018) model), and minimum and maximum surface temperatures may also be quite large (e.g. minimum winter temperatures

in the Northern Hemisphere are likely to occur after the time of overpass when night time temperatures are measured), such

would be an essential step to being able to accurately diagnose 2-m air temperatures.520

5.2 Modes of application

TIMBER v0.1 provides a framework to explore local-level, temperature implications of tree cover changes in an agile manner

under different tree cover change scenarios. TIMBER v0.1 can be used as both a standalone device as well as supplementary

to other emulators. It should be noted that to provide complete representation of the biophysical effects of tree cover change,

albedo and thermal fluxes would have to be considered as well. To this extent, the temperature responses provided by TIMBER525

arise from a combination of the effects of albedo and thermal flux responses to tree cover changes on the atmospheric energy

balance. Here, we summarise some key take-aways pertaining to the use of TIMBER v0.1 for generating new tree cover change

scenarios.

Upon inspection of the TSmean
m,s response patterns across all tree cover changes (Figure 6), inter-ESM differences become

quite apparent. Such differences are continuously studied and mainly arise from differences in model physical representation530

(Boisier et al., 2012; Lawrence et al., 2016; Lejeune et al., 2018; Davin et al., 2020; Boysen et al., 2020; De Hertog et al., 2022).

Being able to train the GAM across all ESMs presents the opportunity to capture these uncertainties due to model physical

representation, which may sometimes be higher than the parametric uncertainty within the GAM given the training data. When

exploring new tree cover change scenarios, the need to have as many ESMs represented should therefore be emphasised.

Moreover, the outputs of TIMBER v0.1 should always be interpreted as representative of the ESM-simulated world which535

does not necessarily translate to observed reality.
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In applying TIMBER v0.1 to different tree cover change and climate scenarios, it should furthermore be acknowledged that

the effects of initial starting conditions and those of background global warming levels have not been accounted for (e.g. see

Winckler et al. (2017b) on the possible effects of initial starting condition on temperature responses to land cover changes). In

order to represent such effects, TIMBER would require more training data. Furthermore, if the Hooker et al. (2018) coefficients540

are recalibrated for the ESM space, impacts of changing climate on 2-m air temperatures could well be represented through

the CSWR coefficients. Nonetheless, outputs of TIMBER v0.1 should more so be treated as hypothetical sensitivities and not

definite responses.

Finally, as a conceptual framework, TIMBER v0.1 comes with its limitations that need to be accounted for and improved

in future versions. A noteworthy limitation is the diagnosis of 2-m air temperature that relies on the modified Hooker et al.545

(2018) model. Such a set up was implemented so as to enable constant diagnosis and definition of 2-m air temperatures across

ESMs and observations. However, since the original Hooker et al. (2018) model takes night and day surface temperatures as

predictors, whereas the modified model used in this study takes minimum and maximum surface temperatures, current 2-m air

temperature predictions should be treated with caution. As seen in Figure 7, such differences are expected to introduce minimal

biases since TIMBER looks at relative changes and not absolute values. However, for select months and regions (e.g. Winter550

in Europe and North America) there are still added biases as night and day surface temperatures do not necessarily correspond

to minimum and maximum surface temperatures. An additional limitation to TIMBER is the lack of available ESM data to

evaluate it against. Such a problem was circumvented in this study by synthesising the closest representation to "no-analogue"

condition predictions for TIMBER. Nevertheless, when applying TIMBER to different scenarios, predictions should always

be treated as approximations. To this extent, the signal-to-noise ratio calculations from TIMBER is an essential feature as it555

represents the model confidence in predictions based on the available training material.

5.3 Future Developments

It would be possible to extend TIMBER v0.1 to represent other impact-relevant climate variables. A variable to start with

could be relative humidity, from which metrics such as Wet Bulb Globe Temperature (WBGT) and labour productivity could

be derived. In doing so, variable cross-correlations between temperature and relative humidity should be conserved, such that560

compound events – which largely affect WBGTs – are sufficiently captured. To this extent, a Vectorised Generalised Additive

Model (VGAM) (Yee and Stephenson, 2007) could be employed, which retains variable cross-correlations by constructing a

multivariate conditional probability distribution e.g. by using a bi-normal distribution as opposed to the normal distribution

used within this study.

In its current set up, TIMBER does not differentiate between Plant Functional Types (PFTs). Temperature responses to tree565

cover changes however, may differ between different PFTs. For example, needleleaf trees in temperate regions are associated

with a stronger winter warming as compared to broadleaf trees which otherwise lose their foliage during winter (Duveiller et al.,

2018a). Representing the temperature responses to different PFTs instead of treating tree cover fraction as a single element

would thus further enrich the outputs of TIMBER. A starting point to this could be differentiating between needle- and broad-
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leaf trees. Each of these tree types could be treated as separate tensor spline terms within the GAM, and the final temperature570

results would be obtained by adding both terms. When doing so, the potential model accuracy gained should be assessed in

relation to the added model complexity (i.e. increase in the number of tensor spline terms). Given that needle- and broad- leaf

trees are unevenly spread geographically (where broadleaf trees occur more in the tropics and needleleaf trees more in the

temperate regions), it may also be worth training a separate GAM per geographical region, so as to get an even representation

of needle- vs broad- leaf trees as well as as to prevent model overfitting.575

Looking into other land management practices such as irrigation and wood harvest could also be of interest, particularly as

their effects on surface temperatures are expected to be similar in magnitude as those due to land cover changes (Luyssaert

et al., 2014). In doing so, customisation of TIMBER v0.1’s framework to the LCLM practice of choice could be necessary.

For example, when looking at irrigation, implementation of irrigation can be extremely localised and seasonal (Thiery et al.,

2017, 2020) and it would be preferable to train the GAM as region-specific and across all months, instead of month-specific580

and across all grid-points. To this extent, the GAM has the advantage of not prescribing any functional form, giving it flexibility

in deriving climate responses to different types of LCLM forcings regardless of the format of the training data.

In order to jointly explore future tree cover and GHG scenarios, coupling TIMBER v0.1 with other temperature emulators

such as MESMER-M or -X (Beusch et al., 2020; Nath et al., 2022b; Quilcaille et al., 2022) also proves worthwhile. In doing

so, care would have to be taken to not "double-count" the tree cover change signal as MESMER-M and -X are trained on SSP585

runs, which contain both GHG and tree cover change signals. Accordingly, it is advisable to first model the expected tree cover

change signals within the SSP runs using TIMBER v0.1, following which MESMER-M or -X can be trained on the SSP runs

with the modelled tree cover change signals removed.
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Appendix A605

Tree cover change maps for training runs

Observations

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
treeFrac2015

CESM2 MPI-ESM EC-EARTH

AFF

DEF

Figure A1. Leftmost column shows tree cover change maps for full deforestation relative to the year 2015 as derived by Duveiller

et al. (2018b) using observational data. Columns two to four show tree cover change maps relative to the year 2015 implemented in the

LAMACLIMA afforestation, AFF (top row), and deforestation, DEF (bottom row), experiments in the CESM2, MPI-ESM and EC-EARTH

ESMs.

Orography maps used as predictor set

0 1000 2000 3000 4000 5000
m above seal level [m]

Observations CESM2 MPI-ESM EC-EARTH

Figure A2. Orography features, defined as meters above seal level, used in input predictor matrix for Γm for Observations and ESMs

(columns).
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Appendix B

Continuous Geographical Areas
North

 America
South

 America
Africa Eurasia

Australia Tibet South-East
 Asia

Climate Regions obtained by K-means clustering
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Observations CESM2 MPI-ESM EC-EARTH

Composite Cluster Groups

Observations CESM2 MPI-ESM EC-EARTH

Figure A1. Composite cluster blocks obtained by combining clusters of grid points with similar background climate and continuous geo-

graphical area. Grid points are clustered into groups with similar background climate using K-means clustering with temperature and relative

humidity as indicator variables.
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TSmin and TSmax training outputs: CESM2

AFF DEF
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Figure B1. TSmin/max
m,s responses (rows) from the LAMACLIMA afforestation, AFF, and deforestation, DEF, experiments (columns) for

the months of January (upper panel) and July (lower panel)
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RMSE of the fully calibrated min/max
m  for CESM2
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Figure B2. Same as Figure 3 but for CESM2, TSmin and TSmax
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Performance in model prediction of TSmin/max across
 different background climates: CESM2
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Figure B3. Same as Figure 4 but for CESM2, TSmin and TSmax
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Performance in model prediction of TSmin/max across
 different 2015treeFracs: CESM2
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Figure B4. Same as Figure 5 but for CESM2, TSmin and TSmax
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Appendix C

Shapiro-Wilk test: Observational MODIS TSnight data

Jan: 0% Feb: 0% Mar: 0%

Apr: 0% May: 0% June: 0%

July: 0% Aug: 0% Sept: 0%

Oct: 0% Nov: 0% Dec: 0%

not rejected rejected
p-value [-]

Figure C1. Shapiro–Wilk test for normality of TSnight observational data obtained by the MODIS satellite. The null hypothesis is that the

residuals are normally distributed. A Benjamini–Hochberg multiple test correction (Benjamini and Hochberg, 1995) is applied to the p values

before plotting them. Percentage values indicate the proportion of grid points for which the null hypothesis is rejected.
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Shapiro-Wilk test: Observational MODIS TSday data
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Figure C2. Same as Figure C1 but for TSday observational data obtained by the MODIS satellite
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Shapiro-Wilk test: CESM2 TSmin
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Figure C3. Same as Figure C1 but for TSmin data obtained from CESM2
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Shapiro-Wilk test: CESM2 TSmin
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Figure C4. Same as Figure C1 but for TSmax data obtained from CESM2
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