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Abstract. [..1 ]Land cover changes have been proposed to play a significant role, alongside emission reductions, towards

achieving the temperature goals agreed upon under the Paris Agreement. Such changes carry both global implications, per-

taining to the biogeochemical effects of land cover change and thus the global carbon budget, and regional/local implications,

pertaining to the biogeophysical effects arising within the immediate area of land cover change. Biogeophysical effects of land

cover change are of high relevance to national policy- and decision- makers and [..2 ]accounting for them is essential towards5

effective deployment of land cover practices that optimises between global and regional impacts. To this end, [..3 ]Earth Sys-

tem Model (ESM) outputs that isolate the biogeophysical responses of climate to land cover changes are key in informing

impact assessments and supporting scenario development exercises. [..4 ]However, generating multiple such ESM outputs [..5

]in a manner that allows comprehensive exploration of all plausible land cover scenarios [..6 ]is computationally untenable.

This study proposes a framework to [..7 ]explore in an agile manner the local biogeophysical responses of climate under [..810

]customised tree cover change scenarios by means of a computationally inexpensive emulator, TIMBER v0.1. The emulator

is novel in that it solely represents the [..9 ]biogeophysical responses of climate to tree cover changes, and can be used as either
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a standalone device or supplementary to existing climate model emulators that represent the climate responses from green-

house gas (GHG) [..10 ]or Global Mean Temperature (GMT) [..11 ]forcings. We start off by modelling local minimum, mean

and maximum surface temperature responses to tree cover changes by means of a month- and Earth System Model (ESM)-15

specific Generalised Additive Model (GAM) trained over the whole globe. 2-m air temperature responses are then diagnosed

from the modelled minimum and maximum surface temperature responses using observationally derived relationships. Such a

two-step procedure accounts for the different physical representations of surface temperature responses to tree cover changes

under different ESMs, whilst respecting a definition of 2-m air temperature that is more consistent across ESMs and with

observational datasets. In exploring new tree cover change scenarios, we employ a parametric bootstrap sampling method to20

generate multiple possible temperature responses, such that the parametric uncertainty within the GAM is also quantified. The

output of the final emulator is demonstrated for the SSP 1-2.6 and 3-7.0 scenarios. Relevant temperature responses are identi-

fied as those displaying a clear signal in relation to their surrounding parametric uncertainty, calculated as the "signal-to-noise"

ratio between the sample set mean and sample set variability. The emulator framework developed in this study thus provides

a first step towards bridging the information-gap surrounding biogeophysical implications of land cover changes, allowing for25

smarter land-use decision making.

1 Introduction

Following the Paris Agreement in 2015, 42% of Nationally Determined Contributions (NDCs) submitted by countries included

afforestation/reforestation based actions and targets (Seddon et al., 2020). The recent COP26 in Glasgow furthermore saw a

pledge to halt and reverse deforestation by 2030 (COP, 2021). Considering this, society is set to experience notable land cover30

changes in hopes to achieve global warming levels well below +2 °C and pursue efforts in limiting them to +1.5 °C above

pre-industrial levels. In anticipation of this, the Earth System Model (ESM) community has put great effort into understanding

and quantifying the biogeochemical and biogeophysical effects of land cover changes [..12 ](De Noblet-Ducoudré et al., 2012;

Lawrence et al., 2016; Davin et al., 2020; Boysen et al., 2020).

Biogeochemical effects of land cover changes largely affect the global carbon budget, while biogeophysical effects are essen-35

tial towards understanding regional climate impacts as well as extremes (De Noblet-Ducoudré et al., 2012; Pitman et al., 2012;

Lejeune et al., 2018). Recent studies by Windisch et al. (2021) and Lawrence et al. (2022), highlighted the need to consider the

biogeophysical effects of land cover changes in order to effectively identify and prioritise areas for re/afforestation and con-

servation. Such underscores the regional importance of the biogeophysical effects of land cover changes under future climate

scenarios (Seneviratne et al., 2018; Hirsch et al., 2018), and evidences the need to consider them within impact assessments40

(Popp et al., 2017) and scenario development exercises (Van Vuuren et al., 2012; Calvin and Bond-Lamberty, 2018). Exploring

the biogeophysical effects of land cover changes under all possible future land cover scenarios solely through ESMs however,
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quickly becomes untenable due to computational costs, and it is worth pursuing computationally inexpensive alternatives such

as climate model emulators.

Climate model emulators are computationally inexpensive tools, trained on available climate model runs to then render45

probability distributions of key climate variables for runs that have not been generated yet. By statistically representing select

climate variables, emulators are able to reduce the dimensionality of climate model outputs, allowing for agile exploration of the

uncertainty phase space surrounding climate projections. Climate model emulators designed to reproduce regional/grid point

level, annual to monthly temperature projections usually operate as ESM-specific and start by deterministically representing

the regional/grid point level mean response of temperatures to a certain forcing, after which the residual variability – treated as50

the uncertainty due to natural climate variability – is sampled or stochastically generated (Alexeeff et al., 2018; McKinnon and

Deser, 2018; Link et al., 2019; Castruccio et al., 2019; Beusch et al., 2020; Nath et al., 2022b). Outputs of such emulators act

as approximations of multi-model initial-condition ensembles, providing distributions of temperature responses to the forcing

of choice for impact assessments. To date however, such climate model emulators mainly represent the greenhouse gas (GHG)-

or Global Mean Temperature (GMT)- forcing within their mean response, neglecting the biogeophysical effects of land cover55

changes.

In this study, we set up a conceptual framework for emulating the biogeophysical responses of climate variables to land

cover changes, [..13 ]hereafter referred to simply as "responses". As a first step, we focus on emulating the surface and 2-m

air temperature responses to land cover changes between forest and cropland, simply denoted as "tree cover changes". The

resulting emulator constitutes a prototype version of the Tree cover change clIMate [..14 ]Biophysical responses EmulatoR, i.e.60

TIMBER v0.1. Since representation of natural climate variability is well-explored in other emulators, TIMBER v0.1 purely

focusses on representing the mean response of temperatures to tree cover change. In doing so, we recognise that the ESM

data available for training (described under Section 2) is under-representative of the full range of possible tree cover changes

across the globe. Consequently, we pursue a more probabilistic representation, such that parametric uncertainties given the

training data population are accounted for. TIMBER v0.1 can thus be used as a standalone device or as supplementary to65

other emulators. The structure of this paper is as follows: Section 3 introduces the emulator framework and its calibration and

evaluation procedure; Section 4 presents the calibration and evaluation results, and illustrates some emulator outputs; Section

4.1 demonstrates the application of the emulator to different Shared Socio-economic Pathway (SSPs) scenarios; and Section 5

wraps up with the conclusion and outlook.
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2 [..15 ]Data70

2.1 ESM experiments

Idealised Earth System Model (ESM) experiments that isolate the effects of tree cover change on the climate were run as part

of the LAnd MAnagement for CLImate Mitigation and Adaptation (LAMACLIMA) project, a detailed description of these

simulations can be found in (De Hertog et al., 2022). The experimental setup was designed to capture the maximal potential

climate response due to af/re/deforestation as compared to [..16 ]present-day land cover conditions. Accordingly, extreme75

afforestation (AFF) and deforestation (DEF) scenarios were run alongside a reference scenario (REF). The REF scenario [..17

]spans 150 years with land cover conditions and other forcings (GHG emissions etc.) kept constant at 2015 levels. The AFF

(DEF) scenario then consists of full expansion of forest (crop) cover relative to that of 2015 levels with all other forcings again

kept constant at 2015 levels[..18 ], and again span 160 years with a 10 year spin up period which is excluded. The AFF

(DEF) was implemented by removing the non required vegetation types (i.e. crops, grassland and shrubs for AFF and80

forest, grasslands and shrubs for DEF) and upscaling the remaining vegetation to fill up the grid cells. Bare land was

conserved throughout this process in order to respect the biophysical limits of where vegetation can grow. The difference

between AFF (DEF) run and REF run outputs averaged over the 150 years provides the climate response to idealised

re/afforestation (deforestation).

Temperature responses derived from the ESM simulations are distinguished into local and non-local responses following85

the checkerboard approach developed by Winckler et al. (2017c). Local responses represent the expected climate responses to

land cover change within the immediate area of change and can be applied in any global tree cover change scenario, whereas

non-local responses represent remote effects of land cover change and depend on the global extent and patterns of land cover

change. Given that local responses are independent of the global extent and patterns of land cover change[..19 ], we focus

only on them for the rest of this study and the term "response" exclusively refers to the local response hereon. Participating90

ESMs running simulations within the LAMACLIMA project are the Community [..20 ]Earth System Model version 2.1.3

(CESM2), the Max Planck Institute [..21 ]Earth System Model version 1.2 (MPI-ESM) and the European [..22 ]Community

Earth System Model version 3-Veg(EC-EARTH).
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2.1.1 [..23 ]

2.2 Observational dataset95

To demonstrate the applicability of [..24 ]the emulating approach outlined in this study on observational data we use the

Duveiller et al. (2018c) dataset[..25 ], hereafter referred to as D18. This dataset was derived using a "space-for-time"

substitution approach applied on surface temperatures from satellite data, in order to map potential local responses of

daytime, mean and nighttime surface temperatures to land cover transitions[..26 ]. It considers transitions from forest to several

other land cover types (e.g. shrubland, grassland etc.). [..27 ]To ensure comparability with the ESM runs, we choose to only100

focus on forest transitions to cropland, which are hereafter by analogy also referred to as DEF. It should be noted that [..28

]we don’t emulate the temperature response to afforestation in this case since the D18 dataset assumes a symmetrical

temperature response for transitions from cropland to forests. Additionally, the dataset contains some information gaps in

space and is thus spatially sparse as compared to the spatially complete ESM output fields. [..29 ]

[..30 ]105

2.3 Tree cover change scenarios in selected SSPs

The emulator framework developed in this study enables to predict the expected local temperature changes that would be

given by the dataset it is trained on (being derived from models or observations) in response to any scenario of spatially

explicit tree cover changes. We apply it to scenarios of tree cover changes according to the Shared Socioeconomic

Pathways SSP1-2.6 and SSP3-7.0 (Riahi et al., 2017).110

SSP1-2.6 follows the narrative of a global trend towards sustainable development from SSP1 (Riahi et al., 2017), and

entails changes in global emissions and further climate forcings that eventually lead to a radiative forcing of 2.6 W/m2 in

[..31 ]2100. Strong land-use regulations mean that tropical deforestation is reduced, while economic development enables

increases in crop yields and the focus on sustainability entails less food waste and a reduction in consumption of animal

products (Popp et al., 2017). Overall, this leads to an increase in forest cover in many parts of the world. In contrast,115

SSP3-7.0 follows the SSP3 narrative and leads to a radiative forcing of 7.0 W/m2 in 2100. SSP3 features a world in which

there is a resurgence of nationalism and regional conflicts that translates into a stronger focus on domestic and regional

issues and low international cooperation in particular on environmental issues. Land use is thus not well regulated, low

23removed: Observational dataset
24removed: this study’s approach
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economic development and reduced technology transfer mean that crop yields stagnate or decline, while diets with high

shares of animal products and high rates of food waste prevail. As a result, deforestation continues especially in the120

tropics.

In this study, we use the trajectories of tree cover changes according to these two scenarios as modelled by the

Integrated Assessment Models, IMAGE and MESSAGE-GLOBIOM (van Vuuren et al., 2017; Fujimori et al., 2017). Tree

fraction maps are obtained as the CMIP6 variable "treeFrac", from the CMIP6 new generation library hosted by ETH

Zürich (Brunner et al., 2020).125

3 Methods

3.1 Overview [..32 ]of the emulation approach

The emulation [..33 ]framework presented in this study aims at predicting local temperature responses to tree cover changes,

and is split into [..34 ]three parts. The first part seeks to statistically represent [..35 ]the expected responses of minimum

(∆TSmin
m,s ), mean (∆TSmean

m,s ) and maximum (∆TSmax
m,s ) surface temperature [..36 ]for a given month m and location s,130

generically referred to as ∆TSm,s, to tree cover change (Sect. 3.2). This is carried out using a Generalized Additive Model

(GAM) that is calibrated via a blocked cross validation procedure in order to account for the specificity of the training data.

The predictive ability of the GAM is also evaluated using a blocked cross-validation procedure.

The second part then seeks to diagnose 2-m air temperature responses (∆T 2m
m,s) from the statistically represented surface

temperature responses using observationally derived relationships (Sect. 3.3).135

T 2m
m,s is an important variable for impact assessments, however is diagnosed differently across ESMs (leading to inter-ESM

discrepancies in their modelled response to tree cover change) and is also defined differently between ESMs and observations.

[..37 ]The split approach suggested in this study therefore allows to maintain a response of surface temperature to tree cover

change that is specific to the ESM/observational data trained on, from which ∆T 2m
m,s is then diagnosed using observationally

derived relationships independent of training data. In such, we account for the different physical representations of temperature140

responses to tree cover change for each ESM, whilst also ensuring a consistent definition of ∆T 2m
m,s across ESMs and with

observational datasets, ergo the possibility to compare them.

The third part aims to quantify the uncertainty in the final ∆T 2m
m,s predictions, that arise from the parametric uncertainties

within the GAM (Section 3.4). The GAM’s parametric uncertainty is assessed using a parametric bootstrap procedure

(Hastie and Tibshirani, 1986; Wood, 2017), so as to evaluate the imperfections within its fitted parameters conditional on145
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the given training sample population. Given the limited amount of training data available, this is an important step towards

quantifying the confidence in the temperature response predictions from TIMBER.

3.2 [..38 ]Representing the expected surface temperature responses to tree cover change

In the following subsections, we introduce the statistical model used for representing ∆TSm,s to tree cover changes (Section

3.2.1), followed by our approach in calibrating (Section 3.2.2) and evaluating it (Section 3.2.3). In choosing and calibrating150

the model, we are especially mindful of the training datasets being solely representative of grid points which undergo both

directions of extreme tree cover changes relative to the [..39 ]REF scenario, as performed within the [..40 ]ESM training

simulations, or just one direction (i.e. deforestation) in the case of the D18 data. Consequently, we require a model that can

train over the whole globe (as otherwise there are at most two samples per grid point to train on) and need to account for the

resulting spatially-structured training data during model calibration. To this end, a random train/test split cannot be applied155

during model calibration due to the structural interdependencies in the ESM and observational data (for example arising

through spatial correlations). We therefore calibrate the model following a blocked cross validation procedure (Roberts

et al., 2017). Moreover, we recognise that evaluation can only be done on the training datasets as no other ESM simulations

[..41 ]isolating the local effects from af- or deforestation with the checkerboard approach of [..42 ]Winckler et al. (2017a)

exist, and thus settle for synthesising the [..43 ]best representation of the model[..44 ]’s out-of-sample performance during [..45160

]model evaluation, by again employing blocked cross-validation.

3.2.1 Model [..46 ]description

We model the expected ∆TSm,s conditional on tree cover change and geographical attributes using a month-specific General-

ized Additive Model (GAM) [..47 ]trained over the whole globe. The GAM, hereon referred to as Γmin/mean/max
m – depending

on whether it is applied to daily minimum, maximum or mean surface temperature – or more generically as Γm, is provided165

by the python pyGAM package. Γm can easily ingest multidimensional data and has the advantage that it does not prescribe

any functional form, allowing flexibility in representing linear to more complex response types. The input predictor matrix (X)

given to Γm is composed of tree cover changes relative to the 2015 (∆2015treeFrac) and geographical attributes of longitude

(lon), latitude (lat) and orography (orog)[..48 ]. Maps of ∆treeFrac2015 implemented under the AFF and DEF scenarios,

38removed: Modelling
39removed: 2015 period
40removed: training simulations.
41removed: performing the
42removed: Winckler et al. (2017c)
43removed: closest possible
44removed: ’
45removed: evaluation
46removed: We model
47removed: ,
48removed: and the

7



and the orog (defined as meters above sea level) are available for reference in Figures A1 and A2 respectively, Appendix170

A.The conditional distribution of [..49 ]∆TSm,s is assumed as normal,

Γm = E[∆TSm,s|X] = tem(∆2015treeFracm,s, lons, lats, by = orogs) where [∆TSm,s|X]∼N (1)

tem represents a tensor spline term built across the three-dimensional ∆2015treeFrac, lon, lat space with coefficient terms

stratified according to orog using the by operator so as to create a varying coefficient model (Hastie and Tibshirani, 1993).

For further details on tensor splines and the by operator, see Wood (2017). [..50 ]Γm can be calibrated for its lambda parameter175

(λ), which controls the complexity in shape of tem (where a smaller λ value allows for a more complex shape) and its number

of basis functions, also noted nbf (where more basis functions means more degrees of freedom).

3.2.2 [..51 ]Blocked cross validation for model calibration

[..52 ]

A first blocked cross validation [..53 ]180

[..54 ]((Roberts et al., 2017)) is conducted to find the model configuration, (i.e., the set of model parameters λ and

nbf ) that performs best over geographical and climate regions (Steps 1-4 of Figure 1). Block samples are constructed

by identifying regions sharing climate and geographical characteristics. [..55 ]K-means clustering is used to cluster grid

points according to background climate (based on climatological values of temperature and relative humidity) in the REF

simulation [..56 ]of each ESM and in historical climatological data [..57 ]from WorldClim v2 [..58 ](https://www.worldclim.org/185

data/worldclim21.html) when further calibrating on the D18 observational data. To select the optimal number of clusters,

we calculate the improvement in performance of the K-means clustering algorithm (measured as the average distance of all

points from the centre of their respective cluster groups, a smaller distance indicating better performance) with increasing

number of clusters[..59 ], then select the number of clusters after which no further improvement in performance is observed.

Grid points are subsequently split according to continuous geographical regions: Africa, North America, South America,190

49removed: ∆TSmean
m,s

50removed: Γmean
m

51removed: Calibration
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58removed: , https://www.worldclim.org/data/worldclim21.html) and then further split into groups according to continuous geographical regions: Africa,

North America, South America, Australia, Eurasia, Tibetan Plateau and the South-East Asian Islands. K-means clustering is used to cluster grid points

according to background climate, with temperature and relative humidity considered as background climate indicators.
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Australia, Eurasia, Tibetan Plateau and the South-East Asian Islands. The composite cluster blocks obtained through this

procedure are illustrated on the upper-right corner of Figure 1 (for example ESM, CESM2) and on Figure A1.

[..60 ]Cross validation is then performed using the composite blocks identified in both the climate and geographical

space[..61 ]. Successively and for each block, Γm is fitted on data for the whole land area except over that block. At each

iteration, λ values between 0.001 and 1 as well as a number of basis functions between 5 and 9 are tried out, representing195

a possible model configuration. For each block, the performance of each model configuration is evaluated by calculating

the RMSEs its predictions and the actual ESM or observational data over that block. By doing so, we hope to nudge the λ

parameter and number of basis functions to values that most flexibly apply across all possible [..62 ]geographical and climate

conditions whilst ensuring independence between training and test sets by accounting for spatial [..63 ]correlations. Eventually,

cross validation is carried out across all train-test splits [..64 ]such that each block [..65 ]is used for testing once, and the [..66200

]set of model parameters yielding the best [..67 ]performance for Γm as measured by [..68 ]the RMSE across all test sets [..69

]is selected. The parameters of these model configurations and their performance are shown in Section 4.1.1.

3.2.3 [..70 ]Blocked cross validations for model evaluation

Blocked cross validation is further employed to evaluate the calibrated Γm’s performance into "no-analogue" conditions where

the model has the least information (Roberts et al., 2017), thus providing a representative idea of the model’s ability to predict205

into new [..71 ]tree cover change scenarios [..72 ]unseen during calibration. It is mainly required that the model is able to

predict well across different background climates as well as [..73 ]for different amounts of tree cover change[..74 ], therefore

its performance is evaluated separately in no-analogue [..75 ]conditions representative of each of these aspects.

First, since Γm [..76 ]was originally calibrated by creating blocks that considered both climate and geographical space, the

performance into "no-analogue" background climates is [..77 ]assessed by re-using those same blocks. Successively and210

60removed: By cross validating across composite blocks dimensioned along
61removed: ,
62removed: response types to tree cover changes (as modulated by the background climate )
63removed: auto-correlations (by considering geographical attributes). Cross
64removed: ,
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71removed: , unseen
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for each block, the best performing configuration of Γm [..78 ]identified during calibration is trained on data for the whole

land area except that block. The RMSEs between the values predicted by Γm [..79 ]and the actual values in the ESM or

observational data over that block are then calculated. The results of this procedure are described in Section 4.1.2.

Then, another set of blocks is constructed by splitting the same seven continuous geographical regions as in the previ-

ous section, but by dividing the grid cells constituting those according to the amount of tree cover change ∆2015treeFrac215

[..80 ]encountered between the REF and AFF or REF and DEF simulations, using bins of ∆2015treeFrac [..81 ]mag-

nitudes: [0.01-0.15), [0.15-0.3), [0.3-0.5), [0.5-0.8) and [0.8-1.0][..82 ], for both positive and negative signs of tree cover

change. A similar procedure to that applied for the no-analogue background climate conditions is then conducted but

using these newly constructed blocks: Successively and for each block, Γm is trained on data for the whole land area

except over that block, using the sets of parameters identified in Section 3.2.2. For each block, the RMSEs between the220

values predicted by Γm and the actual ESM or observational data are then calculated. They constitute an estimate of the

predictive ability of Γm for tree cover change amounts unseen during training and are presented in Section 4.1.3.

78removed: ’s test set RMSEs calculated during calibration .
79removed: ’s prediction ability into "no-analogue" tree cover change conditions is assessed by performing an additional blocked cross validation with

blocks composed of continuous geographical region and
80removed: bin and once again taking the test set RMSEs. In binning
81removed: we consider the sign of change and the magnitude of change (partitioned into
82removed: ).
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nbf combination by considering 

RMSEs across all test blocks
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5. Evaluate the predictive ability of the 
fully calibrated Γ! using another round of 
blocked cross-validation

𝜆 = 0.001
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2. Fit Γ! on data for the whole land area except the 
block by trying out all combinations of 𝜆 and nbf :

For block in 

3.  For each combination of 𝜆 and nbf, evaluate the 
performance of the fitted Γ! on the block left out :

E.g. training material for Γ! tested on Block 2

E.g. Test block i.e., Block 2

1. Identify continuous geographical regions sharing similar climate conditions

Figure 1. Framework for block cross validation used [..83 ]for the calibration and [..84 ]the evaluation of Γm, based on its ability to predict

the surface temperature response to tree cover changes over climate and continuous geographical regions not considered during

model calibration.
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3.3 Diagnosing [..85 ]the 2-m air [..86 ]temperature response from changes in surface temperatures

Hooker et al. (2018) were able to derive month-specific relationships between observational night and day surface tempera-

tures (TSnight/day
m,s ) and observational T 2m

m,s (provided by the Global Historical Climatology Network monthly (Menne et al.,225

2018)). They did so by performing both Geographical and Climate Space Weighted Regression (GWR and CSWR) between

observational TSnight/day
m,s and observational T 2m

m,s values, so as to obtain grid point level coefficients specific to geographi-

cal/background climate conditions. By taking a stacked generalisation of the GWR and CSWR outputs, Hooker et al. (2018)

were able to reconstruct global T 2m
m,s maps over the period 2003 to 2016 in a geographically and climatically consistent manner.

In this study, we use the Hooker et al. (2018) model to diagnose T 2m
m,s from surface temperatures. Ideally, the Hooker et al.230

(2018) model would be refitted to derive ESM-specific coefficients between ESM surface temperatures and observed T 2m
m,s

data. Given that this study primarily focusses on setting up a conceptual framework however, we choose to directly apply the

original coefficients derived by Hooker et al. (2018) as an initial proof-of-concept. Before applying the Hooker et al. (2018)

model, we first make some modifications to it so as to enable a smooth translation between observed and ESM spaces. In the

following subsections, we introduce the modifications made to the Hooker et al. (2018) model and furthermore outline some235

tests performed to check that the modified version of it applied to ESMs still yields results comparable to those expected from

observations.

3.3.1 Modifications of the Hooker et al. (2018) model

T 2m
m,s values are diagnosed using a modified version of the Hooker et al. (2018) model which uses TSmin/max

m,s values instead

of TSnight/day
m,s and only considers the GWR coefficient terms,240

T 2m
m,s = βGWR

0,m,s +βGWR
1,m,s ·TSmin

m,s +βGWR
2,m,s ·TSmax

m,s (2)

assuming that the effects of land cover type are minimal on βGWR
0,m,s , we then get,

∆T 2m
m,s = βGWR

1,m,s ·∆TSmin
m,s +βGWR

2,m,s ·∆TSmax
m,s (3)

Where βGWR
0,m,s , βGWR

1,m,s and βGWR
0,m,s are coefficient terms obtained from GWR. We choose not to use the CSWR coefficient

terms as background climates between observations and ESMs are not consistent and there is the additional uncertainty sur-245

rounding the evolution of CSWR coefficient terms under changing background climates. Additionally, we use TS
min/max
m,s

values instead as they are the only available DEF and AFF scenario ESM outputs which are most similar to TS
night/day
m,s .

85removed: 2m
86removed: temperatures
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3.3.2 Tests on the modified Hooker et al. (2018) model applied to the ESM space

Since we look at relative changes in T 2m
m,s, the modifications made to the Hooker et al. (2018) model are expected to have

minimal impact as long as the biases in T 2m
m,s values calculated using ESM TS

min/max
m,s values have the same spread as those250

arising from natural variability within observational TSnight/day
m,s values, and are thus "acceptable". To determine this, we

compare the spread of biases obtained when calculating T 2m
m,s values from observational TSnight/day

m,s values to those obtained

from TS
min/max
m,s ESM outputs for the REF scenario. TSmin/max

m,s outputs from the REF scenario are used, as we consider

them representative of the natural variability surrounding TS
min/max
m,s values. We approximate the spread of biases by taking

into account the natural variability surrounding the surface temperature values and compare them through the following steps:255

1. Construct a multivariate Gaussian process across all observational TS
night/day
m,s values to generate spatially corre-

lated pairs of TS
night/day
m,s which also take into account cross-correlations between TSnight

m,s and TSday
m,s. Generated

TS
night/day
m,s pairs will act as "[..87 ]pseudo-samples" that represent the underlying uncertainty due to natural variabil-

ity within observational data.

2. For each timestep of T 2m
m,s predictions available from the original Hooker et al. (2018) model (going from 2003 to 2016):260

(a) Generate 100 synthetic pairs of TSnight/day
m,s values using the Gaussian process constructed in Step 1.

(b) Calculate the biases between the T 2m
m,s prediction available from the original Hooker et al. (2018) model and those

obtained by applying Equation 2 to the synthetically generated pairs of TSnight/day
m,s .

3. Take the 95% Interquartile Range (IQR) of the biases calculated in Step (2b) as a measure of their spread.

4. Repeat steps 1-3 for TSmin/max
m,s265

5. Check the difference between the IQR calculated in step 3 using ESM TS
min/max
m,s values and that calculated using

observational TSnight/day
m,s values. A positive difference indicates more spread within the biases for TSmin/max

m,s derived

T 2m
m,s values, in which case the biases are not acceptable considering those arising from natural variability within the

observational data.

3.4 [..88 ]270

A separate multivariate Gaussian process is constructed for the observational TSnight/day
m,s and ESM TS

min/max
m,s values

in Step 1. In order to construct the Guassian process we first test the observational TSnight/day
m,s and ESM TS

min/max
m,s

values for normality using a Shapiro-Wilk test (see Figures C1-C4 in Appendix C). Observational TSnight/day
m,s values are

normally distributed over all grid points, while ESM TS
min/max
m,s values show some grid points (at most 17% of grid points)

where the null hypothesis of being normally distributed is rejected. Given that this is less than half of the grid points we275

proceed with applying the multivariate Gaussian process.
87removed: psuedo-samples
88removed: Emulating 2m air temperature changes under different land cover change scenarios
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3.4 Emulating 2-m air temperature responses to tree cover changes within the SSP scenarios

[..89 ]By predicting the expected surface temperature responses using Γm (described in Section 3.2.1), and subsequently

diagnosing the corresponding 2-m air temperature response using Equation 3; we can emulate the expected 2-m air

temperature response to tree cover changes over the whole land area for any land cover change scenario. In this study,280

we do so for 2 Shared Socioeconomic Pathways – SSP2 1-2.6 and SSP3-7.0 – for which the underlying narratives and

resulting changes in tree cover over the 21st century are presented in Section 2.3. We only present the results for changes

in tree cover between 2015 and the end of the century (mean changes between 2015 and 2100).

In arriving at the final 2-m air temperature response emulations, we are mindful of the limited training data available

for constructing Γm. To account for this, we assess the underlying signal-to-noise ratio in the emulations, by considering285

"noise" as the parametric uncertainties within Γm conditional on the training sample population. The noise in emulations

arising from the parametric uncertainties within Γm, is evaluated using a parametric bootstrap procedure (Hastie and

Tibshirani, 1986; Wood, 2017). In the following sections, we outline the parametric bootstrap procedure used, followed by

how its results allow for evaluation of the signal-to-noise ratio in the final 2-m air temperature response emulations.

3.4.1 Estimating parametric uncertainty in the predicted temperature responses290

We quantify the impact of parametric uncertainties within Γm on the ∆TSm,s predictions following a parametric bootstrap

method as outlined in Figure 2 (Wood, 2017; Efron and Tibshirani, 1993). Parametric bootstrapping constitutes of first ap-

proximating the joint distribution of the coefficients (β) and λ parameter used within Γm, conditional on the training data

available i.e. f(β,λ|X) (Step 1, Figure 2), from which β values are then sampled to estimate surface temperature responses

(Step 2, Figure 2). To avoid high computational costs, the joint distribution is approximated by first bootstrap sampling the295

distribution of λ conditional on the training material, i.e. fλ(λ) (Steps 1a-1b, Figure 2), from which the distribution of β

conditional on both λ and the training material is constructed over the whole fλ(λ) space (Step 1c, Figure 2), such that

f(β,λ|X)≈ f(β|λ,X) · fλ(λ). Surface temperature response values are then sampled by drawing β distributions from ran-

dom parts of the fλ(λ) space (Step 2a, Figure 2) and sampling coefficient values from them (Step 2b, Figure 2), which are then

used to estimate ∆TSm,s values (Step 2c, Figure 2).300

[..90 ]
89removed: Γm is able to generate multiple ∆TSm,s values , at any given point in the predictor space, in a manner that accounts for the parametric

uncertainty within the GAM given the training data provided. It does so following
90removed: By estimating ∆TSm,s values in a manner where the β and λ uncertainty space is explored, parametric bootstrap allows for evaluation

of the uncertainty in the derived shape of surface temperature responses to tree cover change. Such is especially useful when the training information only

includes grid points which have experienced extreme tree cover change in the training simulations. To this end, sampling from Γm provides all possible shapes

of responses in between the extreme ends of tree cover change available in the training data, and is suited towards robustly interpolating values which are

structured along multiple dimensions (spatial and tree cover change dimensions in our case).
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Figure 2. Sampling routine of the Generalized Additive Model. First, an approximation of the coefficients’ (β) and λ parameter’s joint

distribution given the available training data is constructed (Step 1), from which coefficient terms are sampled to calculate ∆TSmean
m,s

values with (Step 2). Steps 1a-1b construct the sampling distribution of the λ parameter (fλ(λ)) given the known variability in the

training data, and Step 1c then constructs the distribution of β conditional on the training data and λ parameter at each point of the

fλ(λ) space. As such, the ∆TSmean
m,s values calculated in Step 2 account for the uncertainty in the shape of ∆TSmean

m,s responses, as

modulated by β and λ values.
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3.4.2 Evaluating signal-to-noise in the predicted temperature responses

In representing temperature responses under new tree cover change scenarios, we [..91 ]consider the signal-to-noise ratio in

the final ∆T 2m
m,s emulations. "Noise" constitutes the underlying parametric uncertainty within Γm arising from the training

sample population. We start by sampling ∆TS
min/max
m,s values from [..92 ]Γmin/max

m globally for each relevant pixel using305

the parametric bootstrap procedure outlined in Section 3.4.1, and then diagnose ∆T 2m
m,s for each sample. The β and λ

parameter uncertainty spaces are constructed using 10 bootstraps from which 200 samples are then drawn. We take the mean

across all samples as the expected ∆T 2m
m,s value and the standard deviation across all samples as the underlying parametric

uncertainty within the GAM. The signal-to-noise ratio is then obtained as the ratio between the mean and standard

deviation values. We consider emulations with a signal-to-noise ratio lower than 0.5 as insignificant, as the underlying310

parametric uncertainty is double the actual magnitude of expected response. Given the computational expenses of running

ESMs, such gives [..93 ]Γm the benefit of mainly requiring extreme tree cover change scenarios as training material, from

which it can further explore all possible outcomes of in-between scenarios itself. It should be noted however that this does not

remove the benefit of having more training material ontop of the extreme scenarios, but simply minimises the training data

requirements of [..94 ]315

[..95 ][..96 ]Γm.

91removed: thus sample
92removed: Γmin/max

m and
93removed: Γm
94removed: Γm.
95removed:
96removed: Sampling routine of the Generalized Additive Model. First an approximation of the coefficients’ (β) and λ parameter’s joint distribution

given the available training data is constructed (Step 1), from which coefficient terms are sampled to calculate ∆TSmean
m,s values with (Step 2). Steps 1a-1b

construct the sampling distribution of the λ parameter (fλ(λ)) given the known variability in the training data, and Step 1c then constructs the distribution

of β conditional on the training data and λ parameter at each point of the fλ(λ) space. In such the ∆TSmean
m,s values calculated in Step 2 account for the

uncertainty in the shape of ∆TSmean
m,s responses, as modulated by β and λ values.
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4 Results

4.1 Blocked cross validation results

[..97 ]In this section we show the calibration and evaluation results of Γmean
m , obtained by performing different sets of

blocked cross-validation as dexcribed in Sections 3.2.2 and 3.2.3. The calibration and evaluation results for example320

months of January and July, which are representative of the hottest and coldest months for the Northern Hemisphere

and vice versa for the Southern Hemisphere, are shown. First, we show results from the blocked [..98 ]cross validation [..99

]used to calibrate Γm for its optimal λ parameter and number of basis functions [..100 ](Section 4.1.1). Second, we show the

results of the blocked cross validations employed to evaluate the calibrated Γm’s performance into "no-analogue" conditions.

"No-analogue" conditions of background climate (Section 4.1.2) and those of tree cover change amounts (Section 4.1.3) are325

considered specifically with a separate [..101 ]blocked cross validation performed for each. The following subsections show the

blocked cross validation results for Γmean
m only as this gives a representative idea of the validity of this study’s framework.

Blocked cross validation results for Γmin/max
m are provided in the Appendix B.

4.1.1 [..102 ]Results of model calibration

Figure 3 provides the [..103 ]best performing λ parameter values and number of basis functions (nbf) configuration for Γmean
m ,330

alongside maps of the [..104 ]RMSEs between its predicted expected response of mean surface temperature ∆TSmean
m,s

to tree cover changes ∆treeFrac2015 implemented in the ESM experiments used for training and the values actually

simulated by the ESMs. The percentage of grid points with RMSE values below 0.5 are indicated above each map. These

results are shown for both the DEF and AFF scenarios (only DEF for observations). [..105 ]

The Γmean
m trained on observational data has a λ parameter value of 0.001 for both January and July, which is significantly335

lower than that of 1 otherwise chosen for all ESMs. This could be as the observationally trained Γmean
m only receives training

data for the DEF scenario, which implements large magnitudes of tree cover change localised to specific regions ([..106 ]see

Figure A1). Thus, lower λ parameter values are favoured to allow for complex representation with higher spatial variability.

[..107 ]The observationally trained Γmean
m moreover shows poor performance with only 34% of grid points have RMSE

values less than 0.5. This possibly arises from less training data available for the observationally calibrated Γmean
m (i.e.,340

97removed: Results from the
98removed: cross validation are two fold. Firstly, blocked
99removed: is

100removed: . Secondly, blocked cross validation is
101removed: block
102removed: Calibration
103removed: chosen
104removed: calibrated Γmean

m ’s prediction RMSEs for the
105removed: Maps of ∆treeFrac2015 implemented under the AFF and DEF scenarios are available for reference in Figure A1, Appendix A.
106removed: e.g. Amazon, Congo Basin and South-East Asia
107removed: CESM2 and EC-EARTH
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less grid points as well as only one tree cover change scenario), such that Γmean
m cannot gain as much information to

predict with.

All ESMs show higher RMSEs, with a lower proportion of grid points having RMSE values <0.5, for the DEF scenario

than the AFF scenario[..108 ]. This could be related to difficulty in representing the complex response types with high spatial

variabilities within the DEF scenario. [..109 ]Such highlights a design consequence of Γmean
m , where tem is fitted smoothly over345

lon, lat and ∆2015treeFrac, thus falling short in representing high spatial variabilities as brought about by large magnitudes

of localised tree cover change.

While CESM2 and EC-EARTH show varying number of grid points with RMSE values below 0.5 between January and

July for the AFF and DEF scenarios, MPI-ESM [..110 ]shows similar performance across both [..111 ]months for the Aff and

DEF scenarios. Additionally, MPI-ESM’s Γmean
m favours the simplest representation across all ESMs with the lowest number350

of basis functions chosen for both January and July. Such indicates a smoother response type outputted by MPI-ESM, with

deforestation in the tropics not necessarily leading to significant temperature jumps within space.

Overall, Γmean
m mostly displays RMSEs less than or equal to [..112 ]0.5 for all ESMs. Higher RMSEs (>0.5) are usually

localised to regions of extreme magnitudes of deforestation [..113 ]for CESM2 and EC-EARTH. In the case of MPI-ESM,

higher RMSEs are localised to different regions depending on the month. For example in both AFF and DEF scenario,355

MPI-ESM shows higher RMSEs over South South America and Australia in January and over the South North America

and the Mediterranean region for July. In such, Γmean
m proves itself as a reasonably flexible framework to represent expected

temperature responses to more realistic magnitudes of tree cover change. As noted in the observationally calibrated Γmean
m ,

a substantial hindrance to Γmean
m ’s performance is the availability of training data, where it is recommended to have both

directions (i.e., positive and negative) of tree cover changes available for training.360

108removed: , which is
109removed: This
110removed: is the only ESM that
111removed: DEF and AFF scenarioswith no concentration of higher RMSEs around areas of significant deforestation
112removed: 0.25, with higher RMSEs
113removed: . In
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Figure 3. Performance of the [..114 ]fully calibrated Γmean
m trained on each full set of observational/ESM data for example months of January

(upper panel) and July (lower panel) shown as RMSE maps (rows) for afforestation, AFF (first row), and deforestation, DEF (second row),

scenarios. Columns headers indicate the training dataset used and the respective λ parameter and number of basis functions (nbf) chosen

during blocked cross validation. Percentages above each map indicate the proportion of land area with RMSE values less than 0.5.
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4.1.2 Evaluation of Γmean
m under "no-analogue" background [..115 ]climates

Figure 4 shows RMSEs obtained for Γmean
m ’s predictions into "no-analogue" background climates aggregated to latitudinal

bands for example months of January and July. Latitudinal bands were chosen as representative of the different ∆TSm,s

response types to tree cover changes – as seen in De Hertog et al. (2022) – namely: northern-hemispheric, temperate

(40°N to 65°N); subtropical, temperate (10°N to 40°N); tropical (-15°N to 10°N); and southern-hemispheric (-45°N to365

-15°N). Southern-hemispheric results are not differentiated into subtropical and temperate as the sample size of predic-

tions would become too small otherwise. RMSEs are differentiated into those obtained under the AFF scenario and the DEF

scenario, except for observations where RMSEs are only available for the DEF scenario.

For observations and ESMs, the spread in RMSEs displays a month dependency across all latitudinal bands, evidencing the

seasonality in ∆TSmean
m,s responses to tree cover change as well as the need for prior background climate information being370

more important for certain months than others.

Despite the spread in RMSEs being large, median values are mostly below 0.5 for ESMs and below 1.5 for Observations,

which is in line with those seen in Figure 3, indicating overall good prediction skill for Γmean
m into unseen background climate

conditions. Observation RMSEs for DEF in -45 °N to -15 °N however show significantly higher median values than those

in Figure 3, although this is more likely due to data sparsity [..116 ]within the training data for this region, leading to little375

information learned by the observationally calibrated Γmean
m for this region.

Across ESMs, DEF in the tropics (-15 °N to 10 °N) shows the largest spreads in RMSEs with slightly higher median values

than those of Figure 3. Given that Γmean
m [..117 ]may struggle within these areas due to the localised, large magnitudes of

deforestation (as seen for CESM2 and EC-EARTH in Figure 3), exploration of its performance into "no-analogue" tree cover

changes is first required before concluding lower prediction skill for unseen background climate conditions within these areas.380

4.1.3 Evaluation of Γmean
m under "no-analogue" tree cover change [..118 ]amounts

Figure 5 shows the median RMSEs (with error bars indicating 50% confidence intervals) obtained for Γmean
m ’s predictions into

"no-analogue" tree cover changes aggregated to latitudinal bands for example months of January and July. For observations and

ESMs, magnitudes and patterns of RMSEs are similar between January and July across all latitudinal bands, [..119 ]contrary

to what has been found for the predictive ability in "no-analogue" background climate conditions 4.1.2. This is expected385

as[..120 ], the way that local temperature response to tree cover changes depends on the season varies across background

climates (and mainly across the latitudes, see for example Li et al. (2015)), and is thus intuitively more important for

representing seasonality in ∆TSmean
m,s values.

115removed: climate conditions
116removed: in the region
117removed: is known to
118removed: conditions
119removed: which
120removed: background climate information is
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Median RMSEs for ∆2015treeFrac≤-0.5 in the tropics are higher than those seen for DEF in Figure 4, indicating that the

prediction skill for Γmean
m is more dependent on the availability of training information for similar tree cover changes than390

for similar background climate. MPI-ESM is an exception to this, displaying much larger RMSEs for DEF in Figure 4. Such

could result from MPI-ESM outputting a [..121 ]weaker response to tree cover change in the tropics as previously suggested

in Section 4.1.1, making availability of prior background climate information the main factor influencing Γmean
m ’s prediction

skill.

Observations, CESM2 and EC-EARTH show an increase in RMSEs across all latitudinal bands as ∆2015treeFrac values395

move towards the more extreme ends (-1 for observations and +/-1 for CESM2 and EC-EARTH), sometimes even reaching

RMSEs higher than those seen in Figure 3. This indicates lower prediction skill for Γmean
m into unseen, extreme tree cover

change conditions for observations, CESM2 and EC-EARTH. Nevertheless, the resolved skill seen in Figure 3 verifies the need

to have a training dataset representative of the extreme ends of tree cover change, as TSmean
m,s responses may systematically

become more non-linear with increasing magnitudes of tree cover change.400

121removed: smoother
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Performance in model prediction of TSmean across different background climates
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Figure 4. Evaluation of Γmean
m ’s predictive ability [..122 ]under ’non-analogue’ background [..123 ]climate conditions. Test set RMSEs [..124

]obtained during blocked cross validation with blocks clustered according to background climate and continuous geographical region [..125

](as shown in Figure A1) are considered. RMSEs are shown for the months of January (unhatched) and July (hatched) and are aggregated

to latitudinal band (columns) and direction of tree cover change, yellow indicating a negative change (DEF) and blue indicating a positive

change (AFF). [..126 ]The box-plots indicate the median RMSEs as well as the associated interquartile ranges. Note that the scale used

for Observations (upper row) is different.
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Performance in model prediction of TSmean to different 2015treeFrac
Observations
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Figure 5. Evaluation of Γmean
m ’s ability to predict across ∆2015treeFrac. Test set RMSEs [..127 ]were obtained during blocked cross

validation [..128 ]using blocks [..129 ]identified by gathering grid cells that underwent similar ∆2015treeFrac (grouped according to sign

of change and absolute value as binned into [0.01,0.15), [0.15-0.3),[0.3-0.5),[0.5-0.8) and [0.8-1.0]) [..130 ]within continuous geographical

regions. RMSEs are shown for January (blue) and July (red)[..131 ], are aggregated to latitudinal bands (results for each band are shown

in a different column) and plotted against the centre of each ∆2015treeFrac bin. [..132 ]The dots indicate the median RMSEs, while the

error bars indicate the [..133 ]associated interquartile range. Note that the scale used for Observations (upper row) is different.

23



4.2 Illustration of Γmean
m outputs

In this section, we [..134 ]showcase the results of Γmean
m [..135 ]when predicting ∆TSmean

m,s [..136 ]for any amount of tree cover

[..137 ]change compared to 2015 levels and across the world. Figure 6 illustrates the mean ∆TSmean
m,s predictions as well

as their 95% interval calculated across all grid points within a given latitudinal band. We choose [..138 ]the same latitudinal

bands used in Figures 4 and 5 TSmean
m,s [..139 ]405

As a preliminary check, the predictions can be roughly compared to the ESM outputs for the idealised AFF and DEF

simulations as analysed by De Hertog et al. (2022). Only a rough comparison is possible however, as we generate predictions

for tree cover change maps of constant values across grid points, whereas the tree cover change maps applied within the

AFF/DEF scenarios vary in values across grid points since they represent full expansion of forest/cropland relative to the 2015

period. To this extent, ∆TSmean
m,s predictions shown in Figure 6 correspond well in terms of direction and magnitude to the410

results shown in [..140 ]Duveiller et al. (2018) (for observations) or De Hertog et al. (2022) (for ESMs, compare with their

Figures 2, 3, 5 and 6). For example, over the northern hemispheric temperate region (40°N to 65°N) in January, Γmean
m

indicates a cooling (warming) following deforestation (afforestation) when trained on all ESMs and observations, while

the temperature response in July is less clear but still rather indicates a warming from deforestation over these regions.

Similarly, Γmean
m indicates that deforestation entails a local warming which is in addition lower in MPI-ESM. Moreover,415

Γmean
m is notably able to capture the inter-ESM spread in ∆TSmean

m,s values. For example, in the latitudinal band 40°N to 65°N,

[..141 ]EC-EARTH-based predictions show a cooling trend after +25% tree cover change, in contrast to the warming trend seen

in other ESMs. Such a difference was also noted in [..142 ]De Hertog et al. (2022) and attributed to lower amounts of boreal

afforestation implemented.

Over all latitudinal bands and months shown, the largest 95% intervals occur towards the extreme ends of tree cover change420

for both observations and [..143 ]ESM-based predictions. This is especially the case for deforestation, where the 95% intervals

are in general larger than those of afforestation. Higher 95% intervals at extreme ends of tree cover change results from less

grid points which undergo more extreme tree cover changes, ergo less training material. This highlights once more the higher

uncertainty in the predictions by Γmean
m for extreme amounts of tree cover changes (in both directions).

134removed: demonstrate the ability
135removed: to predict
136removed: across all ranges
137removed: changes
138removed: latitudinal bands which have similar properties in
139removed: responses to tree cover changes as seen under De Hertog et al. (2022), namely: northern-hemispheric, temperate (40°N to 65°N); subtropical,

temperate (10°N to 40°N); tropical (-15°N to 10°N); and southern-hemispheric (-45°N to -15°N). Southern-hemispheric results are not differentiated into

subtropical and temperate as the sample size of predictions would become too small otherwise.
140removed: De Hertog et al. (2022)
141removed: EC-EARTH based
142removed: (De Hertog et al., 2022)
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Figure 6. Γmean
m ’s depiction of ∆TSmean

m,s shown for observations and ESMs (colours) at months of January (first row) and July (second

row) across the whole range of ∆2015treeFrac and aggregated to latitudinal bands (columns). λ parameters and number of basis functions

(nbf) chosen through blocked cross validation are given in the first column of their respective month and colour coded according to their

respective training data (observations or ESMs). Solid lines represent the mean ∆TSmean
m,s predictions and the surrounding band represents

the 95% interval calculated over ∆TSmean
m,s predictions for all grid-points within the respective latitudinal band.

Mean [..144 ]observation-based predictions remain close to 0 across all latitudinal bands for both January and July, owing425

to the high data sparsity which makes it difficult to extract significant TSmean
m,s responses during training. Nonetheless, [..145

]observation-based 95% intervals are in general agreement with those of ESMs across all latitudinal bands and months shown.
144removed: observation based
145removed: observation based
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4.3 Surface to [..146 ]2-m air temperature diagnosis

In this section, we apply the modified Hooker et al. (2018) model (Equation 3) to the outputs of Γmin
m and Γmax

m so as to derive

the expected T 2m
m,s responses to tree cover change. Results are [..147 ]only shown for CESM2, as [..148 ]tree cover changes430

implemented in the experiments run by this ESM cover the whole range of possible ∆2015treeFrac (unlike observations

and EC-EARTH) and [..149 ]provide local TSmin/max
m,s values (not available from MPI-ESM otherwise). We first ascertain that

applying Equation 3 in the ESM space does not introduce additional biases to T 2m
m,s predictions ontop of those arising from the

natural variability in observed values, after which we proceed with predicting T 2m
m,s responses based off Γmin/max

m outputs.

4.3.1 Tests on the modified Hooker et al. (2018) model applied to the ESM space435

Figure 7 compares the spread of biases in T 2m
m,s calculated using ESM values to that obtained when using observational values.

Positive values indicate more spread within the biases of ESM derived T 2m
m,s values, suggesting that biases outside the range of

those arising from natural [..150 ]variability may occur when calculating ∆T 2m
m,s.

Across most months, less than 40% of grid points have positive values, and these mostly occur in the Northern Hemisphere

for the months between and including January and June. Such may result from the change in length of day during these months440

such that TSmin/max
m,s values do not necessarily correspond to the TS

night/day
m,s values. To be specific, the time of overpass

for measuring TSnight
m,s and TSnight

m,s are fixed at 0100 and 1300 respectively, however given the longer nights in Northern-

hemispheric winters, TSmin
m,s are likely to occur later and TSmax

m,s earlier than these times.

4.3.2 [..152 ]2-m air temperature diagnoses

Since less than half of grid points have positive values and such values are isolated to certain months and geographical areas, we445

proceed with diagnosing ∆T 2m
m,s from ∆TS

min/max
m,s values outputted by Γmin/max. The calibration and evaluation results for

Γmin/max are available in Appendix B and show similar results as those seen in Section 4.1, [..153 ]namely minimal additional

RMSEs when predicting into "no-analogue" conditions sampled out of the training dataset as compared to when predicting

after having seen the full training dataset (i.e. comparing RMSE values from Figures B3 and B4 to those of Figure B2). It

should be noted that ∆TSmax
m,s predictions show high RMSEs, especially for the DEF scenario where less than half of450

the grid points have RMSEs lower than 0.5. In relation to the absolute ∆TSmax
m,s values (see Figure B1) however, these

RMSEs are of similar relative magnitude as those of ∆TSmin
m,s and ∆TSmean

m,s . Moreover, RMSEs of Γmax
m are of similar

magnitude when predicting into "no-analogue" conditions as when predicting after having seen the whole training data

set.
146removed: 2m
147removed: shown for the select ESM,
148removed: it covers the
149removed: provides
150removed: , observational
152removed: 2m
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Figure 7. Differences between the spread of biases for ESM vs observationally derived T 2m
m,s values, obtained as described in Section 3.3.

The [..151 ]inter-quartile range (IQR) is considered as a measure of spread and results are shown for CESM2 across all months. Percentage

values indicate the proportion of land grid points where ESM-derived T 2m
m,s values have a larger spread in bias as compared to observationally

derived T 2m
m,s values.

Figure 8 shows the ∆T 2m
m,s values obtained at different tree cover change values, alongside the Γmin

m and Γmax
m predictions455

for example months of January and July. Patterns of Γmin
m and Γmax

m predictions correspond well to one another and generally

well to ∆TS
min/max
m,s values as derived in [..154 ]another study using the same ESM (Meier et al., 2018). An exception

here are Northern Hemispheric, July ∆TSmax
m,s values for which a cooling was observed in Meier et al. (2018) in contrast to

154removed: other studies
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the warming seen in the training material used within this study (see Appendix B, Figure B1). Such discrepancy could arise

from too large albedo responses shown by CESM2 and highlights the caveats of diagnosing ∆T 2m
m,s from ∆TS

min/max
m,s , where460

physical inconsistencies in the surface temperature responses as represented within ESMs can be transferred to T 2m
m,s during

diagnosis. Nevertheless, the task of Γm is to mimic ESM outputs irrespective of their ’realism’ and to this end, the statistically

derived relationships for ∆TS
min/max
m,s to tree cover changes match those of the ESM outputs trained on.
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Figure 8. Latitudinally aggregated ∆TS
min/max
m,s given by Γ

min/max
m (first two columns) shown for CESM2 at months of January (first

row) and July (second row) across the full range of ∆2015treeFrac. The resulting ∆T 2m
m,s values obtained using the modified Hooker et al.

(2018) model are shown in the third column.
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5 [..155 ]

4.1 Exploration of tree cover change effects within SSP scenarios465

In this section, we showcase the results of applying TIMBER v0.1 [..156 ]calibrated on simulations conducted with CESM2

to the scenarios of future tree cover changes [..157 ]in SSP1-2.6 and [..158 ]SSP3-7.0. [..159 ]We employ the sampling method

as described in Section 3.4 such that parametric uncertainties within the GAM are also represented. This provides a first step

towards statistically [..160 ]emulating T 2m
m,s responses to tree cover change, in a manner that not only provides the expected

response, but also gives an idea of the signal-to-noise ratio within predictions.470

Figure 9 shows maps of end-of-century tree cover changes (shown in the first column) under SSP 1-2.6 and SSP 3-7.0

and their associated mean T 2m
m,s responses (second column), obtained by sampling ∆TS

min/max
m,s values from Γ

min/max
m ,

applying Equation 3 to get ∆T 2m
m,s and taking its sample average. The signal-to-noise ratio is furthermore given by taking the

ratio between the absolute mean ∆T 2m
m,s value and its standard deviation calculated across sample results for ∆T 2m

m,s (third

column). We consider areas with a signal-to-noise ratio lower than 0.5 as having an insignificant temperature response, as their475

surrounding parametric uncertainty is double that of the magnitude of response.

SSP 1-2.6 shows [..161 ]substantial cooling from afforestation in Southern Africa and Brazil for both January and July. A

[..162 ]substantial July warming due to deforestation can also be seen in the Tibetian [..163 ]plateau due to deforestation. SSP

3-7.0 shows a significant January and July warming due to deforestation in Central Africa, Tibetian [..164 ]plateau and South

America. [..165 ]West-North America shows a significant cooling from deforestation especially in July, while parts of East Asia480

show significant cooling from afforestation for both January and July.

In general, areas with a tree cover change lower than 0.1 in magnitude tend to have a signal-to-noise ratio lower than 0.5

and thus an insignificant temperature response. Such systematically lower signal-to-noise ratios indicates that Γm is not only

aware of the lack of information it has for smaller changes in tree cover, but can also infer that temperature responses to such

tree cover changes are likely to be trivial.485

155removed: Exploration of tree cover change effects within SSP scenarios
156removed: applied to
157removed: implemented under SSP scenarios 1-2
158removed: 3-7
159removed: Results are shown for the select ESM, CESM2, and we
160removed: predicting
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Responses of T2m
m  to tree cover change under SSP scenarios: CESM2
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Figure 9. ∆T 2m
m,s values resulting from end-of-century changes (i.e. 2100) relative to 2015 in tree cover for SSP 1-2.6 (upper panel) and

SSP 3-7.0 (lower panel) scenarios at the months of January (top rows) and July (bottom rows). Mean ∆T 2m
m,s values (second column) as well

as their signal-to-noise ratios (third column) calculated over the sampling distributions are shown. ∆2015treeFrac maps are given in the

first column, grid points with |∆2015treeFrac| < 0.01 are not considered.
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5 Conclusion and Outlook

This study presents TIMBER v0.1, a conceptual framework for representing monthly temperature responses to changes in tree

cover. TIMBER v0.1 starts by modelling minimum, mean and maximum surface temperature responses to tree cover change

with a month-specific GAM which is trained over the whole globe. 2-m air temperature responses are then diagnosed from

the modelled minimum and maximum surface temperatures using observational relationships derived by Hooker et al. (2018).490

Such an approach maintains the ESM-specific temperature response to tree cover change, whilst ensuring a constant diagnosis

and observationally consistent definition of 2-m air temperature.

The GAM is evaluated for its ability to predict into unseen, i.e. "no-analogue", background climate as well as tree cover

change conditions. [..166 ]This is done using a blocked cross validation [..167 ]procedure in order to account for the spatial

structure of the data when splitting in subsamples used for training and testing. Overall, the GAM shows good skill in495

predicting into "no-analogue" conditions, with minimal additional RMSEs to those occurring when predicting after having

seen the full training dataset and thus all available background climate and tree cover change information. Such provides

confidence in the GAM’s ability to derive meaningful relationships from the training data provided by the ESMs. Nevertheless,

poorer representation for extreme, localised tree cover changes – such as deforestation in the tropics – was identified, most

likely due to difficulty in adequately representing high spatial variability.500

When predicting into new tree cover change scenarios, we are especially mindful of the training data only including grid

points which experience extreme tree cover change in the training simulations. To this extent, surface temperature responses

are sampled from the GAM, in a manner that explores all possible shapes of responses in between the two extreme ends of

tree cover change as provided by the training data. 2-m air temperature responses are then diagnosed from the sampled surface

temperature responses and relevant responses are identified as those having a high signal-to-noise ratio (>0.5).505

The final outputs of TIMBER v0.1 are demonstrated for SSP 1-2.6 and SSP 3-7.0. Generally, areas with less than ±10% of

tree cover change render a low signal-to-noise ratio, which is intuitive as responses to such low changes in tree cover are likely

to be minimal. Employing TIMBER v0.1 thus provides avenue to explore impacts of tree cover change and their underlying

uncertainty due to availability of training data and model calibration. It should be stressed that given the lack of comparable

ESM simulations that employ the checkerboard approach to isolate local signals of land cover changes, TIMBER’s outputs510

cannot be thoroughly validated, and must therefore be cautioned with the limitations of its current set up. Specifically, that

they are produced with limited amounts of training data, as well as that the 2-m air temperature is diagnosed using

observational relationships – as provided by Hooker et al. (2018) – directly applied to the ESM space. In the following

subsections, we further highlight areas of potential improvement, elaborate upon the suitable modes of application for TIMBER

v0.1 and detail possible further developments.515

166removed: Due to lack of additional ESM experiments which separate local and non-local temperature responses to tree cover change (Winckler et al.,

2017c), evaluation is conducted by means of
167removed: on the available training data
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5.1 Areas of potential improvement

One area of potential improvement pertains to the model calibration procedure. When inspecting the calibrated λ parameter

values and number of basis functions, the limits of values cross validated for (0.001 and 1 for the λ parameter and 5 and 9 for

the number of bases functions) seem to be favoured. Reasons behind this could be: (1) the blocked cross validation sometimes

removes too large chunks of data, leading to an overestimation of RMSEs chosen, and/or (2) the range of λ parameter/number520

of basis functions values calibrated for is too narrow. The first reason could be tackled by further splitting the blocks such

that each block has a predefined number of samples. Alternatively, the GAM could be fitted over specific climate regions, and

blocked cross validation conducted with uniformly sized blocks composed along latitude and longitude dimensions; although

here it is likely that the complete spectrum of tree cover change information will be lost for some regions. The second reason

is easily solved by cross validating over a larger range of values.525

Another area of improvement could be to derive ESM-specific coefficients for the Hooker et al. (2018) model. Such would

entail fitting for the relationships between ESM surface temperatures and the observational 2-m air temperatures as used by

Hooker et al. (2018). Since the additional biases introduced by using the original Hooker et al. (2018) coefficients on the ESM

surface temperatures were ascertained as minimal (Section 4.3.1), such an exercise would mostly target deriving the complete

Hooker et al. (2018) model for each ESM. The resultant ESM-specific Hooker et al. (2018) models obtained would allow for530

more consistent 2-m air temperature diagnoses facilitating better comparison.

5.2 Modes of application

TIMBER v0.1 provides a framework to [..168 ]explore local-level, temperature implications of tree cover changes in an agile

manner under different tree cover change scenarios. TIMBER v0.1 can be used as both a standalone device as well as sup-

plementary to other emulators. It should be noted that to provide complete representation of the biophysical effects of tree535

cover change, albedo and thermal fluxes would have to be considered as well. To this extent, the temperature responses

provided by TIMBER arise from a combination of the effects of albedo and thermal flux responses to tree cover changes

on the atmospheric energy balance. Here, we summarise some key take-aways pertaining to the use of TIMBER v0.1 for

generating new tree cover change scenarios.

Upon inspection of the TSmean
m,s response patterns across all tree cover changes (Figure 6), inter-ESM differences become540

quite apparent. Such differences are continuously studied and mainly arise from differences in model physical representation

(Boisier et al., 2012; Lawrence et al., 2016; Lejeune et al., 2018; Davin et al., 2020; Boysen et al., 2020; De Hertog et al., 2022).

Being able to train the GAM across all ESMs presents the opportunity to capture these uncertainties due to model physical

representation, which may sometimes be higher than the parametric uncertainty within the GAM given the training data. When

exploring new tree cover change scenarios, the need to have as many ESMs represented should therefore be emphasised.545

Moreover, the outputs of TIMBER v0.1 should always be interpreted as representative of the ESM-simulated world which

does not necessarily translate to observed reality.

168removed: agilely
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In applying TIMBER v0.1 to different tree cover change and climate scenarios, it should furthermore be acknowledged

that the effects of initial starting conditions and those of background global warming levels have not been accounted for

(e.g. see Winckler et al. (2017b) on the possible effects of initial starting condition on temperature responses to land550

cover changes). In order to represent such effects, TIMBER would require more training data. Nonetheless, the ESM

experiments with which TIMBER is trained, use a 10-year spin up period and calculate the local temperature responses

as averaged over the 150 year simulation period such that any background climate variations should also be averaged

out. Hence, we expect the temperature response to tree cover change relationship derived by TIMBER to be reasonably

robust across different initial starting and background climate conditions. [..169 ]Furthermore, if the Hooker et al. (2018)555

coefficients are recalibrated for the ESM space, impacts of changing climate on 2-m air temperatures could well be represented

through the CSWR coefficients. Nonetheless, outputs of TIMBER v0.1 should more so be treated as hypothetical sensitivities

and not definite responses.

5.3 Future Developments

It would be possible to extend [..170 ]TIMBER v0.1 to represent other impact-relevant climate variables. A variable to start with560

could be relative humidity, from which metrics such as Wet Bulb Globe Temperature (WBGT) and labour productivity could

be derived. In doing so, variable cross-correlations between temperature and relative humidity should be conserved, such that

compound events – which largely affect WBGTs – are sufficiently captured. To this extent, a Vectorised Generalised Additive

Model (VGAM) (Yee and Stephenson, 2007) could be employed, which retains variable cross-correlations by constructing a

multivariate conditional probability distribution e.g. by using a bi-normal distribution as opposed to the normal distribution565

used within this study. Another idea could be to couple TIMBER v0.1 to other emulators built to ingest temperature fields

in order to generate additional climate variables. A suitable emulator for example could be PREMU (Liu et al., 2022), which

is able to derive the principle modes of spatial variability from temperature fields, in order to generate monthly precipitation

fields.

In its current set up, TIMBER does not differentiate between Plant Functional Types (PFTs). Temperature responses to570

tree cover changes however, may differ between different PFTs. For example, needleleaf trees in temperate regions are

associated with a stronger winter warming as compared to broadleaf trees which otherwise lose their foliage during winter

(Duveiller et al., 2018a). Representing the temperature responses to different PFTs instead of treating tree cover fraction

as a single element would thus further enrich the outputs of TIMBER. A starting point to this could be differentiating

between needle- and broad- leaf trees. Each of these tree types could be treated as separate tensor spline terms within575

the GAM, and the final temperature results would be obtained by adding both terms. When doing so, the potential model

accuracy gained should be assessed in relation to the added model complexity (i.e. increase in the number of tensor

spline terms). Given that needle- and broad- leaf trees are unevenly spread geographically (where broadleaf trees occur

169removed: As we focus on modelling the local surface temperature responses from which 2-m air temperature responses are diagnosed, such omissions

are expected to have little effect.
170removed: tTIMBER
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more in the tropics and needleleaf trees more in the temperate regions), it may also be worth training a separate GAM per

geographical region, so as to get an even representation of needle- vs broad- leaf trees as well as as to prevent model580

overfitting.

Looking into other land management practices such as irrigation and wood harvest could also be of interest, particularly as

their effects on surface temperatures are expected to be similar in magnitude as those due to land cover changes (Luyssaert

et al., 2014). In doing so, customisation of TIMBER v0.1’s framework to the LCLM practice of choice could be necessary.

For example, when looking at irrigation, implementation of irrigation can be extremely localised and seasonal (Thiery et al.,585

2017, 2020) and it would be preferable to train the GAM as region-specific and across all months, instead of month-specific

and across all grid-points. To this extent, the GAM has the advantage of not prescribing any functional form, giving it flexibility

in deriving climate responses to different types of LCLM forcings regardless of the format of the training data.

In order to jointly explore future tree cover and GHG scenarios, coupling TIMBER v0.1 with other temperature emulators

such as MESMER-M or -X (Beusch et al., 2020; Nath et al., 2022b; Quilcaille et al., 2022) also proves worthwhile. In doing590

so, care would have to be taken to not "double-count" the tree cover change signal as MESMER-M and -X are trained on SSP

runs, which contain both GHG and tree cover change signals. Accordingly, it is advisable to first model the expected tree cover

change signals within the SSP runs using TIMBER v0.1, following which MESMER-M or -X can be trained on the SSP runs

with the modelled tree cover change signals removed.
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Appendix A

Tree cover change maps for training runs

Observations

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
treeFrac2015

CESM2 MPI-ESM EC-EARTH

AFF

DEF

Figure A1. Leftmost column shows tree cover change maps for full deforestation relative to the year 2015 as derived by Duveiller et al.

(2018b) using observational data. Columns two to four show tree cover change maps relative to the year 2015 implemented in the

LAMACLIMA afforestation, AFF (top row), and deforestation, DEF (bottom row), experiments in the CESM2, MPI-ESM and EC-EARTH

ESMs.

Orography maps used as predictor set

0 1000 2000 3000 4000 5000
m above seal level [m]

Observations CESM2 MPI-ESM EC-EARTH

Figure A2. Orography features, defined as meters above seal level, used in input predictor matrix for Γm for Observations and ESMs

(columns).
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Appendix B

Continuous Geographical Areas
North

 America
South

 America
Africa Eurasia

Australia Tibet South-East
 Asia

Climate Regions obtained by K-means clustering

1 2 3 4 5

Observations CESM2 MPI-ESM EC-EARTH

Composite Cluster Groups

Observations CESM2 MPI-ESM EC-EARTH

Figure A1. Composite cluster blocks obtained by combining clusters of grid points with similar background climate and continuous geo-

graphical area. Grid points are clustered into groups with similar background climate using K-means clustering with temperature and relative

humidity as indicator variables.
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TSmin and TSmax training outputs: CESM2

AFF DEF
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TSmin
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Figure B1. TSmin/max
m,s responses (rows) from the LAMACLIMA afforestation, AFF, and deforestation, DEF, experiments (columns) for

the months of January (upper panel) and July (lower panel)
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RMSE of the fully calibrated min/max
m  for CESM2

TSmin

 =1.0, nbf=5
 83%

68%

0.0 0.5 1.0 1.5 2.0 2.5
RMSE [K]

TSmax

 =1.0, nbf=5
 59%

43%

0 1 2 3 4 5 6
RMSE [K]

TSmin

 =1.0, nbf=9
 84%

65%

TSmax

 =1.0, nbf=9
 53%

31%

Jan

Jul

AFF

DEF

AFF

DEF

Figure B2. Same as Figure 3 but for CESM2, TSmin and TSmax
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Performance in model prediction of TSmin/max across
 different background climates: CESM2
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Figure B3. Same as Figure 4 but for CESM2, TSmin and TSmax
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Performance in model prediction of TSmin/max across
 different 2015treeFracs: CESM2
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Figure B4. Same as Figure 5 but for CESM2, TSmin and TSmax
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Appendix C

[..171 ]

Shapiro-Wilk test: Observational MODIS TSnight data

Jan: 0% Feb: 0% Mar: 0%

Apr: 0% May: 0% June: 0%

July: 0% Aug: 0% Sept: 0%

Oct: 0% Nov: 0% Dec: 0%

not rejected rejected
p-value [-]

Figure C1. [..172 ]Shapiro–Wilk test for normality of TSnight observational data obtained by the MODIS satellite. The null hypothesis is

that the residuals are normally distributed. A Benjamini–Hochberg multiple test correction (Benjamini and Hochberg, 1995) is applied

to the [..173 ]p values before plotting them. Percentage values indicate the [..174 ]proportion of grid points for which the null hypothesis is

rejected.
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Shapiro-Wilk test: Observational MODIS TSday data

Jan: 0% Feb: 0% Mar: 0%

Apr: 0% May: 0% June: 0%

July: 0% Aug: 0% Sept: 0%

Oct: 0% Nov: 0% Dec: 0%

not rejected rejected
p-value [-]

Figure C2. Same as Figure C1 but for TSday observational data obtained by the MODIS satellite
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Shapiro-Wilk test: CESM2 TSmin

Jan: 14% Feb: 17% Mar: 18%
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July: 10% Aug: 4% Sept: 2%

Oct: 1% Nov: 4% Dec: 11%

not rejected rejected
p-value [-]

Figure C3. Same as Figure C1 but for TSmin data obtained from CESM2
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Shapiro-Wilk test: CESM2 TSmin

Jan: 14% Feb: 17% Mar: 18%

Apr: 17% May: 15% June: 13%

July: 10% Aug: 4% Sept: 2%

Oct: 1% Nov: 4% Dec: 11%

not rejected rejected
p-value [-]

Figure C4. Same as Figure C1 but for TSmax data obtained from CESM2
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