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Abstract. Atmospheric carbon dioxide (CO2) accounts for the largest radiative forcing among anthropogenic 

greenhouse gases. There is, therefore, a pressing need to understand the rate at which CO2 accumulates in the 

atmosphere, including the interannual variations (IAV) in this rate. IAV in the CO2 growth rate is a small signal 30 

relative to the long-term trend and the mean annual cycle of atmospheric CO2, and IAV is tied to climatic variations 

that may provide insights into long-term carbon-climate feedbacks. Observations from the Orbiting Carbon 

Observatory-2 (OCO-2) mission offer a new opportunity to refine our understanding of atmospheric CO2 IAV since 

the satellite can measure over remote terrestrial regions and the open ocean where traditional in situ CO2 monitoring 

is difficult, providing better spatial coverage compared to ground-based monitoring techniques. In this study, we 35 

analyze the IAV of column-averaged dry air CO2 mole fraction (XCO2) from OCO-2 between September 2014 to June 

2021. The amplitude of IAV variations, which is calculated as the standard deviation of the timeseries, is up to 1.2 

ppm over the continents and around 0.4 ppm over the open ocean. Across all latitudes, the OCO-2 detected XCO2 

IAV shows a clear relationship with ENSO-driven variations that originate in the tropics and are transported poleward. 

Similar, but smoother, zonal patterns of OCO-2 XCO2 IAV timeseries compared to ground-based in situ observations 40 

and with column observations from the Total Carbon Column Observing Network (TCCON) and the Greenhouse 
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Gases Observing Satellite (GOSAT) show that OCO-2 observations can be used reliably to estimate IAV. 

Furthermore, the extensive spatial coverage of the OCO-2 satellite data leads to smoother IAV timeseries than those 

from other datasets, suggesting that OCO-2 provides new capabilities for revealing small IAV signals despite sources 

of noise and error that are inherent to remote sensing datasets.  45 

1 Introduction 

Increasing atmospheric CO2 concentration from anthropogenic emissions is the major driver of the observed warming 

of Earth’s climate since the industrial revolution (IPCC, 2021). Although CO2 accumulation in the atmosphere 

generally is ~45% of anthropogenic emissions on a multi-year average (Ciais et al., 2013; Friedlingstein et al., 2019), 

the growth rate shows substantial interannual variability (Conway et al., 1994). The difference between emissions and 50 

the atmospheric CO2 growth rate results from net CO2 uptake by oceans and terrestrial ecosystems (Prentice et al., 

2001; Doney et al., 2009), and the fluctuations reflect variations in the strength of those sinks due to climate variations 

(Peters et al., 2017; Friedlingstein et al., 2019). Much research has suggested that interannual variability (IAV) in the 

growth rate is predominantly due to variations in terrestrial ecosystem carbon uptake (Marcolla et al., 2017), even 

though the average uptake is roughly comparable between land and ocean (Le Quéré et al., 2009). Existing 55 

atmospheric CO2 observations from surface flask sampling and in situ networks have been used to estimate global- 

and regional-scale interannual variability in CO2 fluxes (Gurney et al., 2008; Peylin et al., 2013; Keppel-Aleks et al., 

2014; Piao et al., 2020). We note, however, that the surface observing network is located primarily on land and coastal 

sites, and more subtle ocean flux signals may be obscured by the large IAV in terrestrial fluxes.  

 60 

Previous analyses of surface CO2 IAV has shown a strong relationship with the phase and intensity of El Niño–

Southern Oscillation (ENSO) (Le Quéré et al., 2009; Schwalm et al., 2011). ENSO variations originate from coupled 

ocean-atmosphere dynamics that are reflected in large wind and sea surface temperature anomalies over the central 

and eastern Pacific Ocean. ENSO affects the climate of much of the tropics and subtropics via atmospheric 

teleconnections on timescales of 2-7 years (Timmermann et al., 2018). On land, suppressed precipitation and high 65 

temperature associated with positive phases of ENSO (El Niño conditions) suppress CO2 uptake by tropical 

ecosystems, while promoting fires that further reduce the CO2 uptake by lands (Feely et al., 2002; McKinley et al., 

2004; Piao et al., 2009; Wang et al., 2014). Although of smaller magnitude, the equatorial Pacific Ocean experiences 

weakening of the easterly trade winds and suppression of ventilation of deep, cold, carbon-rich waters to the surface 

during an El Niño, reducing the efflux of natural CO2 to the atmosphere (Patra et al., 2005 ; Chatterjee et al., 2017).  70 

 

Chatterjee et al. (2017) were able to directly observe the ocean flux-driven signal on atmospheric CO2 from El Niño 

for the first-time using XCO2 (column-averaged dry air CO2 mole fraction) observed over the ocean by NASA’s OCO-

2 satellite. Space-based observations from OCO-2, which launched in July 2014, provide novel opportunities to 

characterize the patterns of IAV in XCO2 in areas that were previously not directly observed by existing monitoring 75 

networks. The IAV in XCO2 is being used implicitly for flux attribution in inverse modeling studies (Nassar et. al, 



 

3 

 

2011). These exciting results, however, must be tempered by an awareness that atmospheric CO2 IAV is a relatively 

small signal. For example, IAV in the surface network is about 1 ppm in scale compared to a seasonal amplitude of 

around 10 ppm in northern high latitudes. OCO-2 measures column averaged CO2, so its measurements are sensitive 

to variations in the boundary layer mole fraction, which is in direct contact with the land or atmospheric fluxes, but 80 

also variations in the free troposphere and stratosphere, where flux signals are generally smaller than those observed 

at the surface (Olsen and Randerson, 2004). Furthermore, variations in the free troposphere are expected to have 

relatively long correlation length scales due to efficient mixing, making it important to consider the spatial scales at 

which XCO2 observations provide unique information. This is especially important in light of analysis which suggests 

that the error variance budget in OCO-2 observations is large and contains substantial spatially coherent signal (Baker 85 

et al., 2022; Torres et al., 2019; Mitchell et al., 2023). 

 

In this paper, we analyze XCO2 from OCO-2 to characterize spatiotemporal patterns in IAV at near-global scale, over 

both land and ocean, and relate XCO2 variations to ENSO conditions. We contextualize the information contained in 

OCO-2 observations by comparing with space-based GOSAT and ground-based TCCON XCO2 and with surface 90 

measurements of CO2. Finally, we use these comparisons to emphasize the spatial scales at which the IAV signal 

emerges from instrumental noise.  

2  Data and Methods 

2.1 Datasets 

2.1.1 OCO-2 observatory 95 

We analyzed IAV in dry air, column-average mole fraction XCO2 inferred from OCO-2 satellite observations. The 

OCO-2 observatory was launched in July 2014 and has measured passive, reflected solar near infrared CO2 and O2 

absorption spectra using grating spectrometers since September 2014 (Eldering et al., 2017). XCO2 data are retrieved 

from the measured spectra using the Atmospheric CO2 Observations from Space (ACOS) optimal estimation 

algorithm, which is a full physics algorithm that takes into account XCO2 and other physical parameters, including 100 

surface pressure, surface albedo, temperature, and water vapor profile in its state vector (O'Dell et al., 2018). The 

satellite flies in a polar and sun-synchronous orbit that repeats every 16 days, with three different observing modes of 

OCO-2, namely nadir (land only, views the ground directly below the spacecraft), glint (over ocean and land, views 

just off the peak of the specularly reflected sunlight), and target (typically for comparison with specific ground-based 

or airborne measurements) (Crisp et al., 2012; Crisp et al., 2017). We use the version 10 OCO-2 Level 2 bias-corrected 105 

XCO2 data product from Goddard Earth Sciences Data and Information Services Center (GES DISC) Archive: 

https://disc.gsfc.nasa.gov/datasets/OCO2_L2_Lite_FP_10r/summary), which has been validated with collocated 

ground-based measurements from the Total Carbon Column Observing Network (TCCON; discussed in more detail 

in Section 2.2). After filtering and bias correction, the OCO-2 XCO2 retrievals agree well with TCCON in nadir, glint, 

and target observation modes, and generally have absolute median differences less than 0.4 ppm and Root Mean 110 

Square differences less than 1.5 ppm (O'Dell et al., 2018; Wunch et al., 2017).  
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2.1.2 TCCON 

We corroborate patterns of XCO2 IAV from OCO-2 with those from TCCON, a ground-based network of Fourier 

transform spectrometers that measure direct solar absorption spectra in the near infrared (Wunch et al., 2011). 

Retrievals of XCO2 and other gases are computed using the GGG algorithm, a nonlinear least-squares spectral fitting 115 

algorithm. The TCCON retrievals are tied to the World Meteorological Organization (WMO) X2007 CO2 scale via 

calibration with aircraft and AirCore profiles above the TCCON sites (Karion et al., 2010; Wunch et al., 2010). This 

ensures an accuracy and precision of ~0.6 ppm (1-sigma) throughout the network (Washenfelder et al., 2006; 

Messerschmidt et al., 2010; Deutscher et al., 2010, Wunch et al., 2010). TCCON has been used widely as a validation 

standard by providing independent measurements to compare with multiple satellite XCO2 retrievals including OCO-120 

2. In previous work Sussmann and Rettinger (2020) have demonstrated a concept to retrieve annual growth rates of 

XCO2 from TCCON data, which are regionally to hemispherically representative in spite of the non-uniform sampling 

in time and space inherent to the ground-based network.  In our study, we focus on IAV in the XCO2 timeseries from 

26 TCCON sites (Table 1, Fig.1) that have at least 3 years of observational coverage within the period from September 

2014 to June 2021. These TCCON data have been filtered using the standard filter that is based on a measure of 125 

cloudiness and limits the solar zenith angle. Data are publicly available from the TCCON GGG2014 Data Archive 

(https://tccondata.org/) hosted by the California Institute of Technology. 

 

Table 1.  TCCON Column-Averaged Dry-Air Mole Fractions of CO2 (GGG2014 Data) 

 130 

Region Site Acronym Latitu

de 

Longitude Start 

Date 

End 

Date 

Publication 

Polar 

Northern 

Hemisphere 

(60-90°N) 

Eureka (NU) eu 80.05 -86.42 2010-07 2020-07 Strong, K. et al., 2017 

Ny Ålesund sp 78.90 11.90 2014-04 2019-09 Notholt, J. et al., 2019 

Sodankylä (FI) so 67.37  26.63 2009-05 2020-10 Kivi, R. et al., 2017 

Temperate 

Northern 

Hemisphere 

(20-60°N) 

East Trout Lake(SK) et 54.35 -104.99 2016-10 2020-09 Wunch, D., et al., 2017 

Bialystok (PL) bi 53.23 23.03 2009-03 2018-10 Deutscher, N. et al., 2017 

Bremen (DE) br 53.10 8.85 2010-01 2020-06 Notholt, J. et al., 2017 

Karlsruhe (DE) ka 49.10 8.44 2010-04 2020-11 Hase, F.  et al., 2017 

Paris (FR) pr 48.97 2.37 2014-09 2020-06 Te, Y. et al., 2017 

Orléans (FR) or 47.97 2.11 2009-08 2020-06 Warneke, T. et al., 2017 

Garmisch (DE) gm 47.48 11.06 2007-07 2020-06 Sussmann, R. et al., 2017 

Zugspitze (DE) zs 47.42 10.98 2015-04 2020-06 Sussmann, R. et al., 2018 

Park Falls (US) pa 45.95 -90.27 2004-06 2020-12 Wennberg, P. O. et al., 2017 

Rikubetsu (JP) rj 43.46 143.77 2013-11 2019-09 Morino, I. et al., 2017 

Lamont (US) oc 36.60 -97.49 2008-07 2020-12 Wennberg, P. O. et al., 2017 

Anmyeondo (KR) an 36.58 126.33 2015-02 2018-04 Goo, T.-Y. et al., 2017 

Tsukuba (JP) tk 36.05 140.12 2011-08 2019-09 Morino, I. et al., 2017 

Edwards (US) df 34.96 -117.88 2013-07 2020-12 Iraci, L. et al., 2017 

Caltech (US) ci 34.14 -118.13 2012-09 2020-12 Wennberg, P. O. et al., 2017 

Saga (JP) js 33.24 130.29 2011-07 2020-12 Shiomi, K.et al., 2017 

Izana (ES) iz 28.30 -16.50 2007-05 2021-02 Blumenstock, T. et al., 2017 
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Tropical 

Northern 

Hemisphere 

(0-20°N) 

Burgos (PH) bu 18.53 120.65 2017-03 2020-03 Morino, I., et al., 2018 

Tropical 

Southern 

Hemisphere 

(0-20°S) 

Ascension Island (SH) ae -7.92 -14.33 2012-05 2018-10 Feist, D. G. et al., 2017 

Darwin (AU) db -12.46 130.94 2005-08 2020-04 
Griffith, D. W. T., et al., 

2017 

Temperate 

Southern 

Hemisphere 

(20-60°S) 

Réunion Island (RE) ra -20.90 55.49 2011-09 2020-07 De Maziere, M. et al., 2017 

Wollongong (AU) wg -34.41 150.88 2008-06 2020-06 
Griffith, D. W. T. et al., 

2017 

Lauder (NZ) ll -45.04 169.68 2010-02 2018-10 Sherlock, V. et al., 2017 

 

 

Figure 1. Map showing the locations and the acronyms of the TCCON sites.  

 

2.1.3   Marine Boundary Layer Observations 135 

To explore differences in surface and column-average CO2 IAV, we analyze IAV in the surface CO2 mole fraction at  

marine boundary layer (MBL) sites in the NOAA (National Oceanic and Atmospheric Administration) cooperative 

sampling network(https://gml.noaa.gov/dv/site/?program=ccgg). At these sites, boundary layer CO2 is measured 

using weekly flask samples (Masarie and Tans, 1995; Dlugokencky et al., 2021). MBL sites are typically far away 

from anthropogenic sources and regions of active terrestrial exchange, so they provide an estimate for large-scale 140 

patterns in the global background CO2 concentration. The surface MBL dry air mole fraction data has an accuracy 

level of about 0.1 ppm. In this study, we select 16 sites with at least 80% data coverage for the approximately 7-year 

period overlapping with OCO-2 (Table 2, Fig.2), and the data are aggregated into four north-south zones for 

comparison with OCO-2 XCO2: northern and southern hemisphere tropical (0 - 20°) and Northern 

Hemisphere/Southern Hemisphere extratropical zones (20-60°). Each belt contains at least three MBL sites. Higher 145 
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latitudes (60-90°) are not considered in this comparison due to the gaps remaining in the OCO-2 XCO2 record in 

high latitudes during wintertime and shouldering seasons. 

Table 2. Marine Boundary Layer stations within the NOAA Earth System Research Laboratory CO2 sampling network  
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Figure 2. Map showing the locations and the acronyms of the Marine Boundary Layer stations within the NOAA Earth 175 
System Research Laboratory CO2 sampling network.  

 

2.1.4  GOSAT 

We compare patterns of XCO2 IAV from OCO-2 with those from GOSAT. Also known as Ibuki, GOSAT is the 

world's first satellite dedicated to greenhouse gas monitoring, measuring global total column CO2 and CH4 since 2009.  180 

Region Station Acronym Latitude Longitude Start Date End Date 

 

Temperate 

Northern 

Hemisphere 

(20-60°N) 

Mace Head, Ireland MHD 53.3 -9.9 2014-01 2020-07 

Shemya, AK SHM 52.7 174.1 2014-01 2020-07 

Terceira Island Azores AZR 38.8 -27.4 2014-01 2020-07 

Tudor Hill, Bermuda BMW 32.3 -64.9 2014-01 2020-07 

Sand Island, Midway MID 28.2 -177.4 2014-01 2020-07 

Key Biscayne, FL KEY 25.7 -80.2 2014-01 2020-07 

Tropical 

Northern 

Hemisphere 

(0-20°N) 

Cape Kumukahi, HI KUM 19.5 -154.8 2014-01 2020-07 

Mariana Islands, Guam GMI 13.5 144.7 2014-01 2019-08 

Ragged Pointed, Barbados RPB 13.2 -59.4 2014-01 2020-07 

Christmas Island, Republic of Kiribati CHR 1.7 157.2 2014-01 2019-08 

Tropical 

Southern 

Hemisphere 

(0-20°S) 

Seychelles SEY -4.7 55.2 2014-01 2020-07 

Ascension Island ASC -8.0 -14.4 2014-01 2020-07 

Tutuila, America Samoa SMO -14.2 -170.6 2014-01 2020-07 

Temperate 

Southern 

Hemisphere 

(20-60°S) 

Cape Grim, Australia CGO -40.7 144.7 2014-01 2020-07 

Baring Head BHD -41.4 174.9 2014-01 2020-07 

Crozet Island CRZ -46.5 51.9 2014-01 2020-07 
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With the Thermal and Near infrared Sensor for carbon Observation (TANSO) - Fourier Transform Spectrometer (FTS) 

onboard for greenhouse gas monitoring using three SWIR bands and one TIR band (Cogan et al., 2012; Yoshida et 

al., 2013). Column-averaged dry mole fraction are obtained at a circular footprint of approximately 10.5 km. GOSAT 

has a regional biased of about approximately 0.3 ppm and 1.7 ppm single observation error versus the TCCON 

(Kulawik et al., 2016). We utilize the FTS SWIR Level 3 data global monthly 2.5° resolution mean CO2 mixing ratio 185 

products from 2009 June to 2021 December to generate IAV and make comparisons with OCO-2. L3 products are 

generated by interpolating, extrapolating, and smoothing the FTS SWIR column-averaged mixing ratios of CO2 and 

apply the geostatistical calculation technique Kriging method. GOSAT observation datasets are available to public at 

NIES GOSAT website (https://www.gosat.nies.go.jp/en/about_5_products.html). 

 190 

 

2.1.5  Multivariate ENSO Index (MEI) 

We use the bi-monthly Multivariate El Niño/Southern Oscillation (ENSO) index (MEI; downloaded from Physical 

Sciences Laboratory: https://psl.noaa.gov/enso/mei/) to explore the relationship between CO2 IAV and ENSO. The 

MEI is the time series of the leading combined Empirical Orthogonal Function of five different variables (sea level 195 

pressure, sea surface temperature, zonal and meridional components of the surface wind, and outgoing longwave 

radiation) over the tropical Pacific basin. Positive values in the MEI indicate El Niño conditions, while negative values 

indicate La Niña conditions, and the magnitude reflects the relative strength. Unlike other ENSO indices which use 

only one climate metric (e.g., the sea level pressure difference between Tahiti and Darwin or the sea surface 

temperature anomaly within a pre-defined box), the MEI provides for a more complete and flexible description of the 200 

ENSO phenomenon than traditional single variable ENSO indices and has less vulnerability to errors (Klaus Wolter 

et. al, 2011).  

 

2.2 Methods 

2.2.1 Spatial Aggregation 205 

We aggregate daily XCO2 observations from the version 10 OCO-2 Level 2 lite product to monthly scale, exploring 

patterns of IAV at three spatial scales: gridcell-level, zonal averages over 5° of latitude, and broad zonal belts. 

Aggregating soundings reduces random noise in the observations, mitigates the impact of data gaps due to cloud cover, 

and partly mitigates effect from low winter sunlight levels in polar regions. For gridcell level analysis, we aggregate 

data equatorward of 45° to 5°x5° bins since these data are not limited by polar night or degraded by high solar zenith 210 

angles during winter. Poleward of 45° in both hemispheres, we aggregate the satellite observation to a latitude-

longitude resolution of 5°x10° to compensate for fewer and noisier soundings in these latitudes, especially during 

winter and its shoulder seasons. Within each 5°x5° or 5°x10° gridcell, only months that have more than 5 soundings 

are included in the analysis. Our criteria for aggregation are based on sensitivity experiments in which we modulated 

the grid cell resolution from 1°x1° to 15°x15° (Fig. S1 and Fig. S2) and varied the threshold on the required number 215 

of soundings within a month from 1 to 25 (Fig. S3, Fig. S4 and Fig. S5). Our goal was to reduce noise but maintain 

high spatial coverage (Fig. S6 and Fig. S7). The 5°x5° and 5°x10° aggregation strike the necessary balance of reducing 
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noise (evidenced by the smoother IAV amplitude fields as aggregation increases in Fig. S1) but maintaining spatial 

information by not oversmoothing (evidenced by the fact that the aggregation occurs at spatial scales finer than the 

“elbow” where correlations among 1° gridcells stop changing with separation distance in Fig. S8)  220 

In our analysis, we also aggregate data to zonal averages. At intermediate spatial scales, we average all data around 

the 5° latitude bins described above. For comparison with TCCON and MBL data, which are spatially sparse, we 

further aggregate XCO2 data into four broad zonal belts – each of which contains at least 1 TCCON or 3 MBL stations 

--  (delineated in Table.1 and Table.2) to assess IAV patterns among the datasets. Keppel-Aleks et al., (2014) showed 

that drivers of IAV (i.e., temperature, drought stress, or fire) could be attributed when surface CO2 were aggregated 225 

into similar broad zonal belts, whereas process-level attribution was not possible with global averaging. We therefore 

analyze broad zonal belts to gain a large-scale understanding of how three CO2 datasets are similar and where 

differences lie.  

2.2.2 Deriving interannual variations 

We use a consistent process to calculate IAV (Equation 1) from the raw OCO-2, TCCON and MBL timeseries. The 

methodology is based on approaches used in Keppel-Aleks et al. (2013) and NOAA curve fitting methodology 

(Thoning et al, 1989 ). We decompose the raw time-series data into a long-term trend (which is a function of location 

(x,y) and time (t)), a seasonal cycle (which is a function of location and calendar month (m)), and IAV anomalies 235 

using Equation 1:  

 

IAV(x,y,t) = Raw(x,y,t) − Trend(x,y,t) − Seasonal(x,y,m)                             Equation 1 

 

We first fit a third order polynomial to the Raw timeseries to calculate the observed trend at each location (Fig. 3a). 240 

After removing the trend calculated at each gridcell (Fig. 3b), we calculate a mean seasonal cycle by taking the mean 

value of all January, February, etc. data (Fig. 3c). Particularly at high latitudes, some months are systematically under 

sampled. For these gridcells, we must have at least two years with sufficient observations to calculate a climatological 

mean for that month, otherwise, that calendar month is assumed to have insufficient data to infer the IAV. Finally, we 

remove the mean seasonal cycle from the detrended timeseries at each gridcell to obtain the IAV anomaly timeseries 245 

(Fig. 3d). Given the short data record, we quantify the uncertainty in our calculation of the climatological seasonal 

cycle as the standard error for each calendar month (blue shading in Fig. 3c), and this uncertainty is  propagated to the 

corresponding IAV timeseries (Fig. 3d). We fit a third order polynomial to the raw timeseries since the GOSAT,MBL 

and TCCON timeseries extend over a decade in length. We confirm that the use of a third-order polynomial, versus a 

second-order polynomial, does not remove the IAV signal from the shorter OCO-2 timeseries (Fig. S9). 250 
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 270 

Figure 3. Methodology to calculate the CO2 interannual variability timeseries, using OCO-2 XCO2 data at the 5° grid cell 

at 20°N, 155°W, which contains Moana Loa, as an example. (a) 5°resolution monthly mean raw OCO-2 XCO2 and the 

associated 3rd order polynomial trend. (b) detrended monthly XCO2 after removing the long-term trend with a repeating 

12-month annual cycle obtained from calculating the mean for each month. The light blue shading gives the uncertainty 

of the seasonal cycle, which is derived by calculating the standard deviation across all Januarys, Februarys, etc.  (c) 12-275 
month mean annual cycle together with the uncertainty range plotted in (b). (d) Resulting interannual variability, when 

mean annual cycle is removed from detrended timeseries.   

3 Results 

3.1 Spatiotemporal Variations based on OCO-2 observation 

When averaged into broad zonal belts representing the tropics and mid-latitudes, the OCO-2 XCO2 IAV timeseries 280 

anomalies range between -0.5 to 0.75 ppm (Fig. 4a). All latitude bands show increasing IAV during positive MEI (El 

Niño) and decreasing IAV during negative MEI (La Niña), although the phasing varies among latitudes. During the 

strong 2015–2016 El Niño, which began around March 2015 and reached its peak at the start of 2016, XCO2 showed 

the largest IAV. The Southern Hemisphere extratropical region (Fig. 4d) have larger and more rapid response in the 

IAV associated with ENSO compared to other zones, especially for the smaller El Niño that peaked at the beginning 285 

of 2020. At this time, the XCO2 IAV timeseries (Fig. 4d) had an anomaly nearly twice as large as that of other latitude 

belts (Fig. 4a to 4c). During both El Niño events, the IAV timeseries in the NH tropics zone peaks nearly six months 

after the maximum MEI value.  
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We assess the spatial correlation patterns with no time lag, 3-month, 6-month lag between the IAV timeseries and 290 

MEI (Fig. 8a). The XCO2 IAV timeseries have strong correlation coefficient with the MEI index in both Southern 

Hemisphere and Northern Hemisphere low latitudes from 0° to 30°N at lag 0, whereas in the Northern Hemisphere 

extratropics, the maximum positive correlation occurs at month 4 (Fig. 8b).  The positive correlation between MEI 

and the IAV timeseries is gradually attenuated, with no clear correlation at six months lag (Fig. 8c). 

 295 

 

 

Figure 4.  IAV timeseries averaged for zonal bands between 60 °N and 60 °S from four different observing strategies: Space-

based OCO-2 XCO2 (Black), Surface CO2 observations from NOAA’s marine boundary layer (MBL) sites (Blue), Ground-

based TCCON XCO2 (Red), Space-based GOSAT XCO2 (Gray). (a) temperate northern hemisphere (20°N-60°N), (b) 300 
tropical northern hemisphere (0° - 20°N), (c) tropical southern hemisphere (0°-20°S), (d) temperate southern hemisphere  

(20°S-60°S). For all panels, the background shading indicates the Multivariate ENSO Index (MEI), which is positive during 

El Niño phases. 
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The differences in temporal phasing between the broad zonal belts (Fig. 4a) associated with El Niño events can be  305 

linked to transport of El Niño-driven CO2 flux anomalies away from the tropics when zonal means are calculated from 

OCO-2 observations at 5° latitude resolution (Fig. 5). For the two El Niño periods in 2015-2017 and late-2018 to 

2021, high IAV values originate in the tropics and a smooth transition to high IAV values is seen at higher latitudes 

as time progresses (Fig. 5a). We note that fluxes outside the tropics may also be influenced by ENSO-related climate 

variability, yet the transport of tropical-driven anomalies appears to dominate. This 7-year study period also captures 310 

the half-year lags for atmospheric transport or climate-ecological teleconnections that impacts XCO2 variations in the 

far North. While the OCO-2 patterns largely conform with variability expected based on ENSO and are in broad 

agreement with other observational networks, there are some anomalies that cannot be explained, such as the high 

XCO2 in early 2020 around 60°S (Fig. 5a). Even with more aggressive data filtering, this episode persists, requiring 

more investigation of unknown geophysical drivers of high XCO2 or potential retrieval issues that could cause a high 315 

bias. 

 

Figure 5. Hovmöller Diagrams diagram showing zonal mean OCO-2 XCO2 IAV timeseries for 5° latitude bins (a) and the 

zonal standard deviation of XCO2 IAV (b), which gives an estimate of coherence in the IAV patterns among grid cells in 

the 5° zonal belt. 320 
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We quantify coherence in CO2 IAV within a latitude circle by taking the standard deviation across gridcell-level IAV 

anomalies within each 5° latitude zone. The standard deviation among gridcells is highest in the far North, with values 

as high as 1 ppm poleward of 45°N and as low as 0.2 ppm in the Southern Tropical bands (Fig. 5b), indicating that 

IAV is less spatially coherent in the Northern Hemisphere. This may be consistent with studies that show greater IAV 

in terrestrial ecosystem fluxes (concentrated in the northern hemisphere) (Zeng et al., 2005) relative to ocean fluxes, 325 

or may reflect that our IAV timeseries also retains the imprint of sampling, measurement, and retrieval errors, which 

become more pronounced at higher latitudes. In general, there is not a time-dependent or ENSO-related pattern for 

the longitudinal variation of IAVs (no obvious changes during the two El Niño periods), which suggests the variation 

within each 5° band may be approximately stable and does not change substantially with interannual climate events. 

 330 
Figure 6. OCO-2 XCO2 IAV amplitude, determined as the standard deviation of the IAV timeseries. Data equatorward of 

45° are averaged at 5°by 5° resolution , and data poleward of 45° are averaged at 5°by 10° resolution. Shaded regions 

indicate gridcells that lack mean annual cycle data for at least two calendar months due to polar night or related retrieval 

challenges.  

 335 

 

Figure 7. Similar as Figure 6 but based on GOSAT data.   
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Figure 8.  Correlation coefficient between local grid cell OCO-2 XCO2 IAV timeseries and MEI, for (a) synchronous 

timeseries, (b) with 3-month lags, (c) with 6-month lags. 

The XCO2 IAV amplitude (the standard deviation of the IAV timeseries) is notably larger over continental gridcells 

compared to ocean gridcells (Fig. 6). In both hemispheres, the IAV amplitude over subtropical ocean basins is less 370 

than 0.4 ppm, while the IAV amplitude over tropical land in Southeast Asia, Congo forests and Amazon Basin is about 

1 ppm. In higher latitudes, the XCO2 IAV amplitude can exceed 1.2 ppm above deciduous and boreal forests in North 

America and Eurasia. Higher values over land likely occur due to the active CO2 exchange between terrestrial 

ecosystem and the atmosphere, but we cannot rule out that retrievals over land show more variance due to complex 

topography, albedo, etc., which are elements of the retrieval state vector. Nevertheless, over land areas with low carbon 375 
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exchange (e.g., Australia, the Middle East, the Sahara Desert), the XCO2 IAV amplitude is nearly of the same low 

level as the ocean basins. It is worth noting that for high latitude regions, including both Northern continents and 

Southern Ocean, OCO-2 does not obtain observations over a full calendar year (stippled gridcells in Fig. 6) due to 

polar nights, low light levels, and high solar zenith angles. The XCO2 IAV amplitudes are less zonally coherent  

 380 
Figure 9.  Latitudinal profile for zonal mean of IAV amplitude and the standard deviation among land (green) or ocean 

(blue) gridcells in each latitude band (shaded area). Individual points represent all grid cells valid IAV record within the 

certain zonal band. 

 

Figure 10.  Correlation coefficient between local grid cell IAV timeseries and the corresponding 5° zonal mean OCO-2 385 
XCO2 IAV timeseries.  
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through these regions than those in the tropics and mid-latitudes, for both land and ocean. When averaging all ocean 

or land grid cells around a latitude circle, the zonal mean IAV amplitude over the ocean ranges from 0.3 to 1.0 ppm, 

while the land IAV amplitude ranges from 0.4 to 1.1 ppm (Fig. 9). Both the land and ocean profiles have similar north-

south patterns, with higher IAV amplitude in the Northern Hemisphere and lower IAV amplitude in the Southern 390 

Hemisphere, and the small IAV amplitudes in the subtropics of both hemispheres, with more scatter among land 

gridcells than ocean (Fig. 5b and  Fig. 9), suggesting either the influence of local flux IAV on land or greater error 

associated with retrievals on land. We note better coherence between the XCO2 IAV timeseries of each local grid cell 

and that of zonal mean XCO2 IAV timeseries for ocean, with correlation coefficients of approximately 0.8. In contrast, 

land gridcells are generally correlated with the zonal mean at around 0.4 to 0.6 (Fig. 10).  395 

 

3.2  OCO-2 XCO2 IAV compared to GOSAT XCO2 IAV 

We carried out comparisons between the global spatiotemporal pattern of XCO2 IAV between OCO-2 and GOSAT, 

since GOSAT has data beginning in 2009. The XCO2 timeseries from OCO-2 provides higher coverage over mid-

latitude oceans and tropical rainforests (stippling in Fig. 6, 7). The IAV amplitude of OCO-2 is generally smaller than 400 

that of GOSAT worldwide (Fig. 6, 7), which may be due to greater data volume and reduced noise in the OCO-2 

dataset (Wu et al., 2020). OCO-2 and GOSAT zonal mean IAV timeseries generally share the same feature from 2014 

to 2021 (Fig. 4a-d), with an increasing trend during El Niño and decreasing trend during La Niña, however the GOSAT 

XCO2 shows a delayed response in the northern midlatitudes, by almost 9 months, to the strong 2015 El Niño 

compared to the other datasets. Generally, GOSAT IAV timeseries are nosier, from month-to-month, compared to 405 

those from OCO-2.  

 

3.3  XCO2 IAV compared to surface and TCCON ground-based sites  

Given that the small IAV signal (up to 1 ppm over land, and smaller over ocean) is similar in magnitude to noise and 

systematic bias in OCO-2 soundings (Torres et al., 2019), we corroborate patterns of IAV from OCO-2 with other 410 

datasets. The OCO-2 IAV timeseries in broad latitudinal belts share similarities with those of TCCON XCO2 and 

MBL surface CO2  ground-based IAV timeseries, with all timeseries showing similar relationships to MEI. Especially 

striking is that all timeseries capture the lagged response in the NH midlatitude belt to the strong 2015/16 El Niño 

(Fig. 4a-d). Although the patterns are similar, the magnitude of IAV at the MBL sites is almost double the IAV in the 

OCO-2 XCO2 timeseries. Given that the atmospheric boundary layer, where surface observations are made, is on 415 

average 10% of the total column, this suggests that much IAV in total column observations is present within the free 

troposphere. For TCCON, the amplitude of IAV is similar to that of OCO-2, since both methods capture total column 

variations. We note that the zonal IAV timeseries for MBL and TCCON appear to have more high frequency variations 

than those from OCO-2 (Fig. S10, Fig. S11 & Fig. S12), which likely stems from the fact that the zonal composites 

are developed from sparse ground-based sites (between 1 and 12 observatories) within each latitude belt, whereas the 420 

satellite measures at all longitudes within a belt, though with more limited time resolution. The zonal mean OCO-2 

observations are correlated with MBL sites within the same latitude band with R between 0.5 and 0.75 (diagonal 

elements on Fig. 13b). Correlations between zonal TCCON and OCO-2 observations range between 0.15 and 0.55 
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(Table. S1). The correlations are weakest in the northern tropics band, where TCCON data were unavailable during 

the strong El Niño (Fig. 3c). It is noteworthy that OCO-2 zonal averages are more correlated among different latitudes 425 

than are MBL or TCCON observations (off-diagonal elements in Fig. 13c, d, e). The greater correlation across latitudes 

for OCO-2 compared to MBL sites is likely due to the sensitivity of the OCO-2 XCO2 observations to the free 

troposphere, where meridional transport is more rapid than at the surface. While TCCON data are also sensitive to the 

free troposphere, we hypothesize that the zonal belt averages for TCCON, constructed from only a few sites, are more 

affected by noise, both instrumental and geophysical, and thus show lower coherence than the OCO-2 XCO2 averages 430 

constructed from the whole latitudinal bands.   

 

We further compared the IAV from OCO-2 XCO2 with TCCON stations at the site level (Fig. 12). Across all sites, 

the IAV amplitude generally shows good agreement and lies between 0.4 to 1.2 ppm. We note a slight low IAV 

amplitude in OCO-2 relative to TCCON for all five sites in the Southern Hemisphere which lie below the one-to-one 435 

line. Low OCO-2 IAV amplitudes may be due to the fact that a 5x5 ° gridcell encompassing these near-coastal 

locations includes both land and ocean OCO-2 soundings, and may be due to specific sources of variance from retrieval 

bias affected by surface type for the OCO-2 (e.g., Fig. 9). It is also worth noting that OCO-2 is looking at a region of 

5° by 5° gridcell (or 5° by 10° in higher latitudes) around TCCON sites, so there are different signals affecting the 

variance between the two types of observations. 440 
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Figure 11. Latitudinal profile of regression Slope (panel a) and correlation coefficient (R, panel b) of OCO-2 versus TCCON 470 
XCO2 IAV. The Slope and R values are based on using monthly XCO2 IAV. The error bars result from a Monte Carlo 

bootstrapping approach . The colours represent the number of months data which used for the regression calculation, given 

gaps in both the OCO-2 and TCCON datasets. 
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We derive the regression slopes and Correlation Coefficient R between OCO-2 and monthly averaged TCCON IAV 

through bootstrapping Linear Regression fitting techniques to investigate the coherence between IAV signals from 475 

space-based and in-situ ground-based observations. We compute the linear regression 1000 times, by iteratively 

resampling the IAV timeseries with replacement, and calculate the 95% significant level for regression slopes based 

on the histogram of the sample distributions during the bootstrapping (Fig. S13). Despite having similar IAV 

amplitudes, the IAV timeseries from OCO-2 are only moderately correlated with those from TCCON (Fig. 11). The 

regression slopes range from 0.1- 0.6 and R values are generally around 0.1 – 0.5, indicating that less than 25% of the 480 

IAV in OCO-2 is explained by IAV measured by TCCON. These R values are, as expected, smaller than the zonal 

averages shown in Fig. 11b, which average some of the site-level noise for TCCON and gridcell-level noise for OCO-

2. The detailed XCO2 IAV timeseries of each site (Fig. S10) for OCO-2 and TCCON show that the IAV timeseries in 

the NH are more variable, which can partly explain the hemispheric difference in amplitude, slope, and correlation 

coefficients.  485 

 

Figure 12. Comparison of OCO-2 and TCCON XCO2 IAV amplitude at individual sites. Colours reflect site latitudes. The 

grey dashed line is the one-to-one identity line. The grey solid line is the error bar of the IAV amplitude.  

 

 490 

4  Discussion 

We use seven years of OCO-2 total column carbon dioxide observations from late 2014 to mid-2021 to illustrate the 

global temporal-spatial patterns of atmospheric XCO2 interannual variations. OCO-2 and GOSAT showed reasonable 

agreement (Fig.4) in northern and southern hemisphere tropical zones (0-20°), although there were some notable phase 

differences during the strong 2015 El Niño for GOSAT compared to the other timeseries in both the northern and 495 

southern extratropic regions. In contrast, OCO-2 shows good temporal agreement with the ground-based observations 

from MBL and TCCON. The temporal agreement of the OCO-2 and TCCON XCO2 IAV timeseries and the MBL 

surface CO2 IAV timeseries in broad zonal belts improves our confidence that we can quantify IAV timeseries from 

the satellite record. We note that amplitude differences remain among the timeseries, owing to two major factors: first, 
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compared to MBL surface observations, we expect XCO2 timeseries to have smaller amplitudes of variability since it 500 

integrates over the entire atmospheric column (Olsen and Randerson 2004), and second, the fact that the OCO-2 

timeseries averages around a full latitude circle rather than a few discrete sites reduces some of the IAV contained in 

site-level records. From the space-based and ground-based detection, we are able to characterize the global response 

of OCO-2 and TCCON XCO2 or MBL surface CO2 IAV to ENSO, and track the CO2 IAV against the positive/negative 

phase of ENSO, together with the transport of the signal from South to North (Fig. 4). All datasets show consistent 505 

patterns in the response to the El Niño periods, although we note that the IAV amplitude is a factor of almost two 

smaller in the column average mole fraction compared to the boundary layer CO2, which reflects the fact that IAV 

variations emerge due to surface fluxes in the lower part of the atmosphere (Olsen & Randerson, 2004), but are 

efficiently transported into the free troposphere which comprises the bulk of the column. When taken together, the use 

of surface and column data may allow better separation of transport-driven versus local flux driven variations at the 510 

interannual timescale. In the future, as partial column retrievals (e.g., Kulawik et al., 2017) mature, intercomparisons 

of lowermost tropospheric partial columns may provide a useful bridge between variations in surface MBL 

observations and total column observations. 

 

Our results, however, underscore the difficulty in detecting IAV signals from remote sensing of XCO2 -- while 515 

northern hemisphere seasonal amplitudes are typically 10 ppm scale (Basu et al., 2011), the magnitude of OCO-2 

detected XCO2 IAV is almost an order of magnitude smaller (less than 0.4 ppm over ocean and about 1ppm over 

continents). The magnitude of IAV is therefore comparable to other components of the XCO2 variance budget; for 

instance, Torres et al. (2019) show random noise in individual OCO-2 soundings of about 0.3 ppm in the southern 

hemisphere and of about 0.7 ppm in the northern hemisphere, and spatially coherent errors in the retrievals ranging 520 

from 0.3 to 0.8 ppm (Torres et al., 2019). Moreover, the uncertainty which originally comes from the varying 

climatological seasonal cycle, can also reach the level of 0.5ppm (Fig. 3d). Therefore, robust partitioning of IAV from 

the observed XCO2 signal at a given location requires a comprehensive variance budget (Mitchell et al., 2023), and 

efforts to infer interannual variations in fluxes from OCO-2 must take gridcell-level variance into account or leverage 

zonally averaged data, which is characterized by greater separation between IAV signal and noise. 525 

 

Our analysis shows that proper spatial averaging of the monthly XCO2 signal can mitigate the imprint of random noise 

and systematic effects from weather systems at sub-monthly timescales. Based on sensitivity tests, we recommend 

averaging low to mid-latitude of XCO2 (equatorward of 45°) to 5°x5° bins, and 5° latitude x 10°  longitude grid cell 

poleward of 45°, ensuring that each gridcell aggregates at least 5 soundings within a month. At these levels of spatial 530 

averaging, the XCO2 IAV amplitude was comparable to that of the co-located ground based XCO2 IAV amplitude 

measured by TCCON (Fig.12). However, the moderate to low correlation between the IAV timeseries from each 

monitoring platform reveals the discrepancies of the two measurements in sampling, detection or retrieval, suggesting 

that one or both is still convolving another source of variance with the calculated IAV signal. Based on the good 

agreement between the two timeseries in broad zonal belts, we expect that random noise in both observations may 535 

degrade the comparison. 
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Figure 13.  Correlation coefficient (R) between among mean CO2 timeseries using three observing strategies.  Panel (a) 

shows the correlation between zonal mean OCO-2 XCO2 IAV and zonal mean marine boundary layer CO2. Panel (b) shows 

the correlation between zonal mean XCO2 IAV from OCO-2 and TCCON. Panels (c-e) show the correlation in zonal mean 540 
IAV timeseries across four latitude bands for a single observing strategy. Panel (c) shows OCO-2 XCO2, Panel (d) shows 

MBL CO2 and Panel (e) shows TCCON XCO2. For Panels c-e, the diagonal elements are 1 by construction.  Zonal bands 

include tropical (0°-20°) and NH/SH temperate zone (20°-60°). 
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The smaller coherence in the IAV timeseries in nearby land and ocean gridcells may be due to larger error over land 545 

or may reflect that XCO2 observations over land contain information about heterogeneous local flux IAV. Complete 

analysis of the variance budget for OCO-2 observations (Mitchell et al., 2023) will elucidate the likely imprint of each 

process. When using IAV timeseries for flux inference, it will be crucial to account for non-flux imprints such as 

imprint from atmospheric transport, random errors, systematic errors, and remote geophysical coherence on the 

timeseries (e.g., Torres et al., 2019; Mitchell et al., 2023), since spurious attribution of IAV will lead to biased fluxes. 550 

 

 

5  Conclusions 

We examined IAV in OCO-2 data to determine whether the small variations that result from interannual flux variations 

can be detected in light of other sources of variance in the space-based dataset. Our results show that zonal averages 555 

reveal relationships with ENSO that are consistent with those from established ground-based monitoring network. 

Zonal averages greatly reduce random noise in XCO2 compared to 5x5o averages. In general, OCO-2 can successfully 

monitor CO2 IAV over both land and ocean, contributing important spatial coverage beyond inferences of IAV from 

existing ground-based networks.   
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