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Abstract.

The climate system and its spatio-temporal changes are strongly affected by modes of long-term internal variability, like the

Pacific Decadal Varibility (PDV) and the Atlantic Multidecadal Variability (AMV). As they alternate between warm and cold

phases, the interplay between PDV and AMV varies over decadal to multidecadal timescales. Here, we use a causal discovery

method to derive fingerprints in the Atlantic-Pacific interactions and investigate their phase-dependent changes. Dependent5

on the phases of PDV and AMV, different regimes with characteristic causal fingerprints are identified in reanalyses in a first

step. In a second step, a regime-oriented causal model evaluation is performed to evaluate the ability of models participating

in the Coupled Model Intercomparison Project Phase 6 (CMIP6) in representing the observed changing interactions between

PDV, AMV and their extra-tropical teleconnections. The causal graphs obtained from reanalyses detect a direct opposite-sign

response from AMV on PDV when analysing the complete 1900-2014 period, and during several defined regimes within that10

period, for example, when AMV is going through its negative (cold) phase. Reanalyses also demonstrate a same-sign response

from PDV on AMV during the cold phase of PDV. Historical CMIP6 simulations exhibit varying skill in simulating the

observed causal patterns. Generally, Large Ensemble (LE) simulations showed better network similarity when PDV and AMV

are out of phase compared to other regimes. Also, the two largest ensembles (in terms of number of members) were found

to contain realizations with similar causal fingerprints to observations. For most regimes, these same models showed higher15

network similarity when compared to each other. This work shows how causal discovery on LEs complements the available

diagnostics and statistics metrics of climate variability to provide a powerful tool for climate model evaluation.

1 Introduction

Modes of natural climate variability from interannual to multidecadal timescales have large effects on regional and global

climate with important socio-economic impacts. Despite their importance, systematic evaluation of climate models and their20

simulation of internal variability remains a challenging task (Eyring et al., 2019). The available observational datasets are not
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only short in time, but also hold considerable uncertainties that arise from errors in the data record during the pre-satellite era

(Phillips et al., 2014; Fasullo et al., 2020; Eyring et al., 2021). Generally, in order to test their performance, the models are often

compared to reanalysis datasets based on observations. This approach is a key to estimate the ability of models to correctly

simulate internal variability. An evaluation study by Fasullo et al. (2020) showed a systematic improvement in the representa-25

tion of modes of climate variability through the different phases of the Coupled Model Intercomparison Project (CMIP), where

models largely capture the statistical properties of these modes (e.g., timescale, autocorrelation, spectral characteristics, and

spatial patterns). However, across the CMIP archive, comparisons with observations also reveal remarking systematic errors.

These are errors that have only little or no improvement due to the complexity of the climate system and the difficulty to assign

a specific cause to a specific systematic error or bias (Stouffer et al., 2017; Fasullo et al., 2020; Eyring et al., 2021).30

It is therefore a priority to go beyond spatial and spectral properties and apply new approaches that reveal whether a climate

model correctly simulates the observed lagged teleconnections between remote regions. Here, causal discovery methods pro-

vide a way to estimate such dynamical climate dependencies from data timeseries (Ebert-Uphoff and Deng, 2012; Runge et al.,

2019b; Runge, 2020; Runge et al., 2019a; Nowack et al., 2020). Causal graphs not only help to assess the degree to which a

climate model recreates well-defined connections within the climate system, but also to determine if specific phenomena are35

simulated for the right reasons. As the nature of these connections and phenomena is supposed to vary depending on the state

of multidecadal processes of internal climate variability, we investigate the causal relations not only for the complete historical

period, but also for shorter, state-dependent timescales that define different regimes of dependencies.

In this study, we utilize a regime-oriented causal analysis on indices of dominant modes of long-term variability over the

Atlantic and Pacific to investigate the interactions between the two basins in CMIP Phase 6 historical simulations (CMIP6,40

Eyring et al., 2016) as well as in Large Ensembles (LE) and compare those results to reanalysis data. To do so, we first

calculate the two leading modes of multidecadal coupled (ocean-atmosphere) climate variability over the Pacific and Atlantic:

Pacific Decadal Variability (PDV) and Atlantic Multidecadal Variability (AMV). PDV, encompassing a symmetric variability

pattern over the North and South Pacific (Mantua et al., 1997; Chen and Wallace, 2015), with an El Niño-Southern Oscillation-

(ENSO) like decadal variability over the tropical Pacific extending over the entire Pacific basin (Nitta and Yamada, 1989; Zhang45

et al., 1997; Meehl et al., 2013), can be defined by Pacific sea surface temperature (SST) anomaly fields. Its influence on the

other hand, expands well beyond the Pacific affecting regional- and global-scale climate on decadal timescales. Its temporal

evolution is characterized by an interannual and decadal variability with some pronounced shifts, notably the extensively

studied 1976/77 transition (Zhang et al., 1997; Power et al., 1999; Mantua et al., 1997; Arblaster et al., 2002; Meehl et al.,

2009). In particular, Ebbesmeyer et al. (1991) identified dramatic changes in the North Pacific biota and climatic variables50

during that period. The positive PDV phase dominated during the period from the mid-1970s through late 1990s, while the

following period of global warming hiatus entailed a switch to negative phase (Meehl et al., 2016; Fyfe et al., 2016). The

second dominant pattern of internal multidecadal variability, the AMV, acts on the North Atlantic region. Sometimes referred

to as the Atlantic Multidecadal Oscillation (AMO, Kerr 2000), AMV is characterized by a dipole SST variability pattern

featuring opposite sign anomalies between the Tropical North Atlantic and South Atlantic (IPCC, 2021). Index timeseries of55

the observed AMV pattern show that the mode goes through preferred phases for multidecadal periods with the positive phase
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persisting since the late 1990s to nowadays. The AMV was also discovered to have significant socio-economic and climate

impacts, particularly on the Indian summer monsoon, North American and European summer climate and hurricanes over the

Atlantic (Folland et al., 1986; Sutton and Hodson, 2005; Knight et al., 2006; Zhang and Delworth, 2006; Si and Hu, 2017; Yan

et al., 2017).60

Previous research focused on Atlantic-Pacific interactions suggests changing forcing mechanisms can be applied by one

basin on the other (d’Orgeville and Peltier, 2007; Wu et al., 2011; Kucharski et al., 2016; Nigam et al., 2020). Observational

analyses concluded that the multidecadal component of the negative PDV phase can lag the positive AMV phase by about a

decade (Zhang and Delworth, 2007; d’Orgeville and Peltier, 2007). Literature suggests a PDV-AMV link through a tropical

pathway where increasing Atlantic temperatures instigate a La Niña-like cooling in the equatorial Pacific, and a consequent65

weakened Aleutian low in the North (McGregor et al., 2014; Kucharski et al., 2016; Li et al., 2016; Ruprich-Robert et al.,

2017). Meehl et al. (2021a) showed that the Atlantic and Pacific are mutually and sequentially interactive and are connected

mainly through the atmospheric Walker circulation with some extra-tropical contributions. Components of the PDV in that

study were found to be linked to Aleutian low variability associated with the Pacific-North American (PNA) pattern (Wallace

and Gutzler, 1981), a prominent mode over the Northern Hemisphere extra-tropics, with a quadrupole anomaly field of 500 hPa70

geopotential height (H500) that can influence the subtropical North Atlantic. Teleconnections to the Southern Hemisphere were

also noted by Meehl et al. (2021a) involving the Pacific-South-American (PSA) pattern that ends up influencing the subtropical

South Atlantic. Another study involving coupled model simulations from Zhang et al. (2018) agreed with Meehl et al. (2021a)

and showed that the PSA, which can be thought of as the South Pacific counterpart of PNA, generates a forcing that translates

into the Southern Hemisphere component of PDV. To assess these possible extra-tropical connections, in addition to PDV and75

AMV, we include in our causal discovery study indices for both PNA and PSA modes. The indices of the latter modes are both

based on sea level pressure (SLP) anomalies. PSA is generally expressed through two modes, in this study we use PSA mode

1 (PSA1) index as the second Empirical Orthogonal Function (EOF) of area-weighted SLP anomalies in the South Pacific (Mo

and Higgins, 1998, see Methods).

Figure 1 shows the various steps of our regime-oriented causal model evaluation approach presented in this paper, which80

we organise as follows: Sect. 2 describes methods (Sect. 2.1) and data (Sect. 2.2) that were used in this study. In Sect. 2.1.1

we present the package used to generate the indices and spatial patterns of the different modes of climate variability. This is

followed by an introduction to the causal discovery method (Sect. 2.1.2), and the framework for the regime-oriented causal

model evaluation (Sect. 2.1.3). In Sect. 2.1.4 we introduce the causal network comparison method via calculation of F1-scores.

The analysed reanalysis datasets and CMIP6 models used in this study are listed in Sect. 2.2. The Results (Sect. 3) start with85

a correlation analysis to compare the SST and SLP regression maps associated with the CMIP6-simulated timeseries of AMV,

PDV, PNA and PSA to those from reanalysis data (Sect. 3.1). As the causal analysis only uses timeseries information of the

calculated indices, this comes as a sanity check to measure the similarity between the observed and simulated spatial patterns

associated with the index timeseries. This is followed by Sect. 3.2 where we show the causal networks from reanalysis data

during different regimes. These serve as reference for the regime-oriented causal model evaluation in the subsequent Sect. 3.3.90

We discuss the results in Sect. 3.4 before closing the paper with a summary in Sect. 4.
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Figure 1. Framework for the regime-oriented causal model evaluation. a) Gridded SST and SLP data used to calculate indices for

AMV, PDV, PNA and PSA1 modes of climate variability. Diagnostics from the NCAR Climate Variability Diagnostic Package for

Large-Ensembles (CVDP-LE) produce the timeseries of these indices and their associated spatial patterns (regression maps). b) We

first, as a sanity check, compare the CMIP6 model-simulated SST (for AMV and PDV) and SLP (for PNA, PSA1) regression maps

to those from reanalysis before c) using the timeseries of the four indices for the regime-oriented causal analysis. Here we define

different regimes depending on the sign of the 13-year low-pass filtered AMV and 11-year low-pass filtered PDV timeseries. For

every regime we run PCMCI+ to estimate instantaneous and lagged links between nodes representing the timeseries of the indices

calculated in (a) from the reanalyses and model data. In this schematic example, there are four indices, with node color indicating

auto-correlation, and there is a causal link (solid black arrow) between index 2 and indices 1 and 3, and then there is a causal link

between indices 3 and 4. The method identifies and removes spurious links (see black dashed arrows) between indices 1 and 4, or

2 and 4. Unitless representative time lags are labeled on each causal link, where index 1 lags index 2 by one time-step (depending

on temporal resolution of the timeseries, here yearly), index 3 lags index 2 by three, and index 4 lags index 3 by one. Applying the

method to the timeseries in (a) provides d) dataset- and regime-specific causal fingerprints in a similar format to the schematic in

(c), which can be used for model evaluation and intercomparison. We calculate annual averages from the monthly timeseries of PDV

and AMV provided by CVDP-LE. This way, the dataframe is fit for multi-year and decadal causal estimations. In addition to the

subtraction of global mean temperatures in the CVDP-LE calculation of PDV and AMV, the causal networks are estimated after

linearly detrending the timeseries of the four indices to ensure their stationarity. The estimated causal dependencies (links) are hence

assumed to be a mixture of internal variability and time-varying anthropogenic forcing (mainly from aerosols).
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2 Methods and Data

2.1 Methods

2.1.1 Climate Variability Diagnostic Package

Developed by the National Center for Atmospheric Research (NCAR), the Climate Variability Diagnostic Package for Large95

Ensembles (CVDP-LE) provides an analysis tool for the evaluation of the major modes of internal climate variability tailored

for large-ensemble climate models (Phillips et al., 2020). It includes diagnostics to compute indices for the major modes

of coupled and large-scale atmospheric climate variability. The package also offers comparison metrics for the spatial and

temporal patterns with respect to reference observational datasets.

For the indices of our selected modes of climate variability (see enumeration below), we use the diagnostic results com-100

puted from the CMIP6 LE historical simulations and from reanalyses data over the 1900-2014 period. These are calcu-

lated by the CVDP-LE and publicly available as Network Common Data Format (NetCDF) files on the Community Earth

System Model (CESM) Climate Variability and Change Working Group’s (CVCWG) CVDP-LE Data Repository under

https://www.cesm.ucar.edu/working_groups/CVC/cvdp-le/data-repository.html. We use index timeseries and their associated

spatial patterns (SST regression maps for AMV and PDV, PSL regression maps for PNA and PSA1). The indices used in this105

analysis are computed by the CVDP-LE package as follows:

1. PDV Index (sometimes referred to as the PDO index): is defined as the standardized principal component (PC) timeseries

associated with the leading EOF of area-weighted monthly SST anomalies over the North Pacific region [20-70N, 110E-

100W] minus the global mean [70N-60S] (effectively detrending the data). (Mantua et al., 1997)

2. AMV Index (sometimes referred to as the AMO index): is defined as monthly SST anomalies averaged over the North110

Atlantic region [0-60N, 80W-0W] minus the global mean [60N-60S] (effectively detrending the data). (Trenberth and

Shea, 2006)

3. Pacific-North American Pattern (PNA): the leading EOF of area-weighted sea level pressure (SLP) anomalies over the

region [20-85N, 120E-120W]. We use timeseries constructed from yearly winter December-January-February (DJF)

means.115

4. Pacific–South American Pattern Mode 1 (PSA1) second EOF of area-weighted SLP anomalies south of 20S (Mo and

Higgins, 1998). We use timeseries calculated from annual means (ANN).

The idea behind subtracting the global mean in the definition of the SST-based modes, PDV and AMV, is to reduce po-

tential effects of external greenhouse gas (GHG) forcing. The space- and time-varying aerosol forcing, however, is expected

to contribute to the Atlantic and Pacific SST variability represented by the calculated AMV and PDV indices (Booth et al.,120

2012; Smith et al., 2016; Watanabe and Tatebe, 2019; Meehl et al., 2021a). According to their CVDP-LE definitions above,

the calculations of PNA and PSA1 do not include any detrending. This is because, in models, the externally-forced component
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of these SLP-based modes (unlike the SST-based ones) can generally be neglected when compared to the internally-generated

component (Deser et al., 2012; Phillips et al., 2020). Thus, we presume that the aforementioned indices calculated by CVDP-

LE, although not exhibiting a trend, are a combination of internal variability and external aerosol forcing. This is true for125

model-simulated indices and the ones calculated from reanalysis data (with the exception of the observed PSA1 timeseries

which include a noticeable trend, not shown). To compare the simulated spatial patterns to the observed ones (Sect. 3.1), we

correlate the regression maps associated with the timeseries of the indices as they are calculated by the CVDP-LE (see enu-

meration above). Only prior to applying the causal discovery algorithm (Sect. 2.1.2) do we further remove any linear trend that

might still be present in the data to ensure stationarity. Moreover, as the focus of the paper revolves around causal pathways130

on decadal (multi-year) timescales, we perform annual averages of the AMV and PDV timeseries as they are computed based

on monthly means by the CVDP-LE. Hence, for all results to be presented in this paper, we maintain the presumption that the

calculated climate variability indices (eventually their spatial patterns and causal fingerprints) represent a mixed response of

internally-generated variability and external aerosol forcing.

2.1.2 PCMCI+ Algorithm135

For the regime-oriented causal analysis, we use a Python package called Tigramite, freely available at https://github.com/

jakobrunge/tigramite, designed to efficiently estimate causal graphs from timeseries datasets. The causal discovery framework

within Tigramite is called PCMCI (Peter Clark Momentary Conditional Independence) (Runge et al., 2019b). Its suitability for

the challenges of timeseries data as studied here, mainly high dimensionality due to the number of variables and time lags, as

well as autocorrelation, was studied in Runge et al. (2019b); Runge (2020). While the PCMCI framework is also suitable for140

nonlinear dependencies, in this paper we focus on linear relationships and use an extended version of PCMCI called PCMCI+

that can not only detect lagged (time lag τ > 0), but also contemporaneous (τ = 0) causal links (Runge, 2020).

PCMCI+ consists of two principal phases: a skeleton discovery phase and an orientation phase. Considering a time-dependent

system (Xt) of N variables Xt = (X1
t , ...,X

N
t ), the skeleton discovery starts first by applying the PC1 Markov set discovery

algorithm which is based on the PC algorithm (named after its inventors, Peter Spirtes and Clark Glymour) on a completely145

connected graph. The iterative PC1 algorithm tests for every lagged pair of nodes (variables) (Xi
t−τ ,X

j
t ) whether they are

conditionally independent on efficiently selected conditions of other lagged variables, and, if so, removes the adjacency be-

tween them. The lagged conditions at this stage serve to estimate for each variable Xj
t a superset of lagged parents B̂−t (X

j
t )

for which the adjacencies are oriented by time-order. In this step there still can be spurious links due to contemporaneous con-

founders. Hence, in the second skeleton discovery step contemporaneous conditions are iterated over in momentary conditional150

independence (MCI) tests implemented with partial correlation:

Xi
t−τ ⊥⊥Xj

t |S, B̂−t (X
j
t ) \

{
Xi

t−τ

}
, B̂−t−τ (X

i
t−τ )

where B̂−t (X
j
t ) are the lagged conditions of Xj

t and B̂−t−τ (X
i
t−τ ) are the (time-shifted) lagged conditions of Xi

t−τ obtained

in the first step. By iterating through subsets S ⊂Xt of contemporaneous adjacencies, the algorithm fully removes spurious

links. The partial correlation tests assume a t-statistic with degrees of freedom given by the effective sample size n− 2−155
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|S, B̂−t (X
j
t )\

{
Xi

t−τ

}
, B̂−t−τ (X

i
t−τ )|. The result is a graph with lagged and contemporaneous adjacencies. Lagged adjacencies

are oriented by time-order since causation can only go forward in time. This skeleton phase is followed by a collider orientation

phase, which further orients contemporaneous links based on unshielded triples Xi
t−τ −Xk

t −Xj
t where τ ≥ 0. If Xk

t is not

part of the separating set S that makes Xi
t−τ and Xj

t independent, then the triple is oriented as Xi
t−τ →Xk

t ←Xj
t . Further

contemporaneous links are then oriented such that the graph does not include cycles (see rules R1-R3 in Runge, 2020). The160

resulting graph then contains directed lagged and contemporanous links, but also unoriented adjacencies indicating that the

collider and orientation rules could not be applied (Markov equivalence), or a conflicting adjacency where different rules

are conflicting, for example, due to finite sample issues. For visualization purposes the estimated timeseries graph is then

aggregated in a process graph (Figure 2) that summarizes the causal dependencies and their time lags. The link strength can

be estimated in different ways, for example as standardized (causal) regression coefficients (Runge et al., 2015; Runge, 2021),165

but here we use the MCI partial correlation values corresponding to the conditional independence test statistic above.

A full method description of the original PCMCI and its PCMCI+ extension along with their respective pseudo code, proofs

of their asymptotic consistency, and numerical experiments can be found in Runge et al. (2019b) and Runge (2020), respec-

tively. These works also explain the underlying assumptions under which the detected links can be interpreted causally. Most

importantly, since unobserved confounders can still render links as spurious, the graphs are causal only with respect to the170

analysed variables. Applying more advanced methods (Gerhardus and Runge, 2020) that can deal with hidden variables would

considerably deteriorate the reliability of causal graph inferences for the short sample sizes available here.

Figure 2. Constructing causal network using Tigramite by applying PCMCI+ on timeseries calculated by CVDP-LE from reanalysis

datasets. Each node on a causal network (right) represents a variable (timeseries, left) and the node color its auto-correlation (self

links of each variable). The link color shows the cross-MCI partial correlation value which denotes the sign and strength of the

estimated causal link between two variables. The time lag for lagged links (curved arrows) are shown as small labels on the links.

Straight lines represent instantaneous causal links happening with no time lag.
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Figure 2 demonstrates the application of PCMCI+ algorithm on CVDP-LE datasets. Since causal discovery requires station-

ary timeseries (Runge, 2018), first we consider into our analysis detrended yearly 1900-2014 timeseries of modes of climate

variability, namely AMV, PNA, PDV, and PSA1 (left). The resulting causal network from the application of PCMCI+ algorithm175

is shown in right (Figure 2). The direction, sign, strength (|cross-MCI| value) and time lag (τ ) of the estimated causal links are

all attributes that can be conveniently read off the generated causal graphs. Each node on a causal network represents a variable

and the node color its auto-correlation (self-links of each variable). The link color shows the cross-MCI value which denotes

the sign and strength of the estimated causal link between two variables. The time lag for lagged links (curved arrows) are

shown as small labels on the links. For those connections that occur at multiple lags, the color of the link shows the strongest180

link, but the label depicts all significant lags sorted by their strength. The contemporaneous links are shown as straight arrows

("→"; when directionality is decided), straight lines with circle-shaped ends ("o—o"; when the adjacency indicates a Markov

equivalence), or straight lines with cross-shaped ends ("x—x"; indicating conflicting orientation rules).

With regards to the parameter settings for the PCMCI+ algorithm, we set the maximum time lag (τmax) to 15 years (

τmax = 15 time-steps, as we are using one data point per year). The significance level of the MCI partial correlation tests185

above αpc is set to 0.05.

2.1.3 Set up for regime-oriented analysis

The teleconnections between the Pacific and Atlantic ocean basins are suggested to follow different regimes depending on

the decadal phases that the AMV and PDV go through (Meehl et al., 2021a). In order to clearly identify the time periods of

each phase, we smooth the timeseries data by applying 11-year and 13-year low-pass filters on PDV and AMV, respectively.190

Figure 3a shows the observed detrended low-pass filtered AMV and PDV timeseries used to specify the different phases and

regimes for the masking before applying the PCMCI+ algorithm (the labeled regimes on the timeseries are only three out of the

10 we run the analysis over). First, running the analysis on the complete time period is intended to reveal the consistent causal

dependencies throughout the complete historical timeseries (see Figure 2). The resulting causal networks from the complete

period do not, however, expose much information on the causal effects which are changing over shorter time periods depending195

on how the PDV and AMV are varying during those phases. In order to identify these phase-dependent causal dependencies,

we perform the analysis on multiple shorter periods (regimes) by selecting the time-steps that represent either the positive

(warm) or negative (cold) phases based on the low-pass filtered indices, with AMV+(-) for when the value of low-pass filtered

AMV is positive (negative), and the same for PDV+(-). We further split these regimes into combinations of warm and cold

PDV and AMV phases (PDV+/AMV+, PDV+/AMV-, PDV-/AMV+, PDV-/AMV-). Additionally, since some regimes are too200

short to reveal any dependencies, we also opted to run the analysis for an ’In-Phase’ regime that sums the PDV+/AMV+ and

PDV-/AMV- periods. The remaining time-steps would then consist of the ’Out-of-Phase’ regime for the period where the two

low-pass filtered indices have opposite signs (PDV+/AMV- and PDV-/AMV+). This means that in addition to running it on the

complete period, we apply the PCMCI+ algorithm on 10 different shorter time periods (within the original 1900-2014 period)

for each dataset (see Figure 3a for reanalysis data). Figure 3b shows how we use the regimes defined in Figure 3a to mask205

the timeseries before applying the PCMCI+ method. This is shown for PDV+ and PDV- regimes as example. For each case,
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Figure 3. a) PDV and AMV timeseries calculated by CVDP-LE diagnostics on ERSSTv5 data are smoothed using 11 and 13-year

low-pass filters, respectively. 10 regimes are defined (see table on the left) in addition to the 1900-2014 complete period. The PCMCI+

algorithm is applied on unfiltered (non-smoothed) PDV, AMV, PNA, PSA1 yearly detrended timeseries that are masked according

to the periods that define each regime. The right arrows on the smoothed timeseries represent unmasked periods from three out

of 10 regimes (PDV+/AMV+, PDV-/AMV+, and PDV+/AMV-). b) The regimes identified in (a) are used to mask the non-smoothed

(but detrended) index timeseries before applying PCMCI+. Here, for example, we show how we mask the data according to the

PDV- (top) and PDV+ (bottom) regimes. The grey shaded periods are masked and thus not considered during the PCMCI+ analysis.

Note that the masking here refers to variables at time point Xj
t while their lagged parents can originate also from a masked period

(gray shaded). This setting is referred to as mask_type='y' in Tigramite. Consequently, applying PCMCI+ on differently-masked

timeseries produces different causal networks (network in top vs network in bottom)
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the gray shaded parts of the timeseries are masked periods, i.e. only the black shaded periods (see timeseries in Figure 3b)

are considered.
:::
We

:::::
show

::
in

::::::::
Appendix

:
Table A4

:
to

:
Table A10

:
,
:::
the

:::::::
number

::
of

:::::
years

::::
per

::::::
regime

:::
for

::::
each

::::::
dataset

:::::::::
analysed.

::::::::::
Nonetheless,

::
it

::::::
should

::
be

:::::
stated

::::
that

:::
the

:::::
results

::
of

:::
the

:::::::::::::
regime-oriented

::::::
causal

:::::::
analysis

::::::
account

:::
for

::::::::
potential

:::::
errors

::::::
related

::
to

:::
the

:::::::
sampling

:::
of

:::
the

::::
data.

::
A

:::::
study

::::
from

::::::::::::::::::::::::::
Smirnov and Bezruchko (2012)

::::::::::::
demonstrated,

:::::
using

:
a
::::::
variety

::
of

:::::::::
examples,

::::
how

::::::::
sampling210

:
at
:::::
lower

::::::::
intervals

:::
can

:::::::
produce

::::
large

:::::::::
"spurious"

:::::::
results.

We note that the low-pass filtered indices are used only to extract the time periods that constitute each regime. We remove

any linear trend that might be present in the data prior to applying the causal discovery algorithm. In this way, the effects of

external forcings are reduced. The four indices (AMV, PNA, PDV, PSA1) to which PCMCI+ is applied are represented by

detrended yearly unfiltered (not smoothed) timeseries (see Figure 2 and Figure 3b).215

2.1.4 F1-scores for causal network comparison

To quantify the similarity between the resulting causal graphs (networks) from model simulations and those from observations,

we follow a similar modified F1-score as in the methods by Nowack et al. (2020). The F1-score ranges between 0 (no match)

and 1 (perfect network match) and is based purely on the existence or non-existence of links in a network relative to a reference

network. The F1-score combines the statistical precision (P, fraction of links in model simulation network that also occur in the220

reference network) and recall (R, fraction of links in the reference network that are detected in the model simulation network)

and is defined as:

F1 =
2×P ×R

P +R

with

P =
TP

TP +FP
225

and

R=
TP

TP +FN

where FP is the number of falsely detected links and FN is the number of not detected links. We modify the definition as in

Nowack et al. (2020) so that a link is considered a true positive (TP) if it is found with the same sign of MCI partial correlation

as in the reference network. We further relax the time lag constraint by considering a TP to exist if a link is found in a ±10230

time-step interval compared to the lag in the reference network (i.e. [min(τmax, τ +10), max(0, τ − 10)]).

2.2 Data

From the 1900-2014 historical climate variability diagnostic results provided by the CVDP-LE, we choose the SST from

the Extended Reconstructed Sea Surface Temperature (ERSST) Version 5 (Huang et al., 2017) by the National Oceanic

and Atmospheric Administration (NOAA) as reference for the AMV and PDV indices and spatial patterns. Whereas for235

the PNA and PSA1 modes, we use as reference, SLP from the 20th Century Atmospheric Reanalysis extended with ERA5
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(ERA20C_ERA5), provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) and assimilating obser-

vations of surface pressure. The reference data serve for comparison to evaluate how indices generated using a selection of 12

Large Ensemble CMIP6 historical models reproduce the observed spatial patterns and causal dependencies. The list of CMIP6

LE models (with the number of realization per model) is provided in Table 1.240

Table 1. CMIP6 Large Ensemble historical simulations used in the analysis

Dataset Components N° realisations used References

CMIP6 LE Institute Atmosphere model Ocean model

ACCESS-ESM1-5 CSIRO HadGAM2 ACCESS-OM2 10 Ziehn et al. (2019)

CESM2 NCAR CAM6 POP2 11 Danabasoglu (2019)

CNRM-ESM2-1 CNRM Arpege 6.3 NEMO3.6 10 Seferian (2018)

CanESM5 CCCma CanAM5 NEMO3.4.1 65 Swart et al. (2019)

EC-Earth3 EC-Earth IFS cy36r4 NEMO3.6 20 Döscher et al. (2022)

GISS-E2-1-H NASA GISS-E2.1 HYCOM Ocean 23 Kelley et al. (2020)

INM-CM5-0 INM INM-AM5-0 INM-OM5 10 Volodin et al. (2019)

IPSL-CM6A-LR IPSL LMDZ NEMO-OPA 32 Boucher et al. (2018)

MIROC6 JAMSTEC, AORI, NIES,R-CCS CCSR AGCM COCO4.9 50 Shiogama et al. (2019)

MPI-ESM1-2-LR MPI-M ECHAM6.3 MPIOM1.63 10 Wieners et al. (2019)

NorCPM1 NorESM Climate modeling Consortium CAM-OSLO4.1 MICOM1.1 30 Bethke et al. (2019)

UKESM1-0-LL Met Office Hadley Centre MetUM-HadGEM3-GA7.1 NEMO-HadGEM3-GO6.0 18 Tang et al. (2019)

We note that in the spatial correlation analysis in the next section, monthly averages are used for AMV and PDV as that is the

time resolution originally provided by the CVDP-LE for these modes. The diagnostic package does not produce monthly fields

for the PNA and PSA1, so we use winter means (DJF) and all-year annual means (ANN), respectively. We found that most

model simulations show weak correlations with reanalysis data for the annually averaged PNA (ANN, not shown) compared

to the winter averaged PNA (DJF, Table 2). Hence, we chose winter means instead of annual means for PNA to reduce any245

seasonal bias within the simulated spatial patterns. The spatial patterns do not depend much on the time resolution (yearly

or monthly) of the data, as they are all calculated on the whole 1900-2014 period. Prior to applying the causal discovery

algorithm (Sect. 3.2), however, we yearly average the AMV and PDV timeseries (computed based on monthly means by the

CVDP-LE). This way we unify the time resolution of our data to fit the causal analysis by using the yearly resolution to

investigate connections on long timescales.250

3 Results

3.1 Similarities between the simulated and observed spatial patterns

To accompany the causal analysis, we first calculate pattern correlations (r) for each simulation’s SST and SLP regression

maps with respect to the reanalysis regression maps (for the complete 1900-2014 period, see Figure 4a). This is to quantify

the similarity between the observed and simulated spatial patterns for
:::
each

:::
of the four modes and build credibility that the255

CMIP6 simulated indices we use in the regime-oriented model evaluation
::
of

::::::
climate

:::::::::
variability

::
we

:::
are

::
to
:::::::
analyse.

::::
The

:::::::
purpose
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:
is
::
to
::::::

check
:
if
:::

the
:::::::::::::::

CMIP6-simulated
:::::::
indices have spatial expressions that resemble those of indices calculated from reanalysis

datasets. To introduce a benchmark of model performance, we calculate a Mean Score for each single simulation by taking the

average of the four r values (after applying a Fisher z-transform).

To look closer at how the spatial correlation values spread across every LE and how they differ from one climate variability260

mode to another, Figure 4b provides a color-coded box-plot showing the distribution of these spatial correlation values, and

their respective averages across every Large Ensemble of CMIP6 simulations used in the analysis. It depicts the similarity

between the observed (reference maps in Figure 4a) and the simulated patterns from the regression maps for the four modes,

with values approaching 1 indicating a better simulation of the patterns associated with the observed modes.

Sorted by the ensemble average mean score of every CMIP6 LE, Table 2 provides a view of the distribution (in the form of265

minimum, mean, maximum) of spatial correlation values for every mode and their Mean Score for every CMIP6 LE model. It

can be seen from Figure 4b and Table 2, based on the ensemble average mean score, that most models perform quite well in

simulating the observed geographical patterns of the four indices in Figure 4a, with pattern correlations mostly above 0.75. The

UKESM1-0-LL (0.80), MIROC6 (0.80), MPI-ESM1-2-LR (0.79), ACCESS-ESM1-5 (0.77) and CanESM5 (0.77) outperform

the other CMIP6 LEs in terms of recreating the spatial patterns of the four selected modes of climate variability. The number270

of ensemble members within every LE has no apparent effect on the spread of the r value distribution across the models. For

example, UKESM1-0-LL and MIROC6 with 18 and 50 realizations respectively, share similar narrow interquartile ranges (IQR,

the width between the 3rd and 1st quartiles) of r values for the four climate variability spatial patterns. Appendix Table A1

shows the distribution of Pearson r correlation between observed and simulated spatial patterns of PNA, PSA1, PDV, and AMV

from a 10th, 50th, 90th percentile perspective. Looking only at the mean score spread, Table A1 shows the 10th-90th percentile275

value range is 0.78-0.83 for UKESM1-0-LL, and 0.77-0.82 for MIROC6. This means that most members of these two model

ensembles agree between each other and show high spatial similarity with observations when simulating the four modes. It can

be concluded that the models generally do a good job in simulating the geographical patterns of the different modes but with

different precision. Although the models with high mean scores tend to display high pattern correlations with observations

for the four modes of climate variability, the white scatter points on Figure 4b imply that they simulate the PNA (purple)280

atmospheric mode slightly better than its South Pacific counterpart, the PSA1 (cyan) when compared to the ERA20C_ERA5

reference patterns. These high scoring models, notably UKESM1-0-LL, MPI-ESM1-2-LR, MIROC6, CanESM5 and IPSL-

CM6A-LR also, on average, simulate better PDV (red) monthly spatial patterns compared to AMV (green), with ERSSTv5 as

a reference dataset for the 1900-2014 period. The mean scores of CESM2, GISS-E2-1-H and NorCPM1 are strongly affected

by the low correlation coefficients obtained for the PSA1 mode (cyan boxes). The 50th percentile bar on the cyan box for285

CESM2 suggests that there are more members with PSA1 patterns resembling the observed ones. The opposite is true for the

GISS-E2-1-H model which contains less realizations with similar PSA1 patterns as those from reanalysis. The length of the

cyan box for NorCPM1 indicate that most members fail to represent the spatial patterns of PSA1.

Along with the release of the CVDP-LE (Phillips et al., 2020), CESM’s CVCWG freely distributes results from several

CMIP simulations including the CMIP6 1900-2014 historical simulations, from which data used in this analysis have been290

downloaded. The results include a pattern correlation summary with 11 key spatial metrics of oceanic and atmospheric modes
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Figure 4. a) Reference for comparison: SST regression maps showing geographcial patterns associated with PDV (1) and AMV (2)

and SLP regression maps of geographical patterns associated with PNA (3) and PSA1 (4). The indices are calculated from reanalyses

data (ERSSTv5 for AMV and PDV; ERA20C_ERA5 for PNA and PSA1) over the 1900-2014 period using the NCAR CVDP-LE

package. Rectangles on the maps approximate the regions over which the indices are defined (see Methods, Sect. 2.1.1). b) Box-plot

(or whisker-plot) showing the distribution of Pearson r pattern correlation values along the different historical CMIP6 LEs (between

parenthesis on the x-axis is the number of ensemble members within each model). The bottom of every box (color-coded part) shows

the first quartile (Q1 or 25th percentile), the top the third quartile (Q3 or 75th percentile) and the horizontal bar between them

denotes the median value (Q2 or 50th percentile). The length of the box (from Q1 to Q3) denotes the interquartile range (IQR) while

the bottom and upper whiskers (thin lines extending from boxes) extend to the minimum and maximum values, which are calculated

as Q1-1.5*IQR and Q3+1.5*IQR, respectively. The black dots are outliers. PNA correlation values are shown in purple, PSA1 in

cyan, PDV in red and AMV in green. Yellow boxes show the Mean score denoting the average of the four r values (after applying a

Fischer z-transform). White dots denote the mean value.
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Table 2. Pearson r correlations between the simulated (CMIP6 LE) and observed (ERA20C_ERA5, ERSSTv5) spatial patterns of PNA,

PSA1, PDV and AMV over the 1900-2014 period. Models are sorted according to the average mean score (column in bold; descending

order).

CMIP6 LE Mean Score PNA (DJF) PSA1 (ANN) PDV (monthly) AMV (monthly)

min mean max min mean max min mean max min mean max min mean max

UKESM1-0-LL 0.74 0.80 0.86 0.79 0.87 0.94 0.56 0.73 0.84 0.79 0.82 0.86 0.66 0.74 0.81

MIROC6 0.74 0.80 0.85 0.73 0.86 0.95 0.64 0.73 0.80 0.82 0.84 0.87 0.66 0.71 0.78

MPI-ESM1-2-LR 0.74 0.79 0.83 0.73 0.84 0.93 0.65 0.77 0.82 0.75 0.80 0.84 0.63 0.71 0.78

ACCESS-ESM1-5 0.67 0.77 0.84 0.76 0.88 0.94 0.12 0.67 0.80 0.61 0.72 0.77 0.66 0.71 0.77

CanESM5 0.51 0.77 0.81 0.71 0.82 0.90 -0.50 0.69 0.82 0.67 0.79 0.86 0.61 0.72 0.79

IPSL-CM6A-LR 0.46 0.75 0.80 0.55 0.73 0.85 -0.80 0.70 0.86 0.73 0.78 0.84 0.69 0.76 0.81

CESM2 0.59 0.74 0.84 0.83 0.88 0.92 -0.67 0.23 0.82 0.82 0.86 0.88 0.68 0.72 0.78

EC-Earth3 0.26 0.68 0.81 0.78 0.86 0.94 -0.56 0.48 0.76 -0.25 0.61 0.78 0.57 0.65 0.79

CNRM-ESM2-1 0.36 0.61 0.79 0.32 0.61 0.86 0.37 0.52 0.72 -0.42 0.45 0.78 0.71 0.75 0.80

GISS-E2-1-H 0.41 0.60 0.79 0.63 0.80 0.90 -0.72 -0.06 0.74 0.66 0.77 0.82 0.60 0.68 0.75

INM-CM5-0 0.41 0.54 0.63 0.53 0.65 0.74 -0.31 0.28 0.66 0.47 0.51 0.56 0.57 0.65 0.71

NorCPM1 0.27 0.51 0.74 -0.04 0.65 0.87 -0.61 -0.33 0.67 0.67 0.76 0.82 0.63 0.68 0.74

of variability. Similar to the mean score we introduced in the spatial correlation analysis above, the CVDP-LE provides a mean

score averaging the pattern correlations of the 11 metrics used. Although the pattern correlation mean score we calculated is

not exactly the same as the one provided by the CVDP-LE tool because the number of indices used is different (four vs 11),

the highest-scoring CMIP6 LEs from Table 2 (UKESM1-0-LL, MIROC6 and MPI-ESM1-2-LR) were also the highest scoring295

ensembles according to the pattern correlation summary provided on the tool’s repository (Phillips et al., 2020). Moreover, one

simulation from the UKESM1-0-LL ensemble, the r19i1p1f2 realization, was found to obtain the highest mean score based

on both the pattern correlation values published under https://webext.cgd.ucar.edu/Multi-Case/CVDP-LE_repository/CMIP6_

Historical_1900-2014/metrics.html by CVDP-LE authors (Phillips et al. 2020, 0.88 using 11 indices) and our calculations in

Table A2 (0.86 using 4 indices)300

3.2 Regime-oriented causal analysis of observations and reanalyses

Several mechanisms are hypothesized to contribute to PDV and AMV. PDV is initially considered as a mode of internal climate

variability (e.g. Meehl et al., 2021b). However, previous research indicates possible external contributions in the form of solar

(Meehl et al., 2009), greenhouse gas (Meehl et al., 2009; Fang et al., 2014; Dong et al., 2014) or volcanic and anthropogenic

aerosol forcings (Wang et al., 2012; Maher et al., 2015; Smith et al., 2016; Takahashi and Watanabe, 2016). There are studies305

suggesting that such external anthropogenic aerosol forcing might be contributing to AMV as well (Booth et al., 2012; Zhang

et al., 2013; Si and Hu, 2017), but evidence from Zhang et al. (2019) supports the notion that the AMV is primarily linked to
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internal variability of the Atlantic Meridional Overturning Circulation (AMOC) and its associated meridional heat transport.

This means that the fingerprint of any possible external forcing acting as a confounder is embedded in the timeseries information

of the extracted indices of the modes of climate variability used in this study. The linear detrending we perform prior to310

applying PCMCI+ will at least partially reduce such effects. However, as mentioned before, the subtraction of the global mean

temperature for PDV and AMV and the linear detrending of all time series do not address local, nonlinear effects, which could

be related to the aerosol forcing that varies over time and space. It is then important to recall that in this paper, the indices do

not represent a fully isolated internal variability component but rather a mixture of naturally-occurring internal variability and

nonlinear effects of external forcing, mainly in the form of aerosol forcing.315

PCMCI+ is applied first to the indices of PDV, AMV, PNA and PSA1 calculated from reanalysis data, as a proxy for

observations, to reveal any causal dependencies between the modes depicted by the observed timeseries information. As it is

assumed that the nature of teleconnections between the different climate variability modes can vary over decadal timescales

depending on the different phases these modes go through, we mask years of data (as discussed in Sect. 2.1.3) to reveal

the causal structures during specific periods (regimes) in time. Reference causal networks obtained by running PCMCI+ on320

reanalysis data for the different regimes are shown in Figure 5.

The results show that the causal dependencies (links) between the four modes of climate variability (nodes) change from one

regime to another. Starting from an analysis on the complete period (115 years, upper left panel in Figure 5, and see Table A3

for exact cross-MCI values of the complete period causal graph) PCMCI+ reveals four different links: An 11-year lagged

negative (link arrow is curved and blue) AMV→PDV link (cross-MCI = -0.25) showing that the opposite sign effect on PDV325

caused by AMV is lagged by a decade (e.g. positive AMV tends to produce negative PDV about a decade later). Therefore,

this link can be interpreted as lagged opposite sign SST anomaly changes over the Pacific in response to SST anomaly changes

over the Atlantic. The same causal graph features a strong positive (0.53) contemporaneous PDV—PNA link (i.e. link line is

straight) suggesting PDV is strongly associated to PNA. In addition, the complete period graph implies weak South Pacific

teleconnections of both AMV and PDV which are represented by a positive contemporaneous AMV—PSA1 (0.25) link and a330

lagged PSA1→PDV link. The latter (PSA1→PDV link) is detected positive at 7 years (0.23) and negative at 15 years (-0.31).

As explained in Sect. 2.1.2, if a lagged link is found at more than one time lag, the causal graph shows the link at the lag when

it is most significant (i.e higher absolute cross-MCI value) and labels the other time lags after a comma ( |−0.31| vs |0.23| in
this case, thus the "15, 7" label on the PSA1→PDV link; see upper left panel in Figure 5).

The complete period graph in the upper left in Figure 5 is useful to show the causal dependencies happening throughout the335

whole observational record used. However, this methodology can also be used to look at specific regimes to notice the change

in dependencies arising from the physical state of the Atlantic and Pacific basins during those time periods. For example, the

causal graphs from PDV+ and PDV- regimes indicate that direct decadal AMV—PDV interactions occur only during the PDV-

regime (third row, left panel in Figure 5), whereas during the PDV+ regime (second row, left panel in Figure 5) we find a

contemporaneous atmospheric teleconnection from PNA to both AMV and PDV. This difference could be explained by the340

fact that the PDV- regime comprises two important Atlantic variability events: the 1920s AMV phase-switch from negative
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Figure 5. Causal networks calculated with PCMCI+ from reanalysis data for the complete 1900-2014 period (upper left panel) and the

different regimes. Nodes represent the timeseries associated with each climate variability index (see node labels) masked according to

the predefined regimes. Node colours indicate the level of autocorrelation (auto-MCI) as the self-links of each node with darker red

indicating stronger autocorrelations (color bar at lower left) while the color of the arrows (termed "links" here) denotes the inter-

dependency strength (cross-MCI) with blue indicating opposite-sign (or negative) inter-dependency and red indicating same-sign (or

positive) inter-dependency strength (color bar at lower right). Small labels on the curved links indicate the link-associated time lags

(unit = 1 year). Straight links show contemporaneous inter-dependencies happening with no time lag (i.e. τ < 1). Each network is

sub-labeled with its respective regime name and the total number of unmasked years (time-steps) that characterize that regime (label

and number of years at bottom of each panel). Lines going through the panels are to help visualize which combinations make up the

regimes. Solid lines are for PDV, dashed for AMV. Red for warm (+), blue for cold (-) phases (e.g. PDV+/AMV- regime panel has a

solid red line and dashed blue line going through it).
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to positive (see dashed lines showing low-pass AMV in Figure 3a) and the subsequent switch from positive back to negative

during late 1960s.

The regime-oriented nature of this causal analysis provides for a separation of signals, for example delineating the PDV+

regime that depends on the AMV phase during those 59 years (second row panels in Figure 5). The short length of timeseries, in345

addition to the time-varying aerosol forcing during such regimes, can lead to inconclusive causal estimations. The PDV-/AMV-

panel at the right of the third row in Figure 5 (25 years) shows strongly auto-correlated AMV and PSA1 patterns but no apparent

links between any of the four variables. However, these short regimes might also reveal interesting causal relations that are not

apparent when analysing longer periods. This is the case for the causal graph from the 25 years of the PDV+/AMV+ regime

(central panel in Figure 5), which is the only one to feature a strong negative PDV→AMV link and a positive AMV→PDV350

link with comparable strength. Since the causal parents that drive the variables (other variables or the same one at different past

time-steps) can originate from a masked period with respect to τmax, it implies, for example, that the strong 12-year lagged

negative PDV→AMV causal link estimated during the PDV+/AMV+ regime (second row, central panel in Figure 5), might

have fingerprints originating from a previous regime.

The limitation presented by the length of unmasked timeseries during specific short regimes is eliminated when combining355

them.For this reason, we show
:::
fact

:::
that

:::::
some

:::::::
regimes

:::::
might

::
be

:::
too

::::
short

:::
to

:::::
detect

:::
any

::::::
causal

::::
links

::::
(e.g.

:::::::::::
PDV-/AMV-,

::
25

::::::
years)

:
is
:::::::::
overcome

:::::
when

::::::::::
introducing

:::::
causal

::::::
graphs

:::
for

::::::::
In-Phase

:::
and

:::::::::::
Out-of-Phase

:::::::
regimes

:::::::
(panels in the bottom of Figure 5causal

graphs for
:
).
:::
As

:::::::::
explained

::
in

:
Sect. 2.1.3

:
,
:::
the

:
In-Phase

::::::
regime

::
is

:::::
made

:::
up

::
of

:::
the

:::::::::
time-steps

::::::
where

:::::
AMV

::::
and

::::
PDV

:::::::
happen

::
to

::
be

:::
on

:::
the

::::
same

::::::
phase

::::::::::::
(PDV+/AMV+

:
and

:::::::::::
PDV-/AMV-)

:::::
while

:::
the

:
Out-of-Phase regimes

::::::
regime

::
is

:::::::::
composed

::
of

:::::::::
time-steps

:::::
where

:::
the

:::
two

::::::
modes

:::
are

:::
on

:::::::
opposite

::::::
phases

::::::::::::
(PDV+/AMV-

:::
and

:::::::::::::
PDV-/AMV+),

:::::::
resulting

:::
in

:::::
longer

::::::
regime

:::::::
periods. We detect360

the negative lagged direct AMV→PDV and PDV→AMV only during the Out-of-Phase regime with a strong positive extra-

tropical PDV→PNA teleconnection and a weaker AMV→PNA teleconnection. The In-Phase regime features a fast (zero lag)

PDV teleconnection to PNA, PNA connection to PSA1, and a 12-year lagged PSA1→AMV link. As finite sample errors can

lead to false positives as well as false negatives (missing links), it is difficult to attribute a physical explanation to every detected

link. Though here both are thought to be driven by tropical precipitation and heating anomalies, we refrain from assigning any365

processes that might be behind the direct PNA—PSA1 causal links due the lack of knowledge regarding possible direct links

between the North Pacific and South Pacific extra-tropics.

Through observations of the long-term variability patterns and pacemaker simulations of Atlantic and Pacific ocean basins,

Meehl et al. (2021a) explain how positive AMV could produce an opposite-sign response, mainly through the atmospheric

Walker circulation, leading to negative PDV, and then the negative PDV subsequently contributing a same-sign response in the370

Atlantic driving the AMV from positive to negative phase. This mutual contrasting response from one basin to the other can

be interpreted through the blue (negative cross-MCI) lagged AMV→PDV links and the reddish (positive cross-MCI) lagged

PDV→AMV links in the causal networks in Figure 5. The results in Figure 5 show that the lagged AMV→PDV causal link

has been estimated over the complete period and during five out of the 10 regimes (AMV-, PDV-, PDV+/AMV+, PDV+/AMV-,

Out-of-Phase). During four of these regimes, the link can be interpreted as a lagged opposite-sign effect of AMV on PDV375

(blue curved link). The study of Meehl et al. (2021a) suggests that in addition to the tropical Walker circulation, positive
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convective heating and precipitation anomalies in the tropical Pacific establish extra-tropical teleconnections to PNA and PSA

which contribute to the same-sign effect of PDV on AMV. The causal graph from the 31 years of the PDV-/AMV+ regime

(third row, middle panel in Figure 5) shows two possible pathways for this same-sign effect of PDV on AMV. During that

regime, PCMCI+ estimates a strong positive 13- and 6-year lagged PDV→AMV link (the 13-year lagged link was also found380

during the 56 years of the PDV- regime) but also shows a positive PDV→PNA—AMV contemporaneous teleconnection where

PNA seems to mediate the same-sign effect of PDV on AMV. Therefore, this analysis presents additional evidence that AMV

(although potentially affected by a forced aerosol signal) might serve as a predictor of decadal variability over the Pacific

(hence for PDV) and eventually the other way around (d’Orgeville and Peltier, 2007; Zhang and Delworth, 2007; Chikamoto

et al., 2015; Johnson et al., 2020).385

An earlier study from Zhang and Delworth (2007) proposed a mechanism in which positive (negative) AMO would lead to

high (low) SLP anomalies over the North Pacific and eventually a positive (negative) PNA pattern. This weakening (strength-

ening) of the Aleutian low associated with the PNA pattern projects onto the multidecadal mode of variability over the North

Pacific. The response of North Pacific SST to the anomalous PNA pattern induced by AMO is hypothesised to be lagged due to

Rossby wave propagation and gyre adjustment where the authors found a 3-year lag when using a model simulation compared390

to a 12-year lag when they analysed the observed pattern. The extra-tropical contributions of PNA and PSA1 on the mutual

PDV—AMV interactions can be concluded from causal graphs constructed during different regimes (see Figure 5). AMV-,

PDV+, PDV-/AMV+ and Out-of-Phase are all regimes that suggest mutual Atlantic-Pacific connections can be established

via PNA. The causal networks from the complete period and AMV- regime show that these inter-basin connections can also

happen through PSA1.395

Previous research also showed that components of the PDV can be forced by tropical Pacific variability and/or driven by

atmospheric stochastic forcing which are both closely tied to Aleutian low variability associated with the PNA pattern (New-

man et al., 2016; Johnson et al., 2020). This literature finding on the PDV—PNA teleconnection validates the contemporaneous

PDV—PNA causal link estimated by PCMCI+ during most regimes (all except PDV+/AMV+ and PDV-/AMV-; see causal net-

works in Figure 5) with a strong positive cross-MCI value. The link is directed in some regimes (straight links with arrowhead,400

e.g. during PDV+ regime) while it is unoriented during other regimes (straight links with no arrowheads, e.g. during AMV-

regime). A 10-year lagged negative PNA→PDV link appears during the PDV- regime in Figure 5 (and during PDV-/AMV+)

which suggests that an extra-tropical teleconnection to PNA might have the opposite effect during longer time lags.

Generally, lags ranging from interannual (1 to 5 years, Wu et al., 2011; Meehl et al., 2021a) to decadal (12 to 17 years, Wu

et al., 2011; Chylek et al., 2014) timescales have been proposed by previous studies for Atlantic-Pacific interactions which fall405

in the same range of time lags at which causal links have been estimated by PCMCI+ in this study.

To further justify the credibility of the constructed causal networks, we use the estimated causal graph from the complete

period to construct a model that explains the lagged correlation structure of the reanalysis dataset. This is done by fitting a linear

structural causal model to causal parents taken from the original reanalysis causal graph. We generate 100 realizations following

a linear Gaussian causal model with the noise structure estimated from the noise covariance matrix of residuals. Figure 6 shows410

lagged correlations of the original data in red with the mean lagged correlations from the synthetically generated data in black
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Figure 6. Lagged correlations of original data (complete period graph from reanalysis data) in red shown together with lagged

correlations of an ensemble of synthetic data generated by a linear Gaussian structural causal model with causal coefficients and

noise structure estimated from the original data. The mean lagged correlations from the synthetically generated data are shown in

black, and their 5th-95th percentile range in grey.
::::::
Lagged

::::::::::
correlations

::
of

::::::
original

::::
data

::::
(lag

::
in

:::::
years,

::::::::
complete

:::::
period

:::::
graph

:::::
from

::::::::
reanalysis

::::
data)

::
in
::::

red
:::::
shown

:::::::
together

::::
with

::::::
lagged

::::::::::
correlations

::
of

::
an

::::::::
ensemble

::
of

::::::::
synthetic

::::
data

::::::::
generated

::
by

::
a
:::::
linear

::::::::
Gaussian

::::::::
structural

:::::
causal

:::::
model

::::
with

:::::
causal

:::::::::
coefficients

::::
and

::::
noise

::::::::
structure

:::::::
estimated

:::::
from

:::
the

::::::
original

::::
data.

::::
The

:::::
mean

:::::
lagged

::::::::::
correlations

::::
from

:::
the

::::::::::
synthetically

::::::::
generated

::::
data

:::
are

:::::
shown

::
in

:::::
black,

:::
and

::::
their

:::::::
5th-95th

::::::::
percentile

:::::
range

::
in

::::
grey.

::::::
X-axis

:::::
shows

:::
lag

:
in
:::::

years.

and their 5th-95th percentile range in grey. The original lagged correlations (red) fall mostly within the 90% range (with the

clear exception of AMV’s lagged auto-correlation at the upper left of Figure 6). This means that a linear Gaussian model with

the same links as those from the reconstructed causal graph can well explain the whole lagged correlation structure of the

original data for PNA, PDV and PSA1. Such a lagged-correlation matrix (Figure 6) also unveils how the dependencies between415

different variables change over time.
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3.3 Regime-oriented causal model evaluation of the CMIP6 Large Ensembles

With the overall high level of fidelity that several models show in simulating the spatial patterns of at least the major modes

of climate variability presented in this paper (see Figure 4b), it is crucial to test whether these simulations also account for the

possible lagged causal pathways between these different modes. To benchmark the dependency structures in model simulations,420

the simulated causal graphs are compared to those from reanalysis datasets (ERSSTv5 for PDV and AMV, ERA20C_ERA5

for PNA and PSA1). The constructed causal graphs from the previous section illustrate the connections occurring between the

different modes of climate variability during different regimes, as estimated from reanalysis data. Relative to reanalysis, we

consider the causal graphs from Figure 5 as reference for the CMIP6 model evaluation to be demonstrated in this section.

The exact same PCMCI+ setting (see Methods; Sect. 2.1.2 and Sect. 2.1.3) used in the section above is applied for timeseries425

indices calculated from every realization of the CMIP6 models listed in Table 1. In Sect. 3.1, we found that, overall, the spatial

patterns of these simulated indices compare fairly well to the observed ones (Figure 4, Table 1). The purpose of this section is

to show how the causal fingerprints in these simulations compare to those observed. For every realization, the analysis is run

for the complete period in addition to the 10 different regimes, similar to the regime-oriented setting on reanalysis data in the

section above. As the PDV and AMV phases occur in model simulations at different time periods than those in reanalysis (due430

to randomly generated internal variability and time-varying forcing caused mainly by aerosols), models need not show similar

networks for the same periods as in observations. However, we can assess the degree of similarity in the causal fingerprint that

these simulations hold within their modeled dynamics. The results of every realization during every regime are compared to

the reference networks from reanalysis data during that regime.

To illustrate results from an individual model, we aggregate causal networks from 65 realizations from the CanESM5 model435

in Figure 7. This figure shows networks with links of variable thickness indicating that some links are found in most ensemble

members during that specific regime (thick links, e.g. PDV—PNA in most regimes) compared to other links (thinner links,

e.g. PDV→AMV in most regimes) which were detected only by a small fraction of ensemble members. The thicker the link,

the more agreement between members of the same ensemble in detecting that specific link. We also label the links with the

rounded mean lag at which they are detected in the ensemble members. The link color in this ensemble summary (Figure 7) is440

informative of the level of agreement between ensemble members in estimating that causal link with the same sign. The clearer

the shade of blue (negative) or red (positive), the better agreement between ensemble members in simulating the link with the

same sign. For example, the color of AMV—PNA links in most regimes (although mostly estimated by few members during

each regime, i.e. relatively thin links; see Figure 7) tend towards reddish shades suggesting that the CanESM5 members, in

which such links were estimated, agree that the causal link is of positive sign. This can be translated to the positive (negative)445

AMV driving positive (negative) PNA and vice versa. This can be seen on all causal networks in Figure 7, except the ones from

PDV+/AMV+ and PDV-/AMV+ regimes indicating that in a few of the CanESM5 realizations, AMV would induce an opposite

sign response on PNA (see thin blue AMV→PNA links on PDV+/AMV+ and PDV-/AMV+ causal graphs in Figure 7).

Other than the PDV—PNA links (estimated by most ensemble members during all regimes), the occurrence of a link in the

CanESM5 model seems to vary from one regime to another. This is less true for the complete period, the In-Phase and the450
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Figure 7. Ensemble summary of the CanESM5 LE model. Similar to Figure 5, but aggregating causal networks from 65 realizations.

The link width here shows the fraction of ensemble members that feature that link relative to the total ensemble size (here 65); i.e.

the thicker the link, the more ensemble members were found to estimate it during that specific regime. Link colors here translate the

mean cross-MCI value among the ensemble members that estimated such link (color bar at lower left). Links of very light color are

those that ensemble members agree little on their partial correlation sign. The link labels indicate the average time lag (rounded to

the nearest integer) at which the link is estimated among the fraction of ensemble members that find such link.
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Out-of-Phase regimes. The complete period ensemble causal graph distinctly shows AMV—PNA interactions as same-sign

causal links between the two modes. The same graph (upper left panel in Figure 7) also shows a clear blue AMV→PDV link,

demonstrating the opposite-sign response driven by AMV on PDV, similar to the one featuring in the complete period causal

graph from reanalysis data (upper left in Figure 5). The color and width (thickness) of this AMV→PDV link in the complete

period graph in Figure 7 (upper left panel) suggest that the link was estimated with negative cross-MCI values by a considerable455

fraction of CanESM5 simulations.

A more evident network similarity is evinced during the Out-of-Phase regime. Both the graph from reanalysis (Figure 5,

Out-of-Phase) and the CanESM5 ensemble graph (Figure 7, Out-of-Phase) display a short lagged (1-year lag and 2-year mean

lag, respectively) opposite-sign (blue, negative cross-MCI) AMV→PDV causal link. Moreover, the two graphs (Out-of-Phase

causal networks in Figure 5 and Figure 7) suggest a same-sign (red, positive cross-MCI value) contemporaneous and short-460

lagged (1 year) PDV—PNA causal links, and weaker same-sign (lower positive cross-MCI values) AMV—PNA links. The

latter links are instantaneous in the reanalysis data but lagged in CanESM5. However, the short mean lag (2 years) in the

simulated CanESM5 Out-of-Phase graphs imply that several members estimate a contemporaneous link.

The CanESM5 ensemble causal graph during the In-Phase regime at the bottom of Figure 7 demonstrates the advantage

of using LEs. While the reanalysis graph during this regime suggests only PDV—PNA and lagged PSA1→AMV telecon-465

nections (with a debatable contemporaneous PNA—PSA1 link), the CanESM5 ensemble graph displays a clear same-sign

lagged AMV→PDV link with a third of its ensemble members simulating such a dependency. Despite the fact that the positive

AMV→PDV link is not detected in reanalysis during the In-Phase regime (Figure 5, In-Phase regime causal graph), literature

supports this contrasting effect estimated by CanESM5 model data (Wu et al., 2011; Meehl et al., 2021a). Model simulations

can therefore explain causal dynamics between modes of climate variability that might not definitively appear when analysing470

observations. There is less doubt about the agreement between members of the CanESM5 ensemble, and also when compared

to reanalysis, about the occurrence of an AMV→PDV link with an opposite sign during the Out-of-Phase regime.

Ensemble summary plots are calculated for all CMIP6 LEs from Table 1 but we only chose to display them for CanESM5

in Figure 7. The ensemble summary of causal networks from reanalysis data and the 12 CMIP6 models for the complete 1900-

2014 period, Out-of-phase and In-Phase regimes are shown in appendix Figs. A1-A3 respectively. In order to measure the475

level of similarity between observed and individual ensemble member networks across all the CMIP6 models, F1-scores are

computed for every realisation and every regime. The results reveal that most CMIP6 Large Ensembles show better network

(causal graph) similarity with reanalysis reference networks during the Out-of-Phase regime, compared to the networks drawn

during the other regimes and/or the complete period. The whisker plot in Figure 8a shows the distribution of F1-scores across

the CMIP6 LEs for the complete period (light blue boxes), the In-Phase regime (dark blue) and the Out-of-Phase regime480

(green). The range of scores during the other regimes (not shown) was found to be much lower compared to the scores during

the regimes shown in Figure 8a. The white scatter points show that on average, CESM2, CanESM5, MIROC6 and MPI-

ESM1-2-LR LEs clearly display better network similarity with observations during the Out-of-Phase regime. The highest

scores during this regime (0.92) belong to members of CanESM5 and MIROC6 LEs (see location markers on whisker plot).

Figure 8b compares Out-of-Phase causal graphs from these highest-scoring realizations (and their low-pass filtered AMV,485
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PDV timeseries) to those from reanalysis. The networks in Figure 8b agree on the 1-year lagged AMV→PDV link. The

positive contemporaneous PDV—PNA link is directed differently in reanalysis and CanESM5 r11i1p2f1, but unoriented in

CanESM5 r17i1p2f1 and MIROC6 r20i1p1f1. The Out-of-Phase graphs from these realizations also agree on a same-sign

contemporaneous AMV—PNA dependency, with a lower cross-MCI value (weaker) than that of the PDV—PNA connection.

In Figure 9 we perform intra- and cross-model network comparisons for the complete period and long regimes. This is490

done by computing F1-scores with every single realization as a reference. Averaging the F1-scores by ensemble produces an

F1-matrix for every regime in the form of heat maps translating the degree of similarity (the redder the color, the greater the

similarity) in causal dynamics between members of the same LE (boxes on the main diagonal) and pairwise causal similarity

between different LEs (boxes outside the main diagonal). Every grid box on the heat maps shows how the corresponding

CMIP6 model from the axis on top (see model names on x-axis top of every panel) compares to the reference corresponding495

CMIP6 model (see model names on y-axis left of each panel). We exclude the short regimes (PDV+/AMV+, PDV+/AMV-,

PDV-/AMV+ and PDV-/AMV-) from this comparison as the PCMCI+ results during these regimes tend to be inconclusive (i.e.

the regimes are too short to estimate any causal link for several simulations from different models). The heat maps show that

CNRM-ESM2-1 LE clearly stands out as the most dissimilar model during most regimes. This is seen in the third row and

third column (from top to bottom, left to right) of each heat map (F1-matrix of every regime) in Figure 9 indicating the lowest500

F1-scores (yellow and white lines on the heat maps; see also color-bar). The model doesn’t
::::
does

:::
not

:
only have the lowest

level of agreement with other ensembles but also shows poor accordance within its own members. Generally, the other CMIP6

models exhibit better network similarity during longer regimes (Complete period, AMV+, AMV-, PDV+, PDV-, In-Phase,

Out-of-Phase). Members of CESM2 LE strongly agree between each other in terms of causal fingerprints displayed during

the analysis on the complete period; this is shown by the dark red box on the second row and second column of the complete505

period heat map (F1-matrix). The INM-CM5-0 LE shows low average F1-scores during the PDV+ and Out-of-Phase regimes,

but it surprisingly shows the most agreement between its own ensemble realizations during the complete period, AMV-, PDV-

and the In-Phase regimes (see dark red grid boxes in the center of heat maps of these regimes on Figure 9). This implies that

the INM-CM5-0 ensemble might involve mostly simulations where PDV and AMV are in the same phase.

The skill of CESM2, CanESM5, MIROC6 and MPI-ESM1-2-LR in recreating the observed causal pathways of the Out-510

of-Phase regime is also manifested through the better similarity the members of these models show when compared to each

other. The heat maps (F1-matrices in Figure 9) serve to distinguish models with similar causal dynamics. The specified range of

internal variability within realizations of the same ensemble (combined with the model-simulated time-varying aerosol forcing)

can also be inferred by comparing one LE to itself.

3.4 Discussion515

Previous research already suggested the improvement in simulation of dominant modes of climate variability throughout the

different phases of the CMIP archive (Fasullo et al., 2020; Eyring et al., 2021). Although, in general, models are able to

capture the spatial patterns of these modes, CMIP6 revealed discrepancies in the skill these LE simulations display when

recreating the observed modes. Some models perform very well, while there is still room for improvement for others. This
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Figure 8. a) Whisker plot showing the distribution of F1-scores across the CMIP6 LEs for the causal analysis for: the complete period

(light blue boxes), the In-Phase regime (dark blue boxes) and the Out-of-Phase regime (green boxes). White scatter points denote

the mean LE F1-scores. b) Reference causal network estimated from reanalysis during the Out-of-Phase regime (left, with low-pass

AMV and PDV timeseries below) compared to networks and timeseries from three CMIP6 simulations (right, with simulated low-

pass AMV and PDV timeseries below each network) with the best network similarity i.e. highest F1-score.
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Figure 9. Matrices of average F1-scores for pair-wise network comparisons between ensemble members of 12 CMIP6 LEs during

every regime. Boxes on the main diagonal translate the level of similarity between members of a single CMIP6 ensemble. Boxes

outside the main diagonal show the similarity between realizations of a CMIP6 LE compared to realizations from another CMIP6

LE (taking every realization as a reference at a time, before averaging across every LE). The redder the grid box, the better causal

network similarity it translates when comparing realizations of the corresponding CMIP6 model (x-axis coordinate name on top of

each panel) to causal networks from the corresponding reference CMIP6 model (y-axis coordinate on the left of each panel). The

matrices for the short regimes (PDV+/AMV+, PDV+/AMV-, PDV-/AMV+ and PDV-/AMV-) are not shown as their results are not

conclusive since PCMCI+ fails to estimate any causal networks for several members of different ensembles.
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conclusion is illustrated through results of the pattern correlations in Sect. 3.1 and the wide range of comparison metrics520

produced and published by the CVDP-LE authors (Phillips et al., 2020). The ability of CMIP6 LEs to recreate the spatial

patterns of modes of climate variability does not, however, ensure that they simulate the connections between those modes.

Relative to the reference networks from reanalysis datasets during the Out-of-Phase regime, CESM2, CanESM5, MIROC6

and MPI-ESM1-2-LR LEs display the highest degree of similarity. These
:::::
During

:::
the

::::::::
analysis

::
of

:::
the

::::::::
complete

::::::::::
1900-2014

::::::
period,

:
a
:::::::::::
considerable

:::::::
fraction

::
of

::::::::::
simulations

:::::::::
belonging

::
to

:::::
these

:
CMIP6

::::::
models

::::::::
estimates

:::
an

:::::::::::
opposite-sign

::::::::
response

:::::
from525

:::::
AMV

::
to

::::
PDV

:::::::::::
(represented

:::
by

::::
blue

:::::::::::
AMV→PDV

:::::
links,

:::
see

:
Figure A1

:
).
::::
The

::::
clear

::::::::::
occurrence

::
of

::::
this

:::::::::::
opposite-sign

::::::::
response

::
in

::::::
several

::::::
CMIP6

::::
LEs

::::::::
(notably,

::::::::
CESM2,

:::::::::
CanESM5,

::::::::
MIROC6

::::
and

:::::::::::::::
MPI-ESM1-2-LR)

::::::
shows

::::
that

::::
these

:::::::
models

::::::::::
realistically

:::::::
simulate

:::
the

:::::::::::
mechanisms

::::
that

:::::::
connect

:::::::
Atlantic

::::
and

::::::
Pacific

::::::
modes

::
of

:::::
SST

:::::::::
variability.

::::
The

:::::
direct

::::::::::
connection

:::::::
between

::::
the

::::::
Atlantic

::::
and

::::::
Pacific

:::::
basins

:::::::
involves

:::::::
mainly

:::
the

::::::
tropical

::::::
Walker

::::::::::
circulation

:::
and

::
its

:::::::::
associated

::::
SST,

:::::::::::
evaporation,

::::
wind

::::
and

::::
SLP

::::::
changes

::::::
where

:::::
rising

:::::::::::
temperatures

::
in

:::
the

:::::::
Atlantic

:::::
Ocean

:::
can

:::::
cause

::
a
::::::
cooling

:::::
effect

::::::
similar

::
to
:::
La

::::
Niña

::
in
:::
the

:::::::::
equatorial

::::::
Pacific530

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(McGregor et al., 2014; Kucharski et al., 2016; Li et al., 2016; Ruprich-Robert et al., 2021; Meehl et al., 2021a)

:
.
::::::::
Moreover,

:::::
these

::::::
CMIP6 LEs were found to also simulate most spatial patterns with high correlation coefficients. On the other hand, other LEs

such as the UKESM1-0-LL and ACCESS-ESM1-5, despite their high correlation with the observed spatial patterns, do not

exhibit the same level of similarity when comparing their causal networks to the reference networks. This discrepancy might

be due to the difference in external time-varying aerosol forcing with respect to random internally-generated variability.535

In Figure 10 we plot the F1-scores for all realizations (color- and marker-coded by CMIP6 ensemble, see legend) for the long

regimes with respect to the mean-score of r spatial correlations from Sect. 3.1. Similar to Figure 9, we choose not to show the

scatter plots for the short regimes. As the mean-scores of spatial correlations are the same for all regimes (computed between

the regression maps on the whole 1900-2014 timeseries of the indices), how high (low) a single scatter point can get during a

certain regime reveals its causal network similarity (dissimilarity) with reanalysis during that regime. The scatter points closer540

to the top right corner of each plot belong to realizations which simulate better the spatial patterns and causal fingerprints of

reanalysis. Considering only the complete period panel (upper left in Figure 10), the upper right corner of this panel shows

mainly realizations from CESM2 (orange crosses), MIROC6 (yellow triangles), CanESM5 (red plus signs) models. From the

same panel, we can notice, for example, that the UKESM1-0-LL realizations (orange 5-pointed stars) have great spatial pattern

similarity with reanalysis. These UKESM1-0-LL realizations, however, do not show high similarity when comparing their545

causal fingerprint to that concluded from reanalysis data. The same can be said about MPI-ESM1-2-LR realizations (cyan 6-

pointed stars) which, in spite of their high level of skill in recreating the spatial regression patterns of the four modes of climate

variability, fail to obtain F1-scores as high as those from CESM2, CanESM5 or MIROC6 during most regimes. Only during

the AMV+ and Out-of-Phase regimes that very few MPI-ESM1-2-LR simulations exceed the 0.7 F1-score bar. Overall, we can

conclude that CESM2 (orange crosses), CanESM5 (red plus signs) and MIROC6 (yellow triangles) undoubtedly outperform550

other LEs in this evaluation. This is proven through the consistency that simulations from these two LEs show in resembling the

observed causal fingerprints during the different regimes. Despite obtaining high spatial correlation coefficients, two members

of the IPSL-CM6A-LR model (grey scatters) show the best network similarity with reanalysis during the PDV+ regime while

three other members of this model show no similarity during the same regime.
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Figure 10. Scatter plots: Rcoef mean score (spatial correlation with reanalysis, x-axis) vs F1-score (network similarity with respect

to reanalysis, y-axis) during the different regimes. Spatial correlation values do not change from one regime to another; these are

the same mean scores calculated from the Pearson r coefficients of the four modes in Sect. 3.1 over the 1900-2014 period. Similar to

Figure 9, scatter plots are shown only for the long regimes.
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It is worth mentioning that the number of realisations within an LE appears to increase the chance of a model to com-555

prise a simulation with similar dependency structures as those found in observations. The three simulations with the highest

F1-scores during the Out-of-Phase regime (see Figure 8) belong to either CanESM5 or MIROC6 which are the LEs with the

highest number of realisations (65 and 50 ensemble members, respectively). This is likely related to the number of realizations

needed to capture similar random internal variability to the one observed in reanalysis data. This is less valid for the CESM2

model, which with only 11 realizations, contains simulations with high F1-scores during most regimes shown in Figure 10. In560

general, modeling centers previously contributed only a small number of realizations to international climate change projec-

tion assessments [e.g., phase 5 of the CMIP (CMIP5; Taylor et al., 2012)]. As a result, model-associated errors and internal

climate variability remained difficult, if not impossible, to disentangle (Kay et al., 2015). In this paper, as CMIP6 includes

LE models, we overcome this sampling problem by using at least 10 realizations per model (see Table 1). In this way, we

have a better estimate of the natural internal variability and the externally forced part. The larger the ensemble size, the more565

likely that the observed internal variability falls within the plausible internal variability range simulated by that particular LE

model realizations.
:::::::
However,

::::::
despite

:::
the

:::::::::::
improvement

::
of

:::::::
CMIP6

::::::
models

::
in

::::::::
capturing

:::
the

:::::::
different

::::::
modes

::
of

::::::
climate

:::::::::
variability

:::::::::::::::::
(Fasullo et al., 2020),

::::::
recent

::::::
studies

::::::
already

:::::::
pointed

::
to

::::::::
persisting

:::::::
tropical

:::::::
Atlantic

::::::
biases

:::
that

:::::
knew

:::::
little

::
or

::
no

::::::::::::
improvement

::::::::
compared

::
to

::::::
CMIP5

::::::::::::::::::::::::::::::::::::::::
(Richter and Tokinaga, 2020; Farneti et al., 2022)

:
.
:::::
These

:::::
biases

::::::::
certainly

:::::
affect

:::
the

:::::::::
simulation

::
of

:::::::
Atlantic

::::::::
variability

::::::
within

:::::::
CMIP6

::::::
models

:::
as

::::
they

::::::
project

:::::::::
additional

:::::::::::
uncertainties

::
on

::::
the

:::::::::::
AMV-related

::::::
causal

::::::::
dynamics

::::
and

::::::
spatial570

:::::::
patterns.

:::::::::
Moreover,

:::::::
previous

::::::::
research

:::::::
showed

::::
that,

:::
on

:::
the

:::::::
decadal

::::::::
timescale,

:::::::
Atlantic

::::::
mean

::::
SST

:::::
biases

:::
in

::::::
CMIP5

:::::::
models

::
are

:::::::
directly

::::::
related

:::
to

:::
the

:::::::::
variability

::
of

:::::
trade

:::::
winds

:::::
over

:::
the

::::::
region

::::::::::::::::
(Kajtar et al., 2018)

:
.
:::::::::::::::::::
McGregor et al. (2018)

:::::
found

::::
that

::
the

::::::::
addition

::
of

::::
the

::::::
CMIP5

:::::::
Atlantic

:::::
bias

::::
leads

:::
to

::::::::
enhanced

::::::::::
descending

::::::
motion

::::::
trends

:::
in

:::
the

:::::::
western

::::
and

::::::
eastern

:::::::
Pacific,

:::
and

:
a
:::::::

reduced
:::::

trend
::
in
:::

the
:::::::

central
::::::
Pacific.

::::
The

:::::
same

:::::
study

:::::
found

::::
that

:::
the

::::::::
observed

::::::::
northward

:::::::::
migration

::
of

:::
the

:::::::::::
Intertropical

::::::::::
Convergence

:::::
Zone

::::::
(ITCZ)

::
is

::::::
absent

:::::
when

:::::::::
introducing

:::::::
CMIP5

:::::::
Atlantic

::::
bias.575

The spatial pattern correlation analysis (Figure 4), the resulting F1-scores with respect to reanalysis (Figure 8a), and the

CMIP6 pair-wise network comparisons (Figure 9) call for the need to investigate the coupling attributes and the simulated

internal variability in the CNRM-ESM2-1 ensemble, as its realizations clearly fail to reproduce the observed spatial patterns

and causal links between modes of climate variability compared to other CMIP6 LEs. The relatively large distribution of spatial

correlation values for the simulated PNA and PDV modes (see purple and red boxes of CNRM-ESM2-1 in Figure 4b), suggest580

spatial disagreement between the realizations of CNRM-ESM2-1 model regarding the expressed PNA and PDV patterns. This

might be the result of a relatively large distribution of forced PNA and/or PDV trends. This can be supported by the timeseries

metrics provided by CVDP-LE which reveal that, among the models analysed in this paper (see Table 1), CNRM-ESM2-1 holds

the largest 10th-to-90th percentile range of linear PDV trends (-0.89 per 115 years to 1.18 per 115 years) during the 1900-2014

period. These values can be found on the PDV timeseries ensemble summary figure (https://webext.cgd.ucar.edu/Multi-Case/585

CVDP-LE_repository/CMIP6_Historical_1900-2014/pdv_timeseries_mon.summary.png), as part of the historical 1900-2014

CMIP6 variability diagnostic results distributed by the CVDP-LE authors (Phillips et al., 2020). Considering that the model

only counts 10 realizations, the large 10th-to-90th percentile range reveals that the forced PDV trend can be significantly

different from one CNRM-ESM2-1 simulation to another. This translates not only to the dissimilarity in terms of spatial PDV

28

https://webext.cgd.ucar.edu/Multi-Case/CVDP-LE_repository/CMIP6_Historical_1900-2014/pdv_timeseries_mon.summary.png
https://webext.cgd.ucar.edu/Multi-Case/CVDP-LE_repository/CMIP6_Historical_1900-2014/pdv_timeseries_mon.summary.png
https://webext.cgd.ucar.edu/Multi-Case/CVDP-LE_repository/CMIP6_Historical_1900-2014/pdv_timeseries_mon.summary.png


patterns within the ensemble members but most probably leads to very different causal dynamics too. The latter can be seen590

through the causal networks in Appendix Figure A1 and Figure A2 where CNRM-ESM2-1 simulations hardly agree on the

sign of the PDV—PNA links (appearing with lighter shades of red) compared to the other CMIP6 models (where PDV—PNA

links appear with darker shades of red).

In the present work we defined regimes explicitly based on the phases of PDV and AMV. There are also methods to agnos-

tically extract underlying regimes and their corresponding causal graphs from timeseries (Saggioro et al., 2020), but these are595

not reliable for the small sample sizes in combination with the high dimensionality of the present datasets.

4 Summary

Applying PCMCI+ to reanalysis data revealed that the direct decadal opposite-sign response from AMV to PDV, described

by Meehl et al. (2021a) occurs not only during the analysis of the complete 1900-2014 period (with 11-year time lag), but

also during several specified regimes: PDV- (11-year lag), AMV- (11-year lag), PDV+/AMV- (1- and 11-year lags), and when600

PDV and AMV are out of phase (1- and 11-year lags). These regimes vary from 34-year long (for PDV+/AMV-) to 65-year

long (for Out-of-Phase). For the shorter PDV+/AMV+ regime (25-year long) we detect a positive same-sign response from

AMV to PDV with a 4-year time delay. The causal networks constructed from the reanalyses datasets have also revealed the

same-sign response from PDV to AMV during two regimes: PDV- (59-year long) and PDV-/AMV+ (31-years long). In other

words, the regime-oriented causal analysis indicates that AMV might serve as an early predictor of decadal variability over605

the Pacific. We also find an indirect connection between the Atlantic and Pacific, which is established via PNA during AMV-

and PDV+ regimes (both 59-year long), and during PDV-/AMV+. The latter is one of the two regimes that feature a same-sign

response from PDV to AMV. An indirect connection between Atlantic and Pacific via the Pacific–South American Pattern is

found during the complete 1900-2014 period, where AMV is positively linked with PSA1, but PSA1 has a negative lagged link

to PDV. During AMV- regime, the causal graph shows opposite-sign AMV→PSA1→PDV lagged connections.610

As an example for the regime-oriented causal analysis on CMIP6 models, we showed the CanESM5 ensemble averaged

causal graphs which indicate that the opposite sign effect of AMV on PDV (blue AMV→PDV link) is recreated by several

realizations (38 out of 65) during the Out-of-Phase regime, agreeing with the reanalysis results and literature findings (Newman

et al., 2016; Johnson et al., 2020). Appendix Figure A1 and Figure A2 show that this opposite sign lagged effect of AMV on

PDV was clearly present in simulations belonging to CESM2 and MIROC6 ensembles (AMV→PDV links are clearly blue).615

The PDV teleconnection to PNA in the form of mutual same-sign response (positive cross-MCI links) was clearly present in

most realizations of not only the CanESM5 model (Figure 7) but most of the CMIP6 LE simulations analysed. This is true

considering the exception of the CNRM-ESM2-1 simulations which show less agreement between each other on the sign of

the PDV—PNA links (appearing with lighter shades of red in Figure A1 and Figure A2) compared to the other CMIP6 models.

The evaluation of the Large Ensembles from the CMIP6 archive presented in this paper unveiled how a model performs620

compared to other models in terms of simulating observed spatial patterns and causal pathways between modes of climate

variability. Most CMIP6 models were found to score better during the Out-of-Phase regime, with CESM2, CanESM5, MIROC6
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and MPI-ESM1-2-LR as the best performers during this regime. We showed the importance of using LEs in causal model

evaluation to address the sampling issue and explained possible causal pathways during specific regimes that might not appear

in causal networks constructed from reanalysis data. Several CanESM5 realizations suggested a same-sign AMV→PDV link625

during the In-Phase regime. This link did not appear on the In-Phase regime causal graph reconstructed from reanalysis. This

same sign response is nonetheless documented by previous research (Wu et al., 2011; Meehl et al., 2021a). The CanESM5 and

MIROC6 models with the highest numbers of members were found to outperform other models in simulating observed causal

patterns during the long regimes (see Figure 8a). Interestingly, the CESM2 model, with a relatively smaller ensemble size (11

realizations), was also found to display larger causal fingerprint similarity with reanalysis during the long regimes. The causal630

network similarity between different CMIP6 LE models was also assessed throughout this paper. Simulations from CESM2,

CanESM5 and MIROC6 models also largely resemble each other and those from the MPI-ESM1-2-LR model in terms of

estimated causal networks during most regimes (Figure 9).

A deepened intra-model comparison remains essential to evaluate how realizations of the same model ensemble differ from

one another. The ’ripf’ identifier of every simulation within the CMIP6 LEs used in this study show that some LEs only include635

realizations (r) with the same initialization (i), physics (p) and forcing (f), while other LEs contain realisations with different

physics or forcing. On that account, it is of high importance to inspect the documentation provided by modeling groups on the

relevant realization attributes of their model ensemble.

Causal model evaluation is also helping to better understand remote contributions to internal variability over specific regions.

As we are not subtracting the ensemble mean (representing the forced response), the causal links found when analysing ob-640

servational reanalysis and CMIP6 historical simulations are thus expected to include external forcing contributions, especially

those from space and time-varying aerosol radiative forcing. It is therefore crucial to separate the internal variability component

from the externally forced part to gain a better understanding on the effects of external forcings on Atlantic-Pacific interactions.

Meehl et al. (2021a) recently examined this effect through timeseries pacemaker experiments in which effects from aerosols

are removed (by fixing aerosols at 1920 values). The approach and findings presented here motivate a follow-up study where645

pacemaker, pre-industrial control, and future scenario simulations are to be analysed through causal discovery algorithms to

reveal the impact of climate change on the teleconnections and interactions between major modes of climate variability. Over-

all, the regime-oriented causal model evaluation followed in this study has the potential of a powerful methodology that can be

applied in a number of environment-related topics, offering tremendous insight to improve the understanding of the complex

earth system and the state-of-the-art of climate modeling.650

Code and data availability. The complete CVDP-LE diagnostic for the 1900-2014 historical run can be found on the CESM CVCWG

CVDP-LE Data Repository, under https://www.cesm.ucar.edu/working_groups/CVC/cvdp-le/data-repository.html. The tigramite package

for causal discovery is available under the public Github repository: https://github.com/jakobrunge/tigramite/. The code used to reproduce

results and to plot most figures for this paper will be accessible at the time of publication of the manuscript in the following Github repository:

https://github.com/EyringMLClimateGroup/karmouche22copernicus_CME_CMIP6.655
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Appendix A

Table A1. Distribution of Pearson r correlation values between the simulated (CMIP6 LE) and observed (ERA20C_ERA5, ERSSTv5) spatial

patterns of PNA, PSA1, PDV, AMV and their Mean Score over the 1900-2014 period. Sorted by Alphabetical order.

CMIP6 LE Percentile PNA (DJF) PSA1 (ANN) PDV (monthly) AMV (monthly) Mean Score

ACCESS-ESM1-5 10th 0.80 0.57 0.68 0.67 0.67
50th 0.90 0.72 0.71 0.71 0.78
90th 0.93 0.79 0.77 0.75 0.80

CESM2 10th 0.84 -0.64 0.82 0.68 0.61
50th 0.88 0.66 0.87 0.73 0.79
90th 0.91 0.77 0.88 0.77 0.82

CNRM-ESM2-1 10th 0.38 0.39 -0.06 0.73 0.40
50th 0.59 0.53 0.68 0.74 0.64
90th 0.84 0.63 0.77 0.79 0.71

CanESM5 10th 0.76 0.56 0.75 0.68 0.73
50th 0.83 0.75 0.79 0.72 0.77
90th 0.88 0.81 0.82 0.76 0.80

EC-Earth3 10th 0.81 -0.40 0.45 0.58 0.49
50th 0.85 0.69 0.71 0.63 0.73
90th 0.92 0.75 0.77 0.71 0.79

GISS-E2-1-H 10th 0.73 -0.70 0.73 0.62 0.46
50th 0.79 -0.55 0.77 0.68 0.56
90th 0.86 0.73 0.81 0.72 0.76

INM-CM5-0 10th 0.53 -0.08 0.47 0.62 0.48
50th 0.67 0.38 0.50 0.66 0.54
90th 0.73 0.57 0.56 0.71 0.60

IPSL-CM6A-LR 10th 0.66 0.70 0.75 0.72 0.72
50th 0.73 0.80 0.79 0.76 0.77
90th 0.82 0.84 0.81 0.79 0.80

MIROC6 10th 0.81 0.68 0.83 0.67 0.77
50th 0.86 0.73 0.84 0.71 0.80
90th 0.91 0.78 0.85 0.74 0.82

MPI-ESM1-2-LR 10th 0.76 0.70 0.75 0.64 0.74
50th 0.86 0.79 0.80 0.72 0.79
90th 0.93 0.82 0.83 0.77 0.82

NorCPM1 10th 0.38 -0.58 0.72 0.64 0.41
50th 0.72 -0.51 0.76 0.68 0.49
90th 0.82 0.58 0.79 0.72 0.70

UKESM1-0-LL 10th 0.83 0.65 0.80 0.68 0.78
50th 0.88 0.75 0.82 0.74 0.80
90th 0.91 0.79 0.86 0.79 0.83
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Table A2. Pearson correlation values obtained using 18 UKESM1-0-LL simulation, with respect to the observed (ERA20C_ERA5,

ERSSTv5) spatial patterns of PNA, PSA1, PDV, AMV and their Mean Score over the 1900-2014 period. Sorted by mean score.

UKESM1-0-LL PNA (DJF) PSA1 (ANN) PDV (monthly) AMV (monthly) Mean Score

Ensemble member

r19i1p1f2 0.91 0.84 0.86 0.80 0.86

r6i1p1f3 0.89 0.75 0.86 0.78 0.83

r3i1p1f2 0.90 0.76 0.85 0.76 0.83

r14i1p1f2 0.94 0.75 0.82 0.68 0.82

r2i1p1f2 0.88 0.78 0.84 0.75 0.82

r1i1p1f2 0.87 0.81 0.82 0.78 0.82

r11i1p1f2 0.91 0.68 0.81 0.76 0.81

r8i1p1f2 0.90 0.78 0.79 0.70 0.80

r17i1p1f2 0.80 0.76 0.84 0.81 0.80

r7i1p1f3 0.86 0.78 0.82 0.72 0.80

r4i1p1f2 0.90 0.67 0.82 0.73 0.80

r16i1p1f2 0.86 0.75 0.81 0.72 0.79

r10i1p1f2 0.88 0.74 0.83 0.66 0.79

r9i1p1f2 0.89 0.56 0.82 0.77 0.79

r18i1p1f2 0.88 0.60 0.82 0.76 0.78

r5i1p1f3 0.85 0.75 0.81 0.68 0.78

r13i1p1f2 0.84 0.71 0.80 0.74 0.78

r12i1p1f2 0.79 0.67 0.80 0.68 0.74
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Table A3. Cross-MCI and auto-MCI values calculated by PCMCI+ from reanalysis timeseries data for the complete 1900-2014 period.

Values are relative to the complete period causal graph shown in Figure 2 (right panel) and Figure 5 (upper left panel). The table presents the

cross-MCI (cross-correlation) values denoting the sign and strength of the causal link between node i and node j for lags between 0 and τmax.

In bold are the highest absolute cross-MCI values for that specific link (detected within the statistical significance threshold, αpc ≤ 0.05) and

for which links are apparent on the causal graphs. The values are rounded to two decimal places.

time lag τ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

i j

AMV AMV 0.00 0.45 0.22 0.14 0.17 0.21 0.18 0.18 0.09 0.11 0.05 0.05 0.18 0.09 0.03 0.05

PNA 0.18 -0.20 -0.06 0.01 -0.13 -0.11 -0.17 -0.04 0.01 -0.04 -0.13 -0.18 -0.17 -0.19 -0.16 -0.06

PDV -0.04 -0.18 -0.16 -0.07 -0.12 -0.15 -0.16 -0.18 -0.06 -0.13 -0.21 -0.25 0.02 -0.18 -0.06 -0.11

PSA1 0.25 -0.05 -0.01 -0.06 -0.10 -0.11 -0.12 -0.05 -0.06 -0.00 -0.02 -0.07 -0.04 -0.08 -0.00 0.08

PNA AMV 0.18 -0.05 -0.02 -0.03 -0.09 -0.12 -0.07 0.03 -0.05 0.01 0.01 -0.04 0.05 0.07 0.03 0.03

PNA 0.00 0.06 0.05 0.04 -0.04 0.10 0.02 0.00 -0.06 -0.11 0.03 -0.14 -0.01 -0.06 -0.11 0.05

PDV 0.53 -0.07 0.10 -0.05 -0.04 0.14 0.16 -0.02 -0.18 -0.10 -0.02 0.01 0.00 -0.07 -0.17 -0.02

PSA1 0.11 -0.09 0.06 -0.12 -0.08 -0.01 -0.03 -0.05 -0.13 0.00 -0.13 -0.11 0.12 -0.12 -0.10 0.13

PDV AMV -0.04 -0.03 -0.01 -0.04 -0.09 -0.15 -0.09 -0.05 0.00 -0.02 0.02 0.02 0.01 0.10 0.12 0.14

PNA 0.53 0.17 0.09 0.04 0.21 0.21 0.05 -0.02 -0.08 -0.08 0.06 0.00 -0.01 -0.02 -0.10 -0.07

PDV 0.00 0.33 0.18 0.07 0.18 0.18 0.08 0.02 -0.12 -0.01 0.09 0.11 0.02 -0.09 -0.21 -0.15

PSA1 -0.07 0.11 0.14 0.02 0.03 0.07 0.00 -0.17 -0.13 -0.06 -0.12 -0.09 -0.07 -0.03 -0.09 0.03

PSA1 AMV 0.25 -0.09 0.15 -0.09 -0.07 -0.07 -0.06 -0.21 -0.16 -0.14 -0.19 -0.17 -0.16 -0.20 -0.19 -0.15

PNA 0.11 -0.10 0.18 -0.10 0.04 0.06 0.04 0.21 0.01 0.07 -0.10 0.11 0.11 -0.01 -0.17 -0.09

PDV -0.07 0.03 0.11 -0.01 0.02 0.09 0.09 0.23 0.08 -0.07 -0.13 -0.07 -0.08 -0.10 -0.21 -0.31

PSA1 0.00 0.04 0.18 0.03 0.19 0.04 0.10 -0.02 -0.16 0.02 -0.09 0.01 -0.09 -0.19 -0.19 0.01
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Table A4.
::::::
Number

::
of

::::
years

::
for

:::::
every

:::::
regime

:::
for:

:::::::::
Reanalysis

:::
and

:::::
CMIP6

:::::::::
simulations

::::
1-40.

Complete Period AMV+ AMV- PDV+ PDV- In-Phase Out-of-Phase PDV+/AMV+ PDV+/AMV- PDV-/AMV+ PDV-/AMV-

Reanalysis 115 56 59 59 56 50 65 25 34 31 25

ACCESS-ESM1-5_r5i1p1f1 115 51 64 60 55 82 33 39 21 12 43

ACCESS-ESM1-5_r1i1p1f1 115 57 58 63 52 71 44 38 25 19 33

ACCESS-ESM1-5_r9i1p1f1 115 57 58 66 49 44 71 26 40 31 18

ACCESS-ESM1-5_r2i1p1f1 115 57 58 63 52 31 84 18 45 39 13

ACCESS-ESM1-5_r8i1p1f1 115 53 62 65 50 59 56 31 34 22 28

ACCESS-ESM1-5_r7i1p1f1 115 64 51 68 47 53 62 35 33 29 18

ACCESS-ESM1-5_r10i1p1f1 115 69 46 58 57 36 79 24 34 45 12

ACCESS-ESM1-5_r4i1p1f1 115 56 59 59 56 42 73 21 38 35 21

ACCESS-ESM1-5_r3i1p1f1 115 68 47 54 61 35 80 21 33 47 14

ACCESS-ESM1-5_r6i1p1f1 115 51 64 48 67 48 67 16 32 35 32

CESM2_r1i1p1f1 115 74 41 61 54 44 71 32 29 42 12

CESM2_r8i1p1f1 115 54 61 54 61 47 68 20 34 34 27

CESM2_r2i1p1f1 115 62 53 42 73 29 86 9 33 53 20

CESM2_r6i1p1f1 115 63 52 67 48 21 94 18 49 45 3

CESM2_r10i1p1f1 115 66 49 50 65 41 74 21 29 45 20

CESM2_r11i1p1f1 115 50 65 54 61 39 76 14 40 36 25

CESM2_r7i1p1f1 115 65 50 51 64 27 88 14 37 51 13

CESM2_r3i1p1f1 115 64 51 58 57 53 62 30 28 34 23

CESM2_r5i1p1f1 115 58 57 56 59 37 78 18 38 40 19

CESM2_r9i1p1f1 115 62 53 57 58 10 105 7 50 55 3

CESM2_r4i1p1f1 115 55 60 65 50 35 80 20 45 35 15

CNRM-ESM2-1_r11i1p1f2 115 44 71 61 54 74 41 32 29 12 42

CNRM-ESM2-1_r4i1p1f2 115 53 62 56 59 28 87 11 45 42 17

CNRM-ESM2-1_r1i1p1f2 115 70 45 59 56 32 83 23 36 47 9

CNRM-ESM2-1_r5i1p1f2 115 54 61 56 59 99 16 47 9 7 52

CNRM-ESM2-1_r7i1p1f2 115 63 52 54 61 70 45 36 18 27 34

CNRM-ESM2-1_r9i1p1f2 115 51 64 65 50 43 72 22 43 29 21

CNRM-ESM2-1_r10i1p1f2 115 54 61 54 61 59 56 26 28 28 33

CNRM-ESM2-1_r3i1p1f2 115 56 59 53 62 82 33 38 15 18 44

CNRM-ESM2-1_r8i1p1f2 115 65 50 76 39 50 65 38 38 27 12

CNRM-ESM2-1_r2i1p1f2 115 54 61 64 51 59 56 31 33 23 28

CanESM5_r15i1p1f1 115 59 56 61 54 45 70 25 36 34 20

CanESM5_r11i1p1f1 115 49 66 66 49 28 87 14 52 35 14

CanESM5_r1i1p2f1 115 60 55 64 51 37 78 23 41 37 14

CanESM5_r19i1p2f1 115 56 59 46 69 39 76 13 33 43 26

CanESM5_r26i1p2f1 115 51 64 63 52 49 66 24 39 27 25

CanESM5_r33i1p2f1 115 62 53 56 59 65 50 34 22 28 31

CanESM5_r31i1p2f1 115 65 50 61 54 61 54 36 25 29 25

CanESM5_r13i1p2f1 115 61 54 55 60 39 76 20 35 41 19

CanESM5_r29i1p2f1 115 55 60 56 59 28 87 12 44 43 16
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Table A5.
::::::
Number

::
of

::::
years

::
for

:::::
every

:::::
regime

:::
for:

:::::::::
Reanalysis

:::
and

:::::
CMIP6

:::::::::
simulations

:::::
41-80.

Complete Period AMV+ AMV- PDV+ PDV- In-Phase Out-of-Phase PDV+/AMV+ PDV+/AMV- PDV-/AMV+ PDV-/AMV-

Reanalysis 115 56 59 59 56 50 65 25 34 31 25

CanESM5_r22i1p2f1 115 58 57 55 60 40 75 19 36 39 21

CanESM5_r23i1p1f1 115 47 68 51 64 71 44 27 24 20 44

CanESM5_r6i1p1f1 115 70 45 60 55 33 82 24 36 46 9

CanESM5_r2i1p2f1 115 48 67 48 67 25 90 3 45 45 22

CanESM5_r38i1p2f1 115 65 50 68 47 50 65 34 34 31 16

CanESM5_r19i1p1f1 115 63 52 65 50 37 78 25 40 38 12

CanESM5_r37i1p2f1 115 45 70 63 52 41 74 17 46 28 24

CanESM5_r24i1p1f1 115 59 56 56 59 44 71 22 34 37 22

CanESM5_r4i1p1f1 115 65 50 62 53 40 75 26 36 39 14

CanESM5_r25i1p1f1 115 55 60 57 58 65 50 31 26 24 34

CanESM5_r22i1p1f1 115 61 54 55 60 57 58 29 26 32 28

CanESM5_r12i1p1f1 115 60 55 56 59 63 52 32 24 28 31

CanESM5_r23i1p2f1 115 49 66 64 51 48 67 23 41 26 25

CanESM5_r13i1p1f1 115 53 62 66 49 44 71 24 42 29 20

CanESM5_r4i1p2f1 115 54 61 63 52 50 65 26 37 28 24

CanESM5_r27i1p2f1 115 54 61 55 60 32 83 13 42 41 19

CanESM5_r10i1p2f1 115 61 54 65 50 63 52 37 28 24 26

CanESM5_r16i1p2f1 115 59 56 59 56 47 68 25 34 34 22

CanESM5_r18i1p2f1 115 47 68 49 66 45 70 13 36 34 32

CanESM5_r32i1p2f1 115 59 56 61 54 17 98 11 50 48 6

CanESM5_r17i1p1f1 115 49 66 62 53 28 87 12 50 37 16

CanESM5_r14i1p2f1 115 56 59 52 63 41 74 17 35 39 24

CanESM5_r5i1p1f1 115 51 64 68 47 34 81 19 49 32 15

CanESM5_r24i1p2f1 115 56 59 49 66 50 65 20 29 36 30

CanESM5_r30i1p2f1 115 49 66 58 57 38 77 15 43 34 23

CanESM5_r14i1p1f1 115 54 61 55 60 54 61 24 31 30 30

CanESM5_r21i1p1f1 115 53 62 63 52 27 88 14 49 39 13

CanESM5_r16i1p1f1 115 70 45 56 59 27 88 19 37 51 8

CanESM5_r36i1p2f1 115 51 64 59 56 33 82 14 45 37 19

CanESM5_r3i1p1f1 115 51 64 65 50 49 66 25 40 26 24

CanESM5_r8i1p1f1 115 65 50 51 64 27 88 14 37 51 13

CanESM5_r7i1p2f1 115 43 72 50 65 58 57 18 32 25 40

CanESM5_r6i1p2f1 115 50 65 64 51 67 48 33 31 17 34

CanESM5_r25i1p2f1 115 60 55 43 72 62 53 25 18 35 37

CanESM5_r20i1p1f1 115 54 61 61 54 42 73 21 40 33 21

CanESM5_r5i1p2f1 115 61 54 61 54 35 80 21 40 40 14

CanESM5_r39i1p2f1 115 61 54 51 64 33 82 15 36 46 18

CanESM5_r11i1p2f1 115 52 63 57 58 48 67 21 36 31 27

CanESM5_r2i1p1f1 115 60 55 58 57 25 90 14 44 46 11

CanESM5_r15i1p2f1 115 59 56 62 53 72 43 39 23 20 33
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Table A6.
::::::
Number

::
of

::::
years

::
for

:::::
every

:::::
regime

:::
for:

:::::::::
Reanalysis

:::
and

:::::
CMIP6

:::::::::
simulations

::::::
81-120.

Complete Period AMV+ AMV- PDV+ PDV- In-Phase Out-of-Phase PDV+/AMV+ PDV+/AMV- PDV-/AMV+ PDV-/AMV-

Reanalysis 115 56 59 59 56 50 65 25 34 31 25

CanESM5_r9i1p2f1 115 53 62 55 60 49 66 21 34 32 28

CanESM5_r1i1p1f1 115 58 57 60 55 39 76 21 39 37 18

CanESM5_r12i1p2f1 115 59 56 61 54 59 56 32 29 27 27

CanESM5_r18i1p1f1 115 56 59 52 63 57 58 25 27 31 32

CanESM5_r28i1p2f1 115 45 70 51 64 47 68 14 37 31 33

CanESM5_r20i1p2f1 115 55 60 60 55 34 81 17 43 38 17

CanESM5_r10i1p1f1 115 49 66 55 60 59 56 24 31 25 35

CanESM5_r17i1p2f1 115 50 65 56 59 45 70 18 38 32 27

CanESM5_r35i1p2f1 115 57 58 54 61 68 47 32 22 25 36

CanESM5_r3i1p2f1 115 46 69 63 52 62 53 28 35 18 34

CanESM5_r21i1p2f1 115 54 61 56 59 41 74 18 38 36 23

CanESM5_r7i1p1f1 115 58 57 53 62 18 97 7 46 51 11

CanESM5_r8i1p2f1 115 64 51 67 48 36 79 26 41 38 10

CanESM5_r40i1p2f1 115 56 59 63 52 26 89 15 48 41 11

CanESM5_r9i1p1f1 115 42 73 63 52 46 69 18 45 24 28

CanESM5_r34i1p2f1 115 51 64 58 57 20 95 7 51 44 13

EC-Earth3_r22i1p1f1 115 42 73 60 55 45 70 16 44 26 29

EC-Earth3_r6i1p1f1 115 61 54 48 67 28 87 11 37 50 17

EC-Earth3_r23i1p1f1 115 62 53 55 60 30 85 16 39 46 14

EC-Earth3_r3i1p1f1 115 44 71 58 57 33 82 10 48 34 23

EC-Earth3_r17i1p1f1 115 50 65 57 58 46 69 19 38 31 27

EC-Earth3_r19i1p1f1 115 54 61 55 60 56 59 25 30 29 31

EC-Earth3_r12i1p1f1 115 43 72 59 56 47 68 17 42 26 30

EC-Earth3_r20i1p1f1 115 54 61 59 56 46 69 22 37 32 24

EC-Earth3_r10i1p1f1 115 62 53 53 62 20 95 10 43 52 10

EC-Earth3_r18i1p1f1 115 45 70 61 54 21 94 6 55 39 15

EC-Earth3_r24i1p1f1 115 56 59 72 43 43 72 28 44 28 15

EC-Earth3_r9i1p1f1 115 58 57 57 58 46 69 23 34 35 23

EC-Earth3_r1i1p1f1 115 61 54 59 56 47 68 26 33 35 21

EC-Earth3_r14i1p1f1 115 59 56 69 46 103 12 58 11 1 45

EC-Earth3_r16i1p1f1 115 61 54 37 78 27 88 5 32 56 22

EC-Earth3_r7i1p1f1 115 55 60 50 65 30 85 10 40 45 20

EC-Earth3_r4i1p1f1 115 54 61 54 61 37 78 15 39 39 22

EC-Earth3_r21i1p1f1 115 59 56 68 47 64 51 38 30 21 26

EC-Earth3_r2i1p1f1 115 64 51 56 59 51 64 28 28 36 23

EC-Earth3_r25i1p1f1 115 59 56 66 49 82 33 46 20 13 36

GISS-E2-1-H_r2i1p5f1 115 55 60 60 55 46 69 23 37 32 23

GISS-E2-1-H_r1i1p5f1 115 63 52 68 47 42 73 29 39 34 13

GISS-E2-1-H_r1i1p1f2 115 58 57 55 60 50 65 24 31 34 26

GISS-E2-1-H_r8i1p1f1 115 62 53 70 45 73 42 45 25 17 28
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Table A7.
::::::
Number

::
of

::::
years

::
for

:::::
every

:::::
regime

:::
for:

:::::::::
Reanalysis

:::
and

:::::
CMIP6

:::::::::
simulations

:::::::
121-160.

Complete Period AMV+ AMV- PDV+ PDV- In-Phase Out-of-Phase PDV+/AMV+ PDV+/AMV- PDV-/AMV+ PDV-/AMV-

Reanalysis 115 56 59 59 56 50 65 25 34 31 25

GISS-E2-1-H_r4i1p1f2 115 48 67 61 54 26 89 10 51 38 16

GISS-E2-1-H_r7i1p1f1 115 49 66 53 62 77 38 32 21 17 45

GISS-E2-1-H_r5i1p1f1 115 61 54 53 62 55 60 27 26 34 28

GISS-E2-1-H_r9i1p1f1 115 56 59 67 48 50 65 29 38 27 21

GISS-E2-1-H_r1i1p3f1 115 56 59 63 52 48 67 26 37 30 22

GISS-E2-1-H_r4i1p3f1 115 59 56 66 49 48 67 29 37 30 19

GISS-E2-1-H_r6i1p1f1 115 61 54 57 58 57 58 30 27 31 27

GISS-E2-1-H_r3i1p1f1 115 62 53 56 59 65 50 34 22 28 31

GISS-E2-1-H_r2i1p3f1 115 57 58 58 57 48 67 24 34 33 24

GISS-E2-1-H_r10i1p1f1 115 58 57 51 64 52 63 23 28 35 29

GISS-E2-1-H_r5i1p3f1 115 54 61 54 61 33 82 13 41 41 20

GISS-E2-1-H_r2i1p1f2 115 50 65 53 62 72 43 30 23 20 42

GISS-E2-1-H_r4i1p1f1 115 59 56 63 52 61 54 34 29 25 27

GISS-E2-1-H_r2i1p1f1 115 48 67 64 51 53 62 25 39 23 28

GISS-E2-1-H_r3i1p1f2 115 65 50 50 65 26 89 13 37 52 13

GISS-E2-1-H_r3i1p5f1 115 47 68 55 60 69 46 28 27 19 41

GISS-E2-1-H_r3i1p3f1 115 59 56 61 54 77 38 41 20 18 36

GISS-E2-1-H_r1i1p1f1 115 62 53 51 64 62 53 30 21 32 32

GISS-E2-1-H_r5i1p1f2 115 53 62 61 54 33 82 16 45 37 17

INM-CM5-0_r2i1p1f1 115 60 55 55 60 72 43 36 19 24 36

INM-CM5-0_r6i1p1f1 115 60 55 58 57 63 52 33 25 27 30

INM-CM5-0_r9i1p1f1 115 54 61 57 58 46 69 21 36 33 25

INM-CM5-0_r8i1p1f1 115 60 55 45 70 84 31 37 8 23 47

INM-CM5-0_r4i1p1f1 115 60 55 56 59 53 62 27 29 33 26

INM-CM5-0_r7i1p1f1 115 61 54 59 56 41 74 23 36 38 18

INM-CM5-0_r5i1p1f1 115 60 55 49 66 24 91 9 40 51 15

INM-CM5-0_r1i1p1f1 115 52 63 63 52 56 59 28 35 24 28

INM-CM5-0_r10i1p1f1 115 55 60 55 60 79 36 37 18 18 42

INM-CM5-0_r3i1p1f1 115 60 55 56 59 53 62 27 29 33 26

IPSL-CM6A-LR_r9i1p1f1 115 55 60 54 61 44 71 19 35 36 25

IPSL-CM6A-LR_r15i1p1f1 115 69 46 60 55 30 85 22 38 47 8

IPSL-CM6A-LR_r6i1p1f1 115 71 44 61 54 29 86 23 38 48 6

IPSL-CM6A-LR_r28i1p1f1 115 63 52 65 50 63 52 38 27 25 25

IPSL-CM6A-LR_r31i1p1f1 115 65 50 55 60 45 70 25 30 40 20

IPSL-CM6A-LR_r25i1p1f1 115 51 64 58 57 60 55 27 31 24 33

IPSL-CM6A-LR_r27i1p1f1 115 64 51 58 57 49 66 28 30 36 21

IPSL-CM6A-LR_r30i1p1f1 115 57 58 55 60 51 64 24 31 33 27

IPSL-CM6A-LR_r24i1p1f1 115 59 56 55 60 59 56 29 26 30 30

IPSL-CM6A-LR_r5i1p1f1 115 62 53 60 55 61 54 34 26 28 27

IPSL-CM6A-LR_r22i1p1f1 115 58 57 52 63 79 36 37 15 21 42
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Table A8.
::::::
Number

::
of

::::
years

::
for

:::::
every

:::::
regime

:::
for:

:::::::::
Reanalysis

:::
and

:::::
CMIP6

:::::::::
simulations

:::::::
161-200.

Complete Period AMV+ AMV- PDV+ PDV- In-Phase Out-of-Phase PDV+/AMV+ PDV+/AMV- PDV-/AMV+ PDV-/AMV-

Reanalysis 115 56 59 59 56 50 65 25 34 31 25

IPSL-CM6A-LR_r26i1p1f1 115 56 59 65 50 48 67 27 38 29 21

IPSL-CM6A-LR_r8i1p1f1 115 57 58 59 56 37 78 19 40 38 18

IPSL-CM6A-LR_r14i1p1f1 115 63 52 54 61 42 73 22 32 41 20

IPSL-CM6A-LR_r10i1p1f1 115 60 55 52 63 45 70 21 31 39 24

IPSL-CM6A-LR_r16i1p1f1 115 54 61 62 53 45 70 23 39 31 22

IPSL-CM6A-LR_r4i1p1f1 115 64 51 56 59 53 62 29 27 35 24

IPSL-CM6A-LR_r20i1p1f1 115 51 64 56 59 62 53 27 29 24 35

IPSL-CM6A-LR_r1i1p1f1 115 56 59 57 58 54 61 26 31 30 28

IPSL-CM6A-LR_r3i1p1f1 115 48 67 52 63 45 70 15 37 33 30

IPSL-CM6A-LR_r7i1p1f1 115 51 64 48 67 44 71 14 34 37 30

IPSL-CM6A-LR_r13i1p1f1 115 65 50 54 61 56 59 30 24 35 26

IPSL-CM6A-LR_r19i1p1f1 115 52 63 56 59 85 30 39 17 13 46

IPSL-CM6A-LR_r23i1p1f1 115 50 65 59 56 36 79 15 44 35 21

IPSL-CM6A-LR_r18i1p1f1 115 53 62 52 63 34 81 12 40 41 22

IPSL-CM6A-LR_r29i1p1f1 115 47 68 56 59 44 71 16 40 31 28

IPSL-CM6A-LR_r2i1p1f1 115 54 61 48 67 35 80 11 37 43 24

IPSL-CM6A-LR_r11i1p1f1 115 56 59 61 54 52 63 27 34 29 25

IPSL-CM6A-LR_r32i1p1f1 115 53 62 62 53 54 61 27 35 26 27

IPSL-CM6A-LR_r21i1p1f1 115 63 52 59 56 35 80 21 38 42 14

IPSL-CM6A-LR_r17i1p1f1 115 50 65 60 55 39 76 17 43 33 22

IPSL-CM6A-LR_r12i1p1f1 115 57 58 54 61 66 49 31 23 26 35

MIROC6_r35i1p1f1 115 46 69 55 60 38 77 12 43 34 26

MIROC6_r32i1p1f1 115 64 51 55 60 46 69 25 30 39 21

MIROC6_r40i1p1f1 115 58 57 56 59 47 68 23 33 35 24

MIROC6_r20i1p1f1 115 60 55 60 55 41 74 23 37 37 18

MIROC6_r11i1p1f1 115 58 57 58 57 33 82 17 41 41 16

MIROC6_r44i1p1f1 115 66 49 59 56 54 61 32 27 34 22

MIROC6_r4i1p1f1 115 46 69 57 58 42 73 15 42 31 27

MIROC6_r13i1p1f1 115 59 56 67 48 39 76 25 42 34 14

MIROC6_r3i1p1f1 115 51 64 62 53 56 59 27 35 24 29

MIROC6_r46i1p1f1 115 63 52 49 66 47 68 22 27 41 25

MIROC6_r9i1p1f1 115 60 55 57 58 42 73 22 35 38 20

MIROC6_r14i1p1f1 115 58 57 61 54 58 57 31 30 27 27

MIROC6_r15i1p1f1 115 42 73 60 55 41 74 14 46 28 27

MIROC6_r21i1p1f1 115 59 56 63 52 49 66 28 35 31 21

MIROC6_r38i1p1f1 115 59 56 57 58 25 90 13 44 46 12

MIROC6_r31i1p1f1 115 57 58 58 57 62 53 31 27 26 31

MIROC6_r16i1p1f1 115 64 51 73 42 50 65 36 37 28 14

MIROC6_r29i1p1f1 115 63 52 65 50 55 60 34 31 29 21

MIROC6_r2i1p1f1 115 44 71 48 67 51 64 14 34 30 37
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Table A9.
::::::
Number

::
of

::::
years

::
for

:::::
every

:::::
regime

:::
for:

:::::::::
Reanalysis

:::
and

:::::
CMIP6

:::::::::
simulations

:::::::
201-240.

Complete Period AMV+ AMV- PDV+ PDV- In-Phase Out-of-Phase PDV+/AMV+ PDV+/AMV- PDV-/AMV+ PDV-/AMV-

Reanalysis 115 56 59 59 56 50 65 25 34 31 25

MIROC6_r34i1p1f1 115 61 54 47 68 69 46 31 16 30 38

MIROC6_r1i1p1f1 115 70 45 53 62 52 63 30 23 40 22

MIROC6_r39i1p1f1 115 64 51 54 61 57 58 30 24 34 27

MIROC6_r8i1p1f1 115 52 63 61 54 68 47 33 28 19 35

MIROC6_r42i1p1f1 115 57 58 57 58 59 56 29 28 28 30

MIROC6_r27i1p1f1 115 74 41 60 55 73 42 46 14 28 27

MIROC6_r26i1p1f1 115 66 49 55 60 42 73 24 31 42 18

MIROC6_r17i1p1f1 115 55 60 59 56 49 66 24 35 31 25

MIROC6_r48i1p1f1 115 56 59 66 49 69 46 38 28 18 31

MIROC6_r6i1p1f1 115 53 62 57 58 45 70 20 37 33 25

MIROC6_r30i1p1f1 115 57 58 53 62 53 62 24 29 33 29

MIROC6_r49i1p1f1 115 54 61 63 52 52 63 27 36 27 25

MIROC6_r5i1p1f1 115 58 57 68 47 57 58 34 34 24 23

MIROC6_r41i1p1f1 115 64 51 57 58 46 69 26 31 38 20

MIROC6_r23i1p1f1 115 56 59 55 60 46 69 21 34 35 25

MIROC6_r12i1p1f1 115 54 61 55 60 42 73 18 37 36 24

MIROC6_r10i1p1f1 115 57 58 67 48 37 78 23 44 34 14

MIROC6_r24i1p1f1 115 62 53 56 59 51 64 27 29 35 24

MIROC6_r33i1p1f1 115 55 60 66 49 38 77 22 44 33 16

MIROC6_r7i1p1f1 115 57 58 58 57 26 89 13 45 44 13

MIROC6_r36i1p1f1 115 74 41 59 56 42 73 30 29 44 12

MIROC6_r28i1p1f1 115 57 58 56 59 46 69 22 34 35 24

MIROC6_r37i1p1f1 115 62 53 62 53 63 52 36 26 26 27

MIROC6_r47i1p1f1 115 61 54 48 67 44 71 19 29 42 25

MIROC6_r19i1p1f1 115 50 65 59 56 62 53 28 31 22 34

MIROC6_r18i1p1f1 115 56 59 55 60 48 67 22 33 34 26

MIROC6_r22i1p1f1 115 65 50 49 66 35 80 17 32 48 18

MIROC6_r43i1p1f1 115 67 48 57 58 31 84 20 37 47 11

MIROC6_r50i1p1f1 115 58 57 47 68 26 89 8 39 50 18

MIROC6_r25i1p1f1 115 57 58 55 60 49 66 23 32 34 26

MIROC6_r45i1p1f1 115 70 45 59 56 32 83 23 36 47 9

MPI-ESM1-2-LR_r2i1p1f1 115 62 53 55 60 66 49 34 21 28 32

MPI-ESM1-2-LR_r10i1p1f1 115 54 61 50 65 51 64 20 30 34 31

MPI-ESM1-2-LR_r3i1p1f1 115 59 56 64 51 58 57 33 31 26 25

MPI-ESM1-2-LR_r5i1p1f1 115 64 51 61 54 42 73 26 35 38 16

MPI-ESM1-2-LR_r8i1p1f1 115 59 56 51 64 57 58 26 25 33 31

MPI-ESM1-2-LR_r7i1p1f1 115 50 65 68 47 23 92 13 55 37 10

MPI-ESM1-2-LR_r9i1p1f1 115 60 55 58 57 65 50 34 24 26 31

MPI-ESM1-2-LR_r4i1p1f1 115 64 51 55 60 48 67 26 29 38 22

MPI-ESM1-2-LR_r6i1p1f1 115 52 63 61 54 58 57 28 33 24 30
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Table A10.
::::::
Number

::
of

::::
years

::
for

:::::
every

:::::
regime

:::
for:

::::::::
Reanalysis

:::
and

::::::
CMIP6

:::::::::
simulations

:::::::
241-289.

Complete Period AMV+ AMV- PDV+ PDV- In-Phase Out-of-Phase PDV+/AMV+ PDV+/AMV- PDV-/AMV+ PDV-/AMV-

Reanalysis 115 56 59 59 56 50 65 25 34 31 25

MPI-ESM1-2-LR_r1i1p1f1 115 64 51 66 49 57 58 36 30 28 21

NorCPM1_r20i1p1f1 115 58 57 49 66 48 67 20 29 38 28

NorCPM1_r19i1p1f1 115 54 61 58 57 27 88 12 46 42 15

NorCPM1_r13i1p1f1 115 53 62 51 64 31 84 10 41 43 21

NorCPM1_r29i1p1f1 115 56 59 53 62 52 63 23 30 33 29

NorCPM1_r4i1p1f1 115 53 62 44 71 48 67 15 29 38 33

NorCPM1_r18i1p1f1 115 59 56 58 57 40 75 21 37 38 19

NorCPM1_r30i1p1f1 115 63 52 52 63 62 53 31 21 32 31

NorCPM1_r27i1p1f1 115 52 63 65 50 44 71 23 42 29 21

NorCPM1_r2i1p1f1 115 56 59 61 54 34 81 18 43 38 16

NorCPM1_r5i1p1f1 115 57 58 47 68 55 60 22 25 35 33

NorCPM1_r22i1p1f1 115 59 56 47 68 37 78 14 33 45 23

NorCPM1_r3i1p1f1 115 56 59 65 50 48 67 27 38 29 21

NorCPM1_r16i1p1f1 115 44 71 59 56 26 89 7 52 37 19

NorCPM1_r17i1p1f1 115 66 49 48 67 35 80 17 31 49 18

NorCPM1_r9i1p1f1 115 60 55 56 59 33 82 17 39 43 16

NorCPM1_r8i1p1f1 115 46 69 52 63 55 60 19 33 27 36

NorCPM1_r11i1p1f1 115 50 65 43 72 54 61 16 27 34 38

NorCPM1_r6i1p1f1 115 65 50 64 51 54 61 34 30 31 20

NorCPM1_r23i1p1f1 115 55 60 65 50 29 86 17 48 38 12

NorCPM1_r1i1p1f1 115 57 58 70 45 44 71 28 42 29 16

NorCPM1_r14i1p1f1 115 61 54 55 60 63 52 32 23 29 31

NorCPM1_r21i1p1f1 115 54 61 50 65 33 82 11 39 43 22

NorCPM1_r7i1p1f1 115 59 56 57 58 55 60 28 29 31 27

NorCPM1_r10i1p1f1 115 64 51 56 59 87 28 46 10 18 41

NorCPM1_r26i1p1f1 115 54 61 47 68 40 75 13 34 41 27

NorCPM1_r25i1p1f1 115 65 50 63 52 67 48 40 23 25 27

NorCPM1_r12i1p1f1 115 60 55 53 62 54 61 26 27 34 28

NorCPM1_r24i1p1f1 115 58 57 56 59 43 72 21 35 37 22

NorCPM1_r28i1p1f1 115 66 49 50 65 31 84 16 34 50 15

NorCPM1_r15i1p1f1 115 67 48 45 70 65 50 31 14 36 34

UKESM1-0-LL_r16i1p1f2 115 62 53 67 48 70 45 42 25 20 28

UKESM1-0-LL_r3i1p1f2 115 63 52 58 57 54 61 30 28 33 24

UKESM1-0-LL_r8i1p1f2 115 46 69 59 56 44 71 17 42 29 27

UKESM1-0-LL_r14i1p1f2 115 57 58 59 56 73 42 37 22 20 36

UKESM1-0-LL_r13i1p1f2 115 49 66 52 63 80 35 33 19 16 47

UKESM1-0-LL_r11i1p1f2 115 71 44 56 59 12 103 12 44 59 0

UKESM1-0-LL_r12i1p1f2 115 68 47 69 46 26 89 24 45 44 2

UKESM1-0-LL_r9i1p1f2 115 59 56 54 61 46 69 22 32 37 24

UKESM1-0-LL_r7i1p1f3 115 60 55 74 41 37 78 28 46 32 9

UKESM1-0-LL_r17i1p1f2 115 50 65 68 47 35 80 19 49 31 16

UKESM1-0-LL_r1i1p1f2 115 62 53 51 64 44 71 21 30 41 23

UKESM1-0-LL_r5i1p1f3 115 65 50 50 65 72 43 36 14 29 36

UKESM1-0-LL_r2i1p1f2 115 45 70 49 66 47 68 13 36 32 34

UKESM1-0-LL_r10i1p1f2 115 47 68 51 64 47 68 15 36 32 32

UKESM1-0-LL_r19i1p1f2 115 73 42 57 58 39 76 27 30 46 12

UKESM1-0-LL_r18i1p1f2 115 48 67 66 49 41 74 20 46 28 21

UKESM1-0-LL_r6i1p1f3 115 70 45 60 55 47 68 31 29 39 16

UKESM1-0-LL_r4i1p1f2 115 56 59 63 52 52 63 28 35 28 24
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Figure A1. Similar to Figure 7 but for the 12 CMIP6 models during the complete 1900-2014 period. Each panel has a label stating the

model name and the number of ensemble members between parenthesis. The auto-MCI values were not taken into consideration.
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Figure A2. Similar to Figure 7 but for the 12 CMIP6 models during the Out-of-Phase regime. Each panel has a label stating the model

name and the number of ensemble members between parenthesis. The auto-MCI values were not taken into consideration.
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Figure A3. Similar to Figure 7 but for the 12 CMIP6 models during the In-Phase regime. Each panel has a label stating the model

name and the number of ensemble members between parenthesis. The auto-MCI values were not taken into consideration.
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