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We greatly appreciate both the editor and the reviewers for the complimentary and construc-
tive suggestions on our paper entitled ”Robust 4D Climate Optimal Flight Planning in Structured
Airspace using Parallelized Simulation on GPUs: ROOST V1.0”. The manuscript has been mod-
ified following the reviewers’ comments and resubmitted for consideration for publication. Please
find attached a point-by-point response to the reviewer’s concerns. We hope that you find the
responses satisfactory and that the manuscript is now acceptable for publication.

For the sake of clarity the following criteria has been adopted throughout this document:

• Reviewer’s comments

• Authors’ responses

• Words changed or added to the paper after revision

Reviewer 1

Simorgh et al. present ROOST v1.0, an open-source Python library for 4D climate
optical flight planning in structured airspace with the capability for using GPUs for
efficient augmented random search. The authors introduce robust planning through
the consideration of uncertainties in standard weather forecasts using an ensemble
prediction system. The manuscript presents evaluation of the new model software
through the planning of a flight from Frankfurt to Kyiv using a Airbus A320-214 on
two different departure times representing scenarios with and without formation of
persistent contrails, and demonstrates a climate impact reduction of 15-55% corre-
sponding to 0.8-4% increase in operating cost. The work is novel and represents a
significant new model software development, especially its consideration of sources
of uncertainty, and is thus well fit for the scope of Geoscientific Model Develop-
ment. I have minor comments regarding the manuscript before recommending it for
publication.

• One of the main contributions in the study (L89-L92) is the determination of
optimized trajectory with fast computational efficiency. Could the authors elab-
orate on this fast computational efficiency, e.g., (1) how fast does the model run
for a given scenario for prediction:
Response: Thanks for this comment. Each iteration within optimization takes ≈ 4ms.
Thus, the computational time is almost proportional to the number of iterations specified
by the user. In Fig. (8) of the paper, it is shown that an acceptable optimality is achieved
with a maximum of 4000 iterations (i.e., ≈ 16s).

• (2) considering the use of GPUs, the GPU (particularly memory) requirements
for the model
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Response: The GPU memory requirements for the cases we run are essentially determined
by the size of the meteorological data in single-precision format (4 bytes per entry), which
comprises more than 90% of the total memory usage of the algorithm. Thus, for our case,
with a resolution of 12 variables per location, 8 time steps, 30 pressure levels, a latitude-
longitude grid with 106×176 points, and 10 ensemble members, we require:

12× 8× 30× 106× 176× 10× 4 ≈ 2149 million bytes = 2 GB

plus around 300 MB to store the trajectories. Thus, a dataset of this size allows the algorithm
to run on any modern graphics card in the market, while an input dataset with denser
resolution could require a higher-end card. As long as the memory requirements are met,
the algorithm will run, with the main potential difference between models being faster or
slower execution (as well as allowing a more powerful card to increase the number of search
directions at a small penalty in iteration time).

• and (3) the data requirements (e.g., EPS forecast data) for running the model?
Response: For running ROOST, we need an ensemble weather forecast in order to feed the
performance model with the meteorological variables (temperature, wind, geopotential) and
calculate aCCFs; a standard GRIB file in ECMWF format can be used and the preprocessing
routines within ROOST will generate the required arrays in the internal layout. In addition,
as ROOST considers the structured airspace, the route network needs to be inputted by the
user.

• If the computational efficiency is notable compared to other studies, it will be
useful to include comparisons to prior work as well, as flight planning is a time
sensitive operational task and would greatly benefit from improved computa-
tional efficiency if the improvements are significant compared to prior work or
those currently used in the aviation industry.
Response: Regarding a potential comparison with previous studies, we cannot easily offer
such a comparison; for, as we note in the introduction, we could not find any method in
the literature that addresses the full formulation of the problem that we tackle (as opposed
to partial formulations where, for example, the problem is solved only in the 2D case or
in the fixed-airspeed context). Outside the scientific literature, flight service providers do
have systems capable of computing realistic flight plans, but their exact capabilities, fea-
tures, performance, and algorithmic basis are not public. Therefore, we cannot make such a
comparison either.

• In this case, a brief description of how GPUs are used in the work and specific
optimizations for future readers’ reference will be very useful as well.
Response: Regarding how the code is implemented on GPUs and why it is beneficial, we
added the following text on Page 22:

As can be concluded, at each iteration, we generate 2n different vectors of decision vari-
ables (i.e., n search directions with θ + Sω and θ − Sω), and for each decision variable, we
sample NEPS flight plans. Therefore, we need to perform trajectory evaluation (i.e., TI)
2n×NEPS times for each iteration. As these calculations are similar (or very similar) and
independent from each other, the parallelization on GPUs is beneficial, enabling very fast
function evaluation.

We also included the information on the GPU model used for optimizing the case stud-
ies in the paper:
Simulations are launched on the NVIDIA GeForce RTX 3090 graphics card, providing 10496
CUDA cores at a clock speed of 1.4 to 1.7 GHz.

• A specific note on the code reproducibility. Because ROOST requires the BADA
license for representation of aircraft aerodynamics, the code provided cannot be
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evaluated as it is incomplete. I understand the authors are not totally in control
of this but it would be reassuring for the open-source nature of the software to
include a paragraph on potential future implementations of other open-source
aircraft performance models within ROOST, and if ROOST has the capabil-
ity/interfaces for it.

Response: This is unfortunately the case, we can not share BADA. We have taken the
suggestion into consideration and added the following paragraph in the code availability
section.

It should be noticed that the optimizer ROOST uses BADA4.2 (license granted for the ac-
tivities developed within FlyATM4E project) to represent the aerodynamic and propulsive
performance of the aircraft. Due to restrictions imposed by the BADA license, the current
version (in the GitHub repository) is incomplete, as three python scripts related to the used
aircraft performance model have been excluded (i.e., bada4.py, apm.py, and badalib.cu).
We are currently assessing the existing open-source aircraft performance models in order to
make the complete library available to the public. In principle, it is possible to use other
performance models as long as the functional specification (not necessarily the internal im-
plementation) is the same as the BADA point-mass model, i.e., the drag polar is a function
of the same variables, and so on. Otherwise, probably small modifications to the code would
have to be applied. Potential alternatives include the OpenAP model [1] and the model in
[2].

• L79: ”These studies suffer mainly from computational perspectives and some
restrictive assumptions (see Simorgh et al...)” could you briefly include some
examples of these restrictive assumptions? Also, it is unclear what is being re-
ferred to as ”computational perspectives”.

Response: We apologize for not being clear on this. In the revised version of the manuscript,
the following examples have been added.
However, these studies suffer mainly from computational perspectives (i.e., the computa-
tional time of the optimizer when considering weather uncertainty) and some restrictive
assumptions (e.g., inaccurate modeling of the aircraft dynamical model or ignoring impor-
tant decision variables such as the flight altitude) (see [3], Subsection 5.3). For instance,
in [4], a robust aircraft trajectory optimization problem is solved using the optimal con-
trol approach within fully free-routing airspace. In this approach, the effects of uncertainty
are included in the optimization problem by expanding the dynamical model of the aircraft
(almost) linearly to the number of ensemble members, resulting in a larger dimensional de-
terministic optimization problem; thus, it requires a higher computational time compared to
the deterministic flight planning problem. Besides, in [4], the optimization is limited to only
lateral path optimization. As for the structured airspace, Franco et al. ( [5]) proposed un-
certain flight plan optimization using mixed-integer linear programming (MILP). Similarly,
the optimization in this study is performed in 2D airspace. In addition, the fuel burn and
its associated nonlinearities are ignored, and it has a sizeable computational cost of several
minutes.

• Page 4, Table 1 - I suggest including ”This work” for easy comparison.

Response: Thanks for your suggestion. A row has been added to the table in the revised
version of the manuscript.

• L98: ”optimized trajectory is tracked as determined” is unclear. Do you mean
the optimized trajectory is deterministic but in fact takes into account the un-
certainty of the weather forecasts? Please clarify.
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Response: Yes, exactly. In fact, with the proposed trajectory optimization, the aim is to
determine a unique (or deterministic) flight plan optimized with respect to the performance
variables (e.g., operating cost and climate effects) obtained from all ensemble members. We
emphasized this part because one can solve n deterministic trajectory optimizations, each
considering one ensemble member, but in the end, n different flight plans will be gener-
ated. This does not address the robust trajectory optimization problem, as the realization
of uncertainty is not known before committing to a specific plan. Therefore, a robust opti-
mization problem needs to be formulated aiming at delivering a unique flight plan (including
lateral route, altitude profile, and speed schedule). In our practical context, the track of the
determined flight plan is enforced by an online controller (such as the autopilot and Flight
Management System).

• L190: How are ΨCST and ΨCLM selected?

Response: On Page 23, Line 485 of the original version of this manuscript, we presented
the approach we used for selecting ΨCST and ΨCLM . Generally, there is a trade-off between
the operating costs and climate effects, and they are also of different orders. The approach
we used is to have only one controlling parameter, called α, enabling the generation of alter-
native trajectories. Just to state it more clearly, a detailed description of the approach has
been included in the revised version of the paper as follows:

The weighting parameters of the objective function are selected as: ψCST = α [-] and
ψCLM = (1− α)K [USD/K], where K is a scaling (or conversion) factor determined as

K =
SOCclimate − SOCcost

ATRcost −ATRclimate
(1)

where for instance, SOCclimate is the SOC calculated when the optimization objective is only
the climate impact or ATRcost is the ATR when the objective is only SOC. α ∈ [0, 1] is a
weighting parameter that penalizes cost versus climate impact in which α = 0 is the pure
cost optimal and α = 1 is the pure climate optimal routing strategies. In the simulations, we
consider five different values for α in order to explore the trade-off between operating cost
and climate impact represented by SOC and ATR, respectively.

• The use of altitude and pressure in figures could be more consistent. e.g., Figure
2 uses 250 hPa which is standard for science but later results e.g., Figure 10 use
FL360, FL340, etc. which is standard for the aviation industry. To help readers,
it may be useful to add estimate of altitude in the Figure 2 legend (250 hPa is
approx. FL340), and vice-versa in other figures to help context.

Response: The authors agree with the reviewer. In the revised version of the paper,
we have presented them in flight levels.

• L227: ”nigh-time” → ”night-time”.

Response: Thanks for your precise look. The typo has been corrected.

• Figure 7: ”expected perfromace” → ”expected *performance*”

Response: Thanks. The typo has been corrected.

Reviewer 2

The paper by Simorgh and colleagues describes a python library for the climate-
optimal planning of flight trajectories within the structured airspace taking uncer-
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tainties in weather forecasts into account. The library is designed for parallel simula-
tion on GPUs. The cost function of the optimization problem considers operational
costs and climate impacts of aircraft emissions, whereas both factors can be weighted
individually. From what is written in the introduction, the presented work seems
to represent an important and novel contribution in the field of optimal flight plan-
ning. Overall the paper is relatively clearly written and the performance of the tool
is nicely demonstrated by two examples, a night-time flight from Frankfurt to Kyiv
during summer and a day-time flight on the same route during winter. My major
point of criticism is related to the length of the paper, which hinders readability.
Section 2 starts with a formulation of the deterministic climate-optimal flight plan-
ning problem, followed by the description of the aircraft dynamical model and the
cost function, which is to be minimized in the optimization problem. This subsection
(2.1.2) includes a rather detailed description on how the climate impact of aircraft
emission is determined. If I understand this correctly, this part has already been
published elsewhere. The paper continues with a section on uncertainties in weather
forecasts and how optimal flight planning problem has to be reformulated taking
these uncertainties into account. This means that several equations occur twice in
the paper, once with and once without uncertainty parameters. In my view this is a
bit confusing and the reader might easily lose the thread. Maybe the authors find a
more concise way to present their method, e.g. by moving some of the equations into
the appendix. Also, a short overview/schematic of the approach at the beginning of
Section 2 might help the reader to better understand the individual parts and how
they are connected. After some minor modifications (for details see attached pdf) I
recommend the manuscript for publication in GMD.
Response: Thanks a lot for your valuable suggestions. We have enhanced the readability of the
paper. For instance, we have divided Section 2 into two sections. In the revised manuscript, we
now start with the problem statement aiming to provide a clear overview of the paper. Then, we
directly formulate the robust climate optimal trajectory planning problem instead of first present-
ing the deterministic version. Thus, we avoid repeating formulations with and without uncertainty
effect.

• Which version of the aCCFs are used in ROOST? According to the statement in
L94 it is aCCFV1.1, but as far as I know CLIMaCCFv1.0 still uses the previous
version of the aCCFs? Please clarify.

Response: The CLIMaCCF V1.0 is the first release of the python library, which includes
both versions of aCCFs, i.e., V1.0 and V1.1. The selection of the version is a user-defined
option. The aCCFs V1.1 was published in Yin et al. 2022 and aCCF V1.1 is in prepara-
tion to be submitted to GMDD within the next weeks [6]. We clarified it in the revised
manuscript.
It should be noticed that CLIMaCCF V1.0 is the first release of the python library, which
includes both versions of aCCFs, i.e., V1.0 and V1.1. For performing aircraft trajectory
optimization in this study, we use aCCFs V1.1.

• I think it would be nice to present a very short discussion (i.e., trajectory op-
timization methods used for climate optimal flight planning) of the different
strategies, how they differ and their pros and cons.

Response: Thanks for your suggestion. In the revised version of the manuscript, the
following paragraph has been added to the introduction.
The mathematical programming methods only apply to simplified aircraft trajectory opti-
mization problems (e.g., in [7], the aircraft dynamics is represented with a linearised model).
The meta-heuristic methods (e.g., Genetic algorithm) requires very fast aircraft trajectory
prediction in order to find an optimal solution with a large number of iterations; thus, the
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flight planning problem is usually approximated with a simplified but representative enough
problem (e.g., in [8], the optimization is defined with 11 decision variables to character-
ize lateral path and flight altitude, and the speed profile is considered constant). Finally,
with optimal control methods, the capability to model more accurate aircraft trajectory
optimization problems is provided since the problem is represented as a dynamical opti-
mization problem. However, there are some drawbacks to solving the formulated problem.
The dynamic programming method (as an optimal control approach) results in the ”curse of
dimensionality” for complex problems (e.g., a full 4D aircraft trajectory optimization prob-
lem). Regarding the indirect optimal control approach, deriving analytical solutions using
Pontryagin’s maximum principle is daunting, especially for problems with singularities (e.g.,
only a 2D trajectory optimization problem has been addressed in the literature [9]). The
direct optimal control approach, despite being very flexible in modeling aircraft trajectory
optimization problems (e.g., considering a full 4D dynamical model with nonlinear path and
boundary constraints [10]), has a high sensitivity to initial conditions and, thus, local op-
timality is its main drawback. Besides, considering the airspace structure with indirect and
direct optimal control methods is not straightforward. Readers are referred to [3] for a more
detailed description of these methodologies and a review of studies employing them.

• Does this mean that crew salaries are also related to flight time and burned fuel?

Response: Crew salaries are calculated based on flight time (generally by a constant index
[x EUR/hour] * flight time [hour]). In the original version of the paper, it was written:

”In spite of considering only flight time and fuel burn to represent the operating cost, it
was reported in Table 4 of Yamashita et al. (2021) [8] that employing simple operating
cost (SOC) and a more comprehensive metric such as cash operating cost (COC) within
trajectory optimization delivered almost similar results. This is mainly related to the con-
sideration of time and fuel burn to calculate costs of other aspects such as crew’s salaries.”

In fact, if we look into all the terms of both functions, we find that SOC and COC are
functions of ”flight time” and ”burned fuel”. Therefore, the crew salaries are considered in
SOC and also COC; the salaries are calculated using flight time. In the revised version of
the manuscript, we clarified this.
This is mainly due to the fact that these two metrics, in the end, consider flight time and
fuel consumption as inputs to estimate the operating cost.

• The aCCFs by default use a pulse emission scenario, which is not suited for
assessing climate impacts of aviation? Why is P-ATR20 then used? And what
is the advantage of F-ATR20? And how is the conversion done? Please provide
more information here, this section is very confusing.

Response: Thanks for this comment. We have modified the section related to aviation-
induced climate effects according to your suggestion. For instance, regarding this comment,
we added the following paragraph in the revised manuscript:
The selection of a suitable metric depends on the question to be answered (see Grewe &
Dahlmann 2015 [11] for more details); therefore, different questions require the use of dif-
ferent metrics. The P-ATR20 metric was selected as a metric for the aCCFs, to assess the
impact of a simple pulse emission. However, factors are available (see [12]) to convert P-
ATR20 to some available metrics, for example, assuming the future emission scenario or
longer time horizons. This way, one can select the emission scenario and time horizon that
are best suited for their question. Here, the F-ATR20 metric is used to assess the climate ef-
fect reduction obtained by steadily applying a specific routing strategy under the assumption
of a future business-as-usual emission scenario. The climate metric conversion factors were
derived by simulations with the climate response model AirClim ( [13]): one simulation with
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pulse emission and one with the future emission scenario. By comparing the two simulations,
the factors can be derived.

• I checked the paper by Dietmuller et al., but could not find a detailed descrip-
tion. Again, please provide some more information here. It is a bit tedious for
the reader to check several other studies just to get an idea of how certain things
are done.

Response: We added the following paragraph in the revised manuscript.
Efficacies were introduced to take into account that the radiative forcing of some non-CO2
forcing agents (e.g., ozone, methane, contrails) is less or more effective in changing the global
mean near-surface temperature per unit forcing compared to the response of CO2 forcing
(see [14], [15]). In Dietmuller et al. ( [12]), the efficacy parameters reported by Lee et al.
2021 [16] are summarized. For a detailed explanation of efficacy, the reader is referred to
the state-of-the-art literature (e.g., Ponater et al. 2006 [15]; Rap et al. 2020 [17]; Bickel et
al. 2020 [18]).

• educated guess factors, What is meant here?

Response: The educated guess factors describe the calibration factors that were used to
develop aCCF-V1.1. The aCCF-V1.1 was calibrated to the state-of-the-art climate response
model AirClim (Dahlmann et al., 2016 [13]). A detailed description of this calibration pro-
cess will be given in the publication of Matthes et al. 2023 (in preparation for GMDD [6]).
We changed” educated guess factors” to ”AirClim calibration factors.” In the case of aCCF-
V1.1, we also use the term ”aCCFs calibrated to AirCLim” or simply aCCF-V1.1.

• Methane is not induced by NOx.

Response: Here with “NOx-induced methane” we referred to the NOx-induced effect on
methane, i.e., the decrease in atmospheric concentration of methane due to NOx emissions
from aircraft [19]. In the revised manuscript, we reformulate to “NOx-induced ozone (pro-
duction), NOx-induced methane (destruction)”.

• typical transatlantic fleet mean values, Typical values of what?

Response: As aCCFs are given in different units (see Yin et al. 2022), we need to convert
them to the same unit in order to combine them into a merged aCCF (See Dietmueller
et al. 2022 [12]). This conversion is done by multiplying the individual aCCFs by using
typical transatlantic fleet mean values from the literature. Here we use 13 g(NO2)/Kg(fuel)
(Graver and Ruherford, 2018 [20]) for NOx emission indices (in case of the aCCF of ozone
and methane) and 0.16 km/kg(fuel) (Penner et al., 1999 [21]) for flown distance per kg burnt
fuel (in case of contrail aCCF).

It should be noted that such a conversion is done only to show the pattern of the merged
aCCFs. In the optimization, we use Boeing Fuel Flow Method 2 to calculate the NOx emis-
sion index, distance flown in persistent contrail formation areas, and fuel consumption to
represent climate effects associated with all species in Kelvin.

• (ICAO) data bank, Is there a citation for this?

Response: We have cited the ICAO data bank in the revised manuscript.

• I do not understand why you do not simply use a current weather forecast
ensemble. If you want to provide an example, I think it should be as close as
possible to a real application case.
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• Again, I would prefer an example with real weather forecast data and not ERA5
reanalysis data. I would assume that the spread in forecasts is larger, although
I have to admit that this depends probably strongly on the weather situation.
Please comment on this.

Response: We provide our answer to the two comments since they are related. First,
it should be mentioned that we are aiming at quantifying the mitigation potential. Thus,
we want to assess the savings (in terms of climate impact) and the associated cost the flight
could have achieved in reality. To that end, using the weather (the reanalysis, with as-
similated values) that provides the best approximation to reality seems plausible. This is
important for quantifying the cost of mitigation climate and establishing policy-based in-
centives. Otherwise, we would be incorporating the uncertainties associated with the errors
in the weather prediction systems, resulting in biased results. The decision to use ERA5
reanalysis data products was taken in the framework of the FlyATM4E project. In addition
to this, there is a practical reason: ERA5 is publicly available (which is not the case of
high resolution EPS), allowing the inclusion of the data in the repository of the library for
reproducing the results.

From the computational perspective, using forecast data with more ensemble members does
not introduce challenges. Within ROOST, one needs only to specify the number of ensemble
members. In the following, we present an example of ROOST with the ECMWF forecast
data containing 50 ensemble members.

It can be seen that results (given in Figs. (1,2)) are similar to the ones have been presented
in the paper using reanalysis data. For instance, for this case, the aircraft tends to fly at
relatively lower airspeed mainly to avoid forming warming contrails. Looking at the Pareto
frontier, it can be seen that for this case, the uncertainty in the quantified operating cost is
relatively higher than the results in the paper with reanalysis data. This mainly related to
the higher variability in the components of winds compared to the scenarios considered in
the original manuscript.
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(a) Flight level, fuel consumption, true airspeed, and NOx emis-
sions.
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(b) Lateral paths depicted with aCCF of contrails as colormaps.

Figure 1: Results of ROOST using ECMWF forecast data containing 50 ensemble members (9th

of June 2018, 0000UTC) for different routing options (i.e., α’s).
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(b) Flight level, fuel consumption, true airspeed, and NOx emis-
sions.

Figure 2: Results of ROOST using ECMWF forecast data containing 50 ensemble members (9th

of June 2018, 0000UTC) for different routing options (i.e., α’s).

• What does TI stand for? Time integration?

Response: TI stands for trajectory integration of the aircraft dynamical model with re-
spect to a given flight plan, a realization of weather data, and initial flight conditions. In
the revised version of the paper, we have introduced TI.

• How is a NOx-sensitive region defined? Is not any region more or less NOx-
sensitive?

Response: The aCCF of NOx emissions provides spatiotemporally resolved information
on the sensitivity to aircraft NOx emission in terms of climate change. Thus, with NOx-
sensitive regions, we are referring to the climate impact evaluation using the aCCF of NOx
emissions.

• I have no experience/feeling for the variability in the initial mass of an aircraft
at departure, but a standard deviation of 10 kg, given a mean of 61600 kg seems
to be very small.

Response: The selected standard deviation of initial aircraft mass does not have prac-
tical justification and was chosen only to consider uncertainty in initial flight conditions. In
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the revised version of the paper, we rerun the simulations considering the standard deviation
of 11 min for initial flight time in order to make the associated mean absolute error (MAE)
match the corresponding MAE in take-off time prediction closest to the estimated off-block
time in [22]. Regarding the initial mass, we use the standard deviation of 162 Kg, a number
that has been derived for a passenger count of 140 by assuming that their weights are inde-
pendent samples from the anthropometric tables of the adult Spanish population [23], plus
baggage with a standard deviation of 5 Kg. Here we present the results of scenario 13th of
June 2018, 0000UTC. In the revised version of the manuscript, we have updated the results
with the new simulations.
It can be seen in Figs. (3, 4) that the results are very similar to the previous cases (i.e.,
with a standard deviation of 10kg). This is due to the fact that the defined objective for op-
timization considers the expected fuel consumption and the expected flight time, and since,
for this scenario, the impact of wind uncertainty is not considerable, almost similar results
are obtained.
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(b) Lateral paths depicted with aCCF of contrails as colormaps.

Figure 3: Results of ROOST: (13th of June 2018, 0000UTC) for different routing options (i.e.,
α’s).
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Figure 4: Results of ROOST: (13th of June 2018, 0000UTC) for different routing options (i.e.,
α’s).

• What are acceptable increases in operating costs, and who defines what is ac-
ceptable? Airlines might have a different definition than climate scientist.

Response: The authors agree with the reviewer. In fact, the main reason that we gen-
erate alternative solutions (i.e., Pareto-optimal solutions) is to study the existing trade-off
between the operating cost and climate effects for each scenario, enabling more efficient
decision-making. In the text, by the acceptable increase in operating cost, we refer to those
points in Pareto-frontiers with relatively large climate effects mitigation potential at a limited
increased cost (typically less than 3%).

• I am wondering how applicable this optimization procedure is in real life? In the
shown examples, only one flight track has been optimized, but in reality there
are hundreds of flights at the same time and aircrafts have to stick to a certain
schedule. So how much flexibility is there in reality for such an optimization
approach?

Response: Thanks for raising this point. In the paper, with operational applicability,
we are referring to the consideration of the full 4D aircraft dynamical model, the current
structure of airspace, and the generation of unique (or deterministic) flight plans despite
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considering all potential weather scenarios characterized using ensemble weather forecasts
and being computationally very fast.

However, we need to mention that in this study, we dealt with climate-optimal trajectory
planning from the micro-scale (i.e., trajectory level) perspective. The following paragraph
has been added to the revised paper (Discussion section) about the operational feasibility of
climate optimal routing strategy at the network scale.

One of the next steps should be analyzing the feasibility of such a routing strategy for real
traffic scenarios. In fact, the ATM is a complex multi-agent system that cannot be repre-
sented by individual elements but by their collective behavior at the network scale. It was
shown in the paper that for the climate-optimal routing options, the aircraft tends to fly at
relatively lower altitudes compared to the cost-optimal one. Such behavior to avoid climate-
sensitive areas may result in more congested areas, raising some challenges, particularly the
increased workload, complexity, and conflicts. Thus, the mitigation potentials reported at the
micro-level may not be achievable considering real traffic scenarios. Therefore, after generat-
ing climatically optimal flight plans, one needs to assess the fostered effects at the network
scale and perform a resolution (typically modeled as an optimization problem) to re-stabilize
ATM system by compensating for the negative impacts while keeping the modified trajecto-
ries as close as possible to inputted climate-optimized ones. The assessment of manageability
of climate-optimal trajectory planning at the ATM system is called macro-scale analysis and
lies outside the scope of this paper (see [24]) for a study in this area.

• Are all daytime contrails cooling contrails, or only when they exceed a certain
optical thickness? Could you add a reference?

Response: No, not all daytime contrails are cooling. The net radiative forcing from contrail
results from the combined effects of interacting with the incoming short-wave (SW) solar
radiation and with the outgoing long-wave (LW) radiation. Therefore, a contrail during
daytime can have a cooling effect, but only if the negative (cooling) SW radiative forcing ex-
ceeds the positive (warming) LW radiative forcing. The values of the SW and LW radiative
forcings depend, for example, on the contrail optical thickness and the solar zenith angle
(see [25], [26] (BOX 2), and [27] (diurnal cycle of contrails RF))

• Would you expect different aCCFs for other regions? If so, why? And would it
be necessary to have different aCCFs for different regions or would it be possible
to come up with a globally valid aCCF?
Response: aCCFs have been developed for the North Atlantic Flight Corridor during
typical synoptical summer and winter situations. Thus aCCFs at other locations or seasons
should be carefully evaluated. For the geographical region of Europe, we are quite confident
that the aCCFs are valid, as the summer and winter days were characterized by weather
patterns that also highly influence the weather of Europe. However, e.g., in the tropics
region, we expect significant differences in the aCCFs, as here, the synoptical situation is
different. Further research is needed to expand the geographical location and time coverage
of the aCCFs.

• This sentence is almost identical to the first sentence of the discussion section.
In general, there is a lot of redundant information, which makes the paper rather
lengthy. In my opinion, the paper would benefit from some shortening and a
more concise language. For example, Section 4 and 5 could be merged.

Response: We considered the reviewer’s suggestion for reducing the length of the paper
and increasing its readability.

************************************************************
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Once again, we express our sincere gratitude to the reviewers and the editor-in-chief for the
time they spent to review this paper and for their useful and constructive comments. We hope
that the revised version of the paper addresses the concerns of the reviewers.

The authors
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