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Abstract.

eyeles: Numerical simulations have shown that finescale structures such as fronts are often suitable places for the generation of
vertical velocities, transporting subsurface nutrients to the euphotic zone and thus modulating phytoplankton abundance and
community structure. Sinee-several-years For the past several years, observations have concentrated on nutrient fluxes along
these structures. Instead, direct in situ estimations of the phytoplankton growth rates are much less numerous ; although difficult
to obtain, they provide & precious information on the ecosystem functioning. Here, we consider the case of a front separating
two water masses characterized by several phytoplankton groups with different abundances, in the southwestern Mediterranean
Sea. In order to estimate poss1ble differences in grewing growth rates, we-used-an-adaptive-and-Lagrangian-samplingstrategy

es- we measured the phytoplankton diurnal cycle in these
two water masses as identified by an adaptive and Lagrangian sampling strategy. Fhe-use-of-a A size-structured population
model was then applied to these data to estimate the growth and division loss rates for each phytoplankton groups identified
by flow cytometry, showing that these two population parameters are significantly different on the two sides of the front, and
consistent with the relative abundances. Our results introduce a general method for estimating growth rates at frontal systems,

paving the way te for in situ exploration of finescale biophysical seerarios interactions.

1 Introduction
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2016, évy-etal52018)- Phytoplankton forms the basis of the marine food web (Sterner and Hessen, 1994) and plays a crucial

role in biogeochemical processes, including the efficiency of the biological carbon pump, i.e., fixing CO4 and exporting it into

the ocean depth (Field et al., 1998; De La Rocha and Passow, 2007). This process is critical for global ocean sequestration of
carbon and therefore for the modulation of atmospheric CO5. Furthermore, the biological carbon pump is also modulated by
the size structure of the phytoplankton community. Small or large phytoplankton species are associated with different efficien-
cies for particle export, remineralization, and transfer to the deep ocean (Boyd and Newton, 1999; Guidi et al., 2009; Hilligsge
et al., 2011; Mouw et al., 2016, etc). Phytoplankton is also responsible for half of the primary production of the planet (Field
et al., 1998), while its biomass is only < 1 % of the global biomass (Winder and Cloern, 2010). Thanks to photosynthesis, phy-
toplankton fuels the ocean in free Os. That is why, it is primordial to understand the factors that rule phytoplankton abundance
and diversity.

"Finescale" refers to ocean dynamical processes induced by mesoscale interactions and frontogenesis (Capet et al., 2008b, a;
McWilliams, 2016; Lévy et al., 2018). Finescale structures are characterized by a small Rossby number, horizontal scale
of the order of 1-100 km, and a short lifetime (days—weeks). Numerical simulations and remote sensing observations have
demonstrated that finescale lifetime is often similar to the phytoplankton growth timescale, suggesting that finescale processes
can affect and modulate the phytoplankton community. Different physical processes associated with finescale structures are
able to generate vertical velocities, such as deformations of the flow and spatial inhomogeneities (Giordani et al., 2006), eddy
perturbation (Martin and Richards, 2001; Pilo et al., 2018), linear Ekman pumping (McGillicuddy Jr et al., 1998; Gaube et al.,
2015), or eddy-wind interactions (McGillicuddy Jr et al., 2007). Previous studies have well established that vertical motions
impact biogeochemistry (Mahadevan and Tandon, 2006; Mahadevan, 2016; McGillicuddy Jr, 2016). Upward vertical velocities
drive deep nutrients into the euphotic layer and also move the phytoplankton cells along the water column resulting in changing
light conditions. However, most of the in-situ studies related to the physical-biological coupling at finescale have focused
on extreme situations occurring in coastal upwelling regions (Ribalet et al., 2010) and in boundary currents (Clayton et al.,
2014, 2017), where intense fronts and dramatic contrasts in water properties are found but are not representative of the global
ocean. Indeed, vast oceanic regions are dominated by weak fronts continuously created, moved and dissipated, which separate
different water masses with similar properties (Lévy et al., 2018). Howevermeost-of-the-works-havefocus-on-the-estimation
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sample-insita-with-elassical methods-ef-ebservation- The ephemeral nature of these finescale structures makes them particularly

difficult to sample in situ with classical methods of observation. That is why, new sampling strategies were required to track

these finescale structures. Some recent cruises have used remote sensing and numerical simulations to define the sampling

strategy allowing to target and measure finescale features with physical sensors at high frequency (Shcherbina et al., 2015;

al2048)- Concerning the biological variables, although progress in the understanding of phytoplankton cell cycle has been
obtained from incubation, sample manipulation (Worden and Binder, 2003) and models (Geider et al., 1997; Maclntyre et al.,
2000), performing in situ measurements at high frequency and resolution is a necessity to better understand these biological
processes and their responses to the environment. An efficient solution is to lead Lagrangian cruises using automated flow

cytometers sampling at high frequency in order to resolve the phytoplankton diurnal cycle in situ, which is challenging using

more conventional methods such as cultures or counting by optical microscopy (Thyssen et al., 2008; Fontana et al., 2018).
The PROTEVSMED-SWOT cruise was performed in the southwestern Mediterranean Sea, south of the Balearic Islands
(Dumas, 2018; Garreau et al., 2020) with the aim to study the physical and biological coupling at finescale. ;—adopting—a

Lagranctan-adaptive-samplingstrategy- This-appreach-consists-inusingremeotesensing-produ

characterized by the presence of both fresh surface waters coming from the Atlantic (AW) and more saline waters from the
Mediterranean region (Millot, 1999; Millot et al., 2006). AW enters the Mediterranean Sea through the Strait of Gibraltar
and then forms a counterclockwise circulation along the continental slope of the western Mediterranean basin, caused by the
combination of the Coriolis effect and the topographical forcing (Millot, 1999; Millot and Taupier-Letage, 2005; Millot et al.,
2006). In the southwest part of the basin, this circulation is dominated by the Algerian Current (AC), which can form meanders
and mesoscale eddies due to baroclinic and barotropic instabilities (Millot, 1999). These eddies spread over the basin and join
the study area south of the Balearic Islands, carrying with them the newly arrived AW, known as younger AW. In this region,
the younger AW encounters the older AW sometimes also called resident AW (Balbin et al., 2012) or local AW (Barcelé-LIull
et al., 2019). The older AW is AW modified by cooling and evaporation during its progression along the northern part of
the western Mediterranean basin. The encounter between these two AW often generates finescale frontal structures (Balbin
et al., 2014). To our knowledge, except for the works of Balbin et al. (2012, 2014) and the glider experiments of Cotroneo
et al. (2016) and Barcel6-LlIull et al. (2019), very few studies have been performed in this region and these frontal finescale
structures have been scarcely sampled due to the difficulty of performing in situ experiments over these short-lived and small

features. Thanks-to-this-strategy-it-was-possible-to-identify During the PROTEVSMED-SWOT cruise a Lagrangian adaptive

sampling strategy was performed across a moderately energetic front separating two distinct AW at different stage of mixing
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at: The first AW located south of the front is characterized by
absolute salinity (S ) between 37 gkg ™! and 37.5 gkg ™!, is-named corresponding to the younger AW recently entered into

the Mediterranean Sea. Whereas-the-second-AW;referred-as—older-AW

a-higher-S1(37-5-eke—1 to-38-eke—1): Whereas north of the front, the AW referred to the older AW, is characterized by a
higher S4 (37.5 gkg ! to 38 gkg™1). Tzortzis et al. (2021) have also observed contrasted phytoplankton abundances were

"

observed in these two water masses, with the smallest phytoplankton such as Synechococcus dominating south of the front in
the younger AW, while microplankton was more abundant north of the front in the older AW. This-study As a consequence,
our previous study constitutes an important improvement in the understanding of the role of frontal structures at finescale on
phytoplankton distribution in a moderately energetic ocean. Nevertheless, open questions remain concerning the mechanisms
generating the this observed distribution. Is it exclusively driven by the dynamics of the ocean currents ? What is the role
of biological processes ? In the present study, we attempt to explain the particular patterns of phytoplankton abundances

observed by automated flow cytometry during the PROTEVSMED-SWOT in the frontal structure, using the size-structured

population model of Sosik et al. (2003).

- The objectives of our study are to assess whether
the observed contrasted abundances across the front were due to different growth and loss rates. Using high-frequency flow
cytometry measurements across the front dividing two water masses, we were able to separately analyze each phytoplankton

functional group and reconstruct their biovolume dynamics over a diel cycle in each water mass.

2 Materials and methods

2.1 The Sampling strategy




125

130

135

140

145

150

155

The PROTEVSMED-SWOT cruise, dedicated to the study of finescale dynamics, was conducted in the south of the Balearic
Islands between April 30th and May 18th 2018, on board the R/V Beautemps-Beaupré (Fig. 1a). This cruise followed an

adaptive Lagrangian strategy to measure at high spatial and temporal resolution several physical and biological variables
with both in situ sensors and analysis of the sea surface water intake. The vessel route was designed ad-hoc on the basis
of daily remote sensing dataset provided by the Software Package for an Adaptive Satellite-based Sampling for Oceano-
graphic cruises (SPASSO, https://spasso.mio.osupytheas.fr, last access: April 22, 2023). SPASSO used altimetry-derived cur-
rents from the Mediterranean regional product (nrt_med_allsat_phy_l4) AVISO (“Archiving, Validation and Interpretation of
Satellite Oceanographic”, https://www.aviso.altimetry.fr, last access: April 22, 2023) and ocean color observations. Chloro-
phyll a concentrations ([chla], level 3, 1 km resolution, MODISAqua and NPPVIIRS sensors combined (after May 27,
2017) into a new product called MULTI) were provided by CMEMS, “Copernicus Marine Environment Monitoring Service”,
https://marine.copernicus.eu, last access: April 22, 2023. In addition, CLS provided the surface Chl concentration composite
products, with the support of the CNES. They were constructed using a simple weighted average over the previous 5 days of
data gathered by the Suomi/NPP/VIIRS sensor. SPASSO generated maps of dynamical and biogeochemical structures in both
near real time (NRT) and delayed time (DT). Maps of [chla] allowed us to identify two water masses, characterized by distinct
[chla] values and separated by a zonal front at around 38° 30° N. This front was also detected using in situ horizontal velocities,

temperature and salinity, as described in Tzortzis et al. (2021). These two water masses were sampled along a designated route
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of the ship, represented in black in Fig. 1b. Special attention was paid to adapting the temporal sampling in order to measure
the phytoplankton diel cycle in each water mass. This was achieved by continuously sampling across both water masses along
transects. While the ship did not remain in each water mass for 24h, day-to-day variability remained low and measurements
from several days were combined into one diel cycle (Fig. 1¢). The shape depicted by the ship’s track led us to call these areas

north—south (NS) hippodrome (bold black line in Fig. 1b) performed between 11 May and 13 May 2018.

2.2 In situ measurements
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During the cruise, the irradiance (wavelengths between 400 and 1000 nm) was measured by a CMP6 pyranometer (Kipp and
Zonen; https://www.campbellsci.fr/cmp6, last access: April 22, 2023). Temperature and salinity were measured by a thermos-
alinograph (TSG). The TSG was equipped with two sensors: a CTD Sea-Bird Electronics SBE 45 sensor installed in the wet
lab, connected to the surface water and which continuously pumped seawater at 3 m depth ; and an SBE 38 temperature sensor
installed at the entry of the water intake. The TSG measurements were taken every 30 min, which corresponds to around 2
km spatial resolution at typical ship speeds. The data were converted into conservative temperature (0) and absolute salinity
(S4) using the TEOS-10 standards of McDougall et al. (2012). To automatically sample and analyze phytoplankton cells, an
automated CytoSense flow cytometer (CytoBuoy, b.v. ; (Dubelaar et al., 1999; Dubelaar and Gerritzen, 2000)) was installed
on board and connected to the seawater circuit of the TSG. The flow cytometer sampled the seawater in a dedicated small
container called “subsampler”. The subsampler isolates the seawater every 30 min which allows us to ignore the movement
of the ship, while the flow cytometer performed its analysis. Between two consecutive samples the subsampler was flushed
continuously by the seawater circuit of the ship in order to clean and renew the seawater. A sheath fluid made of 0.1 um filtered
seawater stretched the sample in order to separate, align, center and drive the individual particles (i.e. cells) through a laser
beam (488 nm wavelength). Several optical signals were recorded when each particle crossed the laser beam: the forward angle
light scatter (FWS) and 90° side-ward angle scatter (SWS), related to the size and the structure (granularity) of the particles.
Two distinct fluorescence emissions induced by the light excitation were also recorded, a red fluorescence (FLR) induced by
chlorophyll a content and an orange fluorescence (FLO) induced by the phycoerythrin pigment content. The CytoUSB software
(Cytobuoy b.v.) was used to configure and control the flow cytometer and set two distinct protocols. The first protocol (FLR6)
was dedicated to the analysis of the smaller phytoplankton, using a red fluorescence (FLR) trigger threshold fixed at 6 mV,
and a volume analyzed set up at 1.5 mL. The second protocol (FLR25) targeted nanophytoplankton and microphytoplankton
with a FLR trigger level fixed at 25 mV and an analyzed volume of 4 mL. The FLR trigger was used to discriminate the
red fluorescing phytoplanktonic cells from other particles (such as heterotrophic prokaryotes, nanoflagellates, ciliates, etc.).
Recorded data were analyzed with the CytoClus software (Cytobuoy b.v.) which retrieves information from the 4 pulse shapes
curves (FWS, SWS, FLO, FLR) obtained for every single cell. These curves were then projected into distinct two-dimensional
planes (cytograms) by computing the curves’ integral. Using a combination of various cytograms (e.g., FWS vs. FLR, FLO
vs. FLR) allows us to determine optimal cell clusters (i.e, cells sharing similar optical properties). These clusters have been
demonstrated in the literature to represent phytoplankton functional groups (PFGs) (Dubelaar and Jonker, 2000; Reynolds,
2006; Thyssen et al., 2008; Edwards et al., 2015; Thyssen et al., 2022). Finally, the PFGs abundance (cells per milliliter) and

mean light scatter and fluorescence intensities were extracted from each sample.

2.3 The size-structured population model
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We used the size-structured population model described by Sosik et al. (2003) and adapted by Dugenne et al. (2014) and

Marrec et al. (2018), to estimate the in situ growth rates of every phytoplankton group identified by the CytoSense flow cy-
tometer, in the older AW and the younger AW. Before applying the model, we reconstructed a daily cycle of 24 h in the two
water masses for each phytoplankton group. We use the term reconstruction because the ship did not spend 24 h in a row in
each water mass but sailed along two routes, each forming a sort of racetrack passing alternately through the two water masses
(Fig. 1b, 1c). By eliminating the dates and keeping the associated sampling times, the 24-hour diel cycle can be reconstructed
for each water body (Fig. 1c). This relies on the hypothesis that the phytoplankton community and dynamics remained similar
over the two days, and that hydrology and physics for each water mass remained alike during sampling. We also reconstructed
the 24-hour irradiance in the two water masses (Fig. A2), because one of the most important parameters of this model is irra-

diance, since cell growth is dependent on light exposure due to photosynthesis.

The model of Sosik et al. (2003) uses as input the phytoplankton cell volume (biovolume) derived from cell light scatter
intensities (FWS) (Eq. 1). Biovolumes were estimated using coefficients previously obtained by measuring a set of silica beads
with the flow cytometer following the same settings used for phytoplankton analysis. The coefficients 3y and /31 used to convert
FWS (arbitrary units, a.u.) to biovolume v (um?) were derived from a log-log regression between FSW and silica bead volumes.

These methods come from the studies of Koch et al. (1996) and Foladori et al. (2008).

v =exp(By) x FWSA (1)
with in our case 31 = 0.9228 and [y = - 5.8702
In the size-structured population model, cells are classified into several size classes according to their dimensions at time ¢.

Classes are logarithmically spaced as follows: for ¢ in 1,2,....m v; = vy 2(i=1)Av ywhere Aw is constant and chosen to ensure

that size classes cover the entire observed biovolume v, from vy to v,,, (Fig. 2). For Synechococcus, Av = 1/6 with Av constant
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and m = 40, so that the model size classes encompassed our full measured size distributions (0.0279-2.5209 pm).

At any time ¢, the number of cells in size classes N (and w its corresponding normalized distribution), was projected to ¢ 4 dt

via matrix multiplication (Eq. 2):

A(t)N(t)
N(t+dt) = A(t)N(t) and W(t+dt) = )
>_A(N(t)
We chose dt = 10 min (i.e., 10/60 h) as Sosik et al. (2003) and Dugenne et al. (2014), because for this time step, cells are

unlikely to grow more than one size class.

A(t) is a tridiagonal transition matrix that contains:
1) 7y : the probability of cellular growth
2) §: the probability of cells entering mitosis

3) the cells stasis, i.e., the probability for cells to maintain their state (i.e size) in equilibrium during the temporal projection.

Probability of cellular growth

The probability of cells growing to the next size class () depends only on the light intensity (irradiance) necessary for photo-

synthesis, expressed as (Eq. 3):

V() = Vmaz - (1 = exp(=E(t)/E7)) 3)

Ymaz: Maximum proportion of cells growing (dimensionless quantity)
E: irradiance (uEm=2s71)

E*: irradiance normalizing constant (WEm =2 s~ 1)

Probability of cells entering mitosis

According to Dugenne et al. (2014), § expresses a proportion (between 0 and 1) modeled by the combination of two Normal
distributions (N). One is linked to the cell size, the other is linked to the time of cell division. Both imply an optimum, reached

at v and t respectively, for cell division above which the cell size and the timing of division is suboptimal (Eq. 4).

5(t,0) = SpmaaN (0,6 )N (t,02) 4

Ymaz: Maximum proportion of cells entering mitosis (dimensionless quantity)

¥: mean of the size Normal distribution (um?)

10
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0, standard deviation of the size Normal distribution (um?)
t: mean of the time Normal distribution (h)

o, standard deviation of the time Normal distribution (h)

Cells stasis

A third functional proportion is included in the transition matrix A(t), to represent cell stasis. Since this function illustrates a

non-transition, it is modeled by the proportion of cells that neither divided nor grew between ¢ and ¢ + dt (Eq. 5).

[1=~(@®][1 —0(t,v)] ©)

Optimal parameters

The set of parameters, 6 is estimated by maximum likelihood function, assuming errors between observed w and predicted w
normalized size distributions (Eq. 6, 7, 8). Their standard deviations are estimated by a Markov Chain Monte Carlo approach
(Geyer, 1992; Neal, 1993) that sample 6 from their prior density distribution, obtained after running 200 optimizations on
bootstrapped residuals to approximate the parameter posterior distribution using the normal likelihood. (The likelihood function

represents the probability of random variable realizations conditional on particular values of the statistical parameters).

0 = [Ymazs B, Omaz, 0,00, t,0¢] = argmm(z (9)) (6)

t+dt m

OEDS Z (W(t) —W(t,0))* )

N(t,0) = A(t — dt,0)N(t — dt) (®)

w is computed from N following Eq. 2. The fit of the model is quantified using two numbers: the loss rate (> (), lower
indicates better fit), and the correlation between the observed and modeled mean biovolumes v, and vy, .4 Over the diel cycle

(corr(Uobs, Umod ), higher indicates better fit). Table 1 provides the model parameters being optimized.

Growth rate and loss rate

Once optimal parameters are identified, the model estimates a population intrinsic growth rate i4;,., and a specific loss rate [,

integrated over a 24 h period. The method uses the fact that the observed size distribution N is the result of both growth and

11
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loss processes, while the time projection of the initial size distribution N(0) using the model, N, is only the result of growth
processes. The growth rate is calculated at each time step following Eq. 9, and integrated over 24 h. 200 iterations by a Markov

Chain Monte Carlo were run to estimate the standard deviation of group-specific growth rates.

1 Y Ni(t+dt)
Msize(t) = gln(m

1: 1 th size class

) )

N: predicted size distribution (cells cm™2)
m: number of size classes

dt: time step (h)

[size: growth rates d"h

An independent growth rate estimation was obtained as ft,qtio = IN(Umaz /Umin) Where Upip and Up,q, are the minimum and
maximum of the mean observed biovolume v, over the diel cycle (Marrec et al., 2018). fi,-4+i0 Tepresents a minimum estimate
of the daily growth rate, that would be observed if cells synchronously only grew from the time v,,;, is observed (typically
dawn) to the time v, is observed (typically dusk), and only divided while v decreases. Since the model allows for any cell to
grow, divide or be at equilibrium over the entire integration period (asynchronous populations), fis;.. is expected to be higher
than pu,.q1i0. In practice, pi,q1i0 1S sensitive to noise in the data and is only provided here as an alternative estimate of the growth

rate that does not rely on the model.

The population loss rate [ is obtained by difference between the intrinsic growth rate jig;..(t) and the temporal change in

logarithmic observed size distribution N, which represents the net growth rate 7 (t) = ;.. (t) — L(¢) so that:

t

[ 1 N(t+di)
_ / psee(t) = I~ (10)

3 Results

+ Moved into Appendices
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3.2 Spatio-temporal distribution of phytoplankton abundances in the two water masses

The sampling strategy adopted during PROTEVSMED-SWOT enabled us to sample two water masses with different proper-
ties. The map of the satellited-derived surface [chla] shows higher concentration in the northern part of the sampling route,
corresponding to the older AW, than in the southern part, corresponding to the younger AW (Fig. 1b). Figure 3 shows the prop-
erties of the sea surface water as a function of time (from 11 May 00:00 to 13 May 12:00 UTC) along the sampling route. The
older AW is characterized by a colder temperature and higher valaes-of salinity than the younger AW. Figure 3 also displays
the abundances of each phytoplankton group over these two water masses. Synechococcus and Pico2 are the most abundant.
They present a clear surface distribution pattern, with high abundances in the warm and low salinity water, corresponding to
the young AW. A similar distribution is observed for Picol, Pico3 and RNano but with lower abundances than Synechococ-
cus and Pico2. The abundances of SNano, PicoHFLR and Cryptophyte show less contrasts along the cruise than the previous
groups, nonetheless the highest abundances can be distinguished in the younger AW, in particular in during the second and
third passage (transect) across this water mass. Finally, microphytoplankton is the less abundant group, but it clearly shows a

contrast between the two water masses, opposite to the-ene that of the other phytoplankton groups.

3.3 Phytoplankton cellular growth and division in the two water masses
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The phytoplankton diurnal cycle was reconstructed in the two water masses using the size-structured population model orig-

inally developed by Sosik et al. (2003). Figures 4, 5, 6 represent the phytoplankton size distribution (i.e., biovolume) observed
in situ and predicted by the model over 24 h for Synechococcus, RNano and SNano, respectively. From the predicted biovol-
ume it is possible to derive specific growth (us;.¢) and a loss (1) rates, summarized in Table 2 for the different phytoplankton
groups in the two water masses, along with metrics of model performance. We also attempted to model the diurnal cycle for
the picophytoplankton groups, i.e., Picol, Pico2, Pico3, and PicoHFLR. However, their very noisy size distributions prevented
us from obtaining reliable growth rate estimates. Similarly, microphytoplankton and Cryptophytes were not abundant enough
to allow a reliable determination of their abundances and cell cycles. These cytometric groups are thus not considered further

in this study.

14
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For Synechococcus, in the older AW the prediction of the model (i.e., predicted biovolume) is similar to the observed size
distribution (i.e., observed biovolume). Both display a day-long large size-class distribution centered approximately on 0.3
pum?. In the younger AW (Fig. 4a, c) the distributions of observed and predicted biovolume are narrower than in the older
AW and centered approximately on 0.2 um? (Fig. 4b, d). As a consequence, the older AW is populated by larger cells of
Synechococcus (mean observed biovolume v,,s = 0.38 £+ 0.04 pm?’) than in the younger AW (mean biovolume v,,s = 0.21
+ 0.04 ym?) (Table 2). Growth and loss rates also differ between the two water masses. In the older AW, the large cells of
Synechococcus have a growth rate fi4;.. = 0.24 & 0.91 d~! and a loss rate [ = 0.36 d~!, whereas in younger AW the smaller
cells are characterized by higher growth (1., = 0.68 & 1.56 d~!) and loss (I = 0.48 d~ 1) rates.

Relative to Synechococcus, cell size distribution and growth and loss rates are less contrasted between the older and younger
AW for SNano (Fig. 6) and even more so RNano (Fig. 5). The mean observed RNano biovolumes are similar in the older and
younger AW (63.5 + 2.67 um? and 61.2 & 5.23 um?3, respectively) (Table 2). For SNano, similar to Synechococcus, the older
AW is predominantly composed of larger cells (U,p5 = 85.0 & 1.98 um?) than in the younger AW (v, = 63.8 & 4.45 um?).
For both Nano groups, growh rates are generally very low in both water masses (t;.. < 0.1 d=1). Loss rates are higher than
growth rates, except for RNano in the younger AW (negative loss rate implying an external input of cells such as by advection).
However, the corresponding optimization factor is the highest observed across the 6 modelisations, indicating this result is

subject to caution.
4 Discussion

4.1 The phytoplankton diurnal cycle

Although it has been clearly demonstrated that phytoplankton plays a fundamental role in the ocean ecosystem functioning

(Watson et al., 1991; Field et al., 1998; Allen et al., 2005), numerous questions remain epen about their population dynamics

in relation with the finescale structures.

- Coupling high-resolution in-situ flow cytometry measurements in two

contrasted water masses with the size-structured population model developed by Sosik et al. (2003) allowed us to characterize
the structure of phytoplankton and to reconstruct its diel cycle of cell growth and division on both sides of a finescale front.
The-values-of growthrates{(t5z0)-and-lossrates(rates The growth and loss rates (us;,. and [) found for Synechococcus in
our-study are of the same order of magnitude as theresults-of those obtained by Marrec et al. (2018) ;-whe-alse-applied-the
size-struetured-model-of-Sesiket-al+2003) in the northwestern Mediterranean Sea using the same method. In section 3.3, we
have-shown showed that the largest cells of Synechococcus are-dominant were found in the older AW. These Synechococcus
cells are characterized by a larger range of biovolume and lower growth and loss rates ;-alowergrowthrate-and-a-higherloss
rate than those located in the younger AW (Table 2). This-is-due-to-the fact-that-the-elder- AW-is-composed-of-Synechococeits

15
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eellstransiting-in-all-the-eell-eyelestages-all-daylong-(Fig—4a;<)- The cells are in average larger than in the younger AW as
they grow slower at the population scale and divide less. lewergrewth-rate Conversely, in the younger AW the distribution of

the Synechococcus biovolume is narrower, which could be explained by cells being more active, more homogeneous in terms
of size (biovolume) and better synchronized, leading to a smaller spread of the cell biovolume (Fig. 4b,d) with a dominance

of small Synechococcus small cells (Fig. 3).

explains why higher abundances of Synechococcus are found in the younger AW (Fig. 3). Interestingly, the resulting net growth

rate (growth minus loss) is negative in the older AW, positive in the younger AW.

Results are more difficult to interpret for the nanoplankton groups RNano and SNano, expected to be mostly dominated
by diatoms in the Mediterranean Sea (Marty et al., 2002; Siokou-Frangou et al., 2010; Navarro et al., 2014; El Hourany
et al., 2019), especially in frontal systems (Claustre et al., 1994). RNano and SNano diel cycles are not as well-defined as
for Synechoccocus, leading to very small estimates of growth rates by the model. Optimization factors (linked to the mean
squared difference between observed and predicted normalized size distributions) are relatively high and/or temporal correla-
tions between observed and predicted mean biovolume relatively low, indicating these results must be considered with caution.
Nevertheless, results suggest much lower growth and loss rates for nanoplankton than for Synechoccocus and potentially higher
growth rates in the younger AW, similar to Synechoccocus (excluding the likely unrealistic loss rate obtained for RNano in the

younger AW).

16



510

515

520

525

530

535

540

4.2 Influence of the frontal system on the phytoplankton dynamics
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Our previous article (Tzortzis et al., 2021) provided a description of the hydrodynamics and the hydrology of the region. In

the following, we attempt to establish the potential link between the characteristics of the two AW separated by the front, the
physical forcings associated with this frontal structure and the particular distribution of phytoplankton in terms of cells size
and abundances. Figure 7 summarizes the physical forcing evidenced in this frontal area in the previous publication during the
PROTEVSMED-SWOT cruise, superimposed with the biovolumes and the abundances of the different phytoplankton groups
sampled in situ by the automated flow cytometer.

The older AW is characterized by larger cells of Synechococcus and nanophytoplankton with low abundances, low intrinsic
growth rates and negative net growth rates, suggesting an older, declining population, whereas the younger AW is dominated
by small cells with high abundances, and at least for Synechoccocus high intrinsic growth rates and a positive net growth rate,
suggesting a slightly growing or stable population (nanoplankton results in the younger AW are subject to caution as opti-
mization factors are relatively high). Furthermore, microphytoplankton (i.e largest type of phytoplankton) is more abundant in
older AW than in the younger AW. The early experimental works of Marshall and Orr (1928); Jenkin (1937); Huisman (1999)
have well established that the light and nutrients are essential for phytoplankton growth. The reconstruction of the circadian
cycle indicates that irradiance was similar in the two water masses (Fig. 4, 5 and 6, red lines), with corresponding daily total
irradiance of 286 and 299 uE m~2 for the older AW and the younger AW, respectively (Fig. A2). That is why, the availability
of light seems not to be the principal cause explaining the difference of phytoplankton dynamics and its distribution in the
two AW. An other possible explanation is that these two water masses are characterized by different nutrient concentrations,
thus favoring certain phytoplankton groups. Bethoux (1989) and Schroeder et al. (2010) have observed that the older AW is
slightly more enriched with nutrients than the younger AW because the older AW receives nutrient inputs from the continent
(river discharges, rain, wind) during its circulation across the Mediterranean basin. Unfortunately, it was not possible for both
technical and funding reasons to perform nutrient measurements during the 2018 cruise, so that we cannot conclusively assess
nutrient patterns during the cruise. Assuming that the nutrient distribution across the two water masses was similar to what
was previously measured by Bethoux (1989) and Schroeder et al. (2010), we propose that higher nutrient concentrations in the
older AW explain the observed phytoplankton cell size and abundances distributions. Our hypothesis is supported by similar
observations by Jacquet et al. (2010) and Mena et al. (2016) who also found the highest abundances of the small phytoplankton
(Synechococcus and picophytoplankton) in the most oligotrophic waters, i.e., the younger AW. Furthermore, previous studies

have shown that the proportion of picophytoplankton in the total phytoplankton biomass is higher in oligotrophic regions than
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in mesotrophic or eutrophic regions (Zhang et al., 2008; Cerino et al., 2012). Indeed, their better surface:size ratio due to their
small size confers them a better capacity to inhabit areas with very low nutrient concentration compared to larger phytoplank-
ton (Kigrboe, 1993; Maraiién, 2015). Since our study area is always oligotrophic (Moutin et al., 2012), a small variation of
the nutrient concentration (typically < 0.1 uM of nitrate) is sufficient to generate higher abundance of picophytoplankton.
Some studies have attempted to link hydrological condition and the phytoplankton dynamic (Qasim et al., 1972; Brunet et al.,
2006; Maraiién et al., 2012, e.g.,). However, their results showed that the influence of these hydrological parameters on the
phytoplankton growth and distribution was difficult to estimate, compared to the effects of nutrient availability and radiation
exposure.

Other physical processes occurring at the front can explain the different dynamics of phytoplankton groups. The work of
Lévy et al. (2001); Pidcock et al. (2016); Mahadevan (2016) have highlighted that the availability of light and nutrient is driven
by physical dynamics such as vertical velocities. The computation of the vertical motions in the frontal area, as represented in
Fig. 7 (see also Fig. A3), show the presence of upwellings and downwellings in the frontal area. However, due to the lack of

nutrients measurements during the cruise, we are not able to quantify the impact of these vertical velocities.

5 Conclusion and perspectives
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Phytoplankton structure and dynamics are a complex result of many interacting biological and physical phenomena. Finescale

structures, and in particular fronts, generate vertical velocities which displace phytoplankton cells and nutrients in the water
column, thus influencing phytoplankton communities. These mechanisms are only partially understood because the spatial
scale of these structures and their ephemeral nature make them particularly difficult to study in situ; as a consequence only
a few studies have been performed in finescale frontal regions. The estimates of specific growth rates for the various phyto-
plankton groups is one of the keys to better understand how environmental conditions affect phytoplankton dynamics. In this
study, we followed the dynamics of several phytoplankton groups in two distinct water masses both in terms of hydrology and
phytoplankton abundances, in order to explain their particular distribution.

The originality of our work resides in the fact that we used a size-structured population model applied in two water masses
identified using a Lagrangian sampling strategy. To our knowledge this had never been done before. This strategy allowed us
to reconstruct the diurnal cycle of several phytoplankton groups and to identify contrasted dynamics in the two water masses.
For Synechococcus and nanophytoplankton, we found higher cell size in the older AW located north of the front, associated
with lower abundances. A possible explanation is that the older AW is more enriched in nutrients than the younger AW, thus
favoring larger cells. This remains a hypothesis because of a lack of nutrient data. Another novelty of our study is that we
applied the Sosik et al. (2003) model on several phytoplankton groups identified by flow cytometry, whereas previous studies
only applied it to Synechococcus and Prochlorococcus (Ribalet et al., 2010; Hunter-Cevera et al., 2014; Marrec et al., 2018;
Fowler et al., 2020) or to certain types of diatoms (Dugenne et al., 2014). We obtained good results for Synechococcus and
nanophytoplankton. However, our results were noisy for picophytoplankton groups probably because they contain several taxa
with differing dynamics (Siokou-Frangou et al., 2010; Le Moal et al., 2011).

Our work paves the way for many research perspectives. Direct integration of growth rates in biogeochemical models (Cullen
et al., 1993) should be taken into account for a better assessment of the biogeochemical contribution of phytoplankton in olig-
otrophic ecosystems and to better forecast its evolution in the context of global change. Furthermore, we plan future experi-
ments again in the South Western Mediterranean in spring 2023, during the fast-sampling phase of the SWOT satellite mission
which provides high resolution altimetry-derived currents. Involving high-resolution, high-precision nutrient measurements
(necessary considering the oligotrophy of the Mediterranean Sea), coupled with DNA metabarcoding (to address phytoplank-
ton biodiversity), zooplankton and virus sampling, we will improve the understanding of zooplankton grazing and viral lysis on
the different phytoplankton groups. Furthermore, we aim to explore how the biogeochemical and ecological role of finescale
structures in regions of weak circulation differ from those documented in highly energetic regions like boundary currents. In
the Mediterranean sea, the low nutrient content is indeed the perfect condition when addressing this question, because even
weak horizontal or vertical nutrient redistributions associated with the finescale circulation are likely to result in a biological

response (Talmy et al., 2014; Hashihama et al., 2021).
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Figure 1. (a) Route of the RV Beautemps-Beaupré during the PROTEVSMED-SWOT cruise. The purple box encloses a (b) zoom of the
sampling region with overlaid chlorophyll-a concentration (ug L") of 11 May 2018. In panel (b) black dotted line represents the route of
the ship and the bold black line represents the route of the Lagrangian sampling across the older AW (delimited by the box in dark blue) and
the younger AW (delimited by the box in light blue). (c) Dates of the transects across the older AW and the younger AW, used to reconstruct

a day of 24 h period in each water mass.
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Figure 2. Cell cycle stages in the size-structured population model. Cells may grow to the next size class () or be at equilibrium (1 —
Y(t))(1 —6(v,t)). Above a particular size, cells are large enough to divide in two daughter cells with probability (4). Figure adapted from
Sosik et al. (2003).
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each phytoplankton group, as estimated from the model. Figure adapted from Tzortzis et al. (2021).
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Table 1. Model parameters being optimized.

Parameters Definition Interval Units
Ymaz Max proportions of cells in growing phase [0,1] 1]
E* Irradiance normalizing constant [0,00[ pEm~—2s7!
Omaz Max proportions of cells in mitosis [0,1] 0
0] Mean of size density distribution [Vmin, Umaz] pm3
Oy Standard deviation of size density distribution [107% 0o[ um?
t Mean of temporal density distribution [1,24% +1] hours
ot Standard deviation of temporal density distribution [1079% 00f hours
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Table 2. Means of biovolumes observed (v,ps) and modelized (U04) in pm3, growth rates (Usize, tratio I d™1) and loss rate (/, in d 1)

valaes for the phytoplankton groups, in the older and younger AW, as well as model fit parameters (see section 2.3). ttsize—tepresents-—the

Synechococcus RNano SNano
Older AW Uobs = 0.38 £ 0.04 Vops = 63.5 £ 2.67 Vobs = 85.0 = 1.98
Umod = 0.38 = 0.02 Vmod =63.5 = 1.79 Umod = 84.7 +1.38
tsize =024 £ 091 fsize =0.02 £ 0.20 Wsize =0.04 +0.26
Mratio = 0.59 Mratio = 0.17 Mratio = 0.11
1=0.36 1=0.07 [=0.11
>(6)=0.05 >(6)=0.139 > (6)=0.067
cort(Vobs, Umod) = 0.60  corr(Tobs, Umod) = 0.46  corr(Tobs, Umod) = -0.05
Younger AW Uobs = 0.21 £ 0.04 Vops =01.2 £5.23 Vops = 063.8 +=4.45

Dmod = 0.22 £ 0.03
[isize = 0.68 % 1.56
Mratio = 0.63
1=0.48
S (6) =0.153

corr(Uobs, Umod) = 0.65

Umod = 60.6 £ 2.17
psize =0.04 £ 0.28

Mratio = 0.33
1=-0.12
S2(6) = 0.417

corr(Uobs, Umod) = 0.56

Drmod = 59.1 £ 0.61
[tsize =0.06 & 0.19
firatio = 0.24
1=0.23
S(0) = 0.247

corr(Uobs, Umod) = 0.15
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APPENDIX
Identification of the phytoplankton functional groups by flow cytometry

Up to 9 groups of phytoplankton have been identified on the cytograms (Fig. A1), thanks to their light scatter (forward scatter
FWS, and sideward scatter SWS) and fluorescence intensities (red fluorescence FLR, and orange fluorescence FLO). These
groups have been called using the conventional names used by flow cytometrists, i.e., some groups relate to taxonomy (Syne-
chococcus, Cryptophytes) while others relate to a range of sizes (picoeukaryotes, nanoeukaryotes) as described by Sieburth
et al. (1978). Synechococcus (Syn on Fig. Alc) is a prokaryotic picophytoplankton that can be distinguished from the other
picophytoplankton owing to its high FLO intensity, induced by phycoerythrin pigment content. Cryptophytes (Crypto on Fig.
Alc) were also discriminated from the other groups as they also produce a characteristic orange fluorescence induced by phy-
coerythrin. Concerning the other phytoplankton groups, 4 eukaryotic picophytoplankton groups were put in evidence: Picol
(on Fig. Alc) characterized by lower FLR and FLO intensities than Synechococcus, Pico2 and Pico3 (on Fig. Ald) with higher
FWS, SWS and FLR intensities than Picol, PicoHFLR (on Fig. Ala) has a high FLR signal induced by chla. We defined
2 distinct nanophytoplankton groups (SNano and RNano) according to their high FLR and FLO intensities. SNano exhibits
higher SWS/FWS ratio and SWS intensities than RNano (Fig. Alb and Fig. Ala). Finally, microphytoplankton (Micro) is
characterized by the highest FLR and FWS intensities (Fig. Alc).
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Figure Al. Cytograms obtained with the CytoSense automated flow cytometer. Synechococcus are in dark blue (Syn), the picophytoplankton
with lowest FLO in orange (Picol), the picophytoplankton with intermediate FWS in light blue (Pico2), the picophytoplankton with highest
FWS in purple (Pico3), the picophytoplankton with a high red fluorescence in pink (PicoHFLR), the nanophytoplankton with high SWS/FWS
ratio in yellow (SNano) and higher SWS intensities than the other nanophytoplankton (RNano) in green, the Cryptophytes in grey (Crypto)
and the microphytoplankton in red (Micro). The flow cytometry units for both fluorescence and light scatter are arbitrary (a.u). Figure

extracted from Tzortzis et al. (2021).
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Figure A2. Reconstruction of irradiance during 24 h in the older AW (a) and the younger AW (b). Computation of trapezoidal integration of
irradiance, in the older AW, E1 = 286 uE m~2 and in the younger AW, E2 = 299 yE m~2.
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Figure A3. Vertical velocities at 25 m (a) and 85 m (b), calculated with the omega equation. Figure extracted from Tzortzis et al. (2021).
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