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Abstract. Models of the carbon cycle and climate on geologic (> 10* year) timescales have improved tremendously in the last
50 years due to parallel advances in our understanding of the Earth system and the increase in computing power to simulate its
key processes. Still, balancing the Earth System’s complexity with a model’s computational expense is a primary challenge in
model development. Simulations spanning hundreds of thousands of years or more generally require reducing the complexity
of the climate system, omitting features such as radiative feedbacks, shifts in atmospheric circulation, and the expansion and
decay of ice sheets, which can have profound effects on the long-term carbon cycle. Here, we present a model for climate and the
long-term carbon cycle that captures many fundamental features of global climate while retaining the computational efficiency
needed to simulate millions of years of time. The Carbon-H,0O Coupled HydrOlOgical model with Terrestrial Runoff And
INsolation, or CH20-CHOO TRALIN, couples a one-dimensional (latitudinal) moist static energy balance model of climate with
a model for rock weathering and the long-term carbon cycle. The CH20-CHOO TRAIN is capable of running million-year-long
simulations in about thirty minutes on a laptop PC. The key advantages of this framework are (1) it simulates fundamental
climate forcings and feedbacks; (2) it accounts for geographic configuration; and (3) it is flexible, equipped to easily add features,
change the strength of feedbacks, and prescribe conditions that are often hard-coded or emergent properties of more complex
models, such as climate sensitivity and the strength of meridional heat transport. We show how climate variables governing
temperature and the water cycle can impact long-term carbon cycling and climate, and we discuss how the magnitude and
direction of this impact can depend on boundary conditions like continental geography. This paper outlines the model equations,
presents a sensitivity analysis of the climate responses to varied climatic and carbon cycle perturbations, and discusses potential

applications and next stops for the CH20-CHOO TRAIN.

1 INTRODUCTION

Interactions between the long-term carbon cycle and global climate govern the habitability of our planet. These interactions are

mediated by complex relationships with factors such as geography, lithology, climate feedbacks, and more (Bluth and Kump,
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1994; Caves et al., 2016; Donnadieu et al., 2006; Gibbs and Kump, 1994; Jellinek et al., 2020; Park et al., 2020). Over the last
50 years, a suite of models ranging in complexity have been developed to explore these interactions, with each model carrying
its own advantages and drawbacks (Arndt et al., 2011; Bergman, 2004; Berner, 1991, 2004; Colbourn et al., 2013; Donnadieu
et al., 2004, 2006; Francois and Walker, 1992; Goddéris and Joachimski, 2004; Kump and Arthur, 1999; Lenton et al., 2018;
Mills et al., 2017; Ozaki and Tajika, 2013; Ridgwell et al., 2007; Zeebe, 2012).

One major challenge in building these models is balancing the complexity of the global climate system with the computational
efficiency needed to simulate thousands to millions or billions of years of time. Based on the model’s intended applications,
different frameworks address this trade-off in different ways. Lower-dimensional box models, for example, tend to distill global
climate down to a few simple parameters (and in many cases, a single forcing variable, pCO>), usually opting to ignore many
factors such as geography, orbital forcing, and ice sheet dynamics (Berner, 1991; Bergman, 2004; Caves et al., 2016; Kump
and Arthur, 1997; Lenton et al., 2018; Zeebe, 2012). The simpler representation of climate makes such models highly efficient
while leaving room for more complex representations of other factors, such as sedimentary reservoirs and ocean biogeochemical
cycling (Zeebe, 2012; Ozaki and Tajika, 2013). Higher-dimensional models, in contrast, capture more complexity in global
climate and generally provide the most mechanistic representations of the Earth System on long timescales (Baum et al., 2022;
Donnadieu et al., 2006; Holden et al., 2016; Otto-Bliesner, 1995; Ridgwell et al., 2007). However, these models are more
computationally expensive, making it harder to efficiently explore the large, multi-dimensional parameter space of its simulated
climate system.

The goal of this work is to build a model that remains computationally efficient while capturing features of climate that are
usually reserved for more computationally expensive models. This model, the CH20-CHOO TRAIN (Carbon-H,O Coupled
HydrOlOgical model with Terrestrial Runoff And INsolation) considers factors such as the spatial pattern of radiative climate
feedbacks, geography, lithology, insolation, hydroclimate, and more. The model framework couples a moist static energy
balance model of climate (Flannery, 1984; Roe et al., 2015; Siler et al., 2018) with a continental weathering model (Maher and
Chamberlain, 2014; Winnick and Maher, 2018) and a box model for the long-term carbon cycle (Caves Rugenstein et al., 2019;
Shields and Mills, 2017). The model is designed to easily modify processes in the climate system such as the strength of climate
feedbacks, the sensitivity of runoff, the efficiency of atmospheric poleward energy transport, and the role of ice sheets in climate
and weathering. Such processes have complex interactions with the global carbon cycle that are often highly parameterized or
absent from lower dimensional models. Conversely, in higher dimensional models, these processes—particularly atmospheric
energy transport and the pattern of certain feedbacks—are often emergent properties, not inputs that can be directly modified.
Thus, the CH20-CHOO TRAIN framework makes it possible to explore how many aspects of climate, especially the water and
carbon cycles, interact over space and time across millions of years.

The key feature that allows the CH20-CHOO TRAIN to run efficiently is the one-dimensional (latitudinal) moist energy
balance climate model (MEBM) (Flannery, 1984; Frierson et al., 2006; Hill et al., 2022; Roe et al., 2015; Siler et al., 2018). This
component of the CH20-CHOO TRAIN distinguishes it from other long-term carbon cycle models, such as the GEOCARB
series and COPSE (Berner, 1994, 2006; Bergman, 2004; Lenton et al., 2018) that do not account for spatial patterns in climate

nor its response to pCO,. Energy balance climate models have previously been used with models of the long-term carbon
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cycle in an effort to efficiently simulate climate without compromising too much complexity. Zero-dimensional global mean
energy balance models have been coupled to carbon cycle and weathering models to probe how climate and weathering impact
planetary habitability (Abbot et al., 2012; Graham and Pierrehumbert, 2020). A two-dimensional (latitude and longitude) moist
energy balance model for the land and atmosphere has been used in the cGENIE framework (Edwards and Marsh, 2005; Marsh
etal.,2011; Ridgwell et al., 2007), retaining a great deal of spatial complexity without having to run the climate model “offline”,
as is common when more complex climate models are used (Baum et al., 2022; Donnadieu et al., 2006; Holden et al., 2016;
Pollard et al., 2013). One-dimensional energy balance model frameworks have also been used before and are not unique to the
CH20-CHOO TRAIN. Francois and Walker (1992) used an 18-node one-dimensional model coupled to a geochemical model
to simulate carbon cycling across the Phanerozoic. This model was subsequently used in other climate (Veizer et al., 2000) and
carbon cycle studies, forming the climate component of the COMBINE model (Goddéris and Joachimski, 2004). More recently,
Jellinek et al. (2020) used a one-dimensional energy balance model to capture the effect of varying ice cover on climate and
weathering.

These one-dimensional frameworks account for spatial dynamics (at least meridionally) while side-stepping complexity that
can obscure cause-and-effect relationships and limit the applications of some higher-dimensional models. However, the water
cycle in these previous one-dimensional frameworks was built on approximations largely divorced from physical processes.
For example, in Jellinek et al. (2020), precipitation is solved globally and depends only on global mean temperature with no
explicit representation of runoff, whereas in Francois and Walker (1992), runoff depends on an empirical correlation with
temperature and latitude that may not hold in paleoclimate states, particularly under different continental geographies. These
model formulations are reasonable solutions to a difficult problem—traditional 1-D energy balance models are known to
misrepresent key features of zonal mean hydroclimate (Peterson and Boos, 2020; Siler et al., 2018). Recent energy balance
modeling advances, however, address this problem by capturing the spatial complexity of the water cycle in a more mechanistic
way (Siler et al., 2018). In the CH20-CHOO TRAIN, we directly employ the one-dimensional energy balance model of Siler
et al. (2018), which accurately simulates meridional atmospheric circulation patterns such as the Hadley cell as well as the
spatially distinct precipitation and evaporation responses to warming.

With this improved one-dimensional MEBM, the CH20-CHOO TRAIN is designed to efficiently explore fundamental
interactions between the water cycle, carbon cycle, and climate. The model can simulate about one million years of time in
thirty minutes on a standard laptop PC (16 GB RAM, 2.80 GHz processor, without parallelization). Further, its ability to isolate
and modify specific climate variables makes it well-suited for addressing basic, qualitative questions about the Earth system.
Such questions might include the drivers of long-term Cenozoic climate change, the effects of geography on carbon cycling
and climate, and the interactions between climatological and geochemical feedbacks. Of course, the model is not optimized
for all applications. More specialized and quantitative applications, such as constraining geochemical fluxes from data across
a given geologic carbon cycle perturbation event, are limited by the model’s flexibility because the quantitative results can
be sensitive to somewhat arbitrary initial conditions. In this paper, we outline the model equations and conduct a series of
sensitivity tests that explore the features of this coupled climate-carbon cycle system. To emphasize some of the advantages of

this model framework, we specifically focus on the effect of climate variables that are often absent from simpler models, and we
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run simulations spanning about one million years which can be computationally prohibitive in more complex models. We show
how continental geography impacts the magnitude and direction of the climate response to changes in certain climate variables,
and how different ice sheet parameterizations affect the response of global temperature, runoff, and the steady state climate to
a change in volcanism. Finally, we discuss some of the advantages and limitations of the one-dimensional, zonal mean climate
framework and consider modifications to the climate formulations that can expand the model’s potential applications in future

work.

2 MODEL FORMULATION

The CH20-CHOO TRAIN links three model frameworks—a model each for global climate, weathering, and long-term carbon
cycling following Figure 1. The MEBM and weathering models are solved in the zonal mean (1-dimensional; 100 equal-area
grid points for ~ 200 km resolution) and integrated to zero dimensions for the global mean long-term carbon cycle box model
(run at 5 kyr timesteps). Geography, climate sensitivity, and other parameters are defined in the MEBM. Geography affects
climate via the spatial distribution of albedo and weathering by setting the land area available in a given latitudinal belt. The
weathering model receives inputs of temperature and water runoff from the MEBM and atmospheric pCO; from the long-term
carbon cycle model, and it outputs fluxes of alkalinity and weathered organic carbon. These fluxes are used to calculate the
sources and sinks of carbon in the long-term carbon cycle model, which then updates atmospheric pCO; for use by the MEBM
and weathering models. We describe each model in this section with a particular focus on the decisions we make that link
the three models together. More detailed descriptions of the individual model frameworks are available from their original
publications. Model code is available on Github and Zenodo (see code availability section and Kukla et al. (2023)), along with

instructions for running the model and accessory scripts to generate custom model input files.
2.1 Moist Energy Balance Model
2.1.1 Diffusive moist static energy transport

Global climate is simulated in the zonal mean using a Moist Energy Balance Model (MEBM) following the equations and
modifying the code of Roe et al. (2015) and Siler et al. (2018), which built on the earlier work of Flannery (1984) and Hwang and
Frierson (2010). Zonal mean atmospheric heating (Qp;) is balanced by poleward heat transport on long timescales (~decadal),

yielding equation 1:

1 dF
Onet(x) = mdl dr

ey
where x is the sine of latitude, a is Earth’s radius (m), F is the column-integrated, zonally-integrated flux of atmospheric
energy transport (W), and Q¢ is the net downward energy flux at the top of atmosphere (TOA) (W m~2) (Pierrehumbert, 2010).

When Q. is positive, atmospheric energy is transported away from x, and vice versa.
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Figure 1. Coupled model schematic. The three main model components are labeled “MEBM?”, “Weathering”, and “Long-term C-cycle”.

T

Boxes with arrows pointing toward these components include terms required to initialize the model. Arrows pointing out of these components
are model output. The MEBM and weathering components are solved in the zonal mean, and then integrated for compatibility with the
long-term C-cycle component. Atmospheric pCO» from the C-cycle component is used as input for the MEBM and weathering components

(pink arrows) at the next timestep. MSE is moist static energy; DIC is dissolved inorganic carbon; C is carbon.

Net column-integrated heating is related to the balance of non-reflected solar insolation (/) and longwave (LW) radiation by

equation 2:
Onet(x) = (1 —as)] = LWoyt 2

where «g is surface albedo and the (1 —ag) term represents the fraction of insolation that is not reflected back to space.
The LW,y term is related to greenhouse forcing as discussed in section 2.1.3. Unless otherwise stated, / is related to the solar

constant Qg by a second order Legendre polynomial:

I=00(1-0.241(3x*-1)) 3)

though the code includes functionality to create time-variant insolation files consistent with paleo conditions.
The MEBM simulates the diffusive transport of the sum of near-surface latent and sensible heat, or moist static energy (%;

J kg="), which is expressed as a function of surface temperature (7):

h=c,T+Lyq(T) @

where ¢, is the specific heat of air (/ kg=! K~!), L, is the latent heat of vaporization (J kg~!), and ¢ is the near-surface

specific humidity (kg kg~!), calculated as the product of relative humidity and temperature-dependent saturation specific
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humidity. Relative humidity is used to partition moist static energy into its sensible and latent components and, following
previous work, we assume it is constant at the global average, near-surface ocean value of 80% (Hwang and Frierson, 2010;
Siler et al., 2018). This fixed humidity assumption is unrealistic over land, particularly in dry regions such as the subtropics,
but the assumption does not interfere with the model’s ability to capture the zonal mean aridity profile. Previous work imposed
spatially variable relative humidity profiles, (e.g., Peterson and Boos, 2020), but selecting such a profile and how it changes
with global climate introduces numerous free parameters. Instead, the Hadley cell parameterization introduced in Siler et al.
(2018) (see equation 7 and supplemental text) retains critical features of the zonal mean aridity profile—such as the arid
subtropics—and its response to climate while permitting the simplifying assumption of a fixed global humidity value.

Moist static energy (MSE) is transported downgradient (poleward) following:

F(x)=— . *D(1-x*)— (5)

where p, is the surface atmospheric pressure (Pa), g is gravitational acceleration (m s~2), and D is a zonally-constant
diffusivity coefficient (m? s~ ).

Equations (1) and (5) can be combined as:

_Ds d 5\ dh
Ore¥) =5 D - [(1—x )E] (©)

However, downgradient MSE transport is not valid in the tropics where Hadley circulation promotes upgradient transport
of latent heat. With the Hadley cell parameterization of Siler et al. (2018), MSE fluxes are partitioned into a tropical Hadley
contribution (Fyc) and an extratropical eddy contribution (Feqqy) based on a Gaussian weighting function. Net moist static
energy transport in the Hadley cell is downgradient, but the latent component of MSE (Fucq) is transported upgradient

following:

Fucg(x) = —¢(x)Lyq(x) (7N

where ¢ is the southward mass transport in the Hadley cell’s lower branch (which equals the northward transport of the
upper branch by mass balance). See Siler et al. (2018) and the supplemental text for further details regarding the Hadley cell
parameterization.

Finally, by mass balance, the difference between evaporation and precipitation E — P is set equal to the divergence of the

latent component of the MSE flux.
2.1.2 Partitioning P and E and parameterizing for land

The divergence of the latent heat flux balances the difference in evaporation and precipitation, or E — P, constraining a critical

component of the hydrologic cycle that links hydroclimate with the carbon cycle. However, knowledge of E — P is not sufficient
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to quantify £ and P fluxes—doing this requires constraining either £ or P. We adopt the equation for oceanic evaporation of
Siler et al. (2019) where:

E= Rg (x)0(x) +paircp(1 —rh)Chu(x)

0() + b

®)

Here, R is an idealized latitudinal profile of the difference between radiative forcing and the ocean heat uptake response
(Wm™2),0isa temperature-dependent Clausius-Clapeyron scaling factor as in Siler et al. (2018, 2019) (we use 8 instead of «
to avoid confusion with albedo), p,i; is the near-surface air density (kg m3), rh is relative humidity, Cg is a drag coeflicient, g*
is saturation specific humidity, and  is an idealized surface wind speed profile (m s~!). Inputs for the terms defined in equation
8 can be found in the supplementary text. We note that equation 8 gives E in units of W m~2, which we convert to m yr~!
to simplify discussion. In this work, idealized profiles of R and u (based on Siler et al. (2018, 2019)) are constant across
simulations. In future work, these profiles could be designed to vary with continental geography and climate.

As discussed earlier, the spatial profile of E — P hinges on assumptions that are based on oceanic conditions (such as constant
relative humidity), but it also captures the general trends on land. For example, E — P is generally negative in the tropics and
mid-high latitudes and positive in the drier subtropics. However, on decadal timescales on land, E is limited by P such that
E — P is always < 0. In order to calculate terrestrial runoff (an input for the exogenic carbon cycle module) we impose this
mass balance with the Budyko hydrologic balance framework (Broecker, 2010; Budyko, 1974; Fu, 1981; Koster et al., 2006;
Roderick et al., 2014; Zhang et al., 2004). We calculate runoff as a fraction of precipitation using the Budyko formulation from
Fu (1981):

l/w
krun(x) =1 -

HW‘EWMP%%wY ©

Px)  P(x) P(x)

In this formulation, &y, is restricted to [0, 1], ET is evapotranspiration, E is potential evaporation, and w is a non-dimensional
free parameter with bounds [1,c0) that determines the proximity of ET to its theoretical limits (P or Ey when P < E( and
P > Ey, respectively). Each value of w defines a Budyko curve, with higher values producing a curve where evapotranspiration
lies closer to the energy and water limits (Eg and P, respectively). We set w equal to the global mean value of 2.6 (Budyko,
1974; Zhang et al., 2004; Greve et al., 2015) unless otherwise stated. We also assume that ocean evaporation is equal to potential

evapotranspiration, setting E¢ equal to E. The k., term is then used to partition precipitation into runoff and evaporation:

Gland (X) = kice () kpun (x) P(x) (10)

where gang is terrestrial runoff (output in m yr‘1 after converting P to the same units), not to be confused with Qye, a
radiative forcing term in equation 1. The ki term is a coefficient that sets the “effective runoff” that is relevant for rock

weathering. We define k;.. based on whether a grid cell is ice-free or glaciated by:
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1 if x is ice-free
kice(x) = (11)
[0,1] if x is glaciated
Unless otherwise stated, kic.=0 for glaciated grid cells (the default case). We demonstrate the model sensitivity to the range

of glaciated kj.. values in section 4.
2.1.3 Greenhouse forcing

Greenhouse gas forcing in our model is driven by the partial pressure of atmospheric pCO, (ppmv). Higher pCO, decreases
the outgoing longwave flux (LWqy; W m~2) which is assumed to be linearly related to temperature (Budyko, 1969; Koll and
Cronin, 2018) by:

LWou(x) = A+ BT(x) (12)

where T is surface temperature (K), B is a coefficient that captures the Planck feedback (W m 2K D, andA(Wm?)isa

constant that depends on CO5:

A=CLw —MIn(pCO»2,;/pCO3 0) (13)

Here, Crw and M (both W m~2) are tunable parameters that determine the climate sensitivity to pCO». pCO,; is the partial
pressure of CO, (ppmyv) at some time, which is divided by the reference pCO,, pCO3 ;0. The baseline pCO> is set at 280

ppmv, with parameters Crw, M and B given in supplementary Table S1.
2.1.4 Domain boundary conditions

We prescribe the latitudinal distribution of continents and use this distribution to calculate Earth surface albedo. We assign
three albedo values—ocean albedo, land albedo, and ice albedo—and calculate the average albedo at each latitudinal node by
the weighted average of land and ocean area. Ice sheets in our model appear at a temperature threshold (e.g. North et al. (1981))
(Tice, set at —5°C) such that the albedo for any node with T < T, is equal to the ice albedo (with no dependence on land or
ocean values).

The set of MEBM equations can be solved as a boundary value problem, and we use the bvpcol function from the ‘bvpSolve’
package in R (Mazzia et al., 2014) (see supplemental text). We prescribe a zero-flux boundary condition, assuming the flux
of moist static energy at both poles is zero. We also prescribe initial temperature guesses for each pole (Thorth and Tsoutn). The
temperature guesses can lead to multi-stability in model solutions—for the same forcing, a colder temperature guess might
yield a stable icehouse while a warmer guess might yield a stable greenhouse. In this paper, we use the same temperature guess

for every timestep of a given simulation to enforce a monostable climate (a unique climate solution for every pCO»).
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2.2 Weathering

We calculate solute concentrations for bicarbonate carbon [C] (mol L™') derived from silicate and carbonate weathering at
each latitudinal node using each node’s surface temperature (7) and terrestrial runoff (gjang). 7 and giang are derived from the
MEBM (see Section 2.1.2).

The value of [Clgj is calculated using equations modified from Maher and Chamberlain (2014) (similar to the “MAC” model
in other works (Baum et al., 2022; Graham and Pierrehumbert, 2020)). These equations permit us to explicitly incorporate the

effect of T, gjang, and weathering zone pC O2—variables that are all influenced by atmospheric pCO2 and climate—on [C];:

Dw
— . land
[C]sil = [C]sﬂ,eq (1+M) (14)

land
Here, [Clsileq is the maximum, equilibrium concentration of silicate-derived bicarbonate (Maher, 2011) and Dw is the
Damkohler weathering coefficient (m yr~!), which is a term that encapsulates the reactivity of the weathering zone and the

time required to reach equilibrium. Following Maher and Chamberlain (2014), we define Dw as:

1
 Lormax i mkga

Dw = 15
v [C]Sil, eq ( )

where L¢ is the reactive length scale (m), held constant, ry,y is the theoretical maximum reaction rate (mol L} yr‘l), twz
is the age of the weathering zone (yr) and is a key variable describing the reactivity of the weathering zone, m is the molar
mass of weathering minerals (g mol~!), A is the specific surface area of minerals undergoing weathering (m> g~'), and k. is

the effective reaction rate constant (mol m? yr‘l). The rpax term is scaled with the effective reaction rate constant by:

keff
Ymax = rmax,refk_ (16)
eff,ref

where Fmax ref and ke ref are reference values taken from Maher and Chamberlain (2014) to be 1085 x 107 pumol L! yr‘l
and 8.7 x 107% mol m~2 yr‘l. The effective reaction rate constant is, itself, related to kefrer by an Arrhenius function that

describes the temperature dependency of reaction rates (Brady, 1991; Kump et al., 2000):

-

)l (17)

ke = keﬂ“,refe[(%)(%o_

where R, is the universal gas constant (J K ~Umol~") (distinct from R in equation 8), Ea is the activation energy (J mol™1),
and Ty is the reference temperature associated with Kef ref-
Lastly, [Clsileq is modified by the availability of reactant, which here is assumed to be primarily CO>. We calculate this

effect as a function of weathering zone pCO; assuming open-system CO, dynamics, following Winnick and Maher (2018):
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)0.316

[Clsiteq = [Clsiteq0 (Rco2, wz (18)

where [Cliil,eq,0 18 the pre-perturbation, initial value of [C]gji eq. Rcoz,w is the ratio of weathering zone pCO, at time t (WZco2)
to the initial weathering zone pCO> pre-perturbation (WZco2,0). The exponent value of 0.316 is derived by Winnick and Maher
(2018) based on the net weathering stoichiometry for an open-system scaling relationship for the dissolution of plagioclase
feldspar (An,0) and precipitation of halloysite. Depending on the primary lithology and secondary mineral precipitated this
exponent can vary from ~ 0.25 to 0.7 (see Winnick and Maher (2018); their Table 1). This average stoichiometry represents
an average granodiorite continental crust (e.g., Maher, 2010, 2011; Maher and Chamberlain, 2014). We calculate Rco2w:
using a formulation proposed by Volk (1987) that links weathering zone pCO, with the primary source of that CO,, which
is aboveground terrestrial gross primary productivity (GPP; kg m~2 yr~!). Here, WZco; is calculated using an equation that

links GPP, CO,, fertilization of GPP, and weathering zone CO5:
WZcoz = pCO, + Rapp (WZco2,0 — pCO, ) (19)

Rgpp is the ratio of GPP at time ¢ to the pre-perturbation GPP (GPPy) and the last term on the right-hand side of the equation

ensures that WZc o, is always greater than atmospheric pCO,. The GPP is calculated using a Michaelis-Menton formulation:

GPP = GPPpax

(20)

pCO, —pCO;y iy l
PCO, pas+ (PCO, = pCO; i)

where GPP . is the maximum possible global terrestrial GPP, pC O3 i is the pCO, at which photosynthesis is balanced
exactly by photorespiration, and pC O3 nair is the pCO, at which GPP is equivalent to 50% G P Pmax:

GPPax
GPP,

We choose a pC O min of 100 ppm based upon evidence for widespread CO, starvation at the Last Glacial Maximum (LGM)

PCO; pos = ( - 1) (pCO, 5 —PCO; in) 21

(Prentice and Harrison, 2009; Scheff et al., 2017), which had an atmospheric pCO- of 180 ppm. We also assume that GP P
is equal to twice GPPy, though our results are insensitive to this parameter. Lastly, we assume that WZco20 is a factor of 10
larger than atmospheric pCO> o given evidence that soil pCO3 is typically elevated above atmospheric levels by approximately
an order of magnitude (Brook et al., 1983). While this formulation offers a crude accounting of the effect of GPP on weathering
zone pCOy, it is not strictly internally consistent. Setting pCO> in equation 20 equal to pCO pq¢ does not guarantee a GPP
value that is half of GPPy,x, though it will yield a value close enough that the effect on the model results is negligible.

We use this set of equations to calculate silicate and carbonate weathering. Carbonate weathering is scaled to silicate
weathering such that carbonate Dw is 2.5 times greater than silicate Dw and maximum equilibrium concentrations of carbonate-
derived bicarbonate are 2x greater than [C ]si],eq (Lasaga, 1984; Bluth and Kump, 1994; Morse and Arvidson, 2002; Ibarra

etal., 2017; Gaillardet et al., 2019). The concentrations, [C], calculated above are translated into global weathering fluxes (F,,):

10
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Fw,sil/carb = {land (x) Csil/carb (x)Aland (x) Wsil/carb (22)

where x is the sine of latitude following the MEBM grid spacing, subscripts si/ and carb refer to silicate and carbonate
weathering, respectively, Ajang is the land area (mz), and W is a scalar used to enforce mass balance and is held constant
throughout a run. The W parameter is a global constant and differs for carbonate vs silicate weathering. We calculate Wgjj/carb
during model initialization to ensure that the global sum of carbon burial fluxes equals the sum of input fluxes, such that the model
starts in steady state. For silicate weathering, Wy scales with Fy, ¢ such that at initialization, Fy g equals Fyolc. The Wy scalar
can also be thought of as loosely representing a global SiO,:HCOj3 ratio that translates silica fluxes to inorganic carbon fluxes.
This translation is necessary because these weathering equations—and the associated parameters—in Maher and Chamberlain
(2014) were originally derived for Si fluxes, rather than C (or alkalinity) fluxes. Ibarra et al. (2016) demonstrated that for modern
basaltic and granitic catchments [C]si1eq,0 Scales proportional to weathering stoichiometry, as predicted by Winnick and Maher
(2018), and Dw scales with some bias towards more chemostatic (higher Dw values) in Si compared to alkalinity (Moon et al.,
2014). Because W determines the sensitivity of weathering fluxes to changes in runoff and concentration, it also influences
the strength of the silicate weathering feedback (defined as the change in weathering fluxes per change in atmospheric CO>).
Similarly, Wy, is determined by scaling the sum of the carbonate weathering fluxes at each node such that these fluxes equal the
estimate of the carbonate weathering flux in Wallmann (2001), forcing the model to start in steady state. Importantly, because
Wiilicars depends on Ajyng, continental geography has an indirect effect on the strength of the weathering response to climate by

equation 22.
2.3 Carbon cycle

The carbon cycle model follows other one-box models that are commonly employed for tracking long-term (i.e., on timescales
of > 10° years) changes to the carbon cycle and 6'*C (e.g. Berner, 1991; Kump and Arthur, 1999). The input fluxes of C
into the ocean-atmosphere system include volcanism and solid Earth degassing (Fyo1c), organic carbon weathering (Fy,org), and
carbonate weathering (Fy carb), and the output fluxes are the burial of organic carbon and carbonate carbon in marine sediments
(Fo,org and Fy, carty, respectively, all in mol yr‘l). The input fluxes have an associated & B¢ (i.e., 63 Cyote= —5%0, 6 13CW,Carb = 0%o).
0 13CW,Org is set to ensure isotopic mass balance at the first timestep by setting the left side of equation 24 (below) to zero, and
rearranging to solve for ¢ 13Cw,mg. The 6'3C of the output fluxes are determined by a fixed fractionation factor relative to the
global average of the ocean-atmosphere system (€ = 613C0mpm fux —013C ie., €b,org and €p carb). The subsequent mass balance

equation for the total mass of carbon in the one-box ocean-atmosphere (M) is

dMc

dt = Fvolc + Fw,org + Fw,carb - Fb,org - Fb,carb- (23)

The associated isotope mass balance equation for the carbon isotope value of the ocean-atmosphere system (5'3C) is
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MC = Fvolc(613cvolc - 613C) + Fw,org(613CW,org - 513C) + Fw,carb(613cw,carb - 613C) - Fb,orgfb,org - Fb,carbfb,carb~ (24)

The last term in equation 24 goes to zero as we assume that €, ¢, 1S zero (6 13C of carbonate burial equals that of the
dissolved inorganic carbon (DIC) pool). While 6'3C is a useful tracer for carbon cycle dynamics, we focus on carbon-climate
interactions in this paper, where the 6'3C results are less informative. For simplicity the organic carbon burial flux (Fy,org) 18
scaled to the carbonate burial flux (Fpcarb) by Fo,ore,t = Fborg,i X (Fb.carbt/ Fb.carb,i), Where subscripts ¢ and i refer to some point
in time and the initial condition, respectively (Caves Rugenstein et al., 2019; Ridgwell, 2003). The carbonate carbon burial flux
is a function of the calcite saturation index, (Qcalcite), Such that Fy carbt = Fb carb.i X Qt/Qi. The Qcarcite 18 calculated as a function
of the carbonate system (Zeebe and Wolf-Gladrow 2001), and we correct for the concentrations of [Mg2+] and [Ca®*] using the

equations of Zeebe and Tyrrell (2019). The alkalinity reservoir in the ocean, My is related to the fluxes by:

% = Fusil + Fcarb — Fo carbs (25)
where Fy, 4 is the silicate weathering flux. Parameter values and references can be found in Supplementary Table S3 and
specific details about key parameters are described below.

To achieve mass balance for Mc and Mk, Fyolc must equal Fy, g at steady state. The global temperature at Earth’s surface
(Ty), is calculated by integrating the MEBM temperature results weighted by land area and is then used to set the global mean
ocean temperature 7, by assuming the mean ocean temperature is 10°C colder than 7,, (Key et al., 2004). To solve the initial
carbonate system and associated initial M¢ and M 4k, the initial ocean pH, pCO», T,, salinity (35 p.s.u.), mean ocean pressure
(300 bar), and geochemical composition of seawater (i.e., Ca = 15 x 1073 moles/L, Mg = 48.5 x 103 moles/L, and SOﬁ_ =
28.2 x 1073 moles/L) are calculated using the speciation equations of Zeebe and Wolf-Gladrow (2001), modified by Zeebe and

Tyrrell (2019) to account for variable ocean chemistry (see Supplementary Table S3).
2.4 Coupled climate-carbon cycle model initialization and integration

We first initialize the MEBM and carbon cycle boundary conditions including the initial global carbon cycle fluxes (see
Supplementary Tables S3 and S1). The carbon cycle is parameterized to start in steady state (inputs of carbon = outputs).
We begin by simulating the initial climate state by prescribing an initial atmospheric pCO; to force the MEBM. This same
pCO» is used, along with an initial pH (Supplemental Table S3), to speciate the carbon cycle (Zeebe and Wolf-Gladrow, 2001).
Temperature and runoff from this initial climate state are used to calculate weathering fluxes following equation 22 where the

scalar W is set to one. We then calculate the scalars for carbonate and silicate weathering by:

Fvolc ss
Wi = ’ (26)
" Y Fusili
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Fw,carb, ss (27)
Z F, w,carb,i

where i refers to the initial, unscaled fluxes, the ss subscript refers to the steady state fluxes, and the ), denotes the global

Wears =

sum (note that the zonal mean grid is an equal-area grid).

We couple the MEBM to the long-term carbon cycle module by solving the MEBM at each timestep within the carbon
cycle solver. First, the carbon cycle module solves for atmospheric pC O, for the given timestep using the mass balance of DIC
and alkalinity and the carbonate speciation described in the previous section. This pCO; value, along with the required polar
temperature guesses (discussed in section 2.1.4), is used to force the MEBM. Some temperature guesses at low pCO; levels
will lead to no stable solution or a “snowball Earth” configuration where the entire planet is glaciated (Supplemental text). For
either of these outcomes, we re-run the MEBM using temperature guesses that are a small step (usually ~ 0.5°C) toward a
warmer direction. This is repeated until the MEBM finds a stable solution that is not a fully-glaciated planet (usually less than 3
steps are needed until such a solution is reached). We use this method for avoiding snowball states because the range of pCO,
forcing in our simulations is above the lowest pCO, concentrations of the Quaternary and therefore a fully-glaciated planet
is unreasonable, although users may easily turn off this snowball-avoiding feature. The fact that fully-glaciated solutions are
usually not robust to small perturbations in the temperature guess indicates that the snowball scenario itself is not robust. Once
a stable solution is found, the latitudinally-resolved hydrological and temperature output from the MEBM are used to solve for
the silicate and carbonate weathering fluxes. These weathering fluxes, plus any perturbations to the input carbon fluxes (such as
via changes in Fyoc) then drive the response of the long-term carbon cycle including the updated marine carbonate speciation

based on DIC and total alkalinity.
2.5 Model assumptions

A number of model processes are not fully coupled among all modules. These processes are parameterized with simplifying
assumptions for the purpose of this work, but could be coupled in the future (albeit with additional parameters). We detail these
assumptions below.

We assume that no weathering occurs beneath ice sheets such that the weathering fluxes at glaciated latitudes are zero because
kice 1s zero. While weathering rates in glacial catchments can be high, it remains unclear whether glaciated catchments are
a net source or sink of CO; on long timescales (Torres et al., 2017). Our assumption of no weathering beneath ice sheets is
consistent with previous modeling work (e.g., Zachos and Kump, 2005; Pollard et al., 2013) and it has two main effects on our
model. First, when a simulation transitions from a greenhouse to an icehouse there is a reduction in weathering due to cooler
climate conditions and decreasing precipitation and an additional reduction due to ice sheet growth. Second, when initializing
the model in an icehouse state, the weathering scalar term, W (calculated at initialization), is higher because the denominator
in equations 26 and 27 is lower due to ice coverage. We test the sensitivity of this assumption to our results in our model

experiments (next section).
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We also neglect the effect of ice coverage on global eustatic sea level in our model. Terrestrial ice coverage decreases sea
level, exposing more land area and potentially increasing global weathering. This effect would counteract the effect of ice
coverage decreasing the weatherable land area, discussed above. However, accounting for the effect of sea level on exposed
land area requires constraints on hypsometry (at least near the coasts) as well as ice volume, both of which are absent from our
1-dimensional model framework. Moreover, any increase in silicate weathering due to sea level fall is expected to be small or
negligible because exposed shelfs are likely to consist of carbonates and organic and clay-rich sediment, not primary silicate
minerals (Berner, 1994; Gibbs and Kump, 1994; Kump and Alley, 1994), and may act as a source of atmospheric CO, (Kélling
etal., 2019).

Part of the weathering module scales silicate and carbonate solute concentrations with weathering zone pCO>. This weathering
zone pCO, is calculated from several global parameters, including atmospheric pCO;, and GPP, and ignores local climatic
influences on weathering zone pCO,. Soil pCO; is known to vary with local climate (Brook et al., 1983; Cotton and
Sheldon, 2012; Cotton et al., 2013) and decoupling weathering zone pCO> from local climate is clearly a major simplification.
Nevertheless, there remains substantial uncertainty regarding how soil zone pCO, will change in response to warming and
rising atmospheric pCO; (Terrer et al., 2021). This uncertainty motivates our use of the simpler, global model for GPP following
(Volk, 1987, 1989). Given that [C] is, in our model, only sensitive to weathering zone pCO; to the power of 0.316 (Winnick
and Maher, 2018), the lack of a coupling between local climate and weathering zone pCO; is likely to have a muted effect on
our predicted [Clsj and [Clcarb-

An additional assumption in our model is that the negative feedback that regulates long-term climate is terrestrial weathering
(i.e. continental silicate and carbonate weathering). For example, we have not explicitly included seafloor basalt weathering
fluxes as a silicate weathering flux separate from terrestrial silicate weathering fluxes, though recent work suggests that seafloor
basalt weathering may be a substantial portion of the global weathering flux, particularly during hothouse climates (Coogan
and Gillis, 2013, 2018). Further, we assume that the positive and negative feedbacks of the organic carbon cycle, other than
burial, are outpaced by the silicate weathering feedback on climate. Recent work has suggested that organic carbon weathering
may be linked to climate (Hilton and West, 2020). This coupling between climate and organic carbon weathering—as well as
links to marine productivity and organic carbon export and burial in marine sediments—remains an area of intensive research,
and introducing carbon cycle feedbacks on climate via the organic carbon cycle represents a promising avenue for further work.

We note that, in our model, there is a simplified coupling between climate and organic carbon burial (Fp,org). Fo,org is linked
to Fp carb, Which is sensitive to Q and, hence, to atmospheric pCO» and to Fy, carh, Whereas other frameworks simulate organic
carbon burial more mechanistically, explicitly capturing features absent from our model such as diagenesis, redox-dependence
of phosphorus cycling, and more (Hiilse et al., 2018). For simplicity, we assume constant organic carbon weathering in this
paper, which can lead to slight (<~ 5%) imbalances in organic carbon cycling when the initial and final model states (% =0)
have different climates. These imbalances are small enough to have a negligible effect on atmospheric pO- for the timescales

of our simulations.
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Figure 2. List of continental configurations. Each box refers to a set of model experiments, labelled with the associated figures. Maps are
shown in two dimensions for convenience, but are simulated in the one-dimensional, zonal mean framework. Plain-language description of
land-cover is in table to the right. Note that changing land cover will not necessarily impact long-term carbon cycling because the steady-state

carbon cycle fluxes are user-defined.

3 MODEL EXPERIMENTS

We run a series of experiments with the CH20-CHOO TRAIN model to demonstrate its features and sensitivity to key
climate variables. The goal of these experiments is twofold—we aim to illustrate the importance of the spatial (zonal mean)
dimension in climate-carbon cycle interactions and to demonstrate how features of the climate system governing temperature
and water cycling can impact the long-term carbon cycle. To this end, we use different continental configurations for each set of
experiments to emphasize how spatially variable temperature and runoff responses can impact weathering fluxes (see Fig. 2 for
geography schematics and descriptions). These experiments are not meant to be an exhaustive sensitivity analysis of the model.
Instead, they provide a baseline for model performance and they illustrate climate-carbon cycle interactions that are absent in
many simpler models or are emergent properties of more complex frameworks.

In our first set of experiments, our reference simulations, we begin by analyzing the spatial pattern of climate and weathering
for a “Cat-eye” geography—a constant land fraction at each latitude—at different glacial conditions and pCO; levels. Zonal
mean albedo is constant in this configuration, allowing us to explore the basic spatial patterns of temperature, hydroclimate
(precipitation and evaporation), and silicate weathering and their response to greenhouse forcing without much spatial complexity
from the distribution of land. Next, we test the model using modern geography and imposing a perturbation similar to the
Paleocene-Eocene Thermal Maximum with an injection of 5000 Pg of carbon with a §'3C value of —20%o to the atmosphere
over 10000 years (Cui et al., 2011; Frieling et al., 2016; Gutjahr et al., 2017). This simulation is used for a basic comparison of

the timescale of the model response with other modeling results and data.

15



410

415

420

425

430

435

Second, we test for interaction effects between key variables—especially climate variables—influencing the steady state

dMc
dr

climate (that which occurs when =0). Interaction effects occur when the effect of changing two variables at once differs
from the sum of each individual variable’s effect. To test for interaction effects, we run factorial experiments testing all
combinations of five variables with three possible values each (a total of 243, or 35, simulations). Each simulation starts from
the same initial climate state, is perturbed to the new state at the first timestep, and is allowed 750 kyr to reach a new steady state.
The initial state uses the modern geographic configuration (Fig. 2) with the default value for each un-perturbed variable. We
repeat these 243 simulations for two initial climate states—a low-pCO> state with polar glaciers (350 ppmv), and a high-pCO,
state with ice-free poles (4500 ppmv).

We then turn our focus to individual variables that have spatially distinct impacts on climate and weathering. In our third
set of experiments, we evaluate the model sensitivity to the effect of ice sheets on weathering by changing ki.. over glaciated
regions (see equations 10 and 11). In effect, this varies the weathering-effective runoff—how much of the runoff calculated
from the product of k., and P contributes to weathering at glaciated latitudes. Here, we test the model response to varying kice
in glaciated regions between 0 and 1 (in all other simulations, kjc. is set to 0). For these experiments, we use a “Northland”
geography, inspired by Lagué et al. (2021). This configuration concentrates land at high latitudes where ice sheets can have the
largest impact on weathering fluxes. A comparison to a land-free simulation shows that the Northland geography has a similar
effect in our model as in Lagué et al. (2021), shifting the mean Inter-Tropical Convergence Zone southward by ~ 5° (Fig. S2).
Starting from an ice-free climate for each of five glaciated kj.. values, we force an instantaneous, permanent halving of the
volcanic flux. The different ki.. values have no impact on climate until the decrease in volcanism is sufficient for glaciers to
form. Physically, higher k.,, may represent conditions such as patchy ice cover over land or ice sheets decreasing sea level to
expose weatherable continental shelf.

Fourth, we test the model response to an instantaneous change in runoff by modifying the efficiency of moisture recycling (w
in equation 9). The term w determines how efficiently precipitation is partitioned into evaporation versus runoff, with higher
values of w corresponding with more evaporation and less runoff. For this experiment, we compare a world with all land in
the tropics (“Tropicslice”) to one with land concentrated at a pole (‘“Polarslice”; see Fig. 2 for distinction between Polarslice
and Northland), because the sensitivity of runoff and temperature to pCO, differs between these regions. In each geographic
configuration, we change w from the control value of 2.6 to 2.0 (increasing runoff) and to 3.5 (decreasing runoff), approximating
the 25th and 75th quantiles of the global distribution of w (Greve et al., 2015).

Finally, we test the model response to an instantaneous change in the diffusivity of moist static energy (D in equation 5).
An increase in diffusivity tends to cool the tropics, warm the poles, and transport more moisture from the subtropics to the
mid-to-high latitudes. To capture these spatially complex effects, we simulate a change in D for two geographies with similar
global land areas—a northern hemisphere continent (Northland, as in the ice sheet simulations) and a tropical + subtropical
patch of land (‘“Patchland”). Unlike the Tropicslice and Polarslice geographies, Patchland and Northland each span more than
one climate zone. In these experiments, we vary D by ~ +30% from the control value of 1.06x 10% m? s~! (Hwang and Frierson,

2010) consistent with variations one might expect between an icehouse and a greenhouse climate (e.g., Frierson et al., 2006).

16



N
o

o

ice threshold

Temperature (°C)

-20+
Atmospheric
pCO2
0B S = Global
—_ /oy V4 \\ e |_and only 500
< 0.5] / \
2 B 350
o 00F B 200+
o
305 I 220 *
€ o * monopolar
- glaciation
-1.51 , , , i i , i ** bipolar
1e+05?ice extent ice extent NN glaciation
= C
Nb 8e+04 1
IS
(-\‘3 6e+04 f\
2 4e+04- v
B 2e+04-
2 S
s
0e+00

50 30 15 0 15 30 50
Latitude (°N)

Figure 3. Reference climate state. Zonal mean output for (A) temperature, (B) evaporation minus precipitation, and (C) the silicate
weathering rate are shown for four pCO; levels. Negative values of E minus P indicate more runoff. Dashed E minus P lines refer to the

global pattern before the Budyko hydrologic balance framework is applied over land. Latitude axis is equal-area.

440 To isolate the effect of D, we hold the relative partitioning of Hadley cell transport constant, though changes in temperature

will impact Hadley transport through the gross moist stability term (see Supplemental text).

4 RESULTS
4.1 Reference Simulation

We define a reference simulation with the cat-eye geography to illustrate the one-dimensional outputs of the MEBM and

445 weathering models (Fig. 3). Global climate transitions from a bipolar glaciation (similar to present-day) to a monopolar
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glaciation and, finally, ice-free as pCO> increases from 220 to 350 ppmv. The pCO, thresholds for glaciation depends on a
variety of prescribed factors including climate sensitivity as well as the geography and prescribed land, ocean, and ice albedo
values. Despite the land cover and insolation forcing being meridionally symmetric about the equator, asymmetric results such
as the monopolar glaciation are still possible. The monopolar state exists because there is too much atmospheric pCO; to
support a colder, bipolar glaciation, but too little to support an ice-free world. When the land cover (thus, albedo) and insolation
are meridionally symmetric, the pole with the lower initial temperature guess will glaciate first as the planet cools. If both
temperature guesses are the same, the first pole to glaciate in the meridionally symmetric case will depend on which pole the
numerical solver addresses first—that is, which pole is associated with the first guess. However, the vast majority of model
cases likely involve meridional asymmetry, as no realistic continental geography is perfectly symmetric about the equator. In
such asymmetric cases, the pole that glaciates in the monopolar case is determined by the asymmetry, not the polar temperature
guess and numerical configuration.

The model hydroclimate output is shown in the spatial pattern of £ minus P, which balances the divergence of the latent heat
flux (Fig. 3B). In the global zonal mean, P exceeds E in the tropics and mid-to-high latitudes, but E is greater than P in the
subtropics due to the dry downwelling branches of the Hadley cell. There is an abrupt decrease in E minus P at the ice threshold
due to the step-wise change in albedo, temperature, and moist static energy which forces rainout. The global temperature and
hydroclimate fields shown in Fig. 3A and B ultimately determine the spatial pattern of silicate weathering (Fig. 3C). Weathering
rates are highest in the tropics where temperature and runoff are high, and lowest in the subtropics where runoff is low. Whereas
the broad spatial pattern of runoff sets the pattern of silicate weathering, changes in silicate weathering with climate largely
respond to temperature in these simulations because the runoff response is small. For example, runoff is generally insensitive to
global climate between 30 and 50 degrees latitude (north or south) (Fig. 3B), but weathering fluxes increase with pCO, due to
the combined effect of warmer temperatures and higher soil pCO; (Fig. 3C). Weathering fluxes are zero for glaciated latitudes

because, for these simulations, kjce is zero.
4.2 Response to abrupt pCO; increase with modern geography

Starting at 320 ppmv pCO- for the modern geography, the model simulates a bipolar glaciation with the spatial pattern of
global discharge and silicate weathering closely matching that of continental area and the zonal mean water balance (Fig. 4A-C).
Today, mean air temperatures in the south pole are lower than in the north pole, whereas the model finds a cooler north pole.
This discrepancy is probably due to the fact that we do not account for factors such as ocean circulation, spatial variability in
land albedo, cloud feedbacks, cloud albedo, topography, or a glacier height mass balance feedback. For example, in the model
more land in the northern hemisphere leads to higher albedo and a cooler climate, although recent work shows that more cloud
cover in the southern hemisphere compensates for the effect of northern hemisphere land, causing both hemispheres to have
approximately the same top of atmosphere albedo (Datseris and Stevens, 2021).

When forced with an injection of carbon similar in magnitude to the Paleocene Eocene Thermal Maximum (PETM; ~5000
Pg over 10 kyr (Cui et al., 2011; Frieling et al., 2016; Gutjahr et al., 2017)), global climate and the carbon isotope composition
of the DIC pool recover in approximately 200-300 kyr (Fig. 4D, G). The recovery timescale is consistent with geologic records
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Figure 4. Abrupt warming experiment for the modern world. Zonal mean results for (A) temperature, (B) the percent of global discharge
at each equal-area latitudinal grid cell in the 320ppmv pCO, simulation, and (C) the silicate weathering flux for each equal-area latitudinal
grid cell at three selected timesteps. The timesteps in (A-C) are labeled with colored boxes in panel (D) which shows the time evolution of
atmospheric pC0O;, along with that of global temperature in (E), global mean runoff in (F), and the carbon isotope composition of the DIC

pool. Arrows denote stepwise changes in runoff due to the establishment of ice sheets limiting runoff beneath them.

and other modeling results (Colbourn et al., 2013; Murphy et al., 2010). During this time, ice sheets fully melt as the planet
warms to a greenhouse climate and then are reestablished, first in the northern hemisphere at ~1500 ppmv pCO> and later in

the southern hemisphere. We note that which hemisphere glaciates first is not sensitive to the initial temperature conditions, as

in the meridionally symmetrical geography case (Fig. 3).
4.3 Factorial experiments and interaction effects

Factorial experiments demonstrate that interaction effects are prevalent in the model, especially under low-pCO,, glacial
conditions (Fig. 5). When perturbed, each variable that we tested (Fig. 5C, F) can alter the spatial pattern of temperature
and/or runoff, thereby influencing the global weathering flux and the steady state climate required to balance the carbon cycle
(% =0). For the low-pCO; case, we include perturbations to ice albedo and kic, the fraction of runoff that contributes to

dt
weathering beneath an ice sheet, both of which have no effect when ice is absent. We substitute these variables for relative
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Figure 5. Factorial experiments show some non-linear interaction. (A) Histogram of deviation of global mean surface temperature from
the expected temperature due to the sum of individual effects (AT) for the low-CO, case. Negative tail indicates larger interaction effects
with more ice growth. (B) Density plots showing that the spread in the deviation from 0 tends to increase as more variables are perturbed.
(C) Table of variables and values (unperturbed in parentheses). Gray highlighting indicates variables with same values in low- and high-CO,

cases. (D-F) Same as (A-C), but for the high-CO, case. Globe remains ice-free in all simulations.
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humidity and the Planck feedback sensitivity parameter in the high-CO, case. In many experiments, perturbing multiple
variables at once yields a similar global temperature as the net effect of perturbing each variable independently. Still, interaction
effects appear in the low- and high-pC O, cases, the magnitude of which increases as more variables are perturbed (Fig. 5B, E).

Notably, interaction effects in the low-pCO> case have a larger effect on global cooling than global warming, creating the
negative tail in Figure 5A. This effect is likely related to the positive, non-linear ice-albedo feedback which strengthens with
cooling, potentially amplifying interaction effects. Further, the absence of an ice-albedo feedback is associated with weaker
interaction effects in the high-pCO> case (Fig. 5D, E). A direct comparison of the low- and high-pCO> experiments where the
same variables are perturbed yields the same result—interaction effects are weaker without an ice-albedo feedback. Overall,
our factorial experiments emphasize the complexity that emerges when positive feedbacks such as ice-albedo play a role in
long-term carbon cycling. Interactions between variables, especially in colder, icy climates, makes it difficult to disentangle any

individual variable’s effect.
4.4 Varying the effect of ice cover on weathering

When we halve the volcanic flux of CO; in our model, allowing ice cover to increase, the temperature and pCO> of the new
equilibrium climate state depends on kic., or how much ice cover decreases the effective runoff available to weather rock. With
more effective runoff, weathering fluxes remain high at glaciated latitudes, requiring overall colder temperatures, more ice cover,
and lower pCO; to balance the lower volcanic emissions flux (Fig. 6). The opposite is true for low kj... Here, runoff (thus,
weathering) decreases more drastically with temperature and ice growth, requiring a smaller temperature decrease to balance
the drop in volcanism. The effect of ice growth on runoff can be seen in Figure 6D, where runoff decreases in a stepwise fashion,
tracking spurts of ice sheet growth, when effective runoff is very low. The lowest kic. simulation has a similar global mean
runoff to the 0.25 case because of competing temperature effects. The warmer temperatures of the ki.. = 0 case limit ice cover
and lead to higher runoff in ice-free regions, partially counteracting the lower ki.. where ice exists. In short, when ice sheets
are present the global temperature response to volcanic CO, emissions depends strongly on how ice sheets impact weathering
in our model, particularly when much of the global land mass exists at the poles. The more ice sheets inhibit weathering, the
smaller the change in temperature required to balance a volcanic perturbation.

We note that changes in ki have no impact on climate or the long-term carbon cycle in an ice-free world (where kjce = 1
everywhere). This is why all simulations start at the same ice-free initial conditions in Figure 6. As a result, these simulations
can be directly compared because all terms that are defined when the model is initialized—including Wg;; which impacts the
strength of the silicate weathering feedback separately from ki..—are equal. If we initialized the model in a glaciated state, then
Wsip must vary with ki to maintain a balanced carbon cycle at the first timestep, and our results would confound the direct

effect of changing kic plus the indirect effect of changes in W;.
4.5 Instantaneous change in moisture recycling efficiency

Figure 7 shows the model climate and carbon response to an abrupt increase (panels A-D) and decrease (panels E-H) in runoff,

as determined by the recycling efficiency parameter w. Results are shown as a factor change (panels A, C, E, G) or an anomaly
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ice-line (note the y-axis is equal-area) (C), and global mean effective runoft (D) for different kj.. scenarios when the volcanic input is halved.
Note that (D) refers to terrestrial runoff relevant for weathering (which accounts for changes kjce). When kj¢ at ice-covered latitudes is zero
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runoft is equal to the total runoff predicted by the MEBM (black line).
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Figure 7. Abrupt change in evapotranspiration efficiency (w). All changes are relative to each run’s pre-perturbation value. Effect of
instantaneous decrease in Budyko w at time zero from 2.6 to 2.0 (panels A — D) on atmospheric pCO; (A), the change in global temperature
(B), global runoft, normalized (C) and net carbon emissions (D). Panels E-H show the same variables but for an increase in w from 2.6 to 3.5.
The larger magnitude climate response of Tropicslice world compared to Polarslice world is owed to the larger magnitude change in climate

from the change in w rather than changes in the strength of the silicate weathering feedback (see text).

(panels B, D, F, H) from pre-perturbation (time < 0) because the different continental configurations cause somewhat different
initial climate states, though the relative responses are robust. When w decreases from 2.6 to 2.0, runoff increases everywhere,
driving more weathering. Initially, the increase in weathering creates a “blip” in net C emissions (defined as the sum of fluxes
in equation 23) because carbonate weathering becomes a transient source of carbon, compensated by subsequent burial. In this
section and the next, when we note the effect of the climate variable on net C emissions we ignore this transient blip.

The magnitude of the weathering (and thus climate) response to changing w depends on geography. Runoff increases by
a larger fraction in Tropicslice compared to Polarslice world because runoff is most sensitive to w when precipitation over
potential evapotranspiration is closer to 1 (see for example Zhang et al. (2004) their Fig. 5), as is the case for Tropicslice
world. This larger increase in relative runoff causes a larger fractional increase in weathering (decrease in net C emissions) in
Tropicslice world (Fig. 7D), requiring relatively more cooling (Fig. 7B) to reach a new steady state in the carbon cycle with

zero net emissions. The same relative response between Polarslice and Tropicslice world can be seen in the case where w is
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increased, causing a decrease in runoff (Fig. 7E-H). In this case, the decrease in runoff is greater in Tropicslice world (Fig. 7G),
leading to a larger increase in net C emissions as weathering declines (Fig. 7H).

In both cases (decreasing and increasing w) Tropicslice world takes longer to return to zero net C emissions compared to
Polarslice world, mostly because the runoff perturbation is relatively larger (Fig. 7C,G). We note that the runoff response to
warming is similar in Polarslice and Tropicslice worlds, but silicate weathering is more responsive to global temperature in
Polarslice world (Supplemental Fig. S3). This effect is due to polar amplification of warming causing a greater increase in
weathering per increase in global temperature (and runoff) in Polarslice world. The same effect can be seen in Fig. 4, where
weathering responds strongly to warming in the northern hemisphere mid-to-high latitudes despite a relatively weak runoft
response. Consequently, the weathering response to pCO)» is different between Polarslice and Tropicslice worlds, despite similar

runoff responses to pCO, (Supplemental Fig. S3).
4.6 Instantaneous change in the diffusivity of moist static energy

In our model, moist static energy diffusivity (D) determines how efficiently the surplus of atmospheric energy in the tropics and
subtropics (where incoming radiation exceeds outgoing) is transported toward the polar regions where there is an atmospheric
energy deficit (outgoing radiation exceeds incoming). D has only a loose physical meaning, as it is convenient in models of
this level of complexity to parameterize poleward moist static energy transport as a diffusive process to avert the complex,
underlying transport physics. Still, the D which produces the best MEBM fit to true climate data is generally thought to change
with geography, pCO>, and other factors (Frierson et al., 2006; Peterson and Boos, 2020; Siler et al., 2018). At present, we
lack rigorous process-based formulations for the D response to climate and geography, but nevertheless we simulate its effect
on long-term carbon cycling to build intuition for its role in the MEBM and broader CH20-CHOO TRAIN framework.
Patchland and Northland worlds show distinct responses to the same change in D (Fig. 8). A decrease in D lowers pCO; and
cools Patchland world, whereas the same decrease in D raises pCO, and warms Northland world (Fig. 8A, B). The divergent
climate responses are caused by diverging weathering responses which, in turn, are caused by spatially variable changes in
runoff and continental temperature (Supplemental Fig. S4). Weathering increases with lower D in Patchland mostly due to
warming in the subtropics and tropics at the expense of cooling at higher latitudes. Runoff increases in the subtropics but
decreases slightly in the tropics such that the effect of runoff on weathering is small. The fact that temperature, not runoff,
drives the increase in weathering in Patchland world is evident in Figure 8C. Here, the initial increase in runoff in Patchland
world is small, and runoff continues to decrease with time as the planet cools. Conversely, runoff and temperature both drive
the weathering response in Northland world. Runoff initially decreases in the polar continent as D decreases (Fig. 8C), then
runoff gradually increases as the planet warms and weathering begins to balance emissions. Increasing D leads to essentially
the opposite effect (Fig. 8E-H). Patchland world warms due to an initial drop in weathering while Northland world cools due to
an initial weathering increase. As in the case of decreasing D, the change in weathering in Patchland world is primarily driven
by temperature—Patchland world runoft is less sensitive to D—whereas temperature and runoff increase in concert to increase
weathering in Northland world. We note that the direct effect of changing D on global temperature is small. Changing D will

warm some regions and cool others, with the opposing effects largely canceling out (especially when the poles are ice-free
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Figure 8. Abrupt change in MSE diffusivity (D). All changes are relative to each run’s pre-perturbation value. Effect of an instantaneous
decrease in the diffusivity coefficient from 1.06 x 10° to 0.71x 10 m? s~! at time zero on atmospheric pCO, (A), the change in global
temperature (B), the fractional change in global runoff (C) and net carbon emissions (D). Panels E-H show the same variables but for an
increase in D to 1.41 x 10° m2 s~!. Note that, unlike other variables, the runoff response is not symmetric between the geographies because

runoff is sensitive to D in Northland world, but much less sensitive in Patchland world. Simulations are ice-free at all times.

and there is no ice albedo feedback). However, the terrestrial climate response to D—which can be sensitive to the continental

geography—determines its effect on weathering and therefore long-term global temperature.

5 MODEL APPLICATIONS AND THEIR LIMITATIONS

The primary feature of our model relative to existing long-term carbon cycle frameworks is the intermediate complexity
representation of climate via the MEBM. We expect that the most useful applications of the model will include those analyzing
the sensitivity of long-term carbon cycle dynamics to various features of the complex climate system that are difficult to capture
in simpler models and difficult to efficiently test or modify in more complex models. The ice albedo feedback, the role of
ice sheets in weathering, polar amplification of warming, and changes in moist static energy diffusivity—processes explored
above—are examples of climate features that can impact long-term carbon cycling and can be easily investigated in the CH20-

CHOO TRAIN framework but are often difficult to efficiently manipulate in more complex models. Still, there are important
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limitations to such model applications that arise from the underlying model assumptions. We emphasize these limitations here
while also highlighting some of the advantages that justify our use of the MEBM and its one-dimensional approach to represent

climate.
5.1 Climate and weathering

A primary limitation of the CH20-CHOO TRAIN framework is that the model must be tuned to the desired baseline climate
and weathering state. Parameters such as the diffusivity coefficient, land, ocean and ice albedo, climate sensitivity, and others
will affect the climate state for a given pCO, and will determine the pCO> thresholds at which ice sheets initiate or collapse.
Thus, if the model simulates a shift to an ice-free climate above 700 ppmv, this result should not be considered evidence that
700 ppmv represents a pCO- threshold for ice melt. Instead, we suggest that users first tune the model to match a desired
baseline climate and its sensitivity (as informed by modern or geologic data, or climate model output). In this way, the model is
perhaps most useful for studying how key aspects of climate affect the time-evolution of long-term climate and carbon cycling,
and less useful for constraining temperature and pCO- thresholds of climate transitions which are highly parameterized.

Baseline weathering fluxes in the model are also parameterized using a scaling coefficient to balance silicate weathering
and volcanism at the first model timestep. The weathering scaling coefficient, therefore, effectively modifies the strength of
the silicate weathering feedback by assigning an implicit slope to the weathering-temperature relationship. The current version
of our model also does not include explicitly parameterized seafloor basalt weathering (Coogan and Dosso, 2015). This flux
is sensitive to deep water temperatures, but not to runoff. As a consequence, for most simulations where global temperature
and runoff co-vary, inclusion of seafloor weathering is not likely to fundamentally change the results presented here, but will
change the timescales over which the Earth system achieves a new stable equilibrium. However, in instances where runoff and
temperature are negatively related or unrelated (this can occur in our model if all land exists at a latitude where runoft does not
increase with warming), seafloor weathering may act to prevent a runaway greenhouse, though we note that this depends upon
the sensitivity of seafloor basalt weathering to temperature.

The scaling coefficient for weathering is important to consider when comparing different geographic settings, volcanic
fluxes, or climate states. Changing one of these factors (geography, volcanic flux, or climate) almost always changes another.
For example, two different continental geographies with different runoff distributions will require either (1) two different
scaling coeflicients to match a given volcanic flux (thus maintaining a constant DIC residence time); or (2) two different
volcanic fluxes for a constant scaling coefficient; or (3) two different climate states for a constant scaling coefficient and volcanic
flux. Importantly, this limitation is not unique to our model framework. In any model for the long-term carbon cycle, it is
generally impossible to compare two different geographic configurations, volcanic fluxes, or climate states, while holding all
else constant. Changing any of these terms will tend to put the carbon cycle out of balance, requiring compensation somewhere
else. Due to this limitation, certain research questions must be approached with caution. For example, the question of whether
one continental geography or another yields a stronger silicate weathering feedback is difficult to test because the weathering
scaling coeflicients, the volcanic fluxes of CO,, and/or the baseline climate states must differ, all of which may also affect the

feedback strength.
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Hydrological fluxes, land albedo, and GPP are not coupled in our model and precipitation does not affect land albedo or GPP.
A wetter climate is expected to decrease land surface albedo by supporting greater leaf area and therefore a darker surface,
whereas a drier climate tends to have the opposite effect (e.g. Charney, 1975; Claussen, 1997). Decoupling these processes in
our model means that precipitation is not responsive to vegetation (i.e. no precipitation-vegetation albedo feedback) and the
weathering response to hydrological fluxes is solely due to their effect on runoff, with no indirect additional effect via GPP
(see equation 20) and soil pCO;. Including such a parameterization would likely heighten the sensitivity of weathering to
hydrologic change.

However, this formulation of climate and weathering in the model carries distinct advantages, too. Perhaps the most important
advantage is that weathering is not explicitly parameterized to increase with pCO5, as is common with low-dimensional box
models of the long-term carbon cycle (Bergman, 2004; Caves et al., 2016; Zeebe, 2012). In contrast, higher-order models use
climate model data where the temperature and (especially) runoff response to pCO; is more complex and, in some cases,
weathering has been shown to decrease with warming (Pollard et al., 2013). In our model formulation, the strength and direction
of the weathering response to climate mostly depends on the boundary conditions which determine where continental runoff
occurs and how it responds to pCO». Thus, similar to more complex two and three dimensional models, our one-dimensional
framework allows for a dynamic silicate weathering feedback which responds to time-variant conditions such as ice cover (Fig.
6) and time-invariant conditions such as geography (Fig. 7 and 8). As a result, it is easy to explore scenarios that cause or
prevent a positive weathering feedback and runaway climate states in the CH20-CHOO TRAIN framework.

Another advantage of our model framework lies in how ice sheets interact with climate and carbon cycling. While the exact
role of ice sheets in the long-term carbon cycle remains unclear (e.g. von Blanckenburg et al., 2015; Torres et al., 2017), our
model presents a framework to test existing hypotheses in such a way that ice, climate, and the long-term carbon cycle are fully
coupled. This coupling to the long-term carbon cycle via weathering is generally absent in more complex, long-term models
of ice sheet dynamics and climate (Pollard and DeConto, 2005; DeConto et al., 2008), although the ice-albedo feedback is not
absent from all complex models with a long-term C-cycle (Donnadieu et al., 2006; Holden et al., 2016; Ridgwell et al., 2007).
Zero-dimensional box models have also been parameterized to account for icehouse-greenhouse transitions and their effect
on weathering, with previous results showing climate oscillations as ice sheet growth and decay overshoots the equilibrium
weathering flux (Zachos and Kump, 2005). Consistent with more complex models (Pollard et al., 2013), we were unable to
replicate this effect in our one-dimensional framework largely because polar weathering fluxes are only a small fraction of

global weathering fluxes in most continental geographies.
5.2 The zonal-mean framework

The key assumption that distinguishes our model from previous one-dimensional energy balance climate models in the long-
term carbon cycle is that the zonal mean climatology produced by the MEBM adequately represents terrestrial (hydro)climate
conditions. Indeed, certain assumptions within the MEBM hold only over ocean. For example, we prescribe a spatially uniform
relative humidity value of 80%, consistent with oceanic, but not terrestrial, near-surface conditions. We note it is possible to

prescribe a spatially variable humidity field, as done in previous work (Peterson and Boos, 2020). Further, the evaporation
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approximation used in the MEBM (Siler et al., 2018, 2019) is valid over oceans but not land. This is in part due to the fact
that evaporation is not limited by water availability, as is commonly the case over land. As mentioned previously, our approach
to translate zonal mean evaporation to terrestrial evapotranspiration involves imposing a water limitation constraint following
the Budyko hydrologic balance framework—a step which provides physically reasonable evapotranspiration and runoff values,
but which decouples terrestrial evapotranspiration from the zonal mean climatology. While we make efforts to derive realistic
terrestrial hydrologic budgets from the zonal mean MEBM results, it is clear that the zonal mean climatology cannot be
considered equivalent to terrestrial climatology everywhere.

Another challenge is that the zonal fragmentation of land, not captured in the zonal mean framework, can impact the
relationship between zonal mean climatology and terrestrial climatology. In our model, a supercontinent yields the same result
as many small continents so long as the zonal mean land distribution is the same. Yet, more fragmented land masses can lead
to larger weathering fluxes as supercontinents limit moisture delivery to continental interiors (Baum et al., 2022). Thus, our
model implicitly assumes that less fragmented land serves as an adequate moisture source to maintain well-watered continental
interiors (similar to the Amazon Basin today). This caveat is particularly relevant for our idealized geographies that span the
planet zonally, discussed in the next section. In these cases, the model can provide useful insights to the coupled climate-carbon
cycle, but may give very different results from more complex, 2-D models using the same continental configuration.

Deriving zonal mean weathering rates from the zonal mean climatology can present another challenge. Land surface reactivity
can change over space at a given latitude depending on topography, soil age, and other factors (e.g., Maher and Chamberlain,
2014; Waldbauer and Chamberlain, 2005). A landscape with some given mean runoff, temperature, and reactivity will weather
more if high runoff and high reactivity co-occur (as in a wet, coastal mountain range with a dry inland plain). Meanwhile, the
same zonal mean runoff, temperature, and reactivity will lead to less weathering if high runoff occurs in a less reactive region
(as in a wet, coastal plain with a drier, inland mountain range). While the covariation of temperature, runoff, and reactivity at a
given latitude influences the zonal mean weathering rate, this information is lost in our one-dimensional approach.

Still, the zonal mean climatology and weathering remain useful features of our model, even if they are not perfect rep-
resentations of how the two-dimensional landscape is projected into one-dimensional space. The zonal mean approach is
computationally efficient and makes it possible to consider how spatially complex changes in hydroclimate can impact weath-
ering during a carbon cycle perturbation. For example, if ice melt in the north pole causes the tropical rain belt ITCZ) to shift
north, then the weathering response to this ice melt will depend in part on whether there is more or less land in the ITCZ’s
new location. The effect of this ITCZ shift would be lost in most 0-dimensional models where weathering and runoff are single
functions of temperature or pCO,. Similarly, changes in land albedo are known to shift tropical rainfall (e.g. Charney, 1975;
Claussen, 1997) and can be efficiently represented in this zonal mean framework to explore the carbon cycle consequences. In
sum, the zonal mean approach captures critical, realistic processes that lower-dimensional models usually omit while providing

more computational efficiency compared to more complex models.
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6 Next stops

The CH20-CHOO TRAIN is designed to be computationally efficient and highly customizable, presenting opportunities for new
features, processes, and complexity in future work. For example, terms such as humidity, the diffusivity coefficient, lithology,
and rock reactivity are globally constant in the idealized simulations presented here, but could easily be made spatially explicit
in the current model framework. We also recognize room for improvement in certain aspects of the model. For example, our
current ice sheet formulation is rather crude, with a prescribed ice sheet albedo that occurs whenever temperature drops below
a prescribed threshold. More sophisticated ice sheet parameterizations in MEBMs have accounted for other effects such as
ice thickness, sea ice thermodynamics, and seasonal ice formation and retreat (Feldl and Merlis, 2021). The effect of seasonal
insolation, specifically, is a feature of interest for simulating tropical weathering where changes in past rainfall often track
seasonal insolation trends. Adding insolation seasonality and more complex ice sheet dynamics would undoubtedly increase
the computational expense of the model.

The zonal-mean framework of our model is also well-suited for simulating the effect of spatially variable radiative feedbacks
on the climate response to carbon cycle perturbations. While the ice albedo feedback is already accounted for via a temperature-
dependency of albedo, other feedbacks such as cloud feedbacks are currently absent from the model. However, the zonal pattern
of such feedbacks could easily be prescribed, perhaps from climate model output, to explore how the effect of these feedbacks
on temperature and hydroclimate impact the time-evolution of weathering (Roe et al., 2015). Still, the suite of feedbacks in
the current model, including the combination of radiative and weathering feedbacks, are rarely considered in a single model
framework. The CH20-CHOO TRAIN therefore brings opportunities to explore the complexity that emerges through the

myriad interactions between climate and the long-term carbon cycle in the geologic past.

Code availability. The code, instructions for running the model, and associated scripts for plotting model output and generating model input
files can be found on Github (repository: https://github.com/tykukla/CH20-CHOO-TRAIN) and Zenodo (Kukla et al., 2023). The code used

for the analysis in this manuscript is tagged as release v1.0.1
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