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Abstract. Models of the carbon cycle and climate on geologic (> 104 year) timescales have improved tremendously in the last

50 years due to parallel advances in our understanding of the Earth system and the increase in computing power to simulate its

key processes. Still, balancing the Earth System’s complexity with a model’s computational expense is a primary challenge in

model development. Simulations spanning hundreds of thousands of years or more generally require reducing the complexity

of the climate system, omitting features such as radiative feedbacks, shifts in atmospheric circulation, and the expansion and5

decay of ice sheets, which can have profound effects on the long-term carbon cycle. Here, we present a model for climate and the

long-term carbon cycle that captures many fundamental features of global climate while retaining the computational efficiency

needed to simulate millions of years of time. The Carbon-𝐻2𝑂 Coupled HydrOlOgical model with Terrestrial Runoff And

INsolation, or CH2O-CHOO TRAIN, couples a one-dimensional (latitudinal) moist static energy balance model of climate with

a model for rock weathering and the long-term carbon cycle. The CH2O-CHOO TRAIN is capable of running million-year-long10

simulations in about thirty minutes on a laptop PC. The key advantages of this framework are (1) it simulates fundamental

climate forcings and feedbacks; (2) it accounts for geographic configuration; and (3) it is flexible, equipped to easily add features,

change the strength of feedbacks, and prescribe conditions that are often hard-coded or emergent properties of more complex

models, such as climate sensitivity and the strength of meridional heat transport. We show how climate variables governing

temperature and the water cycle can impact long-term carbon cycling and climate, and we discuss how the magnitude and15

direction of this impact can depend on boundary conditions like continental geography. This paper outlines the model equations,

presents a sensitivity analysis of the climate responses to varied climatic and carbon cycle perturbations, and discusses potential

applications and next stops for the CH2O-CHOO TRAIN.

1 INTRODUCTION

Interactions between the long-term carbon cycle and global climate govern the habitability of our planet. These interactions are20

mediated by complex relationships with factors such as geography, lithology, climate feedbacks, and more (Bluth and Kump,
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1994; Caves et al., 2016; Donnadieu et al., 2006; Gibbs and Kump, 1994; Jellinek et al., 2020; Park et al., 2020). Over the last

50 years, a suite of models ranging in complexity have been developed to explore these interactions, with each model carrying

its own advantages and drawbacks (Arndt et al., 2011; Bergman, 2004; Berner, 1991, 2004; Colbourn et al., 2013; Donnadieu

et al., 2004, 2006; Francois and Walker, 1992; Goddéris and Joachimski, 2004; Kump and Arthur, 1999; Lenton et al., 2018;25

Mills et al., 2017; Ozaki and Tajika, 2013; Ridgwell et al., 2007; Zeebe, 2012).

One major challenge in building these models is balancing the complexity of the global climate system with the computational

efficiency needed to simulate thousands to millions or billions of years of time. Based on the model’s intended applications,

different frameworks address this trade-off in different ways. Lower-dimensional box models, for example, tend to distill global

climate down to a few simple parameters (and in many cases, a single forcing variable, 𝑝𝐶𝑂2), usually opting to ignore many30

factors such as geography, orbital forcing, and ice sheet dynamics (Berner, 1991; Bergman, 2004; Caves et al., 2016; Kump

and Arthur, 1997; Lenton et al., 2018; Zeebe, 2012). The simpler representation of climate makes such models highly efficient

while leaving room for more complex representations of other factors, such as sedimentary reservoirs and ocean biogeochemical

cycling (Zeebe, 2012; Ozaki and Tajika, 2013). Higher-dimensional models, in contrast, capture more complexity in global

climate and generally provide the most mechanistic representations of the Earth System on long timescales (Baum et al., 2022;35

Donnadieu et al., 2006; Holden et al., 2016; Otto-Bliesner, 1995; Ridgwell et al., 2007). However, these models are more

computationally expensive, making it harder to efficiently explore the large, multi-dimensional parameter space of its simulated

climate system.

The goal of this work is to build a model that remains computationally efficient while capturing features of climate that are

usually reserved for more computationally expensive models. This model, the CH2O-CHOO TRAIN (Carbon-𝐻2𝑂 Coupled40

HydrOlOgical model with Terrestrial Runoff And INsolation) considers factors such as the spatial pattern of radiative climate

feedbacks, geography, lithology, insolation, hydroclimate, and more. The model framework couples a moist static energy

balance model of climate (Flannery, 1984; Roe et al., 2015; Siler et al., 2018) with a continental weathering model (Maher and

Chamberlain, 2014; Winnick and Maher, 2018) and a box model for the long-term carbon cycle (Caves Rugenstein et al., 2019;

Shields and Mills, 2017). The model is designed to easily modify processes in the climate system such as the strength of climate45

feedbacks, the sensitivity of runoff, the efficiency of atmospheric poleward energy transport, and the role of ice sheets in climate

and weathering. Such processes have complex interactions with the global carbon cycle that are often highly parameterized or

absent from lower dimensional models. Conversely, in higher dimensional models, these processes—particularly atmospheric

energy transport and the pattern of certain feedbacks—are often emergent properties, not inputs that can be directly modified.

Thus, the CH2O-CHOO TRAIN framework makes it possible to explore how many aspects of climate, especially the water and50

carbon cycles, interact over space and time across millions of years.

The key feature that allows the CH2O-CHOO TRAIN to run efficiently is the one-dimensional (latitudinal) moist energy

balance climate model (MEBM) (Flannery, 1984; Frierson et al., 2006; Hill et al., 2022; Roe et al., 2015; Siler et al., 2018). This

component of the CH2O-CHOO TRAIN distinguishes it from other long-term carbon cycle models, such as the GEOCARB

series and COPSE (Berner, 1994, 2006; Bergman, 2004; Lenton et al., 2018) that do not account for spatial patterns in climate55

nor its response to 𝑝𝐶𝑂2. Energy balance climate models have previously been used with models of the long-term carbon
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cycle in an effort to efficiently simulate climate without compromising too much complexity. Zero-dimensional global mean

energy balance models have been coupled to carbon cycle and weathering models to probe how climate and weathering impact

planetary habitability (Abbot et al., 2012; Graham and Pierrehumbert, 2020). A two-dimensional (latitude and longitude) moist

energy balance model for the land and atmosphere has been used in the cGENIE framework (Edwards and Marsh, 2005; Marsh60

et al., 2011; Ridgwell et al., 2007), retaining a great deal of spatial complexity without having to run the climate model “offline”,

as is common when more complex climate models are used (Baum et al., 2022; Donnadieu et al., 2006; Holden et al., 2016;

Pollard et al., 2013). One-dimensional energy balance model frameworks have also been used before and are not unique to the

CH2O-CHOO TRAIN. Francois and Walker (1992) used an 18-node one-dimensional model coupled to a geochemical model

to simulate carbon cycling across the Phanerozoic. This model was subsequently used in other climate (Veizer et al., 2000) and65

carbon cycle studies, forming the climate component of the COMBINE model (Goddéris and Joachimski, 2004). More recently,

Jellinek et al. (2020) used a one-dimensional energy balance model to capture the effect of varying ice cover on climate and

weathering.

These one-dimensional frameworks account for spatial dynamics (at least meridionally) while side-stepping complexity that

can obscure cause-and-effect relationships and limit the applications of some higher-dimensional models. However, the water70

cycle in these previous one-dimensional frameworks was built on approximations largely divorced from physical processes.

For example, in Jellinek et al. (2020), precipitation is solved globally and depends only on global mean temperature with no

explicit representation of runoff, whereas in Francois and Walker (1992), runoff depends on an empirical correlation with

temperature and latitude that may not hold in paleoclimate states, particularly under different continental geographies. These

model formulations are reasonable solutions to a difficult problem—traditional 1-D energy balance models are known to75

misrepresent key features of zonal mean hydroclimate (Peterson and Boos, 2020; Siler et al., 2018). Recent energy balance

modeling advances, however, address this problem by capturing the spatial complexity of the water cycle in a more mechanistic

way (Siler et al., 2018). In the CH2O-CHOO TRAIN, we directly employ the one-dimensional energy balance model of Siler

et al. (2018), which accurately simulates meridional atmospheric circulation patterns such as the Hadley cell as well as the

spatially distinct precipitation and evaporation responses to warming.80

With this improved one-dimensional MEBM, the CH2O-CHOO TRAIN is designed to efficiently explore fundamental

interactions between the water cycle, carbon cycle, and climate. The model can simulate about one million years of time in

thirty minutes on a standard laptop PC (16 GB RAM, 2.80 GHz processor, without parallelization). Further, its ability to isolate

and modify specific climate variables makes it well-suited for addressing basic, qualitative questions about the Earth system.

Such questions might include the drivers of long-term Cenozoic climate change, the effects of geography on carbon cycling85

and climate, and the interactions between climatological and geochemical feedbacks. Of course, the model is not optimized

for all applications. More specialized and quantitative applications, such as constraining geochemical fluxes from data across

a given geologic carbon cycle perturbation event, are limited by the model’s flexibility because the quantitative results can

be sensitive to somewhat arbitrary initial conditions. In this paper, we outline the model equations and conduct a series of

sensitivity tests that explore the features of this coupled climate-carbon cycle system. To emphasize some of the advantages of90

this model framework, we specifically focus on the effect of climate variables that are often absent from simpler models, and we
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run simulations spanning about one million years which can be computationally prohibitive in more complex models. We show

how continental geography impacts the magnitude and direction of the climate response to changes in certain climate variables,

and how different ice sheet parameterizations affect the response of global temperature, runoff, and the steady state climate to

a change in volcanism. Finally, we discuss some of the advantages and limitations of the one-dimensional, zonal mean climate95

framework and consider modifications to the climate formulations that can expand the model’s potential applications in future

work.

2 MODEL FORMULATION

The CH2O-CHOO TRAIN links three model frameworks—a model each for global climate, weathering, and long-term carbon

cycling following Figure 1. The MEBM and weathering models are solved in the zonal mean (1-dimensional; 100 equal-area100

grid points for ∼ 200 km resolution) and integrated to zero dimensions for the global mean long-term carbon cycle box model

(run at 5 kyr timesteps). Geography, climate sensitivity, and other parameters are defined in the MEBM. Geography affects

climate via the spatial distribution of albedo and weathering by setting the land area available in a given latitudinal belt. The

weathering model receives inputs of temperature and water runoff from the MEBM and atmospheric 𝑝𝐶𝑂2 from the long-term

carbon cycle model, and it outputs fluxes of alkalinity and weathered organic carbon. These fluxes are used to calculate the105

sources and sinks of carbon in the long-term carbon cycle model, which then updates atmospheric 𝑝𝐶𝑂2 for use by the MEBM

and weathering models. We describe each model in this section with a particular focus on the decisions we make that link

the three models together. More detailed descriptions of the individual model frameworks are available from their original

publications. Model code is available on Github and Zenodo (see code availability section and Kukla et al. (2023)), along with

instructions for running the model and accessory scripts to generate custom model input files.110

2.1 Moist Energy Balance Model

2.1.1 Diffusive moist static energy transport

Global climate is simulated in the zonal mean using a Moist Energy Balance Model (MEBM) following the equations and

modifying the code of Roe et al. (2015) and Siler et al. (2018), which built on the earlier work of Flannery (1984) and Hwang and

Frierson (2010). Zonal mean atmospheric heating (𝑄net) is balanced by poleward heat transport on long timescales (∼decadal),115

yielding equation 1:

𝑄net (𝑥) =
1

2𝜋𝑎2
𝑑𝐹

𝑑𝑥
(1)

where 𝑥 is the sine of latitude, 𝑎 is Earth’s radius (𝑚), 𝐹 is the column-integrated, zonally-integrated flux of atmospheric

energy transport (𝑊), and𝑄net is the net downward energy flux at the top of atmosphere (TOA) (𝑊 𝑚−2) (Pierrehumbert, 2010).

When 𝑄net is positive, atmospheric energy is transported away from 𝑥, and vice versa.120
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Figure 1. Coupled model schematic. The three main model components are labeled “MEBM”, “Weathering”, and “Long-term C-cycle”.

Boxes with arrows pointing toward these components include terms required to initialize the model. Arrows pointing out of these components

are model output. The MEBM and weathering components are solved in the zonal mean, and then integrated for compatibility with the

long-term C-cycle component. Atmospheric 𝑝𝐶𝑂2 from the C-cycle component is used as input for the MEBM and weathering components

(pink arrows) at the next timestep. MSE is moist static energy; DIC is dissolved inorganic carbon; C is carbon.

Net column-integrated heating is related to the balance of non-reflected solar insolation (𝐼) and longwave (𝐿𝑊) radiation by

equation 2:

𝑄net (𝑥) = (1−𝛼S)𝐼 − 𝐿𝑊out (2)

where 𝛼S is surface albedo and the (1−𝛼S) term represents the fraction of insolation that is not reflected back to space.

The 𝐿𝑊out term is related to greenhouse forcing as discussed in section 2.1.3. Unless otherwise stated, 𝐼 is related to the solar125

constant 𝑄0 by a second order Legendre polynomial:

𝐼 =𝑄0 (1− 0.241(3𝑥2 − 1)) (3)

though the code includes functionality to create time-variant insolation files consistent with paleo conditions.

The MEBM simulates the diffusive transport of the sum of near-surface latent and sensible heat, or moist static energy (ℎ;

𝐽 𝑘𝑔−1), which is expressed as a function of surface temperature (𝑇):130

ℎ = 𝑐𝑝𝑇 + 𝐿𝑣𝑞(𝑇) (4)

where 𝑐𝑝 is the specific heat of air (𝐽 𝑘𝑔−1 𝐾−1), 𝐿𝑣 is the latent heat of vaporization (𝐽 𝑘𝑔−1), and 𝑞 is the near-surface

specific humidity (𝑘𝑔 𝑘𝑔−1), calculated as the product of relative humidity and temperature-dependent saturation specific
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humidity. Relative humidity is used to partition moist static energy into its sensible and latent components and, following

previous work, we assume it is constant at the global average, near-surface ocean value of 80% (Hwang and Frierson, 2010;135

Siler et al., 2018). This fixed humidity assumption is unrealistic over land, particularly in dry regions such as the subtropics,

but the assumption does not interfere with the model’s ability to capture the zonal mean aridity profile. Previous work imposed

spatially variable relative humidity profiles, (e.g., Peterson and Boos, 2020), but selecting such a profile and how it changes

with global climate introduces numerous free parameters. Instead, the Hadley cell parameterization introduced in Siler et al.

(2018) (see equation 7 and supplemental text) retains critical features of the zonal mean aridity profile—such as the arid140

subtropics—and its response to climate while permitting the simplifying assumption of a fixed global humidity value.

Moist static energy (MSE) is transported downgradient (poleward) following:

𝐹 (𝑥) = −2𝜋𝑝𝑠
𝑔

𝐷 (1− 𝑥2) 𝑑ℎ
𝑑𝑥

(5)

where 𝑝𝑠 is the surface atmospheric pressure (𝑃𝑎), 𝑔 is gravitational acceleration (𝑚 𝑠−2), and 𝐷 is a zonally-constant

diffusivity coefficient (𝑚2 𝑠−1).145

Equations (1) and (5) can be combined as:

𝑄net (𝑥) = − 𝑝𝑠

𝑔𝑎2𝐷
𝑑

𝑑𝑥

[(
1− 𝑥2

) 𝑑ℎ
𝑑𝑥

]
. (6)

However, downgradient MSE transport is not valid in the tropics where Hadley circulation promotes upgradient transport

of latent heat. With the Hadley cell parameterization of Siler et al. (2018), MSE fluxes are partitioned into a tropical Hadley

contribution (𝐹HC) and an extratropical eddy contribution (𝐹eddy) based on a Gaussian weighting function. Net moist static150

energy transport in the Hadley cell is downgradient, but the latent component of MSE (𝐹HC,q) is transported upgradient

following:

𝐹HC,q (𝑥) = −𝜓(𝑥)𝐿𝑣𝑞(𝑥) (7)

where 𝜓 is the southward mass transport in the Hadley cell’s lower branch (which equals the northward transport of the

upper branch by mass balance). See Siler et al. (2018) and the supplemental text for further details regarding the Hadley cell155

parameterization.

Finally, by mass balance, the difference between evaporation and precipitation 𝐸 − 𝑃 is set equal to the divergence of the

latent component of the MSE flux.

2.1.2 Partitioning 𝑷 and 𝑬 and parameterizing for land

The divergence of the latent heat flux balances the difference in evaporation and precipitation, or 𝐸 − 𝑃, constraining a critical160

component of the hydrologic cycle that links hydroclimate with the carbon cycle. However, knowledge of 𝐸 −𝑃 is not sufficient
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to quantify 𝐸 and 𝑃 fluxes—doing this requires constraining either 𝐸 or 𝑃. We adopt the equation for oceanic evaporation of

Siler et al. (2019) where:

𝐸 =
𝑅𝐺 (𝑥)𝜃 (𝑥) + 𝜌air𝑐𝑝 (1− 𝑟ℎ)𝐶𝐻𝑢(𝑥)

𝜃 (𝑥) + 𝑐𝑝
𝐿𝑣𝑞∗(𝑥 )

. (8)

Here, 𝑅𝐺 is an idealized latitudinal profile of the difference between radiative forcing and the ocean heat uptake response165

(𝑊 𝑚−2), 𝜃 is a temperature-dependent Clausius-Clapeyron scaling factor as in Siler et al. (2018, 2019) (we use 𝜃 instead of 𝛼

to avoid confusion with albedo), 𝜌air is the near-surface air density (𝑘𝑔 𝑚3), 𝑟ℎ is relative humidity, 𝐶𝐻 is a drag coefficient, 𝑞∗

is saturation specific humidity, and 𝑢 is an idealized surface wind speed profile (𝑚 𝑠−1). Inputs for the terms defined in equation

8 can be found in the supplementary text. We note that equation 8 gives 𝐸 in units of 𝑊 𝑚−2, which we convert to 𝑚 𝑦𝑟−1

to simplify discussion. In this work, idealized profiles of 𝑅𝐺 and 𝑢 (based on Siler et al. (2018, 2019)) are constant across170

simulations. In future work, these profiles could be designed to vary with continental geography and climate.

As discussed earlier, the spatial profile of 𝐸 −𝑃 hinges on assumptions that are based on oceanic conditions (such as constant

relative humidity), but it also captures the general trends on land. For example, 𝐸 − 𝑃 is generally negative in the tropics and

mid-high latitudes and positive in the drier subtropics. However, on decadal timescales on land, 𝐸 is limited by 𝑃 such that

𝐸 − 𝑃 is always ≤ 0. In order to calculate terrestrial runoff (an input for the exogenic carbon cycle module) we impose this175

mass balance with the Budyko hydrologic balance framework (Broecker, 2010; Budyko, 1974; Fu, 1981; Koster et al., 2006;

Roderick et al., 2014; Zhang et al., 2004). We calculate runoff as a fraction of precipitation using the Budyko formulation from

Fu (1981):

𝑘run (𝑥) = 1− 𝐸𝑇 (𝑥)
𝑃(𝑥) = −𝐸0 (𝑥)

𝑃(𝑥) +
[
1+

(
𝐸0 (𝑥)
𝑃(𝑥)

)𝜔]1/𝜔
. (9)

In this formulation, 𝑘run is restricted to [0,1], 𝐸𝑇 is evapotranspiration, 𝐸0 is potential evaporation, and𝜔 is a non-dimensional180

free parameter with bounds [1,∞) that determines the proximity of 𝐸𝑇 to its theoretical limits (𝑃 or 𝐸0 when 𝑃 < 𝐸0 and

𝑃 > 𝐸0, respectively). Each value of 𝜔 defines a Budyko curve, with higher values producing a curve where evapotranspiration

lies closer to the energy and water limits (𝐸0 and 𝑃, respectively). We set 𝜔 equal to the global mean value of 2.6 (Budyko,

1974; Zhang et al., 2004; Greve et al., 2015) unless otherwise stated. We also assume that ocean evaporation is equal to potential

evapotranspiration, setting 𝐸0 equal to 𝐸 . The 𝑘𝑟𝑢𝑛 term is then used to partition precipitation into runoff and evaporation:185

𝑞land (𝑥) = 𝑘 ice (𝑥)𝑘run (𝑥)𝑃(𝑥) (10)

where 𝑞land is terrestrial runoff (output in 𝑚 𝑦𝑟−1 after converting 𝑃 to the same units), not to be confused with 𝑄net, a

radiative forcing term in equation 1. The 𝑘 ice term is a coefficient that sets the “effective runoff” that is relevant for rock

weathering. We define 𝑘 ice based on whether a grid cell is ice-free or glaciated by:

7



𝑘 ice (𝑥) =


1 if 𝑥 is ice-free

[0,1] if 𝑥 is glaciated
(11)190

Unless otherwise stated, 𝑘 ice=0 for glaciated grid cells (the default case).We demonstrate the model sensitivity to the range

of glaciated 𝑘 ice values in section 4.

2.1.3 Greenhouse forcing

Greenhouse gas forcing in our model is driven by the partial pressure of atmospheric 𝑝𝐶𝑂2 (𝑝𝑝𝑚𝑣). Higher 𝑝𝐶𝑂2 decreases

the outgoing longwave flux (𝐿𝑊out; 𝑊 𝑚−2) which is assumed to be linearly related to temperature (Budyko, 1969; Koll and195

Cronin, 2018) by:

𝐿𝑊out (𝑥) = 𝐴 + 𝐵𝑇 (𝑥) (12)

where 𝑇 is surface temperature (𝐾), 𝐵 is a coefficient that captures the Planck feedback (𝑊 𝑚−2 𝐾−1), and 𝐴 (𝑊 𝑚−2) is a

constant that depends on 𝐶𝑂2:

𝐴 = 𝐶𝐿𝑊 −𝑀 ln(𝑝𝐶𝑂2,𝑡/𝑝𝐶𝑂2,𝑡0) (13)200

Here, 𝐶𝐿𝑊 and 𝑀 (both𝑊 𝑚−2) are tunable parameters that determine the climate sensitivity to 𝑝𝐶𝑂2. 𝑝𝐶𝑂2,𝑡 is the partial

pressure of 𝐶𝑂2 (𝑝𝑝𝑚𝑣) at some time, which is divided by the reference 𝑝𝐶𝑂2, 𝑝𝐶𝑂2,𝑡0. The baseline 𝑝𝐶𝑂2 is set at 280

𝑝𝑝𝑚𝑣, with parameters 𝐶LW, 𝑀 and 𝐵 given in supplementary Table S1.

2.1.4 Domain boundary conditions

We prescribe the latitudinal distribution of continents and use this distribution to calculate Earth surface albedo. We assign205

three albedo values—ocean albedo, land albedo, and ice albedo—and calculate the average albedo at each latitudinal node by

the weighted average of land and ocean area. Ice sheets in our model appear at a temperature threshold (e.g. North et al. (1981))

(𝑇ice, set at −5◦𝐶) such that the albedo for any node with 𝑇 < 𝑇ice is equal to the ice albedo (with no dependence on land or

ocean values).

The set of MEBM equations can be solved as a boundary value problem, and we use the bvpcol function from the ‘bvpSolve’210

package in R (Mazzia et al., 2014) (see supplemental text). We prescribe a zero-flux boundary condition, assuming the flux

of moist static energy at both poles is zero. We also prescribe initial temperature guesses for each pole (𝑇north and 𝑇south). The

temperature guesses can lead to multi-stability in model solutions—for the same forcing, a colder temperature guess might

yield a stable icehouse while a warmer guess might yield a stable greenhouse. In this paper, we use the same temperature guess

for every timestep of a given simulation to enforce a monostable climate (a unique climate solution for every 𝑝𝐶𝑂2).215
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2.2 Weathering

We calculate solute concentrations for bicarbonate carbon [𝐶] (𝑚𝑜𝑙 𝐿−1) derived from silicate and carbonate weathering at

each latitudinal node using each node’s surface temperature (𝑇) and terrestrial runoff (𝑞land). 𝑇 and 𝑞land are derived from the

MEBM (see Section 2.1.2).

The value of [𝐶]sil is calculated using equations modified from Maher and Chamberlain (2014) (similar to the “MAC” model220

in other works (Baum et al., 2022; Graham and Pierrehumbert, 2020)). These equations permit us to explicitly incorporate the

effect of 𝑇 , 𝑞land, and weathering zone 𝑝𝐶𝑂2—variables that are all influenced by atmospheric 𝑝𝐶𝑂2 and climate—on [𝐶]sil:

[𝐶]sil = [𝐶]sil,eq

(
𝐷𝑤
𝑞land

1+ 𝐷𝑤
𝑞land

)
(14)

Here, [𝐶]sil,eq is the maximum, equilibrium concentration of silicate-derived bicarbonate (Maher, 2011) and 𝐷𝑤 is the

Damköhler weathering coefficient (𝑚 𝑦𝑟−1), which is a term that encapsulates the reactivity of the weathering zone and the225

time required to reach equilibrium. Following Maher and Chamberlain (2014), we define 𝐷𝑤 as:

𝐷𝑤 =
𝐿𝜙𝑟max

1
1+𝑡wz𝑚𝑘eff𝐴

[𝐶]sil, eq
(15)

where 𝐿𝜙 is the reactive length scale (𝑚), held constant, 𝑟max is the theoretical maximum reaction rate (𝑚𝑜𝑙 𝐿−1 𝑦𝑟−1), 𝑡wz

is the age of the weathering zone (𝑦𝑟) and is a key variable describing the reactivity of the weathering zone, 𝑚 is the molar

mass of weathering minerals (𝑔 𝑚𝑜𝑙−1), 𝐴 is the specific surface area of minerals undergoing weathering (𝑚2 𝑔−1), and 𝑘eff is230

the effective reaction rate constant (𝑚𝑜𝑙 𝑚2 𝑦𝑟−1). The 𝑟max term is scaled with the effective reaction rate constant by:

𝑟max = 𝑟max,ref
𝑘eff
𝑘eff,ref

(16)

where 𝑟max,ref and 𝑘eff,ref are reference values taken from Maher and Chamberlain (2014) to be 1085× 10−6 𝜇mol L−1 yr−1

and 8.7× 10−6 mol m−2 yr−1. The effective reaction rate constant is, itself, related to 𝑘eff,ref by an Arrhenius function that

describes the temperature dependency of reaction rates (Brady, 1991; Kump et al., 2000):235

𝑘eff = 𝑘eff,ref𝑒

[(
𝐸𝑎
𝑅𝑔

) (
1
𝑇0

− 1
𝑇

)]
(17)

where 𝑅𝑔 is the universal gas constant (𝐽 𝐾−1 𝑚𝑜𝑙−1) (distinct from 𝑅𝐺 in equation 8), 𝐸𝑎 is the activation energy (𝐽 𝑚𝑜𝑙−1),

and 𝑇0 is the reference temperature associated with 𝑘eff,ref.

Lastly, [𝐶]sil,eq is modified by the availability of reactant, which here is assumed to be primarily 𝐶𝑂2. We calculate this

effect as a function of weathering zone 𝑝𝐶𝑂2 assuming open-system 𝐶𝑂2 dynamics, following Winnick and Maher (2018):240

9



[𝐶]sil,eq = [𝐶]sil,eq,0
(
𝑅CO2, wz

)0.316 (18)

where [𝐶]sil,eq,0 is the pre-perturbation, initial value of [𝐶]sil,eq. 𝑅CO2,wz is the ratio of weathering zone 𝑝𝐶𝑂2 at time t (WZCO2)

to the initial weathering zone 𝑝𝐶𝑂2 pre-perturbation (WZCO2,0). The exponent value of 0.316 is derived by Winnick and Maher

(2018) based on the net weathering stoichiometry for an open-system scaling relationship for the dissolution of plagioclase

feldspar (𝐴𝑛20) and precipitation of halloysite. Depending on the primary lithology and secondary mineral precipitated this245

exponent can vary from ∼ 0.25 to 0.7 (see Winnick and Maher (2018); their Table 1). This average stoichiometry represents

an average granodiorite continental crust (e.g., Maher, 2010, 2011; Maher and Chamberlain, 2014). We calculate 𝑅CO2,wz

using a formulation proposed by Volk (1987) that links weathering zone 𝑝𝐶𝑂2 with the primary source of that 𝐶𝑂2, which

is aboveground terrestrial gross primary productivity (GPP; 𝑘𝑔 𝑚−2 𝑦𝑟−1). Here, WZCO2 is calculated using an equation that

links GPP, 𝐶𝑂2 fertilization of GPP, and weathering zone 𝐶𝑂2:250

WZCO2 = pCO2 + 𝑅GPP
(
WZCO2,0 − pCO2,0

)
(19)

𝑅GPP is the ratio of GPP at time 𝑡 to the pre-perturbation GPP (GPP0) and the last term on the right-hand side of the equation

ensures that WZ𝐶𝑂2 is always greater than atmospheric 𝑝𝐶𝑂2. The GPP is calculated using a Michaelis-Menton formulation:

GPP = GPPmax

[
pCO2 − pCO2,min

pCO2,half +
(
pCO2 − pCO2,min

) ] (20)

where GPPmax is the maximum possible global terrestrial GPP, 𝑝𝐶𝑂2,𝑚𝑖𝑛 is the 𝑝𝐶𝑂2 at which photosynthesis is balanced255

exactly by photorespiration, and 𝑝𝐶𝑂2,half is the 𝑝𝐶𝑂2 at which GPP is equivalent to 50% 𝐺𝑃𝑃max:

pCO2,half =

(
GPPmax
GPP0

− 1
) (

pCO2,0 − pCO2,min
)

(21)

We choose a 𝑝𝐶𝑂2,min of 100 ppm based upon evidence for widespread𝐶𝑂2 starvation at the Last Glacial Maximum (LGM)

(Prentice and Harrison, 2009; Scheff et al., 2017), which had an atmospheric 𝑝𝐶𝑂2 of 180 ppm. We also assume that GPPmax

is equal to twice GPP0, though our results are insensitive to this parameter. Lastly, we assume that WZCO2,0 is a factor of 10260

larger than atmospheric 𝑝𝐶𝑂2,0 given evidence that soil 𝑝𝐶𝑂2 is typically elevated above atmospheric levels by approximately

an order of magnitude (Brook et al., 1983). While this formulation offers a crude accounting of the effect of GPP on weathering

zone 𝑝𝐶𝑂2, it is not strictly internally consistent. Setting 𝑝𝐶𝑂2 in equation 20 equal to 𝑝𝐶𝑂2,half does not guarantee a GPP

value that is half of GPPmax, though it will yield a value close enough that the effect on the model results is negligible.

We use this set of equations to calculate silicate and carbonate weathering. Carbonate weathering is scaled to silicate265

weathering such that carbonate 𝐷𝑤 is 2.5 times greater than silicate 𝐷𝑤 and maximum equilibrium concentrations of carbonate-

derived bicarbonate are 2× greater than [𝐶]sil,eq (Lasaga, 1984; Bluth and Kump, 1994; Morse and Arvidson, 2002; Ibarra

et al., 2017; Gaillardet et al., 2019). The concentrations, [𝐶], calculated above are translated into global weathering fluxes (𝐹𝑤):
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𝐹w,sil/carb = 𝑞land (𝑥)𝐶sil/carb (𝑥)𝐴land (𝑥)𝑊sil/carb (22)

where 𝑥 is the sine of latitude following the MEBM grid spacing, subscripts 𝑠𝑖𝑙 and 𝑐𝑎𝑟𝑏 refer to silicate and carbonate270

weathering, respectively, 𝐴land is the land area (𝑚2), and 𝑊 is a scalar used to enforce mass balance and is held constant

throughout a run. The 𝑊 parameter is a global constant and differs for carbonate vs silicate weathering. We calculate 𝑊sil/carb

during model initialization to ensure that the global sum of carbon burial fluxes equals the sum of input fluxes, such that the model

starts in steady state. For silicate weathering,𝑊sil scales with 𝐹w,sil such that at initialization, 𝐹w,sil equals 𝐹volc. The𝑊sil scalar

can also be thought of as loosely representing a global 𝑆𝑖𝑂2:𝐻𝐶𝑂3 ratio that translates silica fluxes to inorganic carbon fluxes.275

This translation is necessary because these weathering equations—and the associated parameters—in Maher and Chamberlain

(2014) were originally derived for Si fluxes, rather than C (or alkalinity) fluxes. Ibarra et al. (2016) demonstrated that for modern

basaltic and granitic catchments [𝐶]sil,eq,0 scales proportional to weathering stoichiometry, as predicted by Winnick and Maher

(2018), and 𝐷𝑤 scales with some bias towards more chemostatic (higher 𝐷𝑤 values) in Si compared to alkalinity (Moon et al.,

2014). Because 𝑊sil determines the sensitivity of weathering fluxes to changes in runoff and concentration, it also influences280

the strength of the silicate weathering feedback (defined as the change in weathering fluxes per change in atmospheric 𝐶𝑂2).

Similarly,𝑊carb is determined by scaling the sum of the carbonate weathering fluxes at each node such that these fluxes equal the

estimate of the carbonate weathering flux in Wallmann (2001), forcing the model to start in steady state. Importantly, because

𝑊sil/carb depends on 𝐴land, continental geography has an indirect effect on the strength of the weathering response to climate by

equation 22.285

2.3 Carbon cycle

The carbon cycle model follows other one-box models that are commonly employed for tracking long-term (i.e., on timescales

of > 105 years) changes to the carbon cycle and 𝛿13𝐶 (e.g. Berner, 1991; Kump and Arthur, 1999). The input fluxes of C

into the ocean-atmosphere system include volcanism and solid Earth degassing (𝐹volc), organic carbon weathering (𝐹w,org), and

carbonate weathering (𝐹w,carb), and the output fluxes are the burial of organic carbon and carbonate carbon in marine sediments290

(𝐹b,org and 𝐹b,carb, respectively, all in mol 𝑦𝑟−1). The input fluxes have an associated 𝛿13𝐶 (i.e., 𝛿13𝐶volc= −5‰, 𝛿13𝐶w,carb = 0‰).

𝛿13𝐶w,org is set to ensure isotopic mass balance at the first timestep by setting the left side of equation 24 (below) to zero, and

rearranging to solve for 𝛿13𝐶w,org. The 𝛿13𝐶 of the output fluxes are determined by a fixed fractionation factor relative to the

global average of the ocean-atmosphere system (𝜖 = 𝛿13𝐶output flux − 𝛿13𝐶 i.e., 𝜖b,org and 𝜖b,carb). The subsequent mass balance

equation for the total mass of carbon in the one-box ocean-atmosphere (𝑀𝐶 ) is295

𝑑𝑀𝐶

𝑑𝑡
= 𝐹volc + 𝐹w,org + 𝐹w,carb − 𝐹b,org − 𝐹b,carb. (23)

The associated isotope mass balance equation for the carbon isotope value of the ocean-atmosphere system (𝛿13𝐶) is

11



𝑑𝛿13𝐶

𝑑𝑡
𝑀𝐶 = 𝐹volc (𝛿13𝐶volc − 𝛿13𝐶) + 𝐹w,org (𝛿13𝐶w,org − 𝛿13𝐶) + 𝐹w,carb (𝛿13𝐶w,carb − 𝛿13𝐶) − 𝐹b,org𝜖b,org − 𝐹b,carb𝜖b,carb. (24)

The last term in equation 24 goes to zero as we assume that 𝜖b,carb is zero (𝛿13𝐶 of carbonate burial equals that of the

dissolved inorganic carbon (DIC) pool). While 𝛿13𝐶 is a useful tracer for carbon cycle dynamics, we focus on carbon-climate300

interactions in this paper, where the 𝛿13𝐶 results are less informative. For simplicity the organic carbon burial flux (𝐹b,org) is

scaled to the carbonate burial flux (𝐹b,carb) by 𝐹b,org,t = 𝐹b,org,i × (𝐹b,carb,t/𝐹b,carb,i), where subscripts 𝑡 and 𝑖 refer to some point

in time and the initial condition, respectively (Caves Rugenstein et al., 2019; Ridgwell, 2003). The carbonate carbon burial flux

is a function of the calcite saturation index, (Ωcalcite), such that 𝐹b,carb,t = 𝐹b,carb,i×Ωt/Ωi. The Ωcalcite is calculated as a function

of the carbonate system (Zeebe and Wolf-Gladrow 2001), and we correct for the concentrations of [Mg2+] and [Ca2+] using the305

equations of Zeebe and Tyrrell (2019). The alkalinity reservoir in the ocean, 𝑀Alk is related to the fluxes by:

𝑑𝑀Alk
𝑑𝑡

= 𝐹w,sil + 𝐹w,carb − 𝐹b,carb, (25)

where 𝐹w,sil is the silicate weathering flux. Parameter values and references can be found in Supplementary Table S3 and

specific details about key parameters are described below.

To achieve mass balance for 𝑀𝐶 and 𝑀Alk, 𝐹volc must equal 𝐹w,sil at steady state. The global temperature at Earth’s surface310

(𝑇𝑎), is calculated by integrating the MEBM temperature results weighted by land area and is then used to set the global mean

ocean temperature 𝑇𝑜 by assuming the mean ocean temperature is 10◦𝐶 colder than 𝑇𝑎 (Key et al., 2004). To solve the initial

carbonate system and associated initial 𝑀𝐶 and 𝑀𝐴𝑙𝑘 , the initial ocean pH, 𝑝𝐶𝑂2, 𝑇𝑜, salinity (35 p.s.u.), mean ocean pressure

(300 bar), and geochemical composition of seawater (i.e., Ca = 15× 10−3 moles/L, Mg = 48.5× 10−3 moles/L, and 𝑆𝑂2−
4 =

28.2×10−3 moles/L) are calculated using the speciation equations of Zeebe and Wolf-Gladrow (2001), modified by Zeebe and315

Tyrrell (2019) to account for variable ocean chemistry (see Supplementary Table S3).

2.4 Coupled climate-carbon cycle model initialization and integration

We first initialize the MEBM and carbon cycle boundary conditions including the initial global carbon cycle fluxes (see

Supplementary Tables S3 and S1). The carbon cycle is parameterized to start in steady state (inputs of carbon = outputs).

We begin by simulating the initial climate state by prescribing an initial atmospheric 𝑝𝐶𝑂2 to force the MEBM. This same320

𝑝𝐶𝑂2 is used, along with an initial pH (Supplemental Table S3), to speciate the carbon cycle (Zeebe and Wolf-Gladrow, 2001).

Temperature and runoff from this initial climate state are used to calculate weathering fluxes following equation 22 where the

scalar𝑊 is set to one. We then calculate the scalars for carbonate and silicate weathering by:

𝑊sil =
𝐹volc, ss∑
𝐹w,sil,i

(26)
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𝑊carb =
𝐹w,carb, ss∑
𝐹w,carb,i

(27)325

where 𝑖 refers to the initial, unscaled fluxes, the ss subscript refers to the steady state fluxes, and the
∑

denotes the global

sum (note that the zonal mean grid is an equal-area grid).

We couple the MEBM to the long-term carbon cycle module by solving the MEBM at each timestep within the carbon

cycle solver. First, the carbon cycle module solves for atmospheric 𝑝𝐶𝑂2 for the given timestep using the mass balance of DIC

and alkalinity and the carbonate speciation described in the previous section. This 𝑝𝐶𝑂2 value, along with the required polar330

temperature guesses (discussed in section 2.1.4), is used to force the MEBM. Some temperature guesses at low 𝑝𝐶𝑂2 levels

will lead to no stable solution or a “snowball Earth” configuration where the entire planet is glaciated (Supplemental text). For

either of these outcomes, we re-run the MEBM using temperature guesses that are a small step (usually ∼ 0.5◦𝐶) toward a

warmer direction. This is repeated until the MEBM finds a stable solution that is not a fully-glaciated planet (usually less than 3

steps are needed until such a solution is reached). We use this method for avoiding snowball states because the range of 𝑝𝐶𝑂2335

forcing in our simulations is above the lowest 𝑝𝐶𝑂2 concentrations of the Quaternary and therefore a fully-glaciated planet

is unreasonable, although users may easily turn off this snowball-avoiding feature. The fact that fully-glaciated solutions are

usually not robust to small perturbations in the temperature guess indicates that the snowball scenario itself is not robust. Once

a stable solution is found, the latitudinally-resolved hydrological and temperature output from the MEBM are used to solve for

the silicate and carbonate weathering fluxes. These weathering fluxes, plus any perturbations to the input carbon fluxes (such as340

via changes in 𝐹volc) then drive the response of the long-term carbon cycle including the updated marine carbonate speciation

based on DIC and total alkalinity.

2.5 Model assumptions

A number of model processes are not fully coupled among all modules. These processes are parameterized with simplifying

assumptions for the purpose of this work, but could be coupled in the future (albeit with additional parameters). We detail these345

assumptions below.

We assume that no weathering occurs beneath ice sheets such that the weathering fluxes at glaciated latitudes are zero because

𝑘 ice is zero. While weathering rates in glacial catchments can be high, it remains unclear whether glaciated catchments are

a net source or sink of 𝐶𝑂2 on long timescales (Torres et al., 2017). Our assumption of no weathering beneath ice sheets is

consistent with previous modeling work (e.g., Zachos and Kump, 2005; Pollard et al., 2013) and it has two main effects on our350

model. First, when a simulation transitions from a greenhouse to an icehouse there is a reduction in weathering due to cooler

climate conditions and decreasing precipitation and an additional reduction due to ice sheet growth. Second, when initializing

the model in an icehouse state, the weathering scalar term, 𝑊 (calculated at initialization), is higher because the denominator

in equations 26 and 27 is lower due to ice coverage. We test the sensitivity of this assumption to our results in our model

experiments (next section).355
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We also neglect the effect of ice coverage on global eustatic sea level in our model. Terrestrial ice coverage decreases sea

level, exposing more land area and potentially increasing global weathering. This effect would counteract the effect of ice

coverage decreasing the weatherable land area, discussed above. However, accounting for the effect of sea level on exposed

land area requires constraints on hypsometry (at least near the coasts) as well as ice volume, both of which are absent from our

1-dimensional model framework. Moreover, any increase in silicate weathering due to sea level fall is expected to be small or360

negligible because exposed shelfs are likely to consist of carbonates and organic and clay-rich sediment, not primary silicate

minerals (Berner, 1994; Gibbs and Kump, 1994; Kump and Alley, 1994), and may act as a source of atmospheric𝐶𝑂2 (Kölling

et al., 2019).

Part of the weathering module scales silicate and carbonate solute concentrations with weathering zone 𝑝𝐶𝑂2. This weathering

zone 𝑝𝐶𝑂2 is calculated from several global parameters, including atmospheric 𝑝𝐶𝑂2 and GPP, and ignores local climatic365

influences on weathering zone 𝑝𝐶𝑂2. Soil 𝑝𝐶𝑂2 is known to vary with local climate (Brook et al., 1983; Cotton and

Sheldon, 2012; Cotton et al., 2013) and decoupling weathering zone 𝑝𝐶𝑂2 from local climate is clearly a major simplification.

Nevertheless, there remains substantial uncertainty regarding how soil zone 𝑝𝐶𝑂2 will change in response to warming and

rising atmospheric 𝑝𝐶𝑂2 (Terrer et al., 2021). This uncertainty motivates our use of the simpler, global model for GPP following

(Volk, 1987, 1989). Given that [𝐶] is, in our model, only sensitive to weathering zone 𝑝𝐶𝑂2 to the power of 0.316 (Winnick370

and Maher, 2018), the lack of a coupling between local climate and weathering zone 𝑝𝐶𝑂2 is likely to have a muted effect on

our predicted [𝐶]sil and [𝐶]carb.

An additional assumption in our model is that the negative feedback that regulates long-term climate is terrestrial weathering

(i.e. continental silicate and carbonate weathering). For example, we have not explicitly included seafloor basalt weathering

fluxes as a silicate weathering flux separate from terrestrial silicate weathering fluxes, though recent work suggests that seafloor375

basalt weathering may be a substantial portion of the global weathering flux, particularly during hothouse climates (Coogan

and Gillis, 2013, 2018). Further, we assume that the positive and negative feedbacks of the organic carbon cycle, other than

burial, are outpaced by the silicate weathering feedback on climate. Recent work has suggested that organic carbon weathering

may be linked to climate (Hilton and West, 2020). This coupling between climate and organic carbon weathering—as well as

links to marine productivity and organic carbon export and burial in marine sediments—remains an area of intensive research,380

and introducing carbon cycle feedbacks on climate via the organic carbon cycle represents a promising avenue for further work.

We note that, in our model, there is a simplified coupling between climate and organic carbon burial (𝐹b,org). 𝐹b,org is linked

to 𝐹b,carb, which is sensitive to Ω and, hence, to atmospheric 𝑝𝐶𝑂2 and to 𝐹w,carb, whereas other frameworks simulate organic

carbon burial more mechanistically, explicitly capturing features absent from our model such as diagenesis, redox-dependence

of phosphorus cycling, and more (Hülse et al., 2018). For simplicity, we assume constant organic carbon weathering in this385

paper, which can lead to slight (<∼ 5%) imbalances in organic carbon cycling when the initial and final model states ( 𝑑𝑀𝐶

𝑑𝑡
= 0)

have different climates. These imbalances are small enough to have a negligible effect on atmospheric 𝑝𝑂2 for the timescales

of our simulations.
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Figure 2. List of continental configurations. Each box refers to a set of model experiments, labelled with the associated figures. Maps are

shown in two dimensions for convenience, but are simulated in the one-dimensional, zonal mean framework. Plain-language description of

land-cover is in table to the right. Note that changing land cover will not necessarily impact long-term carbon cycling because the steady-state

carbon cycle fluxes are user-defined.

3 MODEL EXPERIMENTS

We run a series of experiments with the CH2O-CHOO TRAIN model to demonstrate its features and sensitivity to key390

climate variables. The goal of these experiments is twofold—we aim to illustrate the importance of the spatial (zonal mean)

dimension in climate-carbon cycle interactions and to demonstrate how features of the climate system governing temperature

and water cycling can impact the long-term carbon cycle. To this end, we use different continental configurations for each set of

experiments to emphasize how spatially variable temperature and runoff responses can impact weathering fluxes (see Fig. 2 for

geography schematics and descriptions). These experiments are not meant to be an exhaustive sensitivity analysis of the model.395

Instead, they provide a baseline for model performance and they illustrate climate-carbon cycle interactions that are absent in

many simpler models or are emergent properties of more complex frameworks.

In our first set of experiments, our reference simulations, we begin by analyzing the spatial pattern of climate and weathering

for a “Cat-eye” geography—a constant land fraction at each latitude—at different glacial conditions and 𝑝𝐶𝑂2 levels. Zonal

mean albedo is constant in this configuration, allowing us to explore the basic spatial patterns of temperature, hydroclimate400

(precipitation and evaporation), and silicate weathering and their response to greenhouse forcing without much spatial complexity

from the distribution of land. Next, we test the model using modern geography and imposing a perturbation similar to the

Paleocene-Eocene Thermal Maximum with an injection of 5000 Pg of carbon with a 𝛿13𝐶 value of −20‰ to the atmosphere

over 10000 years (Cui et al., 2011; Frieling et al., 2016; Gutjahr et al., 2017). This simulation is used for a basic comparison of

the timescale of the model response with other modeling results and data.405
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Second, we test for interaction effects between key variables—especially climate variables—influencing the steady state

climate (that which occurs when 𝑑𝑀𝐶

𝑑𝑡
= 0). Interaction effects occur when the effect of changing two variables at once differs

from the sum of each individual variable’s effect. To test for interaction effects, we run factorial experiments testing all

combinations of five variables with three possible values each (a total of 243, or 35, simulations). Each simulation starts from

the same initial climate state, is perturbed to the new state at the first timestep, and is allowed 750 kyr to reach a new steady state.410

The initial state uses the modern geographic configuration (Fig. 2) with the default value for each un-perturbed variable. We

repeat these 243 simulations for two initial climate states—a low-𝑝𝐶𝑂2 state with polar glaciers (350 ppmv), and a high-𝑝𝐶𝑂2

state with ice-free poles (4500 ppmv).

We then turn our focus to individual variables that have spatially distinct impacts on climate and weathering. In our third

set of experiments, we evaluate the model sensitivity to the effect of ice sheets on weathering by changing 𝑘 ice over glaciated415

regions (see equations 10 and 11). In effect, this varies the weathering-effective runoff—how much of the runoff calculated

from the product of 𝑘run and 𝑃 contributes to weathering at glaciated latitudes. Here, we test the model response to varying 𝑘 ice

in glaciated regions between 0 and 1 (in all other simulations, 𝑘 ice is set to 0). For these experiments, we use a “Northland”

geography, inspired by Laguë et al. (2021). This configuration concentrates land at high latitudes where ice sheets can have the

largest impact on weathering fluxes. A comparison to a land-free simulation shows that the Northland geography has a similar420

effect in our model as in Laguë et al. (2021), shifting the mean Inter-Tropical Convergence Zone southward by ∼ 5◦ (Fig. S2).

Starting from an ice-free climate for each of five glaciated 𝑘 ice values, we force an instantaneous, permanent halving of the

volcanic flux. The different 𝑘 ice values have no impact on climate until the decrease in volcanism is sufficient for glaciers to

form. Physically, higher 𝑘run may represent conditions such as patchy ice cover over land or ice sheets decreasing sea level to

expose weatherable continental shelf.425

Fourth, we test the model response to an instantaneous change in runoff by modifying the efficiency of moisture recycling (𝜔

in equation 9). The term 𝜔 determines how efficiently precipitation is partitioned into evaporation versus runoff, with higher

values of 𝜔 corresponding with more evaporation and less runoff. For this experiment, we compare a world with all land in

the tropics (“Tropicslice”) to one with land concentrated at a pole (“Polarslice”; see Fig. 2 for distinction between Polarslice

and Northland), because the sensitivity of runoff and temperature to 𝑝𝐶𝑂2 differs between these regions. In each geographic430

configuration, we change𝜔 from the control value of 2.6 to 2.0 (increasing runoff) and to 3.5 (decreasing runoff), approximating

the 25th and 75th quantiles of the global distribution of 𝜔 (Greve et al., 2015).

Finally, we test the model response to an instantaneous change in the diffusivity of moist static energy (𝐷 in equation 5).

An increase in diffusivity tends to cool the tropics, warm the poles, and transport more moisture from the subtropics to the

mid-to-high latitudes. To capture these spatially complex effects, we simulate a change in 𝐷 for two geographies with similar435

global land areas—a northern hemisphere continent (Northland, as in the ice sheet simulations) and a tropical + subtropical

patch of land (“Patchland”). Unlike the Tropicslice and Polarslice geographies, Patchland and Northland each span more than

one climate zone. In these experiments, we vary 𝐷 by ∼ ±30% from the control value of 1.06×106 𝑚2 𝑠−1 (Hwang and Frierson,

2010) consistent with variations one might expect between an icehouse and a greenhouse climate (e.g., Frierson et al., 2006).
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Figure 3. Reference climate state. Zonal mean output for (A) temperature, (B) evaporation minus precipitation, and (C) the silicate

weathering rate are shown for four 𝑝𝐶𝑂2 levels. Negative values of E minus P indicate more runoff. Dashed E minus P lines refer to the

global pattern before the Budyko hydrologic balance framework is applied over land. Latitude axis is equal-area.

To isolate the effect of 𝐷, we hold the relative partitioning of Hadley cell transport constant, though changes in temperature440

will impact Hadley transport through the gross moist stability term (see Supplemental text).

4 RESULTS

4.1 Reference Simulation

We define a reference simulation with the cat-eye geography to illustrate the one-dimensional outputs of the MEBM and

weathering models (Fig. 3). Global climate transitions from a bipolar glaciation (similar to present-day) to a monopolar445
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glaciation and, finally, ice-free as 𝑝𝐶𝑂2 increases from 220 to 350 ppmv. The 𝑝𝐶𝑂2 thresholds for glaciation depends on a

variety of prescribed factors including climate sensitivity as well as the geography and prescribed land, ocean, and ice albedo

values. Despite the land cover and insolation forcing being meridionally symmetric about the equator, asymmetric results such

as the monopolar glaciation are still possible. The monopolar state exists because there is too much atmospheric 𝑝𝐶𝑂2 to

support a colder, bipolar glaciation, but too little to support an ice-free world. When the land cover (thus, albedo) and insolation450

are meridionally symmetric, the pole with the lower initial temperature guess will glaciate first as the planet cools. If both

temperature guesses are the same, the first pole to glaciate in the meridionally symmetric case will depend on which pole the

numerical solver addresses first—that is, which pole is associated with the first guess. However, the vast majority of model

cases likely involve meridional asymmetry, as no realistic continental geography is perfectly symmetric about the equator. In

such asymmetric cases, the pole that glaciates in the monopolar case is determined by the asymmetry, not the polar temperature455

guess and numerical configuration.

The model hydroclimate output is shown in the spatial pattern of 𝐸 minus 𝑃, which balances the divergence of the latent heat

flux (Fig. 3B). In the global zonal mean, 𝑃 exceeds 𝐸 in the tropics and mid-to-high latitudes, but 𝐸 is greater than 𝑃 in the

subtropics due to the dry downwelling branches of the Hadley cell. There is an abrupt decrease in 𝐸 minus 𝑃 at the ice threshold

due to the step-wise change in albedo, temperature, and moist static energy which forces rainout. The global temperature and460

hydroclimate fields shown in Fig. 3A and B ultimately determine the spatial pattern of silicate weathering (Fig. 3C). Weathering

rates are highest in the tropics where temperature and runoff are high, and lowest in the subtropics where runoff is low. Whereas

the broad spatial pattern of runoff sets the pattern of silicate weathering, changes in silicate weathering with climate largely

respond to temperature in these simulations because the runoff response is small. For example, runoff is generally insensitive to

global climate between 30 and 50 degrees latitude (north or south) (Fig. 3B), but weathering fluxes increase with 𝑝𝐶𝑂2 due to465

the combined effect of warmer temperatures and higher soil 𝑝𝐶𝑂2 (Fig. 3C). Weathering fluxes are zero for glaciated latitudes

because, for these simulations, 𝑘 ice is zero.

4.2 Response to abrupt 𝒑𝑪𝑶2 increase with modern geography

Starting at 320 ppmv 𝑝𝐶𝑂2 for the modern geography, the model simulates a bipolar glaciation with the spatial pattern of

global discharge and silicate weathering closely matching that of continental area and the zonal mean water balance (Fig. 4A-C).470

Today, mean air temperatures in the south pole are lower than in the north pole, whereas the model finds a cooler north pole.

This discrepancy is probably due to the fact that we do not account for factors such as ocean circulation, spatial variability in

land albedo, cloud feedbacks, cloud albedo, topography, or a glacier height mass balance feedback. For example, in the model

more land in the northern hemisphere leads to higher albedo and a cooler climate, although recent work shows that more cloud

cover in the southern hemisphere compensates for the effect of northern hemisphere land, causing both hemispheres to have475

approximately the same top of atmosphere albedo (Datseris and Stevens, 2021).

When forced with an injection of carbon similar in magnitude to the Paleocene Eocene Thermal Maximum (PETM; ∼5000

Pg over 10 kyr (Cui et al., 2011; Frieling et al., 2016; Gutjahr et al., 2017)), global climate and the carbon isotope composition

of the DIC pool recover in approximately 200-300 kyr (Fig. 4D, G). The recovery timescale is consistent with geologic records
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Figure 4. Abrupt warming experiment for the modern world. Zonal mean results for (A) temperature, (B) the percent of global discharge

at each equal-area latitudinal grid cell in the 320ppmv 𝑝𝐶𝑂2 simulation, and (C) the silicate weathering flux for each equal-area latitudinal

grid cell at three selected timesteps. The timesteps in (A-C) are labeled with colored boxes in panel (D) which shows the time evolution of

atmospheric 𝑝𝐶𝑂2, along with that of global temperature in (E), global mean runoff in (F), and the carbon isotope composition of the DIC

pool. Arrows denote stepwise changes in runoff due to the establishment of ice sheets limiting runoff beneath them.

and other modeling results (Colbourn et al., 2013; Murphy et al., 2010). During this time, ice sheets fully melt as the planet480

warms to a greenhouse climate and then are reestablished, first in the northern hemisphere at ∼1500 ppmv 𝑝𝐶𝑂2 and later in

the southern hemisphere. We note that which hemisphere glaciates first is not sensitive to the initial temperature conditions, as

in the meridionally symmetrical geography case (Fig. 3).

4.3 Factorial experiments and interaction effects

Factorial experiments demonstrate that interaction effects are prevalent in the model, especially under low-𝑝𝐶𝑂2, glacial485

conditions (Fig. 5). When perturbed, each variable that we tested (Fig. 5C, F) can alter the spatial pattern of temperature

and/or runoff, thereby influencing the global weathering flux and the steady state climate required to balance the carbon cycle

( 𝑑𝑀𝐶

𝑑𝑡
= 0). For the low-𝑝𝐶𝑂2 case, we include perturbations to ice albedo and 𝑘 ice, the fraction of runoff that contributes to

weathering beneath an ice sheet, both of which have no effect when ice is absent. We substitute these variables for relative
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Figure 5. Factorial experiments show some non-linear interaction. (A) Histogram of deviation of global mean surface temperature from

the expected temperature due to the sum of individual effects (Δ𝑇) for the low-𝐶𝑂2 case. Negative tail indicates larger interaction effects

with more ice growth. (B) Density plots showing that the spread in the deviation from 0 tends to increase as more variables are perturbed.

(C) Table of variables and values (unperturbed in parentheses). Gray highlighting indicates variables with same values in low- and high-𝐶𝑂2

cases. (D-F) Same as (A-C), but for the high-𝐶𝑂2 case. Globe remains ice-free in all simulations.
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humidity and the Planck feedback sensitivity parameter in the high-𝐶𝑂2 case. In many experiments, perturbing multiple490

variables at once yields a similar global temperature as the net effect of perturbing each variable independently. Still, interaction

effects appear in the low- and high-𝑝𝐶𝑂2 cases, the magnitude of which increases as more variables are perturbed (Fig. 5B, E).

Notably, interaction effects in the low-𝑝𝐶𝑂2 case have a larger effect on global cooling than global warming, creating the

negative tail in Figure 5A. This effect is likely related to the positive, non-linear ice-albedo feedback which strengthens with

cooling, potentially amplifying interaction effects. Further, the absence of an ice-albedo feedback is associated with weaker495

interaction effects in the high-𝑝𝐶𝑂2 case (Fig. 5D, E). A direct comparison of the low- and high-𝑝𝐶𝑂2 experiments where the

same variables are perturbed yields the same result—interaction effects are weaker without an ice-albedo feedback. Overall,

our factorial experiments emphasize the complexity that emerges when positive feedbacks such as ice-albedo play a role in

long-term carbon cycling. Interactions between variables, especially in colder, icy climates, makes it difficult to disentangle any

individual variable’s effect.500

4.4 Varying the effect of ice cover on weathering

When we halve the volcanic flux of 𝐶𝑂2 in our model, allowing ice cover to increase, the temperature and 𝑝𝐶𝑂2 of the new

equilibrium climate state depends on 𝑘 ice, or how much ice cover decreases the effective runoff available to weather rock. With

more effective runoff, weathering fluxes remain high at glaciated latitudes, requiring overall colder temperatures, more ice cover,

and lower 𝑝𝐶𝑂2 to balance the lower volcanic emissions flux (Fig. 6). The opposite is true for low 𝑘 ice. Here, runoff (thus,505

weathering) decreases more drastically with temperature and ice growth, requiring a smaller temperature decrease to balance

the drop in volcanism. The effect of ice growth on runoff can be seen in Figure 6D, where runoff decreases in a stepwise fashion,

tracking spurts of ice sheet growth, when effective runoff is very low. The lowest 𝑘 ice simulation has a similar global mean

runoff to the 0.25 case because of competing temperature effects. The warmer temperatures of the 𝑘 ice = 0 case limit ice cover

and lead to higher runoff in ice-free regions, partially counteracting the lower 𝑘 ice where ice exists. In short, when ice sheets510

are present the global temperature response to volcanic 𝐶𝑂2 emissions depends strongly on how ice sheets impact weathering

in our model, particularly when much of the global land mass exists at the poles. The more ice sheets inhibit weathering, the

smaller the change in temperature required to balance a volcanic perturbation.

We note that changes in 𝑘 ice have no impact on climate or the long-term carbon cycle in an ice-free world (where 𝑘 ice = 1

everywhere). This is why all simulations start at the same ice-free initial conditions in Figure 6. As a result, these simulations515

can be directly compared because all terms that are defined when the model is initialized—including 𝑊sil which impacts the

strength of the silicate weathering feedback separately from 𝑘 ice—are equal. If we initialized the model in a glaciated state, then

𝑊sil must vary with 𝑘 ice to maintain a balanced carbon cycle at the first timestep, and our results would confound the direct

effect of changing 𝑘 ice plus the indirect effect of changes in𝑊sil.

4.5 Instantaneous change in moisture recycling efficiency520

Figure 7 shows the model climate and carbon response to an abrupt increase (panels A-D) and decrease (panels E-H) in runoff,

as determined by the recycling efficiency parameter 𝜔. Results are shown as a factor change (panels A, C, E, G) or an anomaly
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Figure 6. Effect of ice sheets inhibiting runoff. Time-evolution of atmospheric 𝑝𝐶𝑂2 (A), global mean temperature (B), the latitude of the

ice-line (note the y-axis is equal-area) (C), and global mean effective runoff (D) for different 𝑘ice scenarios when the volcanic input is halved.

Note that (D) refers to terrestrial runoff relevant for weathering (which accounts for changes 𝑘ice). When 𝑘ice at ice-covered latitudes is zero

(light blue line) a smaller change in temperature is needed to balance the carbon cycle. The largest change is necessary when 𝑘ice is one and

runoff is equal to the total runoff predicted by the MEBM (black line).
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Figure 7. Abrupt change in evapotranspiration efficiency (𝜔). All changes are relative to each run’s pre-perturbation value. Effect of

instantaneous decrease in Budyko 𝜔 at time zero from 2.6 to 2.0 (panels 𝐴−𝐷) on atmospheric 𝑝𝐶𝑂2 (A), the change in global temperature

(B), global runoff, normalized (C) and net carbon emissions (D). Panels E-H show the same variables but for an increase in 𝜔 from 2.6 to 3.5.

The larger magnitude climate response of Tropicslice world compared to Polarslice world is owed to the larger magnitude change in climate

from the change in 𝜔 rather than changes in the strength of the silicate weathering feedback (see text).

(panels B, D, F, H) from pre-perturbation (time < 0) because the different continental configurations cause somewhat different

initial climate states, though the relative responses are robust. When 𝜔 decreases from 2.6 to 2.0, runoff increases everywhere,

driving more weathering. Initially, the increase in weathering creates a “blip” in net C emissions (defined as the sum of fluxes525

in equation 23) because carbonate weathering becomes a transient source of carbon, compensated by subsequent burial. In this

section and the next, when we note the effect of the climate variable on net C emissions we ignore this transient blip.

The magnitude of the weathering (and thus climate) response to changing 𝜔 depends on geography. Runoff increases by

a larger fraction in Tropicslice compared to Polarslice world because runoff is most sensitive to 𝜔 when precipitation over

potential evapotranspiration is closer to 1 (see for example Zhang et al. (2004) their Fig. 5), as is the case for Tropicslice530

world. This larger increase in relative runoff causes a larger fractional increase in weathering (decrease in net C emissions) in

Tropicslice world (Fig. 7D), requiring relatively more cooling (Fig. 7B) to reach a new steady state in the carbon cycle with

zero net emissions. The same relative response between Polarslice and Tropicslice world can be seen in the case where 𝜔 is
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increased, causing a decrease in runoff (Fig. 7E-H). In this case, the decrease in runoff is greater in Tropicslice world (Fig. 7G),

leading to a larger increase in net C emissions as weathering declines (Fig. 7H).535

In both cases (decreasing and increasing 𝜔) Tropicslice world takes longer to return to zero net C emissions compared to

Polarslice world, mostly because the runoff perturbation is relatively larger (Fig. 7C,G). We note that the runoff response to

warming is similar in Polarslice and Tropicslice worlds, but silicate weathering is more responsive to global temperature in

Polarslice world (Supplemental Fig. S3). This effect is due to polar amplification of warming causing a greater increase in

weathering per increase in global temperature (and runoff) in Polarslice world. The same effect can be seen in Fig. 4, where540

weathering responds strongly to warming in the northern hemisphere mid-to-high latitudes despite a relatively weak runoff

response. Consequently, the weathering response to 𝑝𝐶𝑂2 is different between Polarslice and Tropicslice worlds, despite similar

runoff responses to 𝑝𝐶𝑂2 (Supplemental Fig. S3).

4.6 Instantaneous change in the diffusivity of moist static energy

In our model, moist static energy diffusivity (𝐷) determines how efficiently the surplus of atmospheric energy in the tropics and545

subtropics (where incoming radiation exceeds outgoing) is transported toward the polar regions where there is an atmospheric

energy deficit (outgoing radiation exceeds incoming). 𝐷 has only a loose physical meaning, as it is convenient in models of

this level of complexity to parameterize poleward moist static energy transport as a diffusive process to avert the complex,

underlying transport physics. Still, the 𝐷 which produces the best MEBM fit to true climate data is generally thought to change

with geography, 𝑝𝐶𝑂2, and other factors (Frierson et al., 2006; Peterson and Boos, 2020; Siler et al., 2018). At present, we550

lack rigorous process-based formulations for the 𝐷 response to climate and geography, but nevertheless we simulate its effect

on long-term carbon cycling to build intuition for its role in the MEBM and broader CH2O-CHOO TRAIN framework.

Patchland and Northland worlds show distinct responses to the same change in 𝐷 (Fig. 8). A decrease in 𝐷 lowers 𝑝𝐶𝑂2 and

cools Patchland world, whereas the same decrease in 𝐷 raises 𝑝𝐶𝑂2 and warms Northland world (Fig. 8A, B). The divergent

climate responses are caused by diverging weathering responses which, in turn, are caused by spatially variable changes in555

runoff and continental temperature (Supplemental Fig. S4). Weathering increases with lower 𝐷 in Patchland mostly due to

warming in the subtropics and tropics at the expense of cooling at higher latitudes. Runoff increases in the subtropics but

decreases slightly in the tropics such that the effect of runoff on weathering is small. The fact that temperature, not runoff,

drives the increase in weathering in Patchland world is evident in Figure 8C. Here, the initial increase in runoff in Patchland

world is small, and runoff continues to decrease with time as the planet cools. Conversely, runoff and temperature both drive560

the weathering response in Northland world. Runoff initially decreases in the polar continent as 𝐷 decreases (Fig. 8C), then

runoff gradually increases as the planet warms and weathering begins to balance emissions. Increasing 𝐷 leads to essentially

the opposite effect (Fig. 8E-H). Patchland world warms due to an initial drop in weathering while Northland world cools due to

an initial weathering increase. As in the case of decreasing 𝐷, the change in weathering in Patchland world is primarily driven

by temperature—Patchland world runoff is less sensitive to 𝐷—whereas temperature and runoff increase in concert to increase565

weathering in Northland world. We note that the direct effect of changing 𝐷 on global temperature is small. Changing 𝐷 will

warm some regions and cool others, with the opposing effects largely canceling out (especially when the poles are ice-free
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Figure 8. Abrupt change in MSE diffusivity (𝐷). All changes are relative to each run’s pre-perturbation value. Effect of an instantaneous

decrease in the diffusivity coefficient from 1.06× 106 to 0.71× 106 𝑚2 𝑠−1 at time zero on atmospheric 𝑝𝐶𝑂2 (A), the change in global

temperature (B), the fractional change in global runoff (C) and net carbon emissions (D). Panels E-H show the same variables but for an

increase in 𝐷 to 1.41× 106 𝑚2 𝑠−1. Note that, unlike other variables, the runoff response is not symmetric between the geographies because

runoff is sensitive to 𝐷 in Northland world, but much less sensitive in Patchland world. Simulations are ice-free at all times.

and there is no ice albedo feedback). However, the terrestrial climate response to 𝐷—which can be sensitive to the continental

geography—determines its effect on weathering and therefore long-term global temperature.

5 MODEL APPLICATIONS AND THEIR LIMITATIONS570

The primary feature of our model relative to existing long-term carbon cycle frameworks is the intermediate complexity

representation of climate via the MEBM. We expect that the most useful applications of the model will include those analyzing

the sensitivity of long-term carbon cycle dynamics to various features of the complex climate system that are difficult to capture

in simpler models and difficult to efficiently test or modify in more complex models. The ice albedo feedback, the role of

ice sheets in weathering, polar amplification of warming, and changes in moist static energy diffusivity—processes explored575

above—are examples of climate features that can impact long-term carbon cycling and can be easily investigated in the CH2O-

CHOO TRAIN framework but are often difficult to efficiently manipulate in more complex models. Still, there are important
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limitations to such model applications that arise from the underlying model assumptions. We emphasize these limitations here

while also highlighting some of the advantages that justify our use of the MEBM and its one-dimensional approach to represent

climate.580

5.1 Climate and weathering

A primary limitation of the CH2O-CHOO TRAIN framework is that the model must be tuned to the desired baseline climate

and weathering state. Parameters such as the diffusivity coefficient, land, ocean and ice albedo, climate sensitivity, and others

will affect the climate state for a given 𝑝𝐶𝑂2 and will determine the 𝑝𝐶𝑂2 thresholds at which ice sheets initiate or collapse.

Thus, if the model simulates a shift to an ice-free climate above 700 ppmv, this result should not be considered evidence that585

700 ppmv represents a 𝑝𝐶𝑂2 threshold for ice melt. Instead, we suggest that users first tune the model to match a desired

baseline climate and its sensitivity (as informed by modern or geologic data, or climate model output). In this way, the model is

perhaps most useful for studying how key aspects of climate affect the time-evolution of long-term climate and carbon cycling,

and less useful for constraining temperature and 𝑝𝐶𝑂2 thresholds of climate transitions which are highly parameterized.

Baseline weathering fluxes in the model are also parameterized using a scaling coefficient to balance silicate weathering590

and volcanism at the first model timestep. The weathering scaling coefficient, therefore, effectively modifies the strength of

the silicate weathering feedback by assigning an implicit slope to the weathering-temperature relationship. The current version

of our model also does not include explicitly parameterized seafloor basalt weathering (Coogan and Dosso, 2015). This flux

is sensitive to deep water temperatures, but not to runoff. As a consequence, for most simulations where global temperature

and runoff co-vary, inclusion of seafloor weathering is not likely to fundamentally change the results presented here, but will595

change the timescales over which the Earth system achieves a new stable equilibrium. However, in instances where runoff and

temperature are negatively related or unrelated (this can occur in our model if all land exists at a latitude where runoff does not

increase with warming), seafloor weathering may act to prevent a runaway greenhouse, though we note that this depends upon

the sensitivity of seafloor basalt weathering to temperature.

The scaling coefficient for weathering is important to consider when comparing different geographic settings, volcanic600

fluxes, or climate states. Changing one of these factors (geography, volcanic flux, or climate) almost always changes another.

For example, two different continental geographies with different runoff distributions will require either (1) two different

scaling coefficients to match a given volcanic flux (thus maintaining a constant DIC residence time); or (2) two different

volcanic fluxes for a constant scaling coefficient; or (3) two different climate states for a constant scaling coefficient and volcanic

flux. Importantly, this limitation is not unique to our model framework. In any model for the long-term carbon cycle, it is605

generally impossible to compare two different geographic configurations, volcanic fluxes, or climate states, while holding all

else constant. Changing any of these terms will tend to put the carbon cycle out of balance, requiring compensation somewhere

else. Due to this limitation, certain research questions must be approached with caution. For example, the question of whether

one continental geography or another yields a stronger silicate weathering feedback is difficult to test because the weathering

scaling coefficients, the volcanic fluxes of 𝐶𝑂2, and/or the baseline climate states must differ, all of which may also affect the610

feedback strength.
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Hydrological fluxes, land albedo, and GPP are not coupled in our model and precipitation does not affect land albedo or GPP.

A wetter climate is expected to decrease land surface albedo by supporting greater leaf area and therefore a darker surface,

whereas a drier climate tends to have the opposite effect (e.g. Charney, 1975; Claussen, 1997). Decoupling these processes in

our model means that precipitation is not responsive to vegetation (i.e. no precipitation-vegetation albedo feedback) and the615

weathering response to hydrological fluxes is solely due to their effect on runoff, with no indirect additional effect via GPP

(see equation 20) and soil 𝑝𝐶𝑂2. Including such a parameterization would likely heighten the sensitivity of weathering to

hydrologic change.

However, this formulation of climate and weathering in the model carries distinct advantages, too. Perhaps the most important

advantage is that weathering is not explicitly parameterized to increase with 𝑝𝐶𝑂2, as is common with low-dimensional box620

models of the long-term carbon cycle (Bergman, 2004; Caves et al., 2016; Zeebe, 2012). In contrast, higher-order models use

climate model data where the temperature and (especially) runoff response to 𝑝𝐶𝑂2 is more complex and, in some cases,

weathering has been shown to decrease with warming (Pollard et al., 2013). In our model formulation, the strength and direction

of the weathering response to climate mostly depends on the boundary conditions which determine where continental runoff

occurs and how it responds to 𝑝𝐶𝑂2. Thus, similar to more complex two and three dimensional models, our one-dimensional625

framework allows for a dynamic silicate weathering feedback which responds to time-variant conditions such as ice cover (Fig.

6) and time-invariant conditions such as geography (Fig. 7 and 8). As a result, it is easy to explore scenarios that cause or

prevent a positive weathering feedback and runaway climate states in the CH2O-CHOO TRAIN framework.

Another advantage of our model framework lies in how ice sheets interact with climate and carbon cycling. While the exact

role of ice sheets in the long-term carbon cycle remains unclear (e.g. von Blanckenburg et al., 2015; Torres et al., 2017), our630

model presents a framework to test existing hypotheses in such a way that ice, climate, and the long-term carbon cycle are fully

coupled. This coupling to the long-term carbon cycle via weathering is generally absent in more complex, long-term models

of ice sheet dynamics and climate (Pollard and DeConto, 2005; DeConto et al., 2008), although the ice-albedo feedback is not

absent from all complex models with a long-term C-cycle (Donnadieu et al., 2006; Holden et al., 2016; Ridgwell et al., 2007).

Zero-dimensional box models have also been parameterized to account for icehouse-greenhouse transitions and their effect635

on weathering, with previous results showing climate oscillations as ice sheet growth and decay overshoots the equilibrium

weathering flux (Zachos and Kump, 2005). Consistent with more complex models (Pollard et al., 2013), we were unable to

replicate this effect in our one-dimensional framework largely because polar weathering fluxes are only a small fraction of

global weathering fluxes in most continental geographies.

5.2 The zonal-mean framework640

The key assumption that distinguishes our model from previous one-dimensional energy balance climate models in the long-

term carbon cycle is that the zonal mean climatology produced by the MEBM adequately represents terrestrial (hydro)climate

conditions. Indeed, certain assumptions within the MEBM hold only over ocean. For example, we prescribe a spatially uniform

relative humidity value of 80%, consistent with oceanic, but not terrestrial, near-surface conditions. We note it is possible to

prescribe a spatially variable humidity field, as done in previous work (Peterson and Boos, 2020). Further, the evaporation645
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approximation used in the MEBM (Siler et al., 2018, 2019) is valid over oceans but not land. This is in part due to the fact

that evaporation is not limited by water availability, as is commonly the case over land. As mentioned previously, our approach

to translate zonal mean evaporation to terrestrial evapotranspiration involves imposing a water limitation constraint following

the Budyko hydrologic balance framework—a step which provides physically reasonable evapotranspiration and runoff values,

but which decouples terrestrial evapotranspiration from the zonal mean climatology. While we make efforts to derive realistic650

terrestrial hydrologic budgets from the zonal mean MEBM results, it is clear that the zonal mean climatology cannot be

considered equivalent to terrestrial climatology everywhere.

Another challenge is that the zonal fragmentation of land, not captured in the zonal mean framework, can impact the

relationship between zonal mean climatology and terrestrial climatology. In our model, a supercontinent yields the same result

as many small continents so long as the zonal mean land distribution is the same. Yet, more fragmented land masses can lead655

to larger weathering fluxes as supercontinents limit moisture delivery to continental interiors (Baum et al., 2022). Thus, our

model implicitly assumes that less fragmented land serves as an adequate moisture source to maintain well-watered continental

interiors (similar to the Amazon Basin today). This caveat is particularly relevant for our idealized geographies that span the

planet zonally, discussed in the next section. In these cases, the model can provide useful insights to the coupled climate-carbon

cycle, but may give very different results from more complex, 2-D models using the same continental configuration.660

Deriving zonal mean weathering rates from the zonal mean climatology can present another challenge. Land surface reactivity

can change over space at a given latitude depending on topography, soil age, and other factors (e.g., Maher and Chamberlain,

2014; Waldbauer and Chamberlain, 2005). A landscape with some given mean runoff, temperature, and reactivity will weather

more if high runoff and high reactivity co-occur (as in a wet, coastal mountain range with a dry inland plain). Meanwhile, the

same zonal mean runoff, temperature, and reactivity will lead to less weathering if high runoff occurs in a less reactive region665

(as in a wet, coastal plain with a drier, inland mountain range). While the covariation of temperature, runoff, and reactivity at a

given latitude influences the zonal mean weathering rate, this information is lost in our one-dimensional approach.

Still, the zonal mean climatology and weathering remain useful features of our model, even if they are not perfect rep-

resentations of how the two-dimensional landscape is projected into one-dimensional space. The zonal mean approach is

computationally efficient and makes it possible to consider how spatially complex changes in hydroclimate can impact weath-670

ering during a carbon cycle perturbation. For example, if ice melt in the north pole causes the tropical rain belt (ITCZ) to shift

north, then the weathering response to this ice melt will depend in part on whether there is more or less land in the ITCZ’s

new location. The effect of this ITCZ shift would be lost in most 0-dimensional models where weathering and runoff are single

functions of temperature or 𝑝𝐶𝑂2. Similarly, changes in land albedo are known to shift tropical rainfall (e.g. Charney, 1975;

Claussen, 1997) and can be efficiently represented in this zonal mean framework to explore the carbon cycle consequences. In675

sum, the zonal mean approach captures critical, realistic processes that lower-dimensional models usually omit while providing

more computational efficiency compared to more complex models.
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6 Next stops

The CH2O-CHOO TRAIN is designed to be computationally efficient and highly customizable, presenting opportunities for new

features, processes, and complexity in future work. For example, terms such as humidity, the diffusivity coefficient, lithology,680

and rock reactivity are globally constant in the idealized simulations presented here, but could easily be made spatially explicit

in the current model framework. We also recognize room for improvement in certain aspects of the model. For example, our

current ice sheet formulation is rather crude, with a prescribed ice sheet albedo that occurs whenever temperature drops below

a prescribed threshold. More sophisticated ice sheet parameterizations in MEBMs have accounted for other effects such as

ice thickness, sea ice thermodynamics, and seasonal ice formation and retreat (Feldl and Merlis, 2021). The effect of seasonal685

insolation, specifically, is a feature of interest for simulating tropical weathering where changes in past rainfall often track

seasonal insolation trends. Adding insolation seasonality and more complex ice sheet dynamics would undoubtedly increase

the computational expense of the model.

The zonal-mean framework of our model is also well-suited for simulating the effect of spatially variable radiative feedbacks

on the climate response to carbon cycle perturbations. While the ice albedo feedback is already accounted for via a temperature-690

dependency of albedo, other feedbacks such as cloud feedbacks are currently absent from the model. However, the zonal pattern

of such feedbacks could easily be prescribed, perhaps from climate model output, to explore how the effect of these feedbacks

on temperature and hydroclimate impact the time-evolution of weathering (Roe et al., 2015). Still, the suite of feedbacks in

the current model, including the combination of radiative and weathering feedbacks, are rarely considered in a single model

framework. The CH2O-CHOO TRAIN therefore brings opportunities to explore the complexity that emerges through the695

myriad interactions between climate and the long-term carbon cycle in the geologic past.

Code availability. The code, instructions for running the model, and associated scripts for plotting model output and generating model input

files can be found on Github (repository: https://github.com/tykukla/CH2O-CHOO-TRAIN) and Zenodo (Kukla et al., 2023). The code used

for the analysis in this manuscript is tagged as release v1.0.1
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