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Abstract. This contribution presents a novel multi-dimensional (multi-D) hydraulic-hydrological numerical model with vari-

ational data assimilation capabilities. It allows multi-scale modeling over large domains, combining in situ observations with

high-resolution hydro-meteorology and satellite data. The multi-D hydraulic model relies on the 2D shallow water equations

solved with a 1D2D adapted single finite volume solver. 1Dlike reaches are built through meshing methods that cause the 2D

solver to degenerate into 1D. They are connected to 2D portions that act as local zooms, for modeling complex flow zones such5

as floodplains and confluences, via 1Dlike-2D interfaces. An existing parsimonious hydrological model, GR4H, is implemented

and coupled to the hydraulic model. The forward-inverse multi-D computational model is successfully validated on virtual and

real cases of increasing complexity, including using the second order scheme version. Assimilating multiple observations of

flow signatures leads to accurate inferences of multi-variate and spatially distributed parameters among bathymetry-friction,

upstream/lateral hydrographs, and hydrological model parameters. This notably demonstrates the possibility for information10

feedback towards upstream hydrological catchments, that is backward hydrology. A 1Dlike model of part of the Garonne river

is built and accurately reproduces flow lines and propagations of a 2D reference model. A multi-D model of the complex Adour

basin network, inflowed by the semi-distributed hydrological model, is built. High resolution flow simulations are obtained on a

large domain, including fine zooms on floodplains, with a relatively low computational cost since the network contains mostly

1Dlike reaches. The current work constitutes an upgrade of the Dassflow computational platform. The adjoint of the whole tool15

chain is obtained by automatic code differentiation.

1 Introduction

The accurate estimation of storage and fluxes in surface hydrology is an essential scientific question linked to major socio-

economic issues in floods and droughts forecasting, particularly with regards to the ongoing climate change and potential

intensification of the water cycle and hydrological hazard (Allen et al. (2019); Iturbide et al. (2020)). In this context, ad-20

vanced numerical modeling tools are crucially needed to both perform meaningful and detailed representations of basin-scale

hydrological processes and provide sensible local forecasts. The quantities of interest range from discharge hydrographs on
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upstream ungauged parts of the drainage network to their translation into flow depth, velocities and submersion times on

downstream floodplains. This information is difficult to access, especially for floods over large territories. Indeed, given the

complexity of physical processes involved, their limited observability and the resulting hydrological responses, hydrological25

modeling remains a hard task and internal state-fluxes are generally tinged with uncertainties (Beven (1993); Schuite et al.

(2019); Milly (1994)). Moreover, the accuracy of high resolution hydraulic computations may still be affected by complex

dynamics with wet-dry fronts, multi-scale and uncertain topography-structures and flow model parameters (e.g. friction), un-

certain quantities at open boundaries (upstream inflows but also lateral ones due to sudden local runoff, downstream controls

and backwater effects), internal in/outflows in urban areas, and large computational domains (Monnier et al. (2016)). Thus,30

integrated hydrological-hydraulic approaches are required (e.g. Nguyen et al. (2016); Hocini et al. (2020)). Such approaches

are now enabled by the increasing informative richness of multi-source datasets provided by high resolution hydrometeorology

and satellite remote sensing in complement to in situ measurements. Nevertheless, reaching high resolution accuracy and com-

putational efficiency for large scale applications remains a difficult challenge because of multi-scale non-linear hydrodynamic

processes over large computational domains and multiple uncertainty sources.35

These uncertainties could be reduced by the optimal combination of models and multi-source datasets, including high res-

olution maps, spatially sparse in situ flow measurements, but also the growing amount of earth observation data provided by

new generations of satellites, drones and sensors (e.g. Biancamaria et al. (2016, 2017); Schumann and Domeneghetti (2016)

among others). Indeed, remote sensing provides very interesting cartographic observations of the variabilities of worldwide

catchments characteristics (topography, soil occupation, surface moisture, snow cover, ...), as well as an unprecedented and40

increasing hydraulic visibility over river networks (Garambois et al. (2017); Montazem et al. (2019); Rodríguez et al. (2020)).

This growing wealth of multi-sensed information is a key to the design and improvement of basin-scale models, as shown

for accurate river network 1D hydraulic modeling enabled by recent multi-source altimetric and optical satellite data in Pujol

et al. (2020) and in Malou et al. (2021) (see also references therein) or accurate 2D local floodplain models with radar sensed

flooding extent (Hostache et al. (2010)).45

Still, the underlying issue of the adequate combination of numerical models and multi-source data that is heterogeneous

in nature and of varied spatio-temporal resolutions remains. In order to exploit this wealth of hydrological and hydraulic

information, the complexity of integrated models has to be adapted to observation types and patterns, while retaining a good

representation of spatial and temporal river network variabilities and relatively low computational costs over entire catchments,

i.e. large computational domains. The challenging search for consistency between such datasets and models, generally involves50

the calibration of high dimensional multivariate parameter vectors, and corresponding inverse problems are often ill-posed or

even ill-conditionned - see discussions about "equifinality" (Bertalanffy, 1968; Beven, 2000) in hydraulic inverse problems in

Garambois and Monnier (2015); Larnier et al. (2020); Garambois et al. (2020); Pujol et al. (2020) for river reach parameter

inference from satellite altimetric data.

55

Cascades of 2D hydrological-hydraulic models have been proposed in recent literature, for inundation mapping at large

scales using worldwide DEM (e.g. Grimaldi et al. (2018); Fleischmann et al. (2020); Uhe et al. (2020)) with simplified non-
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inertial hydraulic modeling) or at finer scale, e.g. at catchment scale for flash floods in Nguyen et al. (2016); Hocini et al. (2020).

In those studies, conceptual hydrological models of upstream-lateral sub-catchments are used to inflow hydraulic models of

river network and floodplains in a weak coupling approach, mostly performed via external coupling of numerical models. In60

Grimaldi et al. (2018); Fleischmann et al. (2020); Uhe et al. (2020), a simple 2D storage cell inundation model obtained from

1D non-inertial model (Bates et al. (2010) following Hunter et al. (2008), implemented in LISFLOOD-FP model), enables

raster based inundation modeling over very large domains at relatively low computational cost (see also Fleischmann et al.

(2020) for coupling of this non inertial model with the large scale hydrological model MGB Collischonn et al. (2007); Pontes

et al. (2017)). In Hocini et al. (2020), an original 2D hydraulic modeling approach is used to compute steady inundation maps65

of various return periods at high resolution (5m) for river networks and floodplains at catchment scale of several thousands

of square kilometers (up to 5050km2). It uses “precipiton” for the resolution of the full shallow water model, which consists

in propagating elementary water volumes on the water surface, as proposed by Davy et al. (2017). In Nguyen et al. (2016),

an unsteady full 2D shallow water model (Sanders et al. (2010)) is applied at relatively high resolution (10 or 30m) in the

river network and floodplains on a 808km2 catchment. Note that sequential data assimilation methods based on the Kalmann70

filter have been carried out extensively for mono-variate data assimilation with such models (see e.g. Brêda et al. (2019) with

simplified hydraulics in a satellite observability context references therein and Table 1) at varying spatio-temporal resolutions.

Current model development strives to propose combinations of high resolution accuracy and fast computation times over large

domains and to incorporate multi-source data assimilation methods for state-flux-parameter estimation.

In order to combine local accuracy and computational efficiency, the association of 1D and 2D full shallow water hydraulic75

models is an appropriate approach for simulating a basin-scale network in a way that is both practical and adequately accurate.

Methods for coupling models of different dimensions have been developed Miglio et al. (2005a, b); Amara et al. (2004), classi-

cally using domain decomposition Gervasio et al. (2001), or more recently by coupling 1.5D and 2D equations, so as to model

local 2D zooms of overflows overlapping with a 1D domain for in-banks flows, in a variational data assimilation framework,

in Gejadze and Monnier (2007); Marin and Monnier (2009). An iterative coupling strategy is applied in Barthélémy et al.80

(2018) between a 1D Mascaret and a 2D Telemac operational numerical model and a sequential data assimilation technique

is performed for correcting water levels forecasting. A summary of some established 1D and 2D numerical hydraulic models,

external coupling methods and optimization-assimilation methods is presented in Table 1. Remark that large scale modeling of

river routing-flooding is still generally performed with simplified models and/or external couplings, while enhancing the com-

putational efficiency and realism of multi-dimensional models is important in the field of hydrological-hydraulic modeling.85

Furthermore, it is essential to investigate state-parameter estimation, from multi-source datasets, for improving the accuracy

of hydrodynamic variables estimated with such models. Variational data assimilation (VDA) is an adequate method to tackle

such high dimensional and multi-variate hydrodynamic inverse problems from heterogeneous datasets (see Lai and Monnier

(2009); Monnier et al. (2016); Brisset et al. (2018); Larnier et al. (2020); Garambois et al. (2020); Pujol et al. (2020); Malou

et al. (2021)). One can spot DassFlow2D (Monnier et al. (2016)) as the only 2D full hydraulic model with a second order solver90

with accurate wet-dry front treatment, parallel computation and adjoint based variational data assimilation capabilities.
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This work focuses on the following scientific problems: i) the effective representation of river networks flows through

multi-D basin-scale hydraulic-hydrological numerical modeling, ii) the inference from multi-source data of spatio-temporally

distributed river channel parameters and inflows through a VDA approach, and iii) the upstream informational feedback of

river network observations to integrated hydrological models.95

The present study details upgrades to the DassFlow variational data assimilation framework (DassFlow2D-V2, see Monnier

et al. (2016)) in the form of (i) a new multi-D hydraulic computational code relying on an internal mesh coupling and a single

finite volume solver and (ii) the integration and differentiation of a GR4 hydrological module, (iii) with the implementation of

a regularization strategy based on Larnier et al. (2020), leading to DassFlow2D-V3.

One strength of the DassFlow platform is its variational data assimilation (VDA) algorithm. It can solve high-dimensional100

optimization problems with descent algorithms using gradients computed with the adjoint model. The adjoint model being

obtained via the automatic differentiation tool Tapenade (Hascoet and Pascual (2013)). This allows the simultaneous inference

of numerous model parameters, which may be needed over large domains. Let us remark that this is not the case for stochastic

methods, where computational cost can increase dramatically with the number of sought parameters. The variational method

also enables tackling multi-variate data assimilation problems, i.e. with composite control vectors (bathymetry, friction, bound-105

ary conditions, hydrological parameters), given multi-source datasets, heterogeneous in nature and spatio-temporal resolutions

(see e.g. Brisset et al. (2018); Larnier et al. (2020); Pujol et al. (2020); Malou et al. (2021))

To apply these unique capabilities at the scale of a river network, there is a need to develop a model with both sufficient

complexity and a reasonably low computational cost. In this work, we also focus on tool simplicity, both for direct and inverse

modelling, by proposing this model as a single hydraulic-hydrological tool/code. The proposed multi-D hydraulic code consists110

in a single finite volume solver applied to a 2D river network. The network is discretized into ”1Dlike” reaches connected to

high resolution 2D meshes in a single formulation of the Shallow Water Equations (SWE). The resulting product allows

building large 1Dlike river networks, connected to fine local zooms. Compared to a full 2D model, this allows computing large

networks with low computational costs while maintaining the possibility to model dynamics locally at a fine scale.

The complete hydraulic-hydrological modelling of river network is achieved by coupling this hydraulic domain with a well-115

established conceptual hydrological model (GR4H state-space Santos et al. (2018)) in a semi-distributed setup. The resulting

integrated tool chain has been differentiated and enables, via the VDA algorithm, information feedback within the whole

computational domain (basin) and especially from downstream to upstream. The source code and synthetic cases presented in

this study are available online1, and current updated version of the code upon simple request 2.

The remainder of this article is organized as follows. In Section 2, the modeling hypothesis, the computational resolution and120

inverse methods are detailed. In Section 3, the multi-D coupling scheme is validated on a series of academic cases and several

academic and real-like inference setups are investigated. The study is concluded in Section 4, which also outlines potential

applications and improvement perspectives that the proposed method and findings bring.

1https://zenodo.org/record/6342723.YpjHTzlBxH4
2http://www.math.univ-toulouse.fr/DassFlow
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Platform Model Mathematical model
Max

order

1D2D SWE

coupling

Parallel

computation
DA

Sources

available

HEC-RAS (Brunner

(1995))
1D-2D

(A,Q) and (h,u,v),

both locally non-inertial

SWE

1 Internal (2 solvers) No - No

BreZo (Sanders et al.

(2010))
2D (h,u,v), porosity 2 No Yes - No

FullSWOF (Delestre

et al. (2017))
1D and 2D

(h,u,v) for both, full

SWE
1 No Yes - Yes

SW2D-LEMON

(Steinstraesser et al.

(2021); Guinot et al.

(2018)

2D (h,u,v), porosity 1 No No - Yes

Floodos (Davy et al.

(2017))
2D

(h,u,v), non-inertial

SWE
1 No No - Yes

b-flood (Kirstetter

et al. (2021))
2D (h,u,v), full SWE 1 No Yes - Yes

Telemac-Mascaret

(Galland et al.

(1991); Goutal and

Maurel (2002))

1D and 2D
(A,Q) and (h,u,v),

full SWE
1

External (2

solvers)
Yes EnKF Yes

LISFLOOD-FP

(Bates et al. (2013))
1D-2Dlike

(A,Q) non-inertial

SWE
1 No Yes EnKF Yes

DassFlow2D

(Monnier et al.

(2016))

2D-1Dlike (h,u,v), full SWE 2
Internal (same

solver)
Yes Var Yes

DassFlow1D

(Brisset et al. (2018))
1D (A,Q), full SWE 1 No No Var Yes

Table 1. Some established freeware hydraulic models. “SWE” stands for Shallow Water Equations. The equations resolved are either for-

mulated in (A,Q) (flow section
[
m2

]
and at-a-section discharge

[
m3/s

]
) or in (h,u,v) (water depth [m] and 2D depth-integrated flow

velocities [m/s]). “Max order” refers to the maximum demonstrated scheme order. “Sources available” means that the source code is freely

accessible, either through direct download or upon request.
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2 The computational hydrological-hydraulic chain

This section presents the integrated and multi-dimensional hydrological-hydraulic model and the data assimilation approach.125

The model is designed for simulating spatio-temporal flow variabilities over an entire river network, from upstream hydrolog-

ical responses to complex flow zones (confluences, multichannels portions, floodplains, ...).

The modeling approach which is detailed below, is based on the following ingredients:

– An integrated multi-D hydraulic model: the 2D SWE with finite volume solvers from Monnier et al. (2016) are applied

to “1Dlike”-2D composite meshes of river networks using a numerical flux splitting method and an effective friction130

power-law depending on flow depth.

– A numerically coupled hydrological model, the widely used GR4 model from Perrin et al. (2003) in its state-space

version Santos et al. (2018), for the sake of model differentiability.

– A computational inverse method based on Variational Data Assimilation (VDA) algorithms from Monnier et al. (2016);

Brisset et al. (2018); Larnier et al. (2020) enabling spatially distributed calibration and variational data assimilation with135

the whole chain.

2.1 Multi-D hydraulic-hydrological modeling principle

The flow model consists in a spatially-distributed modeling of hydrological responses coupled to, i.e. inflowing, a seamless

multi-scale “1Dlike”-2D hydraulic model of a river network, within a 2D river basin domain denoted Ω⊂ R2 . The core

idea of this work is to numerically solve the 2D shallow water hydraulic model on a multi-D discretization Dhy ⊂ R2 of140

the computational hydraulic domain Ωhy ⊂ Ω . This discretization (mesh) Dhy being composed of N mixed unstructured

triangular/quadrangular cells with internal interfaces between 1Dlike and 2D zones (see Subsection 2.2.3).

Let the basin domain Ω be composed of a hydrological domain Ωrr connected to a hydraulic domain Ωhy (Fig. 1) such that

(Ωrr ∪Ωhy)⊆ Ω ; their borders being respectively denoted Γrr and Γhy , and the hydrological-hydraulic coupling interface

between Ωrr and Ωhy being denoted Γrh such that Γrh ⊂ Γhy . In other words, the border Γhy of the hydraulic domain Ωhy ,145

contains interfaces with the border Γrr of the hydrological domain Ωrr. Let us also consider Drr, a 2D discretization of the

hydrological domain Ωrr.

Finally, an unstructured lattice D =Drr ∪Dhy covers the basin domain Ω and a hydrological model and a hydraulic model

will be resolved respectively on the hydrological and hydraulic subdomains, and coupled via hydrological runoff inflowing

the hydraulic model at the interface Γrh, as detailed in this section along with the inverse algorithm applied to the whole150

hydrological-hydraulic numerical chain.

2.2 Hydraulic module

Numerical hydraulic models describing open channel flows generally rely on the resolution of cross sectionally or depth

integrated flow equations, respectively the 1D Saint-Venant or 2D SWE (see e.g. Guinot (2010)). While 1D hydraulic models
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Figure 1. Conceptual meshing approach for integrated hydraulic-hydrological and multi-dimensional modeling of a river network. The

computational domain Ω is composed of the hydrological domain Ωrr connected to the hydraulic domain Ωhy . Ωhy contains 1Dlike meshes

interfaced with classical 2D meshes, Hydrological inflows generated in Ωrr can be injected into Ωhy at the Γrh domain interfaces.

enable a physically sound representation of river flows variabilities in terms of wetted Section A and discharge Q for instance,155

2D hydraulic models in flow depth h and depth integrated velocity u= (u,v)
T enable to tackle more complex flow zones such

as confluences/diffluences and floodplain flows. The 2D shallow water model used in the proposed approach is presented here

with the adaptation of the finite volume solver from Monnier et al. (2016) for multi-D modeling. Note that 1D Saint-Venant

equations are presented in Appendix B along with their resolution method in DassFlow1D (Brisset et al. (2018); Larnier et al.

(2020)) that is used for comparison in this study.160

2.2.1 Mathematical flow model

On the hydraulic computational domain Ωhy⊂ R2 and for a time interval [0,T ], the 2D SWE with the Manning-Strickler

friction term, in their conservative form, write as follows:
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∂tU+ ∂xF(U)+ ∂yG(U) = Sg(U)+Sf (U)

U=


h

hu

hv

 , F(U) =


hu

hu2 +
gh2

2
huv

 , G(U) =


hv

huv

hv2 +
gh2

2

 ,

Sg(U) =

 0

−gh∇b

 , Sf (U) =

 0

−g
n2 ∥u∥
h1/3

u



(1)

with h the water depth [m] and u= (u,v)T the depth-averaged velocity [m/s] being the flow state variables. g is the gravity165

magnitude
[
m/s2

]
, b the bed elevation [m] and n the Manning-Strickler friction coefficient

[
s/m1/3

]
being the flow model

parameters. U is the vector of state variables and F(U) (resp. G(U)) is its flux over x (resp. y) direction. Sg is a gravitational

term and Sf is a friction term. Classical initial and boundary conditions adapted to real cases are considered (see Monnier et al.

(2016, 2019) for details).

An effective friction law consisting in a simple power-law n= αhβ is introduced, as previously done for 1D SWE for170

effective modeling with simplified multi-channel river geometry in Garambois et al. (2017); Brisset et al. (2018).

2.2.2 Building-up equivalencies between 2D and 1D flow states

1Dlike reaches refer to river reaches where the following meshing strategy has been applied: quadrangular cells are built such

that their interfaces are perpendicular to the main flow direction and span the whole river (bankfull) width as a traditional 1D

cross-section (XS) would. This leads to a series of quadrangular cells, each linked to a single upstream and downstream cell.175

The 1Dlike approach implicitly assumes a rectangular XS shape which potentially impacts the representation of: (i) at a section

hydraulic geometry (Leopold and Maddock (1953)), (ii) longitudinal hydraulic controls and flow variabilities.

In view to put the multi-D model in coherence with real flow physics, a continuity condition between 1D and 1Dlike models

states and parameters is required. This continuity condition is enforced at-a-section, in a prismatic channel such that the uniform

permanent flows, that is equilibrium, are preserved.180

Let us consider a reference 1D model in (A,Q) variables with the bankfull width value W1D. The friction term reads

Sf,1D = n2Q|Q|
A2R

4/3
h

(Appendix B). In the corresponding 1Dlike model in (h,u,v) variables, see Section 2.2.1, the friction term

reads: Sf,1Dlike =
n2||u||
h1/3 u

Considering 1D flow states over an idealized river section (Fig. 2, left) the hypothesis of local flow equilibrium (uniform,

steady-state) with identical wetted areas A and WS widths W , the continuity condition implies that:185
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Figure 2. Equivalency of 1D and 2D flow states at equilibrium (permanent uniform flows): effective friction and bathymetry. Left: Equiva-

lency between a 1D idealized XS (purple) and a 2D single-cell rectangular XS (green), with the same flow section A and WS elevation. Right:

Variation of the hydraulic radius Rh (h) for 3 XS shapes (of similar dimensions). This showcases the potential over- and under-estimation of

state variables using “1Dlike equivalent friction” from Eq. (2).

n1Dlike = n1D

√√√√ A

W

h
1/3
1Dlike

R
4/3
h,1D

(2)

where n1Dlike (resp. h1Dlike) is the Manning-Strickler friction coefficient (resp. flow depth) in the 1Dlike model i.e. the

coefficient in the 2D SWE (Eq. 1).

With the additional assumption of a rectangular XS (as it will be assumed in some test cases), we have h1Dlike =A/W1D,

which leads to n1Dlike = n1D

(
h1D

Rh,1D

)2/3

.190

This “1Dlike equivalent friction” leads to a perfect fit in WS elevation of 1Dlike model and 1D model in a straight prismatic

channel at the given uniform regime (results not shown here for brevity). Fig. 2, right, shows the evolution of the ratio h/Rh

vs h. For rectangular and parabolic XS, the ratio n1Dlike/n1D is expected to increase with h. Thus, one can naturally expect

an overestimation (resp. underestimation) of the actual friction coefficient by n1Dlike at lower flows (resp. greater flows). This

would lead to an overestimation (resp. underestimation) of the 1D WS elevation by the “equivalent” 1Dlike model. However,195

later it will be considered a power-law in h to model the friction coefficient (Subsection 2.2.1), which provides a better fit to

the 1D WS elevations outside of the considered permanent flow.

Note that longitudinal controls and flow variabilities in 1Dlike models are assessed using synthetic cases in Subsection 3.2.2.
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2.2.3 Multi-dimensional hydraulic model

Over a given cell K ∈ Ωhy of area mK , the piecewise constant values UK =
1

mK

∫
K
UdK are approximated. Recall that the200

finite volume approach applied to the homogeneous part of the hyperbolic system of Eq. (1) (that is without the friction source

term Sf but including a consistent discretization of the gravitational source term Sg) writes as follows:

Ū
n+1
K =Un

K − ∆tn

mK

∑
e∈∂K

meFe

(
Un

K,i,U
n
Ke

,nei,K

)
(3)

where Un
K and Un+1

K are the piecewise constant approximations of U= (h,hu,hv)
T at time tn and tn+1 (with tn+1 =

tn+∆tn), Fe stands for Riemann fluxes through each edge e of the border ∂K of the cell K, with each adjacent cell Ke. The205

length of edge e is me and ne,K is the unit normal to e oriented from K to Ke.

The finite volume schemes are those developped in Couderc et al. (2013); Monnier et al. (2016).The discretization of the

friction source term is described in Appendix A.

Based on the first and second order finite volume solvers of Couderc et al. (2013); Monnier et al. (2016), a 1D2D coupling

technique is introduced following a similar concept to Finaud-Guyot et al. (2018) (urban geometries and porosity context)210

to compute numerical fluxes on each interface between a 1Dlike quadrangular mesh cell connected to several 2D cells as

schematized in Fig. 3.

At the multi-D interfaces, that is in the case of n > 1 cells xK,i i ∈ [1..n] adjacent to the same interface of another cell

Ke (see Fig. 3 for notations and Subsection 3.3.2 for a real-like example), a special treatment is applied. It consists in the

Riemann fluxes being calculated for each cell Ki using the state from the same corresponding Ke cell over an interface of215

length mei . In the end, the flux crossing the interface e= ∪ei is equal to the sum of the fluxes crossing the ei interfaces:

Fe =
∑

i=1..n

meiFei

(
Un

Ki
,Un

Ke,nei,K

)
.

This type of internal interface has been implemented in the numerical solvers from Monnier et al. (2016) in the DassFlow

platform which includes a solver with second order accuracy in space. This solver, developed in Couderc et al. (2013); Monnier

et al. (2016), is accurate and robust for wet-dry front propagations and fully applies in the present context. Note that the lateral220

distribution of variables accross the 1D2D interface is not constrained. The source code and synthetic cases are available upon

simple request.

2.3 Hydrological module

In order to simulate the hydrological response of upstream and lateral sub-catchments inflowing the river network within a225

river basin, a hydrological module is coupled to the 2D SW hydraulic model, in a semi-distributed manner for simplicity here.

Over the hydrological domain Ωrr, we consider the discretization Drr, here into C subcatchments {bv1, ..., bvC} and cor-

responding disjoints sub-domains Ωrr,i∈[1..C] ⊂ Ωrr, which outlets coordinates are respectively xi ∈ Ωrr, i ∈ [1..C]. For a

10



Figure 3. Internal multi-D domains interface, general case. At each cell center x, the state variables U= (h,hu,hv)T and the bathymetry b

are defined. The total numerical flux is conserved: Fe =
∑

i=1..n

meiFei

(
Un

K,i,U
n
Ke,nei,K

)
.

given sub-catchment, the hydrological model is a dynamic operator, consisting in coupled state equations (ordinary differential

equations, ODE) and output equations, that reads:230

Mrr :


dh
dt (x,t

′) = f (h(x,t′) ,P (x,t′) ,E (x,t′) ;θ(x))

Q(x,t) = g (h(x,t′) ,P (x,t′) ,E (x,t′) ;θ(x))
,∀x ∈ Ωrr,i, i ∈ [1..C], t′ ∈ [0, t] (4)

Where h(x,t) is the state variables vector, P (x,t) and E (x,t) are the observable rainfall and evapotranspiration inputs (here

spatially averaged over area of each subcatchment i for semi distributed modeling), Q(x,t) is the "observable" output discharge

and θ (x) is the “unobservable” parameter vector.

The widely used, parsimonious and robust conceptual hydrological model GR4 (Perrin et al. (2003)), in its “state-space”235

version from Santos et al. (2018), was chosen in this study for parsimony and differentiability reasons. The original lumped

hydrological numerical model has been deployed in a semi-distributed manner in the DassFlow framework.

The model is composed of two non-linear stores for production (soil moisture accounting) and routing, and a Nash cascade

composed of a series of linear stores replacing the unit hydrograph from Perrin et al. (2003). Being a set of Ordinary Differential

Equations (ODE) with explicit dependency to parameters, this hydrological model (Eq. 4, see detailed GR4 equations in240

Appendix C), is differentiable. Moreover, the Fortran code is differentiable with the automatic differentiation tool Tapenade

Hascoet and Pascual (2013).

The evolution of reservoir states and model outputs and inputs is presented for a sample rain event in Fig. 4.

The input of the hydrological model are the evapotranspiration and precipitation En and Pn, the output is discharge q (t) =

Qr+Qd [mm/h]. En and Pn are classically imposed from data time series as piecewise constant on fixed temporal resolution245
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Figure 4. Evolution of GR4 inputs, output and reservoirs states during a sample rain event. Top: temporal forcings (rain and evaporation)

and modeled output (discharge). Bottom: hydrological model states (reservoir levels).

(e.g. hourly). The numerical resolution is achieved with an implicit Euler algorithm with an adaptative sub-step algorithm

enabling to reduce numerical errors especially for high flows (Santos et al. (2018)). The initial states of the stores is given by a

1 year warm-up run. The discharge q is injected into Ωhy at a sub-interface of Γhy−rr, either as an upstream or lateral flow.

The calibrated parameters will be the classical 4 parameters θrr = (ck,i)k∈1..4,i∈1..C of GR4, i.e the reservoir capacities

in mm for each subcatchment i ∈ 1..C. They will constitute the parameter vector θrr considered in the forthcoming VDA250

experiments. Other parameters, such as several drainage law exponents or the number of Nash cascade stores are not optimized

as classically done with GR4 model Perrin et al. (2003). They are set at values from Santos et al. (2018).

2.4 Inverse algorithm: Variational Data Assimilation

Given spatio-temporal flow observables, provided by in situ and airborne sensors for instance, the inverse algorithm consisting

in Variational Data Assimilation (VDA) aims at estimating the unknown or uncertain “input parameters” of the hydrological-255

hydraulic chain composed of a hydraulic model, presented in Section 2.2, and a hydrological model, presented in Section 2.3.

Detailed know-hows on VDA may be found in online courses (see e.g. Bouttier and Courtier (2002); Monnier (2014)). This

group of VDA algorithms relies on cost gradients, i.e. variations, here computed by the adjoint model, to minimize a misfit to

the observed reality (see Fig. 5). The adjoint model of the whole toolchain composed of DassFlow multi-D with GR4 modules

is obtained by automatic differentiation with Tapenade engine Hascoet and Pascual (2013). Note that 2D, 1Dlike and 1D2D260

models are functionally identical from the point of view of the adjoint code and the assimilation process.

We consider the following set of spatio-temporal observations of water surface and discharge over the river domain Ω⊂ R2:
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Zo,k (t) , ∀k ∈ [1..No,Z ] , Qo,k (t) , ∀k ∈ [1..No,Q] (5)

with Zo the observed WS elevation [m] above reference elevation, Qo the observed discharge
[
m3/s

]
, No,Z the number of

altimetric observations points and No,Q the number of observed discharges over Ω.265

Note that observed discharge Qo may be a value of a hydraulic discharge at a flow XS in Ωhy , or within the hydrological

domain Ωrr and especially at the outlet of a sub-catchment here. Also note that other water surface observables could be

considered, such as water surface velocity observations or dynamic water masks - not the scope of this study.

Given river stage and/or discharge observations, the aim here is to estimate unknown or uncertain quantities of the hydrological-

hydraulic model among: discharge hydrographs Qi (t) , i ∈ [1,N ] on the border of the hydraulic domain (in 1Dlike and/or 2D270

parts), spatially distributed hydraulic parameters over a river network (bathymetry elevation b or friction n) and hydrological

parameters θrr = (ck,i)k∈1..4,i∈1..C for all subcatchments ∪C
i=1Ωrr,i =Ωrr.

The control vector containing the sought quantities is denoted θ in what follows:

θ = (θhy , θrr) =
((

Q0
1, ..., Q

T
1 , ..., Q

1
N , ...,QT

N ,n1, ..., nM , b1, ..., bM
)
, (ck,i)k∈1..4,i∈1..C

)
(6)

with θhy and θrr the control vectors of respectively the hydraulic and the hydrological modules, N the number of inflows275

control points in space and T the number of inflow values in time, M the number of bathymetry-friction control cells and P

the number of hydrological units.

We consider a cost function jobs aiming at measuring the discrepancy between simulated and observed flow quantities on

the hydraulic-hydrological computational domain Ω. This cost function is defined as:

jobs (θ) = jQ (θ) or jobs (θ) = jZ (θ) (7)280

This cost function contains either misfit to WS elevation, jZ (θ) = 1
2 ∥Zo (t)−Z (θ, t)∥2OZ

, or misfit to discharge, jQ (θ) =

1
2 ∥Qo (t)−Q(θ, t)∥2OQ

.

The metrics (symmetric positive definite matrices) OZ and OQ are based on the inverse of the observation error covariances.

This enables to regularize the inverse problem, see e.g. Bouttier and Courtier (2002); Monnier (2021); Asch et al. (2016) and

references therein for related discussions.285

Moreover, we classically enrich the cost function with a regularization term: j (θ) = jobs (θ)+γjreg (θ) with jreg a Tikhonov

type regularization term. Here we consider a regularization on the bathymetry only: jreg (θ) = 1
2

∑M
i=1

(
(∂xbi)

2
+(∂ybi)

2
)

with θ defined by Eq. (6).

The regularization term adds convexity to the cost function. Moreover, it here dampens the bathymetry highest frequencies.

Recall that low Froude flows i.e. subcritical flows naturally act as a low pass filtering of the bathymetry shape, see Martin and290

Monnier (2015); Gudmundsson (2003).
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Figure 5. Complete VDA hydraulic-hydrological tool chain

The total cost function j is minimized starting from a background value θ(0). Following Lorenc et al. (2000), see also Larnier

et al. (2020), the following change of variables is applied:

k =B−1/2
(
θ− θ(0)

)
(8)

with B the covariance matrix of the background error.295

Then by setting J (k) = j (θ), the optimization problem which is solved is actually the following:

k⋆ = argminJ (k) (9)

The first order optimality condition of this optimization problem (Eq. 9) reads B1/2∇j (θ) = 0. The change of variables

based on the covariance matrix B acts as a preconditioning of the optimization problem. This optimization problem is solved

using a first order gradient-based algorithm, more precisely the classical L-BFGS quasi-Newton algorithm (limited-memory300

Broyden-Fletcher-Goldfarb-Shanno bound-constrained, Zhu et al. (1997)) or, in some cases in this study, its bounded version

L-BFGS-B (Zhu et al. (1997)) but without variable change (Eq. 8).

The choice of the covariance matrix B, represents an important a priori and greatly influences the computed solution of the

inverse problem. Assuming the unknown parameters are independent variables, the matrix B is defined as a block diagonal

matrix:305

B = blockdiag
(
BΩhy

,BΩrr

)
, withBΩhy

= blockdiag (BQ,Bn,Bzb)

Each block matrix of BΩhy
is defined as a covariance matrix (positive definite matrix) using 2D kernels for spatial controls.

Here following Larnier et al. (2020), we consider:
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(BQ)i,j = (σQ)
2
exp

(
−|tj − ti|

LQ

)
(10)

(Bb)i,j = (σb)
2
exp

(
−|xj −xi|+ |yj − yi|

Lb

)
, (Bn)i,j = (σn)

2
exp

(
−|xj −xi|+ |yj − yi|

Ln

)
(11)310

The parameters LQ and (Lb,Ln) act as correlation lengths. These parameters are usually empirically defined. However the

expression of Bb and the correlation lengths can be derived from physically-based estimations following Malou and Monnier

(2021).

The following stopping criterion are used to stop the iterative optimization process if: i) the cost function does not decrease

over a set number of iterations or ii) the current cost gradient, normalized by the initial cost gradient, goes under a set objective315

value. The multi-D hydrological-hydraulic tool chain presented above has been implemented in the latest version of Monnier

et al. (2019).

3 Results and discussion

3.1 Numerical experiments design

Both synthetic and real cases are considered to test the forward and inverse modeling capabilities of the proposed computational320

chain for river networks and floodplains simulation.

A series of inference cases are considered in twin experiment setups. In a twin experiment, a reference model acts as a

synthetic truth and is used to generate observations of model variables (e.g. b+h in Ωhy or Q in Ωrr). No observation noise is

considered in this study. The VDA method is then applied with these observations on an altered version of the reference model.

Inferences of temporal forcings, channel parameters and hydrological parameters are carried out. inference, is assessed against325

a reference 2D model built on fine bathymetry of 75km of the Garonne river and (ii) the whole multi-D hydraulic hydrological

tool chain is tested at basin scale on the real complex case of the Adour River network. Then, the model is tested on two real

cases. The 1Dlike model is tested against a reference 2D model built on fine bathymetry of 75km of the Garonne river. The

whole multi-D hydraulic-hydrological tool chain is tested on the Adour River network.

3.2 Synthetic cases330

First, the proposed multi-D hydraulic solver (Subsection 2.2.3) is evaluated and compared to a fine 2D reference model on

two simple configurations, a straight channel and a confluence, that feature contain frontal interfaces between 1Dlike and

2D meshes. Next, to investigate the reproductibility of hydraulic controls using a 1Dlike meshing approach and effective

modeling, this approach is compared to a 1D reference model in three typical channel configurations.Finally, inferences of

inflow hydrographs Qi (t) , i ∈ [1..N ] and of a friction power-law n= αhβ are carried out using WS observables.335
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3.2.1 Forward multi-D hydraulic cases

Straight channel case

A prismatic rectangular channel and a multi-D mesh are considered (1Dlike to 2D to 1Dlike, see Fig. 6). The channel width

is 300m and its length is 2300m. A rating curve is imposed downstream. This multi-D model is compared to a reference

2D model with refined mesh (mesh not shown, 2400 cells, average edge length ∽ 25m). The multi-D waterline is validated340

against the 2D model at permanent flow
(
Q= 100m3/s

)
and the modeled downstream discharges are compared for a flood

hydrograph (Fig. 6(b)). Both first (not shown) and second order numerical solver allow a close fit to the target water line (Fig.

6, bottom).

At permanent flow, a slight misfit is observed between the 2D and multi-D WS elevations with the second order scheme

(Fig. 6, top, relative misfit < 0.15% at 1000m). This is due to approximation error in the multi-D model caused by large spatial345

steps in 1Dlike reaches (dx= 200m). Indeed, this misfit is reduced by reducing the 1Dlike cells length (not shown). This is

confirmed and showcased in the next subsection.

At the interface between 1Dlike and 2D meshes, a slight jump in WS elevations can be observed at all 2D cells (Fig. 6,

top). This is due to the second order scheme, which is currently not designed for multi-D interfaces. Recall that no constraint

is imposed on the lateral distribution of computed variables. The technical implementation of this reconstruction for 1D2D350

interfaces will be done in next version of DassFlow.

During a varied flow event, the outflow of both models is close to identical (Fig. 6, middle). The flow is correctly transmitted

at multi-D interfaces and, at this scale, the 1Dlike meshes are adequate to model a flood wave propagation.

Simple confluence case355

A simple symmetrical confluence is modeled using a multi-D mesh. The channel width is 300m in the downstream reach and

150m in the upstream reaches. Two inflow hydrographs are imposed at the two upstream interfaces. The maximum abscissa of

the mesh points are 0 and 2075m. The 2D part (average edge length ∽ 5m) contains a confluence flow zone (Fig. 6) while the

1Dlike mesh (dx= 100m) covers the upstream and downstream reaches. At permanent flow, the multi-D model compares well

with the reference 2D fine model (mesh not shown, 15000 cells, average edge length ∽ 5m) and leads to similar conclusions to360

that of the above paragraphs. Using a shorter spatial step in the 1Dlike reaches (10m) reduces the difference between reference

and multi-D model and allows for a nearly perfect fit to the reference WS elevation at permanent flow (Fig. 6, in green). During

a varied flow event, the outflows modeled with the multi-D model are very close to reference ones - slight differences during

rising and falling limbs, same peak time, NSE = 0.996.

3.2.2 Hydraulic controls and effective friction365

To investigate the reproductibility of hydraulic controls for fluvial flows, which are characterized by a maximal deviation of

the water depth from the normal depth at the reach scale (see definition in Montazem et al. (2019)), using a 1Dlike approach, a

set of typical channel variabilities and hydraulic controls are considered. Let us compare 1D and 1Dlike waterlines in a series
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Figure 6. Multi-D straight channel case results with second order scheme. The flow is subcritical with a maximum Froude value of 0.06.

(a) Top: Waterlines for a permanent flow of 100m3/s. In red: reference 2D waterline. In blue: waterline for the mesh (b). The total misfit

at the 1D2D upstream interface (at 1000m) is around 10−3m, for a relative misfit < 0.15% of the local depth. Middle: In black: upstream

discharge during sample varied flow event. In red/blue (total overlap): downstream simulated flow for the considered meshes. Bottom: WS

elevation observations for the varied flow event (total overlap). (b) Multi-D mesh. Station locations are noted as black dots.
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Figure 7. Multi-D confluence case results with second order scheme. (a) Top: Waterlines for a permanent flow of 100m3/s at both upstream

boundaries. In red: reference 2D waterline. In blue: waterline for the mesh (b). In green: waterline for a denser 1D2D mesh (not shown). Mid-

dle: In black: total upstream discharge during sample varied flow event (evenly distributed between upstream boundaries). In red/green/blue:

downstream simulated flow for the considered meshes. Bottom: WS elevation observations for the varied flow event. (b) Multi-D mesh.

Station locations are noted as black dots.
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of synthetic cases: (i) a straight rectangular channel, (ii) a straight rectangular channel with a mid-channel slope break and (iii)

a straight parabolic channel.370

Direct calibration

Recall the equivalent friction formulation (Eq. 2) designed to make match the water line at-a-section and at equilibrium.

For each 1Dlike case, waterlines with 1D friction (n= 0.05s/m1/3) and effective equivalent friction are generated. Effective

friction values are calculated using (Eq. 2) and results from the corresponding 1D case. Reference 1D flow lines are computed

with DassFlow solving 1D Saint-Venant equations in (A,Q) state variables with a Preissmann scheme (see Appendix B and375

also Larnier et al. (2020)).

In a straight rectangular prismatic channel, with the 1D normal water depth imposed downstream (Fig. 8(a)), a backwater

curve is computed by the DassFlow1D model (in red). With a 1D homogeneous friction (n= 0.05s/m1/3), the 1Dlike approach

yields an underestimated waterline (in blue). An homogeneous effective friction allows to correct the underestimation and to

better match the 1D normal water depth over the whole domain (in green). The remaining misfit can be attributed to numerical380

errors, especially numerical diffusion from the Preissmann scheme (1D model spatial step is dx1D = 100m).

A first complexification of this case consists in the introduction of a local hydraulic control point in the form of a slope

break at x= 10km (Fig. 8(b)). In this setup, both 1D and 1Dlike models generate M2 backwater curves, see e.g. Dingman

(2009). The hydraulic control generated at the slope break is well represented with a 1Dlike approach, given the aforementioned

numerical errors due to the coarse grid.385

Another complexification of the first case consists in changing from a rectangular XS to a parabolic one (Fig. 2). In this case,

both equivalent friction - a single homogeneous patch - and effective bathymetry, in the form of an homogeneous shift δb of

the reference bathymetry, are needed to match the 1D WS elevation. Equivalent friction only allows to model identical wetted

sections at permanent bankfull flow for a given channel width (Section 2.2.2). In this case, matching the 1D wetted section

does not equate to matching its WS elevation, thus an effective bathymetry is used.390

According to the above model comparisons, effective parameterization of channel parameters is sufficient to reproduce 1D

behaviors with a 1Dlike approach for permanent bankfull flows in simple geometries. Outside of the permanent bankfull flow, a

friction power-law n= αhβ can be used (Subsection 2.2.1). This friction aims at better 1Dlike representativity when modeled

wetted surfaces (and other XS variables) are different in 1D and 1Dlike models for the same WS elevation.

Inverse calibration395

In the following comparison, power-law parameters α and β are obtained using VDA in a twin experiment setup. Observa-

tions are taken at two stations (Fig. 9). Prior values are α= 0.05s/m1/3 and β = 0.

The classic friction law and a power-law with calibrated parameters are compared in Fig. 9 during a varied flow event

(assimilation time window of 270 days). A range of water depth higher than the “bankfull” depth used to calculate equivalent

friction parameters is simulated. This results in an increase in misfit to the 1D WS elevation at high flow (Fig. 9, in blue and400

red). The calibrated friction power-law (in orange) somewhat reduces the misfit during high flows in this simple synthetic

channel and within the simulated water depth range.
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Figure 8. Effective friction analysis for steady waterline in academic cases: (a) rectangular channel with constant slope, (b) rectangular

channel with slope break, (c) parabolic channel with constant slope. Values of effective friction parameter α
[
s/m1/3

]
: (a): 5.06× 10−2,

(b): (5.06× 10−2,5.04× 10−2), (c): 5.46× 10−2. Bathymetric shift δb [m]: (a): 0 , (b): 0 , (c): 0.591. 1D reference model: fixed time step

5s spatial step 100m; average Courant number equals 0.26 1Dlike models: adaptative time step with mean value of 9s; 1Dlike cell length

100m; average Courant number equals 0.48.
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Figure 9. Effective friction analysis for an unsteady waterline in case (a). The power-law is given by n= αhβ , with α= 0.0446 and

β = 0.0634. The injected hydrograph is symmetrical. Observations stations are at x= 2.5km and x= 7.5km. Adaptative time step with

average value of 13s. 1Dlike cell length: 200m. Average Courant number: 0.33.

3.2.3 Multi-D hydraulic-hydrological data assimilation

Temporal forcings inference

Simple inference tests are carried on the confluence case from Subsection 3.2.1, following Pujol et al. (2020), in a twin405

experiment setup. A control vector c= (Q1 (t) ,Q2 (t)) is considered, where Q1 and Q2 are sinusoidal inflow hydrographs in-

jected at the upstream cell of the two upstream reaches. Pujol et al. (2020) shows that the minimal requirement to infer multiple

spatially distributed temporal forcings simultaneously is to observe either (a) both of their unmixed signatures, at 1 point each,

or (b) one of their unmixed signatures at 1 point and their mixed signatures at a second point. We verify this for configuration

(b). Unmixed signatures observations are generated at a 1Dlike cell of the upstream reaches, mixed signatures observations are410

generated at a cell in the 2D part (Fig. 10, left, red crosses). Prior values for the inflow hydrographs are constant and set to their

average value
(
Q1 (t) =Q2 (t) = 100m3/s

)
. Using sets of two observations points over a 5 hours period, see Fig. 10, we are

able to reproduce the results of Pujol et al. (2020) but with the proposed multi-D hydraulic model: the VDA algorithm enables

to infer Q1 and Q2 close to perfectly from configurations (a) and (b) (Fig. 10, right).

415

Hydrological parameters inference

In this second twin experiment, the issue of spatially distributed calibration of a hydrological model is studied, from multi-

source observations of the river network. The confluence case above is used and this time, the upstream inflows are gen-

erated by GR4H module applied on two upstream catchments inflowing the hydraulic module. For each catchment, syn-

thetic rain and evaporation time series and a hydrological parameter set θrr = (c1, ..., c4) are used to generate a discharge420
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Figure 10. Inflow hydrographs inference on confluence synthetic case in observation setup (b) with one station on a reach upstream of the

confluence and one observing mixed flows downstream in the 2D part (see mesh on the left). Given sufficient observability and an unbiased

prior, inferred hydrographs (in blue and orange) are both at target (black, total overlap). The flow is subcritical with a maximum Froude value

of 0.05.

time series over a 1-year period (not shown). Mixed observables are used: WS elevation is observed at a single downstream

point and hydrological model discharge is observed at the outlet of one of the catchments, over 360 days. They provide the

same signal observability - mixed and unmixed signals - as in the above paragraph but with observations of different nature.

Since the observed variables are of different nature and amplitude, we introduce a normalization. The cost function is here

jobs = jZ+jQ, with each term being normalized by the number of observations and by their range of variation such that: jZ =425

No,ZTZ

No,ZTZ+No,QTQ

1
(Zo,max−Zo,min)

2

[

1]No,Z

∑ [

1]TZ

∑
(Zo (t)−Z (θ, t))

2 and jQ =
No,QTQ

No,ZTZ+No,QTQ

1
(Qo,max−Qo,min)

2

[

1]No,Q

∑ [

1

]TQ

∑
(Qo (t)−Q(θ, t))

2.

Those correspond to two separate normalized squared RMSE with No,Q and No,Z denoting the number of observations

station and TQ and TZ the number of observation time steps.

The control vector c= (θrr1,θrr2) contains the two sets of 4 hydrological parameters each. For this synthetic case, an430

inequality contraint of the control parameters is imposed with the bounded L-BFGS-B algorithm (Zhu et al. (1997)). Indeed,

restricted research intervals are considered for the three first parameters of each catchment, namely a 5% bracket around their

target values used as prior, while c4 is sought in its expected variation range from an erroneous prior (Table 2). Expected ranges

for GR4H parameters are provided in Le Lay (2006), for the classical GR4 formulation.

In this setup, both jQ and jZ are reduced during the iterative steps and the inferred value for both c4 parameters are very435

close to the target value starting from an erroneous prior (Fig. 11, right). Bounded parameters c1 and c2 vary slightly between

their bounds, while c3 is locked at its lower bound from the first iteration.
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Parameters c1 c2 c3 c4

Target
520.01 -3.523 78.75

0.137

Prior 0.167 / 0.107

Inferred 520.00 / 519.46 -3.654 / -3.820 80 / 80 0.136 / 0.137
Table 2. Hydrological parameter inference results. Prior values are taken identical to target values, except for parameter c4, where under-

and over-estimated prior value are considered. Inferred value for all parameters including c4 are very close to the target. The “/” separates

values for the 2 distinct hydrological units.

Figure 11. Simultaneous inference of GR4H hydrological parameters in two catchments from multi-source observations: WS elevation

and flow observations. Left: Multi-D hydraulic mesh and modeled hydrological catchments. Hydrological discharge at the outlet of Ωrr is

inflowed upstream in Ωhy . Observation stations (red cross and red line) are used for inferring hydrological parameters. Right: Inference of 2

sets of 4 hydrological parameters: normalized costs and parameter values over the course of the iterative optimum search. The x4 background

values are erroneous. x1, x2 and x4 background values are set to target values.

3.3 Real cases

3.3.1 Garonne River: 1Dlike effective model of a 2D reference case440

A 1Dlike model of a reach of the Garonne river, in southern France, is built from real data and calibrated here via assimilation

of spatially distributed WS observations in a twin experiment setup. A full 2D model of 75km of the Garonne river (not shown,

867500 cells including floodplains, average edge length ∽ 25m) is used to generate real-like observables on this well known

case (Garambois and Monnier (2015); Brisset et al. (2018); Larnier et al. (2020); Monnier et al. (2016)). First, river extent is

derived from the 2D model output at bankfull flow Q= 400m3/s with an homogeneous friction n= 0.05s/m1/3. This extent445

is in turn used to build a 1Dlike mesh, over the whole reach: single quadrangular cells cover the whole river width and are

linked sequentially along the river reach (Fig. 12). 1Dlike cell interfaces are perpendicular to the flow direction, as would be
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Figure 12. Garonne 2D model extent and simulated water depths using the 2D model and the 1Dlike model for a non-flooding event. In the

zoom, both models are represented, with a slight longitudinal shift for the 1Dlike model, to allow qualitative comparison of both simulated

water depth and water surface extents.

XSs in a 1D model. Each cell is about 100m in longitudinal length. This mesh was generated using the SMS 3 meshing tools.

Cell bathymetry is first set using the lowest bathymetry point at each corresponding 2D XS.

450

Permanent bankfull flow calibration

A first expectedly imperfect 1Dlike model (Model A1) is built using the 1Dlike coarse mesh and expectedly underestimated

bathymetry elevation, and an homogeneous friction parameter of 0.05s/m1/3. The simulated steady WS elevation at bankfull

flow is lower than that of the 2D model (average misfit of 0.858m), which is expected since the 1D bathymetry is that of

the lowest point of the 2D XS (Fig. 2). Furthermore, the 1Dlike friction is underestimated and leads to an underestimated455

simulated water depth (and flow surface). The WS elevation misfit does not seem to follow a significant trend from upstream

to downstream, although it varies sharply at points of width variation (Fig. 13, e.g. around cell 410). Recall that the goal of

this effective modeling approach is to accurately reproduce water surface signatures, including WS elevation and, tangentially,

flow section (Subsection 2.2.2).

Calibration by hand460

3https://www.aquaveo.com/software ; a software including comprehensive meshing tools

24



We here propose to reduce the misfit using, on one hand, effective friction and, on another hand, bathymetry as follows. In

Model A2, the introduction of an equivalent friction parameter (Eq. 2), calculated at each 1D cell using observations from 2D

XS, improves the WS elevation misfit (mean friction of n= 0.062s/m1/3, average WS elevation misfit of 0.562m). It reduces

misfit overall, but has no significant local influence (Fig. 13). In Model A3, we use the average WS elevation misfit from Model

A2 to create a simple bathymetry shift δb that helps fit the observations. Equivalent friction parameters from Model A2 are465

kept and all bathymetry points are shifted by δb = 0.562m (the bottom slope is conserved). The average WS elevation misfit

at bankfull flow reaches 0.003m for Model A3, which is a very satisfying result.

Calibration by VDA

Now, the same calibration problem is addressed with an inference based on the VDA method. It is applied to the same

reference model permanent flow waterline, observed at each cell. The control vector contains a single homogeneous friction470

parameter, as before, and spatialized bathymetry b(x) for each cell. To constrain the parameter search, two VDA processes are

performed separately: a bathymetry regularization and a change of variable. Inference with bathymetry regularization leads to

Model B1, with γ = 1 (Subsection 2.4). Inference with change of variable (Eq. 8) leads to Model B2, with Lb = 500m (Eq.

11). Both models lead to average misfits close to that of Model A3: 0.0839m and 0.0844m respectively.

Two other inference setups based on Model B1 are considered. The number of observations is divided by 10: 72 stations,475

homogeneously distributed at 1 per each 1km, are considered. In Model B1a, no regularization term is considered (γ = 0). In

Model B1b, a regularization is added (γ = 1, chosen by trial and error). This weight can be optimally determined using iterative

regularization (Malou and Monnier (2022)). It is dependent on the spatial scales of observed signals and on the discretization

of inferred parameters. As presented in Fig. 13 and in Table 3, both inferences lead to low misfits of the 2D permanent

WS elevation. The regularization tends to reduce extreme bathymetric variations that tend to appear far from the observation480

points. The iterative minimization process can be followed through the cost function value and the parameter gradients (Fig.

14). Values are normalized over their initial (iteration 0) value. For Model B1a, the optimal control is reached after 40 iteration

(for a normalized cost of 8.6×10−10), while for Model B1b it is reached in 85 iterations (for a normalized cost of 5.5×10−5).

Both models follow the same trajectory up to around iteration 12, where the regularization term jreg reaches the same order of

scale as the WS elevation misfit term jobs.485

Variational calibration of channel parameter has allowed to fit a permanent regime water line. The following paragraphs

study the reproduction of propagation in a calibrated models during a varied flow event.

Variational calibration for a flow event

Let us now consider a varied flow event, without flooding in the 2D model. This event last 10 days, with a peak discharge of490

702m3/s at the start of day 2, a minimum discharge of 160m3/s and and average discharge of 382m3/s. Given our previous

inference attempts, we know that we can find a couple (n,b(x)) or (n,δb) that minimizes the average misfit. For the sake of

simplicity, we consider the couple (n,δb). For a varied flow event, this couple would be an optimal parameterization for the

average observed water line. A first inference trial is carried out for a densely observed (in space and time) varied flow. This
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Figure 13. Comparison of 7 1Dlike models of 72km of the Garonne river to a reference 2D SW fine model for a permanent flow (reference

WS elevation in blue lines, bottom). (Up) Left: WS comparison of 1Dlike models to 2D reference model at each spatial point. Right: Zoom

on 3km long reach of interest. (Down) Left: WS elevation and bathymetry for the reference and 1D like models. Right: Zoom on 3km long

reach of interest.

For models A1, A2 and A3 (in grays), the bathymetry and homogeneous friction are manually calibrated. For model B1 (yellow), B1a

(magenta), B1b (red) and B2 (green), the bathymetry and friction are calibrated by VDA. For models B1 and B2, inferences are carried out

from observations at each cell (720 total). For models B1a and B1b, inferences are carried out from observations every 10 cells (i.e. around

every 1km, 72 stations total). Vertical bars indicate these 72 stations.

dense observability is not meant to imitate the actual observability of real rivers, but to provide sufficient constraints for the495

considered inverse problem, with the aim to showcase the capability of the variational toolchain and 1Dlike model to fit fine

scale real-like WSE variations (see hydraulic parameters inference from sparse uneven altimetric observations of river surface

in Brisset et al. (2018); Larnier et al. (2020); Garambois et al. (2020); Pujol et al. (2020)).

Using Model A1 as a prior for bathymetry and friction and observations from the 2D model, we find the following optimal

parameters:
(
n= 0.054s/m1/3, δb = 0.669m

)
. The resulting optimal model is Model C. To allow a better fit during high and500

low flows, we introduce the friction power-law n= αhβ (Subsection 2.2.1). Using observations from the 2D model during the

varied flow event, we infer the couple (β,δb). The value of α is set to 0.054s/m1/3, the inferred value from Model D. Three

different β priors are tested: −0.5, 0, 0.5. δb is included in the control vector to allow modeling of more varied water depths,
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Figure 14. Normalized cost functions and gradients for inferences of distributed bathymetry and homogeneous friction, from 72 observation

stations, in models B1a and B1b. Left: Total cost normalized by initial cost j (θ)/j
(
θ(0)

)
vs iterations. Right: Cost gradients normalized by

initial gradient for the inferred parameters vs iterations.

which may be needed to reach the optimum. All three inferences lead to the very close optimal control. Their averaging, a slight

bathymetric shift δb = 0.099m and β =−0.017, leads to Model D. The direct simulation results of Model D is compared to505

the reference model. They correspond to an average WS elevation misfit of 0.026m at high flow and of 0.11m at low flow.

Compared to Model C (average misfit of 0.086m and 0.20m at resp. high and low flow), this is an improvement. Note that

NSE values for both model (Table 3) are both extremely close to 1.

The variational calibration of the global bathymetric shift δb and of an homogeneous friction value n in a 1D-like model has

allowed to closely fit WS elevation observations of a 10 days flood wave over the reference Garonne model. The calibration510

of depth-dependent friction, in the form of the β parameter in n= αhβ , has allowed an even closer fit to this reference WS

elevation over the high and low flows, i.e. a better representation of the observed flood wave propagation.

3.3.2 Adour basin: multi-D hydrological-hydraulic model

The whole hydrological-multi-D hydraulic tool chain is now tested in a real context both for forward and inverse problems

resolution. A real and complex basin case is now considered: the Adour river basin in the South West of France, with a total515

drained area of 16890km2 at the estuary. It is probably one of the most difficult basins to model in the country, because of

contrasted hydrological regimes including nival effects in the south, flash floods on small ungauged catchments, complex river

network morphology, anthropized floodplains and tidal effects from downstream.

In this section, a multi-D model, composed of 1Dlike meshes and 2D zooms over floodplain area is built from available data

(Fig. 15, 2D area in green). Then, forward and inverse flow simulations on the river network are presented.520

Model construction and rainfall to inundation simulation

The following model of the Adour river combines a multi-D hydraulic network model and several hydrological models of

sub-catchments (Fig. 15). It encompasses around 180km of river reaches and includes the Adour river from its tidal boundary

downstream of Bayonne up to a gauging station around 70km upstream, and part of its main tributaries: the Nive river (around525
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Model

name

Calibrated

parameters

Calibration

method

Flow

regime

Obs.

density
n or α β δb

Rel. misfit

(PR)

RMSE

(PR)

NSE

(Varied)

2D - - - - 0.5

0

0

--

A1 -

Manual

PR

High

0.5 0 0.858 0.881

A2 n 0.062 0 0.562 0.585

A3 n,δb 0.062 0.562 0.003 0.167

B1

n,b(x,y)

VDA

0.059

-

0.084 0.106

B1a
Low

0.059 0.099 0.157

B1b 0.057 0.099 0.152

B2 High 0.059 0.084 0.157

C n,δb
Varied High

0.054 0.669
- -

0.99

D β,δb 0.054 -0.017 0.099 0.98

Table 3. Garonne models parameters and metrics. “PR” stand for Permanent Regime (discharge of 400m3/s). The "Varied" flow event is

non-flooding and has a mean discharge of 398m3/s, with a minimum of 183m3/s and a maximum of 702m3/s “High” observation density

corresponds to 720 stations, or 1 station per 100m. “Low” observation density corresponds to 72 stations, or 1 station per 1km.

45km), the Oloron and Pau rivers (around 65km in total). The river networks contains mostly single-branch reaches, with

some notable flood areas around the city of Bayonne. The WS is observed in situ at 10 points, 5 of which are used as boundary

conditions (Dax, Orthez, Escos, Cambo and Convergent, red points in Fig. 15). Out of the 5 remaining stations kept for data

assimilation, 3 are located on river reaches (Peyrehorade, Urt and Villefranque, blue points in Fig. 15) and 2 are located in the

Bayonne area (Pont-Blanc and Lesseps, blue points in Fig. 15).530

At the 4 upstream points of the modeled river network, 4 sub-catchments are modeled with 4 lumped hydrological models

(Subsection 2.3). Their drainage areas are respectively about 7811, 842, 2480 and 2464km2. The hourly discharge have been

extracted from the HYDRO4 database while the rainfall data from the radar observation reanalysis ANTILOPE J+1, which

merges radar and in situ gauge observations, is provided by Météo France. The interannual temperature data is provided by

the SAFRAN reanalysis, Météo France, and then used to calculate the potential evapotranspiration using the Oudin formula535

Oudin et al. (2005). The rainfall and potential evapotranspiration are at a spatial resolution of 1km2 square grid, and processed

into hourly time step. Spatial averages of the rainfall and potential evapotranspiration computed using the SMASH distributed

hydrological modeling platform (Jay-Allemand et al. (2020); Colleoni et al. (2021)) over the 4 catchments are used as inputs

for the lumped GR4H model. Lumped parameter sets for the 4 GR4H models are simply obtained here using for each the airGR

global calibration algorithm (Coron et al. (2017)). In this section, inferences are carried out only for upstream inflow hydro-540

4http://www.hydro.eaufrance.fr ; french ministry in charge of environment
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graphs, not hydrological parameters. Indeed, the study of global calibration and regionalization issues of spatially distributed

hydrological models is left for further research.

Our multi-D hydraulic modeling approach (Section 2) is applied to this complex case as follows. First, a “1Dlike-only”

model of the whole network is built. Then, a multi-D model is built based on the “1Dlike-only” model, with the addition of a

2D mesh of a floodplain (Fig. 16, left).545

On the “1Dlike-only” model, the goal is to analyze 1Dlike signal propagation representation at a low computational cost.

The Adour 1Dlike model is built similarly to the Garonne 1Dlike model, using DEM data to determine minor bed bank line

placement and build the quadrangular cells. Bathymetry comes from 25× 25m DEM data, aggregated from fine LiDAR data

from public databases, extracted at each cell. This rough approximation is sufficient to show the potential of the DassFlow

assimilation tool chain on a large scale river network. This “1Dlike-only” model contains 1409 cells. A 24h simulation runs in550

around 13s, using uncalibrated parameter estimates.

Then, a multi-D model is obtained: the existing 2D mesh from a Telemac model is coupled to a 1Dlike mesh, similarly to

the reference Telemac-Mascaret model from the regional flood forecast center SPC-GAD. The 1Dlike parts of the mesh are

kept identical to the “1Dlike-only” model, while the 2D part is the mesh extracted from the Telemac-Mascaret model (Fig. 16,

left) provided by SPC-GAD. For hydraulic coherence, bathymetry at coupled 1Dlike cells are taken as the average bathymetry555

of the linked 2D cells. This “1D2D” model contains 66982 cells in the 2D area and 1342 cells in 1Dlike reaches. Results for a

flooding event (around 6 hours of computation per day, on a single thread ) in the Bayonne 2D area are presented in Fig. 16,

on the right. Modeled variables appear coherent over the 1D2D area and a high resolution floodmap in coherence with flow

conditions in the whole river network is obtained.

A 1 day (physical time) flooding event is computed in around 20min (computation time) in the “1D2D” model (with 68324560

total cells, 6 threads in parallel). The same event leads to a 7s computation time for the “1Dlike-only” model (with 1409 cells,

same computational setup). Remember that computation time may vary depending on the number of wetted cells and on the

adaptative time step calculation. This relatively low computation time, and the potential to decrease it further by using more

threads in parallel, indicate that this multi-D method is suited to operational use. The code version this work is based on was

proven scalable (Couderc et al. (2013)). Additions made to the current version should not change this, but no numerical testing565

has been done.

Assimilation of WS observables to infer 4 upstream hydrographs

To investigate the 1Dlike effective modeling on a river network, a twin experiment setup is designed to infer large control

vector from a realistic observability on the “1Dlike-only” model.570

The considered control vector is composed of the 4 upstream hydrographs c= (QDax (t) ,QEsc (t) ,QOrt (t) ,QCam (t)).

Observations of WS elevation are generated at Peyrehorade, Urt and Villefranque stations, and additionally at a virtual station

directly downstream from Orthez. These 4 points give theoretically sufficient observability to identify the 4 upstream hydro-

graphs. Indeed, they sample mixed and unmixed signal similarly to the academic setup in Subsection 3.2.1). The observation
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Figure 15. Schematic view of the complete Adour river network and observability. Dimensions are not respected: total river lengths equal

≈ 180km, 2D floodplain area equals ≈ 5×3km2. Tidal BC influence (from the downstream BC at Convergent) is observed up to Dax (and

further upstream), Peyrehorade and Villefranque.

pattern also corresponds to a reasonable expectation of spatial observability in French river networks. Prior hydrograph values575

are classically set to a constant average discharge value.

Simultaneous inference of the 4 hydrographs is satisfying. As shown in Fig. 17, left, upstream hydrographs injected at

Cambo and Orthez are inferred very accurately (NSE > 0.95). This is due to their WS elevation signature being observed

“unmixed” in the respective downstream reaches. The Escos hydrograph WS signature is observed at Peyrehorade, mixed with

the Orthez hydrograph WS elevation signature. This leads to partial error of signature attribution and a less accurate inference580

(NSE = 0.57). The Dax hydrograph WS elevation signature is observed only at the Urt station, where its signal is mixed with

that of Escos and Orthez. The resulting inference is the less accurate with a NSE of 0.50 and closer in shape to the inferred

Escos and Orthez hydrographs. This hints at correlated influences of these hydrographs at observation stations and insufficient

observability of the Dax hydrograph signal given the model hydrodynamics. Observed signals at the 4 stations are however all

very accurate (Fig. 17, right). For upstream stations (Orthez and Villefranque), this is due to the accurate inference of upstream585

hydrographs. For stations under the influence of the tidal BC (Peyrehorade and Urt), this is due to the backwater influence of

the BC, which compensates for the error in inferred hydrographs (namely at Dax, and less so at Escos).

In conclusion, this experiment shows the capability of the VDA tool chain to infer various upstream hydrographs on 1Dlike

network models. Note that multi-D models are identical to the investigated 1Dlike model in terms of VDA capabilities. It paves

the way towards investigations on multi-variate inferability of spatially distributed hydraulic-hydrological parameters.590

In the future, investigation on the influence of data sparsity, observation weights and ill-posed problem constraints should be

carried out.
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Figure 16. Zoom on the Bayonne area (green area in Fig. 15) using the 1Dlike and 1D2D approaches. Manning values are homogeneous

throughout the network and floodplains at 0.05s/m1/3. Left: Bathymetry in 1Dlike and 2D meshes. The 2D area has 66982 cells and

the coupled 1Dlike reaches account for 1342 cells. The south, east and west interfaces respectively feature 6, 18 and 14 2D cells. The

exclusively 1Dlike mesh contains 1409 cells. Right: Simulated water height for the 1D2D model for a sample flooding event (low tide,

QAdour = 650m3/s and QNive = 58m3/s at 1D2D interfaces).

4 Conclusions and perspectives

This article presents a new approach and numerical chain for the multi-D hydrological-hydraulic modeling of complex river

networks with variational data assimilation capabilities. It is based on the VDA algorithm and the finite volume solvers (in-595

cluding second order one and accurate treatment of wet/dry front propagation) from Monnier et al. (2016). The resolution of

the full 2D shallow water equations (Eq. 1) is performed with a single finite volume solver applied on a multi-D discretization

of a river network domain. This lattice consists in “1Dlike” reaches meshed with irregular quadrangular cells connected, via

1Dlike-2D interfaces, to 2D zooms consisting in higher resolution unstructured meshes - either triangular or quadrangular. This

hydraulic model is inflowed with a hydrological model enabling to describe upstream/lateral catchments inflow hydrographs.600

In this work, the parsimonious GR4 model is integrated (Perrin et al. (2003)), in its state space version (Santos et al. (2018))

for the sake of differentiability (for the VDA computations). This approach is implemented in the platform DassFlow (Monnier

et al. (2019)). The adjoint of the whole tool chain is generated with Tapenade (Hascoet and Pascual (2013)) and validated.

Forward-inverse capabilities with the new components is assessed on several cases of increasing complexity.

31



Figure 17. Upstream hydrograph inferences from 4 observation stations in twin experiment setup. Left: In blue: upstream inflow hydrographs

used to generate observations. In green: inferred hydrographs at 20 iterations. Dotted lines: background hydrograph value given for iteration

0 (mean target inflow over assimilation window). NSE values are given for their informative value but are not used in the assimilation process.

Right: In blue: target WS elevation. In green: WS elevation generated by the inferred hydrographs. Dotted lines: WS elevation generated

by the background hydrographs. Downstream tidal boundary influence is felt at the two most downstream stations (Urt and Peyrehorade).

RMSE value given are used to calculate cost in the assimilation process (Section 2.4).

The 1Dlike effective hydraulic modeling approach as well as its coupling with higher resolution 2D zooms was validated,605

against: 1) reference 1D and 2D hydraulic models, on an array of academic; 2) complex real cases featuring 1D and 2D flow

variabilities in river networks with confluences and floodplains. Those cases are also employed to test the coupling with the

hydrological model implemented in a semi-distributed setup.

Considering single (resp. multiple) type(s) of flow signatures observations in those river networks through a single-(resp.

multi)-objective observation cost function, the capabilities of the VDA method for inferring mono/multi-variate control vectors610

of large dimensions was successfully tested.

From the obtained results, the following conclusions can be raised:

1. A complete integrated multi-D model coupled with an hydrological model has been implemented and validated in a

parallel environment. Moreover, this complete tool chain includes VDA capabilities based on the adjoint code.
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2. The 1Dlike modeling approach enables to simulate fine physical flow states compared to reference 1D or 2D SW models;615

hydrograph propagation remains very close also.

3. The inference, from heterogeneous observations in the river network, of multi-variate and high dimension controls among

multiple inflow discharge hydrographs, bathymetry, friction of the full shallow water multi-D hydraulic model but also

hydrological model parameters is demonstrated. Very accurate inferences are obtained when the available information

contained in system observability and priors is sufficient regarding the nature and quantity of unknown parameters (see620

discussion in Brisset et al. (2018); Larnier et al. (2020); Garambois et al. (2020) and references therein).

4. Information feedback from the river network to upstream hydrological models of sub-catchments is shown.

5. Real flows on complex channel geometries can be accurately simulated with the 1Dlike model, despite its intrinsic

rectangular XS, thanks to the calibration of effective geometry-friction patterns. The depth-dependent friction law helps

to reduce misfits across flow regimes.625

6. High resolution simulations of real flows can be obtained on complex river networks including floodplains and conflu-

ences with reduced simulation costs.

To our knowledge, the present numerical tool is the first one proposing, large scale multi-D river network modeling with VDA

capabilities. This new toolchain opens the way for the resolution of large scale high dimensional hydrological-hydraulic inverse

problems that can be considered given constraints from multi-source datasets. The methods for direct and inverse modeling630

can be applied at multiple spatial scales including with fine resolution (imposing finer calculation time steps to respect CFL

condition in the forward hydraulic model). Building and constraining the models is, however, dependant on data availability

and the informative content of observations, which may be linked to the spatial scale.

Short term perspectives will aim to taylor the data assimilation algorithm to perform complex data assimilation experiments

at basin scale using various multi-source datasets. To be actually operational, improvements pertaining to the construction of635

1Dlike models from global public databases are needed to deploy the multi-D approach to a large number of river networks.

Coupling is ongoing with the SMASH spatially distributed hydrological platform (Jay-Allemand et al. (2020); Colleoni et al.

(2021)) on which is based the French flash flood warning system VigiCrues Flash (Garandeau et al. (2018)). Note that the ad-

dition of lateral flows (surface and subsurface runoff) would simply consist in imposing additional inflows on the boundary of

river/floodplains domain, which is numerically identical to the upstream flows imposed and inferred here (see such lateral cou-640

pling in 1D with inferences from sparse satellite altimetry data in Pujol et al. (2020)). Further work will also test the integrated

chain on flash flood Mediterranean basins as well as on larger basins in a satellite observability context. The implementation of

porosity models (Guinot et al. (2018) and references therein) represents a very interesting research direction regarding effective

floodplains and 1Dlike reaches parameterizations. This is especially true with depth-dependent porosity (Özgen et al. (2017);

Guinot et al. (2018) and references therein) applied to complex channel geometries and with spatially distributed calibration.645
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Appendix A: 2D (h,u,v) Shallow Water scheme

A1 2D solver

Recall the rotational invariance property of the SWE (Eq. 1) which simplifies the sum of 2D problems in Eq. (3) to 1D Riemann

problems. The fluxes Fe are computed using a Riemann solver. Each local Riemann problem depends on left and right states

at the interface e.650

The HLLC approximate Riemann solver is used. This gives the expressions:


[
F̂

HLLC

e

]
1,2

=
sKe

[
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]
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− sK

[
F(ÛKe

)
]
1,2
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(
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]
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−
[
ÛK

]
1,2
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]
3
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HLLC

e

]
1
v̂ ∗ with v̂∗=

 v̂K if s∗ ≥ 0

v̂Ke
if s∗ < 0

(A1)

where the wave speed expression is those proposed in Vila (1986):
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(
0, ûK −

√
ghK , ûKe

− 2
√
ghKe

+
√
ghK

)
sKe

=max
(
0, ûKe +

√
ghKe

, ûK +2
√
ghK −

√
ghKe

) (A2)

It has been demonstrated that this insures L∞ stability, positivity and consistency with entropy condition under a CFL655

condition.

For the intermediate wave speed estimate, following Toro (2001) we set:

s∗ =
sKhKe

ûKe
− sKe

hK ûK − sKsKe
(hKe

−hK)

hKe (ûKe − sKe)−hK (ûK − sK)
(A3)

A Courant–Friedrichs–Levy (CFL) condition for the time step ∆tn applies, see e.g. Vila and Villedieu (2003).

A2 Well-balancing660

The numerical scheme must preserve the fluid at rest property, that is the gradient of bathymetry ∇zb must not provide un+1 ̸=
0 if un = 0. In the presence of topography gradients (in particular those perpendicular to the streamlines) the basic topography

gradient ∇zb discretization in the gravity source term Sg(U) generates spurious velocities. There is no discrete balance between

the hydrostatic pressure and the gravity source term anymore: ∇
(
gh

2

/2
)
̸=−gh∇zb.

The technique which is employed here is those presented in Audusse et al. (2004); Audusse and Bristeau (2005). It is based665

on the following change of variable.

From now, at left and right sides of edge e, the considered water depth values h∗
⊓ are those defined from the “reconstructed”

topography ze as:
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h∗
□ =max(0,h□ + z□ − ze)

with

 z□ = η□ −h□

ze =max(zK ,zKe
)

(A4)

See Fig. A1.670

The conservative variable vector Un
e,K is now considered with the new variable:

U∗
□ =

 h∗
□

h∗
□u

 (A5)

Note that this new variable h∗
e,K depends on the bathymetry values ze,K and ze.

The resulting scheme reads:

Un+1
K =Un

K − ∆tn

mK

∑
e∈∂K

me

(
Fe(U

∗n
K ,U∗n

Ke
,nK)+ Sp (U

n
K ,U∗n

K ;zK ,zKe
,nK)) (A6)675

with

Sp (U
n
K ,U∗n

K ;zK ,zKe
,nK) =

 0
g

2

(
(hn

K)
2 − (hn∗

K )
2
)
nK

 (A7)

This provides a well-balanced (first order) scheme.

Figure A1. Typical situation of desired well-balanced property in presence of a wet/dry front. The WS elevation is here denoted by η.
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A3 Prediction-correction time scheme680

The friction source term is taken into account in the complete SW system by deriving a prediction-correction time scheme, see

e.g. Toro (2001).

We denote here by Ūn+1
K the FV solution at time tn+1 of the (well-balanced) scheme, either first or second order, of the SW

system with the gravitational term Sg but without the friction term Sf . Recall that we denote: U= (h,hu)
T .

At each time step, from n to n+1,685

– Step 1: computation of Ūn+1, solution of the conservative SW system, i.e. the SW system without Sf , i.e. the FV

solution of the following system:

∂tU + ∂xF (U)+ ∂yG(U) = Sg (U) (A8)

– Step 2: given the ”predicted value” Ūn+1, compute Un+1 solution of:

∂tU= Sf (U) (A9)690

General schemes (explicit, implicit or semi-implicit ones) including the friction source term Sf in the discretization of the

model (Eq. 1) can be written as: for all K,

Un+1
K = Ū

n+1
K +∆n

t Sf

(
Ū

n+1
K ,Ū

n+1
Ke

)
(A10)

Note that this splitting scheme is consistent at first order in ∆t with the complete SWE. Splitting scheme second order in

time is possible; it is not detailed later.695

In the case of the Manning-Strickler law, the friction term reads Sf =−gn2

 0
|ū|
h

1
3
ū

.

Therefore the equation to be solved (Eq. A9) reads:

∂t

 h

hū

=−gn2

 0
|ū|
h

1
3
ū

 (A11)

Since the friction source term Sf is zero in the mass conservation equation, we remark that hn+1 = h̄n+1. As a consequence,

we consider the non-zero momentum component only ∂t (hū) =−gn2 |ū|
h

1
3
ū700

A3.1 First order expression of Un+1

Let us consider the implicit scheme :

hn+1un+1 −hn+1ūn+1

∆tn
=−gn2

∣∣un+1
∣∣un+1

(hn+1)
1
3

(A12)
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This implies that:

∣∣un+1
∣∣un+1 +

(
hn+1

) 4
3

∆tngn2

(
un+1 − ūn+1

)
= 0 (A13)705

Let us set c= (hn+1)
4
3

∆tngn2 , c≥ 0. Note that
∣∣un+1

∣∣un+1+cun+1 = cūn+1. Therefore for non vanishing velocities, it exists α ∈
]0,1] such that: un+1 = αūn+1. Adopting these notations, we obtain

∣∣ūn+1
∣∣ ūn+1α2+ cūn+1α− cūn+1 = 0. This simplifies

to:∣∣ūn+1
∣∣α2 + cα− c= 0 (A14)

Since α≥ 0, the root of this quadratic equation reads:710

α=
−c+

√
c2 +4c |ūn+1|
2 |ūn+1|

(A15)

Let us define the function ε= 1
c

∣∣ūn+1
∣∣=∆tngn2 |ūn+1|

(hn+1)4/3
. Observe that ε=O (∆tn), also ε=O
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)
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ing this notation, Eq. (A15) reads: α=
√
1+4ϵ−1
2ϵ . After some rearrangements, we obtain α= 2

1+
√
1+4ε

. At first order in ϵ, we

get α∼
(

1

1+ ϵ/4

)
∼ 1− ϵ/4. Finally, we obtain:

Un+1
K =

 hn+1

hn+1un+1

=


h̄n+1

hn+1ūn+1

 2
(
h̄n+1

)2/3(
h̄n+1

)2/3
+

√(
h̄n+1

) 4
3 +4∆tngn2 |ūn+1|


 (A16)715

with
∣∣ūn+1

∣∣ the solution of Eq. (A8).

A4 Second order MUSCL scheme

In order to obtain a globally second order scheme, a higher-order time stepping scheme is needed. Let us briefly describe the

ingredients of this second order well-balanced positive scheme that is strictly the same as the one proposed in Couderc et al.

(2013); Monnier et al. (2016). Actual second order accuracy, considering source terms Sg and Sf , is achieved through the720

combination of a Monotonic Upwind Scheme for Conservation Laws (MUSCL) spatial reconstruction and an IMEX RK time

scheme (see Monnier et al. (2016) and references therein), as well as a spatial discretization of Sg and the semi-implicitation

friction source term Sf given by in the subsection above.

A monoslope second order MUSCL scheme is adopted, see e.g. Chévrier and Galley (1993); Buffard and Clain (2010).

It leads to new expressions of Un
K and Un

Ke
. With this linear reconstruction, one can expect a scheme with a second-order725

accuracy in space (for regular solutions only). In order to prevent large numerical dispersive instabilities, the computed vectorial

slopes are limited by applying a maximum principle. Furthermore, to handle the presence of wet-dry fronts that can break the

Finite Volume mass conservation property, a Barth limiter (Barth (2003)) is employed.
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Appendix B: 1D (A,Q) Saint-Venant

A river network Ω1D is described by connected closed line segments. For a flow XS orthogonal to the main (longitudinal) flow730

direction of curvilinear abscissa x ∈ Ω1D (distance from downstream), at time t ∈ [0,T ], let A(x,t) be the flow cross-sectional

area
[
m2

]
and Q(x,t) the discharge

[
m3/s

]
such that Q= UA with U (x,t) defined as the longitudinal XS averaged velocity

[m/s]. The 1D Saint-Venant equations in (A,Q) variables at a flow XS write as follows:


∂A
∂t + ∂Q

∂x = 0

∂Q
∂t + ∂

∂x

(
Q2

A

)
+ gA∂Z

∂x =−gA |Q|Q
K2A2R

4/3
h

(B1)

where Z (x,t) is the WS elevation [m] and Z = (b+h) with b(x) [m] the river bed level and h(x,t) [m] the water depth ,735

Rh (x,t) =A/Ph [m] the hydraulic radius , Ph (x,t) [m] the wetted perimeter, g
[
m/s2

]
is the gravity magnitude. Let us recall

the Froude number definition Fr = U/c comparing the average flow velocity U to pressure wave celerity c=
√

gA
W where W

[m] is the flow top width.

The friction term Sf is classically parameterized with the empirical Manning-Strickler law established for uniform flows
|Q|Q

K2A2R
4/3
h

where K
[
m1/3/s

]
is the Strickler coefficient.740

The Saint-Venant equations are solved on each segment of the river network and the continuity of the flow between segments

is ensured by applying an equality constrain on water levels at the confluence between two segments.

Boundary conditions are classically imposed (subcritical flows here) at boundary nodes with inflow discharges Q(t) at

upstream nodes and WS elevation Z (t) at the downstream node; lateral hydrographs ql (t) at in/outflow nodes. The initial

condition is set as the steady state backwater curve profile Z0 (x) = Z (Qin (t0) , ql,1..L (t0)) for hot-start. This 1D Saint-Venant745

model is discretized using the classical implicit Preissmann scheme (see e.g. Cunge et al. (1980)) on a regular grid of spacing

∆x using a double sweep method enabling to deal with flow regimes changes with a one-hour time step ∆t. This is implemented

into the computational software DassFlow (Brisset et al. (2018); Larnier (2010)).

The numerical scheme is a semi-implicit finite difference scheme (generalized Preissmann scheme) with a double sweep

Local Partial Inertial method to minimize the inertial terms (see documentation in Brisset et al. (2018); Larnier (2010)).750
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Appendix C: GR4 hydrological model operators

The state-space version of the lumped conceptual hydrological model GR4 presented in Santos et al. (2018) consists in the set

of ODE below:

dh

dt
=



ḣp = Ps −Es −Perc

ḣ1 = Pr −QSh,1

ḣ2 =QSh,1 −QSh,2

... ...

ḣnres =QSh,nres−1 −QSh,nres

ḣr =Q9 +F −Qr

(C1)

They involve the following fluxes:755



Es = E
(

2hS

c1
−
(

hp

c1

)α)
Ps = P

(
1−

(
hp

c1

)α)
Perc =

(
ν
c1

)β−1
1

β−1

(
h+
p

)β
Pr = P

(
hp

c1

)α

+
(

ν
c1

)β−1
1

β−1

(
h+
p

)β
QSh,1 =

nres−1
c4

h+
1

... ...

QSh,11 =
nres−1

c4
h+
nres

Q9 = Φnres−1
c4

h+
nres

Q1 = (1−Φ) nres−1
c4

h+
nres

F = c2
cω3

(h+
r )

ω

Qd = (1−Φ) nres−1
c4

hnres+1 − c2
cω3

(h+
r )

ω

Qr =
1

(h+
R)

γ−1
(γ−1)

(h+
r )

γ

(C2)

The following parameter are set following Perrin et al. (2003) and Santos et al. (2018): α= 2, β = 5, γ = 5, ω = 3.5,

ν = 4/9, Φ= 0.9, nres = 11.

Calibrated parameter for the Adour case were obtained using the airGR global calibration algorithm (Coron et al. (2017))

from the freely available package5.760

5https://webgr.inrae.fr/logiciels/airgr/

39



Parameter Adour Oloron Pau Nive

x1 413.744 1844.567 1118.78 982.401

x2 0.148 1.363 1.134 0.696

x3 86.418 117.919 112.168 90.017

x4* 55.466 12.739 11.059 6.980
Table C1. Calibrated hydrological parameters of the 4 upstream hydrological catchments from the Adour multi-D hydrographic network

model. *Note that the x4 calibrated parameters corresponds to the non-“state-space” GR4H version (not presented, seePerrin et al. (2003)),

for which the calibration tool is provided. x4 values in the present run with the “state-space” were set at 0.15.

40



Code and data availability. The current DassFlow code is available on demand at https://www.math.univ-toulouse.fr/DassFlow/download.html.
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